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ABSTRACT. Polycrystalline ice near an ice divide typically shows a crystal fabric (crystal preferred
orientation) with c axes clustered vertically. We explore the effect of this fabric on the large-scale flow
pattern near an ice divide. We incorporate an analytical formulation for anisotropy into a non-linear
flow law within a finite-element ice-sheet flow model. With four different depth profiles of crystal
fabric, we find that the effect of fabric is significant only when a profile has a minimum cone angle of
less than ��258. For a steady-state divide, the shape and size of the isochrone arch can depend as much
on the crystal fabric as it does on the non-linearity of ice flow. A vertically oriented fabric tends to
increase the size of the isochrone arch, never to reduce it. Also, non-random fabric has little effect on
the ice-divide-flow pattern when ice is modeled as a linear (Newtonian) fluid. Finally, when we use a
crystal-fabric profile that closely approximates the measured profile for Siple Dome, West Antarctica,
the model predicts concentrated bed-parallel shearing 300m above the bed.

INTRODUCTION
Deformation of single ice crystals in response to stress is
strongly anisotropic. Crystals shear easily along the slip
systems in their basal planes, much like a deck of cards,
while shear on other slip systems is almost two orders of
magnitude harder (Duval and others, 1983). The bulk strain
rate of a polycrystalline aggregate subjected to stress
depends on the orientations of the individual crystals within
it. An aggregate may behave isotropically if the crystals
within it have random orientations; it will behave aniso-
tropically if the crystals within it have non-random orienta-
tions. The deformation of anisotropic ice has been studied
extensively both in theory (Johnson, 1977; Alley, 1992;
Azuma, 1994; Azuma and Goto-Azuma, 1996; Castelnau
and others, 1996; Godert and Hutter, 1998) and in the
laboratory (Duval, 1981; Duval and LeGac, 1982; Shoji and
Langway, 1985; Pimienta and others, 1988; Budd and Jacka,
1989; Castelnau and others, 1998). The effect of anisotropy
on the flow of an ice aggregate is significant enough that it is
critical to understand its effect on large-scale flow patterns of
ice sheets (Russell-Head and Budd, 1979; Paterson, 1991;
Mangeney and others, 1997; Castelnau and others, 1998;
Thorsteinsson and others, 1999).

As ice undergoes viscous deformation, the crystal c axes
tend to rotate toward the axis of greatest compressive strain
(e.g. Paterson, 1994). Thus, ice in glaciers and ice sheets
typically has a non-random crystal-orientation fabric (the
statistical pattern of crystal orientations within the bulk)
depending on the strain-rate history (e.g. Alley, 1992).

Despite evidence that ice within an ice sheet typically
has a non-random crystal fabric, most ice-sheet models treat
ice as an isotropic material (e.g. Raymond, 1983; Marshall
and others, 2000; Hulbe and Payne, 2001) because, in most
cases, deviations from the flow field predicted by isotropic
models that are due to non-random crystal fabric are small
when compared to the overall flow field. As we require

models to reproduce finer details of ice-sheet behavior, the
effects of crystal fabric become more important. The ability
to include the effect of crystal fabric in an ice-sheet flow law
is important, for example, near ice divides where stratig-
raphy in ice cores may be affected (e.g. Alley and others,
1997; Waddington and others, 2001).

On the scale of entire ice sheets, the effects of non-
random crystal fabric may be parameterized through scalar
‘enhancement factors’ in the isotropic ice-flow law known
as Glen’s law (Nye, 1953; Glen, 1958); however, in order to
know when these approximations are appropriate, we need
to understand the effects of crystal fabric on ice-sheet flow
patterns. We approach this question by focusing on flow
near an ice divide using a two-dimensional plane-strain
flow model of an ideal ice sheet.

In terms of their flow behavior, divides are unique when
compared to other regions of ice sheets. This uniqueness
poses an interesting challenge for ice-dynamics modeling
because the shallow-ice approximation, which assumes that
longitudinal stresses are negligible, is not valid near a divide.
Yet, accurate models of flow near ice divides contribute
significantly to interpretation of ice-core and borehole
measurements, surface-motion measurements and observa-
tions of internal structure detected with ice-penetrating radar.

In the divide region of an ice sheet, the lowest deviatoric
stresses are found near the bed and within one ice thickness
of the divide (Raymond, 1983). Because of the non-linearity
of Glen’s law, the ice there has a significantly higher
effective viscosity than the surrounding ice. The flow is
impeded through this region of hard ice, altering flow
trajectories and producing a special divide-flow pattern
(Raymond, 1983). Under the divide, older ice is closer to the
surface than on the flanks, causing the isochrones to form an
arch. This feature, which is often called a ‘Raymond bump’,
is a characteristic signature of the non-linear flow law for
ice. We can observe this layer arch in the internal structure
shown by radio-echo sounding images (Nereson and others,
1998a; Vaughan and others, 1999).

The divide layer arch (or lack thereof) has been used to
infer past and present behavior of ice sheets (Nereson and
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others, 1998a, b; Nereson and Waddington, 2002). Since ice
in an ice sheet typically exhibits a strong non-random crystal
fabric, and ice flow is dependent on orientation of crystals
relative to the applied stress, we expect that a non-random
crystal fabric might affect the flow field. For example, when
basal planes are aligned parallel to the plane of maximum
shear stress, deformation may be enhanced by a factor of 8
or 10 relative to that for isotropic ice (Budd and Jacka, 1989;
Azuma, 1994; Azuma and Goto-Azuma, 1996; Castelnau
and others, 1996; Thorsteinsson, 2002). Characterizing the
flow pattern resulting from a non-linear flow law that also
includes the effects of crystal fabric will improve predictions
by ice-sheet flow models and interpretations of the divide
signature.

As a first step, Mangeney and others (1996) modeled the
flow of anisotropic ice near an isothermal divide in plane
strain using a linear stress–strain-rate relationship for ice. We
take the next step by combining an analytical description of
deformation of a polycrystal with a vertically oriented crystal
fabric together with a non-linear constitutive relation for
bulk flow of ice. The analytical description is a linear version
of the flow law derived by Thorsteinsson (2001). The benefit
of this analytical description is its ability to capture the
impact of crystal fabric on deformation near a divide, yet it is
simple to implement in ice-sheet models.

AN ANISOTROPIC CONSTITUTIVE LAW FOR ICE
Empirically, an isotropic ice-crystal aggregate behaves as a
power-law fluid (Nye, 1953; Glen, 1955). The standard flow
law most often used in ice-flow models is

_"ij ¼ EA0e�Q=RT �n�1
eff �ij, ð1Þ

where _"ij and � ij are the strain-rate and deviatoric stress
tensors, respectively, �eff is the effective shear stress (second
invariant of the deviatoric stress tensor), n is the stress
exponent (usually set equal to 3 for ice) and A0 is the
‘softness parameter’. Strain rate is a function of temperature
according to an Arrhenius relationship, where Q is the
thermal activation energy for creep, R is the gas constant
and T is temperature. The coefficient E is called the
‘enhancement factor’. In this form, all properties of the ice
are lumped into the three scalars E, A and n. This form for
the flow law is limiting for two primary reasons. First, ice
deformation results from a combination of microscale
mechanisms with different stress exponents (e.g. Alley,
1992; Langdon, 1996; Goldsby and Kohlstedt, 2001; Pettit
and Waddington, 2003). Second, polycrystalline ice in an
ice sheet can be strongly anisotropic; near a divide, the
strain pattern (vertical compression combined with bed-
parallel shear) drives the development of a vertically
oriented crystal fabric (Alley, 1992). When ice has a non-
random crystal fabric, the components of the strain-rate
tensor are not proportional to the corresponding com-
ponents of the stress tensor; thus, except for cases in which a
single component dominates the stress tensor, a scalar
softness parameter or enhancement factor is ineffective at
accounting for crystal fabric.

Several authors have presented anisotropic flow laws for
ice (e.g. Azuma, 1994; Castelnau and others, 1996; Godert
and Hutter, 1998; Gagliardini and Meyssonnier, 1999;
Thorsteinsson, 2001, 2002). Their approaches differ primar-
ily in how they relate the stress applied to the ice aggregate
to the local deformation rate of a crystal within the

aggregate. At one end of the spectrum, the strain is assumed
to be the same for all crystals; this is called the ‘homo-
geneous-strain assumption’ or the ‘Taylor–Bishop–Hill mod-
el’ (Taylor, 1938; Bishop and Hill, 1951). In this case,
crystals that are favorably oriented for deformation (under
the given state of stress) deform easily and shift the stress
burden onto neighboring, unfavorably oriented, crystals. At
the other end of the spectrum of anisotropic flow laws, the
applied stress is the same for all crystals; this is called the
‘homogeneous-stress assumption’, based on the ‘Sachs
model’ (Sachs, 1928). Each crystal deforms at a rate
dependent on its orientation, and grain boundaries migrate
to ensure that no gaps develop between grains.

The real distribution of stress probably lies somewhere in
between. The homogeneous-stress assumption requires all
five slip systems to be active, because the deformation of an
individual crystal is defined by the large-scale strain, which
does not take into account the possibility that a crystal may
be poorly oriented for slip on the basal plane. Because of
this, the homogeneous-stress assumption may better de-
scribe the real deformation in ice, since each crystal deforms
on its basal (easy) slip systems, and grain shape changes
through grain-boundary processes (Thorsteinsson, 2000).

In this paper, we present results from two models for
deformation of ice with a non-random crystal fabric. First we
use the analytical model developed by Thorsteinsson (2001)
(we will refer to this as ‘T2001’), which calculates the
deformation of polycrystalline aggregates under combined
stress environments. Second, we use a new model that is a
restricted form of Thorsteinsson (2001) (we will refer to this
as ‘ModT2001’), using a linear flow law for deformation
within each crystal, which allows it to be incorporated in an
ice-sheet flow model in a way that is computationally
efficient.

T2001 uses the same basic assumptions as Godert and
Hutter (1998) and Gagliardini and Meyssonnier (1999): it is
based on the homogeneous-stress assumption. The bulk
deformation of the ice aggregate is an integrated deform-
ation of all the crystals within the aggregate. The resolved
shear stress (RSS) on the basal plane of each crystal is a
function of the c-axis direction relative to the applied stress
field. The RSS drives the deformation of the crystal. To build
a flow law from this theory, Thorsteinsson (2001) used a
distribution of crystal orientations within an aggregate to
define the bulk deformation. The fabric near an ice divide
typically has a cluster of c axes, oriented vertically. This type
of fabric can be approximated by defining a ‘cone angle’,
which is the half-apex angle of a cone within which all
crystals are uniformly distributed. This definition of cone
angle applies to ideal ice aggregates; for a real aggregate,
which may not have a uniform distribution of c axes within a
cone, an ‘effective’ cone angle is defined which yields the
same strain rate in response to the same applied stress under
the same assumptions as the ideal aggregate; in practice, the
effective cone angle is estimated from thin-section statistics
(Thorsteinsson, 2000).

T2001 is an analytical solution which describes the
deformation rate of the aggregate for a given effective cone
angle under combined stress states. ModT2001 is a version
of this analytical solution which uses a linear flow law.
Compared to other formulations (Azuma, 1994; Castelnau
and others, 1996), T2001 and ModT2001 generally predict
smaller enhancements. For example, for a single-maximum
fabric deformed in simple shear on the basal plane, T2001
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predicts an enhancement of 4.375, compared to �9 for
other models. ModT2001 predicts an even smaller enhance-
ment of 2.5. Because of these smaller predicted enhance-
ments, T2001 and ModT2001 both underestimate the role of
anisotropy. T2001 (and therefore also ModT2001) has two
limitations; it does not predict the evolution of the fabric and
it does not include interactions between neighboring crystals
(Thorsteinsson, 2002).

In order to incorporate the ModT2001 model into an ice-
sheet flow model while maintaining the bulk flow non-
linearity, we use a bulk effective viscosity, �eff, which is
derived from Glen’s law:

�eff ¼ 2EA0e�
Q
RT�2eff

� ��1
, ð2Þ

where A0 and E are the isotropic softness parameter and
enhancement factor and we assume the stress exponent, n,
equals 3. By assuming a linear ice rheology for ModT2001,
the strain rate can be described as a function of vertically
oriented cone angle, �, and the effective viscosity:

_"ij ¼ 1
�eff

a�11 þ c�22 þ b�33 d�12 e�13
d�12 c�11 þ a�22 þ b�33 e�23
e�13 e�23 bð�11 þ �22 � 2�33Þ

2
4

3
5,
ð3Þ

where coefficients a, b, c, d and e are given as functions of
cone angle, �, in Equation (A6) in the Appendix.

For plane strain, the stress-balance and conservation-of-
mass equations can be rewritten as partial differential
equations (PDEs). (A more complete derivation of these
equations is given in the Appendix):

�eff
�1
3b

a� b
2aþ b

� 1
2e

� �
uxx þ �eff

1
2e

uzz � px ¼ 0 ð4Þ

�eff
1
2e

wxx þ �eff
�1
3b

� 1
2e

� �
wzz � pz ¼ �g ð5Þ

ux þwz ¼ 0, ð6Þ
where u and w are velocities in the x and z direction,
respectively; p is the pressure, � is the density, and g is the
acceleration due to gravity. Subscripts x and z indicate
partial derivatives. This derivation assumes that the softness
parameter, A0, and variables a through e are spatially
uniform; therefore, these PDEs apply to individual finite
elements and are not descriptive of the overall flow field.

MEASUREMENTS OF CRYSTAL FABRIC
Ice-sheet fabric can be measured in two ways. In the
laboratory, ice-core thin sections viewed through cross-
polarizing filters provide statistics of crystal orientation for
tens to a few hundred crystals (e.g. Gow and others, 1997;
Thorsteinsson and others, 1997). In the field, a borehole
sonic log measures the speed of sound transmitted through
�7m of ice (containing many thousands of crystals)
(Thorsteinsson and others, 1999). Sound speed reflects the
elastic anisotropy, which is related to fabric in a straightfor-
ward way. Thorsteinsson (2000) relates this sonic-velocity
measurement to an effective cone angle, which is a
convenient measure for vertically symmetric fabrics often
found near ice divides. Ice-core fabric data from thin
sections can also be represented as an effective cone angle
to compare with the sonic log. Thorsteinsson (2000)
compared cone angles from the Greenland Icecore Project

(GRIP) core calculated from sonic-velocity measurements to
those calculated from thin sections and concluded that for
highly symmetric fabrics the sonic velocity is the most
useful; it is accurate and has a high vertical spatial
resolution. In this study, we took advantage of the sonic
log measured at Siple Dome, West Antarctica, (personal
communication from G. Lamorey, 1999) which was
converted to cone angle as a function of depth using the
method described by Thorsteinsson (2000).

A FIRST ESTIMATE
To get a first estimate of the pattern of flow resulting from
fabric similar to that seen at ice divides, we calculate the
instantaneous enhancement of the vertical strain rate at a
given cone angle for divide (pure shear) and flank (pure
shear with simple shear) sites using T2001. The T2001
model is limited to predicting the deformation of an
aggregate of �1000 crystals; therefore, we calculate the
effect for each depth in the ice sheet, without the stress
redistribution of a fully coupled model. We show a similar
calculation for the ModT2001 for comparison.

Figure 1 shows T2001 results as enhancement of the
vertical strain rate due to crystal fabric under combined
pure-shear and simple-shear stress states. Given a vertical
cone angle and a relative amount of shear stress, the
contours show the enhancement of the vertical strain rate
relative to the vertical strain rate for isotropic ice.
(Enhancements for other strain-rate components show dif-
ferent patterns.) We focus on vertical strain rate because, in
the divide region, the shape of its depth profile is sensitive to
the form of the flow law. Also, the difference between the
shape of the vertical-velocity profiles at the divide and on
the flank determines the size of the arch in the isochrones
(Pettit and Waddington, 2003).

Fig. 1. Enhancement in vertical strain rate due to anisotropy for
combined simple and pure shear. The horizontal axis is the ratio of
the magnitude of the simple shear stress, �s, to pure shear, �n, such
that the far left region represents flow dominated by pure shear
(similar to ice-divide flow) and the middle and right regions
represent flow dominated by simple shear (similar to flank flow).
On the vertical axis the cone angle varies from 08 (strongly
anisotropic) to 908 (isotropic). The cone angle associated with the
maximum enhancement varies as the relative amount of shear stress
varies. (Adapted from Thorsteinsson (2001).)
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In Figure 1, the vertical cone angle associated with
maximum enhancement of vertical strain rate varies from
approximately 608 to 358 as the relative amount of shear
stress increases. This is an expression of the differing
direction of the maximum applied compressive stress
(vertical on the left edge of the graph, approaching 458 on
the right edge). The lower left region of the figure, where
cone angles are less than 408, represents ice that is stiff in
vertical compression relative to isotropic ice. (Similar
calculations for horizontal shear show that ice with this
fabric is soft when undergoing horizontal shear.) If the
crystals have a broader distribution of c axes (e.g. spread
over a cone larger than 458) then the ice is soft when
compressed vertically, because enough crystals have basal
planes tilted nearly parallel to the plane of maximum shear
stress to allow deformation of the bulk.

We estimate the effect of this enhancement (or reduction)
in strain rates near an ice divide using a cone-angle profile
based on sonic-velocity measurements in the borehole at
Siple Dome (personal communication from G. Lamorey,
2003; data are available only for the lower 800m of the
1000m thickness). The vertical cone-angle profile at a site
within ten ice thicknesses of a divide should have the same
general character as the divide profile, since the strain
history of ice in both regions is similar. Therefore, in Figure 2
we calculate the enhancement in vertical strain rate (the
ratio of the vertical strain rate calculated for anisotropic ice
to that for isotropic ice: _"aniso33 = _"iso33 ) for the cone-angle profile
at Siple Dome assuming two different stress fields: one
similar to the divide site (pure shear: �s=�n ¼ 0) and one
similar to a flank site (dominated by simple shear:
�s=�n ¼ 5). For comparison, we also provide the results of
a similar calculation using the ModT2001 model (Equa-
tion (3)). Because ModT2001 is based on a linear flow law,
the flank and divide profiles are identical.

Figure 2 shows that throughout most of the depth of the
ice sheet the ice is stiffer in vertical compression at the
divide than on the flank. This difference in effective viscosity

is similar in character to the viscosity difference described
by Raymond (1983) that results from the non-linearity of the
isotropic flow law. The Raymond viscosity difference
produces an arch in the isochrones and affects the depth–
age scale at an ice divide. Figure 2 suggests that a cone-
angle profile that decreases with depth (the fabric strength-
ens) can produce an arch in the isochrones similar to the
Raymond bump. Since this conclusion is not based on an
ice-sheet model that solves the complete stress-balance
equations, it is only an estimate of the effect of crystal fabric
on the divide-flow pattern. A more realistic assessment of an
anisotropy-induced arch in the isochrones requires a
numerical flow model with a flow law that incorporates
the effect of anisotropy. Such a model can capture the
redistribution of stress caused by the interaction of stress and
fabric. To study the effect suggested in Figure 2 for a full ice-
sheet model, we use the ModT2001 model, with the non-
linearity incorporated in the bulk ice-sheet flow model
through the effective viscosity. Because of the limitation of
the anisotropic description within this model, our results are
an underestimate of the effect of crystal fabric.

FINITE-ELEMENT ICE-FLOW MODEL
We model an idealized divide with a thermomechanically
coupled finite-element model. The geometry and approach
are similar to Raymond (1983) and Mangeney and others
(1996). The assumptions of the model include:

1. The ice deforms in plane strain; thus, the model best
represents a ridge ice divide, such as Siple Dome
(Nereson and others, 1996) or Roosevelt Island (Conway
and others, 1999).

2. We solve the heat-transfer equation for temperature using
the surface temperature and the geothermal gradient at
the base as boundary conditions. Conduction, advection
and strain heating are included in the thermal model.

3. The upper surface is stress-free.

4. The divide is a line of symmetry where ice is constrained
to move only vertically.

5. The horizontal-velocity profile on the flank boundary (at
30 ice thicknesses from the divide) carries away the
integrated mass balance from the divide to the boundary
in order to satisfy mass conservation for a steady-state
ice sheet. We do not impose a vertical velocity on this
boundary. Because our boundary is more than 20 ice
thicknesses from the divide, the results for the region
within 10 ice thicknesses of the divide are insensitive to
the details of the horizontal-velocity profile on the flank
boundary (Raymond, 1983; Schøtt and others, 1992). In
practice, however, we begin with a laminar-flow profile
at the boundary, but as velocities within the ice sheet are
calculated, we update the shape of the horizontal-
velocity profile at the boundary to account for the
unique rheological properties of the anisotropic ice and
the non-uniform temperature field. We do this by
maintaining constant ice flux out of the boundary, while
applying a horizontal-velocity shape function calculated
by the model at a distance of ten ice thicknesses from
the divide.

6. The flow law with anisotropy is incorporated through a
two-step calculation. First, an effective viscosity (�eff) is

Fig. 2. Enhancement due to anisotropy in vertical strain rate
( _"aniso33 = _"iso33 ) at divide and flank sites using fabric measured by
sonic-velocity log in the Siple Dome borehole (no data were
collected for the upper �200m). Results from T2001 are shown as
thick (divide) and thin (flank) lines. ModT2001 for both flank and
divide is shown as the dotted line (calculated from Equation (3)).
Note the reduced enhancement with the linear ModT2001 model.
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calculated for each element (see Equation (2)), where
�eff is determined from the effective strain rate, _"eff,
resulting from the previous iteration of the model ð�2eff ¼
½ _"eff =A0expð�Q=RT Þ�Þ2=3Þ. This effective viscosity is
substituted into Equations (4–6), which are solved for
the new velocity gradients within each element given the
cone angle, �. This process is repeated for a specified
number of iterations (typically ten) to achieve conver-
gence, which is defined through a maximum difference
between velocity solutions in successive iterations. This
two-step process allows us to combine the non-linear
bulk flow of ice based on Glen’s law with a description of
anisotropy based on a linear rheology.

7. In these models, we assume that the cone-angle profile is
a function only of normalized depth, z=HðxÞ.

8. The model solves the mass, momentum and energy
conservation equations on a grid of nine-node quadratic
elements for temperature, pressure and velocity fields.

The physical characteristics of the model are chosen to
approximate Siple Dome (Nereson and others, 1996):
1000m thick, an accumulation rate of 0.12ma–1, a surface
temperature of –258C and geothermal flux of 65mWm–2.
We used a 55�51 node mesh with elements concentrated
in the divide region and near the bed. In the bulk flow law,
Equation (1), we used values for A0 based on those suggested
by Paterson (1994) according to the temperature of the ice
calculated by the thermal model.

We initialized the surface profile using the shallow-ice
approximation with isotropic fabric. The surface then
evolved until it achieved a steady state in which ice flow
was balanced by the prescribed accumulation rate. We
consider our model to be in steady state when the root-
mean-square change in the surface velocities within ten ice
thicknesses of the divide does not exceed a specified
tolerance (typically <10–8ma–1). The resulting solutions for
different vertical profiles of crystal fabric, therefore, do not
have the same ice thickness or surface profile; instead, they
all have the same ice flux entering the surface and exiting
the sides and all contain the same amount of ice within the
model domain. For ease of comparison, we non-dimen-
sionalized most of the results. Except where otherwise
noted, horizontal and vertical velocities are expressed
relative to the vertical velocity of ice at the surface at the
divide (which for a steady-state divide is also the accumu-
lation rate at the divide), and thicknesses are expressed
relative to the ice thickness at the divide.

MODEL RESULTS AND DISCUSSION
As discussed earlier, most measurements of crystal fabric
near the centers of ice sheets show a similar pattern:
isotropic ice near the surface and vertically aligned single-
maximum fabric at depth. The details of the cone-angle
profile vary depending on the local history of climate,
impurity content, temperature and strain rate. For this study,
we choose four different piecewise-linear cone-angle pro-
files, shown in Figures 3a and d and 4a and d. Cone-angle
profile A is based on a simple assumption of decreasing
cone angle with depth. Cone-angle profile B adds the
assumption of an increasing cone angle in deep ice due to
recrystallization processes (this profile is loosely based on
data from Greenland (personal communication from
G. Lamorey, 2003)). Cone-angle profiles C and D are
piecewise-linear profiles based on the measured sonic log
from the Siple Dome borehole, shown as a dashed line in
Figure 4a and d (personal communication from G. Lamorey,
2003). This paper presents results from eight different model
runs using these four anisotropic profiles and an isotropic
profile. The model runs are defined in Table 1.

Figures 3b and e and 4b and e show the predicted
vertical-velocity profiles at the divide and the flank for each
cone-angle profile. Figures 3c and f and 4c and f show the
horizontal-velocity profiles at 1, 2 and 10 ice thicknesses
from the divide. For comparison, we include in each of these
figures the solution for isotropic fabric with a non-linear flow
law (INL, Equation (1) with n ¼ 3) and isotropic fabric with
a linear flow law (IL, Equation (1) with n ¼ 1).

Cone-angle profiles A and C have consistently broader
cone angles (>258C) throughout the ice depth than profiles B
and D. Their associated velocity profiles closely resemble
those associated with isotropic fabric. Results from cone-
angle profiles B and D, however, show significant differ-
ences in the shape of the vertical-velocity profiles when
compared to the vertical-velocity profiles resulting from an
isotropic cone-angle profile. These differences seem to be
the result of the region of small cone angles present in both
B and D. Cone-angle profile D, which is the closest
approximation of the four to the fabric profile inferred from
the measured sonic log from Siple Dome, includes a distinct
band of tight vertical fabric. Duplicate logs demonstrate that
this band is a real feature in the sonic-velocity log (personal
communication from G. Lamorey, 2003). This band of fabric
is bounded above by the Holocene/Wisconsin boundary
near 700m depth and bounded below by the onset of rapid
recrystallization at just over 800m depth. Cone-angle profile
B, in contrast, has a broader band of tight fabric without
strong gradients in cone angle.

Table 1. Short-hand identification codes for our models

Short-hand code Model description

IL Isotropic ice with linear flow law
INL Isotropic ice with non-linear flow law
AANL Anisotropic ice with cone-angle profile A and non-linear flow law
AAL Anisotropic ice with cone-angle profile A and linear flow law
BANL Anisotropic ice with cone-angle profile B and non-linear flow law
CANL Anisotropic ice with cone-angle profile C and non-linear flow law
DANL Anisotropic ice with cone-angle profile D and non-linear flow law
DAL Anisotropic ice with cone-angle profile D and linear flow law
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The band of highly oriented crystals in the Siple Dome
cone-angle profile D (Fig. 4d) concentrates the shear strain
such that the band behaves like a false bed (Fig. 4f), reducing
the stresses in the deeper ice. Figure 4f shows that the
horizontal-velocity gradient across this shear zone strength-
ens with distance from the divide. The corresponding
vertical-velocity profile shows small velocities in the deep
ice, because most of the vertical strain occurs in the upper
70% (above the false bed).

In Figure 5, we highlight the differences between non-
linear and linear flow laws. The velocity profiles for cone-
angle profile D are shown for both the non-linear (DANL)
and the linear (DAL) solutions. For comparison, INL curves
are also shown. The vertical velocity at the divide typically
shows higher curvature for the non-linear case because of

the decrease in deviatoric stress; this is the divide signature
that produces the characteristic arch in the isochrones under
a divide. In our model results (Fig. 5b), the DANL curve
shows a higher curvature than the INL curve, while the DAL
curve shows much less curvature than either non-linear
model. This difference occurs because the effective viscosity
for ice with linear rheology is not a function of the
magnitude of the effective deviatoric stress, and, therefore,
it is not a function of distance from the divide. With
anisotropic fabric, the effective viscosity may be different for
each component of the applied stress, but with a linear flow
law these viscosities are not a function of the stress
magnitude (or, therefore, the distance from the divide). As
a result, the vertical-velocity profile at the divide for DAL
closely resembles a flank vertical-velocity profile, rather

Fig. 3. The left column ((a) and (d)) shows cone-angle profiles A and B. The middle column ((b) and (e)) shows vertical-velocity profiles at the
divide and flank; these are non-dimensionalized using the vertical velocity at the surface,ws (the accumulation rate for steady-state behavior).
The right column ((c) and (f )) shows the horizontal-velocity profiles at 1, 2 and 10 ice thicknesses from the divide, 1H, 2H,10H; these are non-
dimensionalized using the vertical velocity of ice at the surface at the divide,wsdiv (the accumulation rate at the divide). Each plot shows three
model results. Solid lines show velocities from anisotropic fabric with a non-linear flow law (AANL or BANL). Dashed lines show velocities
from isotropic fabric with a non-linear flow law (INL). Dotted lines show velocities from isotropic fabric with a linear flow law (IL).
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than the non-linear divide profiles. At ten ice thicknesses
from the divide (Fig. 5c, 10H ), however, the DANL and the
DAL curves are similar; both show the false-bed effect,
although the velocity gradient is stronger in the DANL curve.

Because cone-angle profiles A and C show little change
in shape of the velocity profiles when compared to that
produced by the isotropic model, whereas cone-angle
profiles B and D show significant change in shape, we
conclude that an ice sheet needs cone angles smaller than
258 for the crystal fabric to have a significant effect on the
divide-flow pattern (this is particularly evident when
comparing the results from cone-angle profiles C and D,
which are identical except for the tight band of fabric in the
lower part of the ice sheet).

Although not all cone-angle profiles significantly change
the divide-flow pattern, all the profiles show differences in
their steady-state surface profiles between the anisotropic

and isotropic models. Figure 6 shows these steady-state
surface profiles, using both non-linear (Fig. 6a) and linear
(Fig. 6b) flow laws. In this figure, the important difference
between surface profiles is the shape, not the ice thickness.
The steady-state ice thickness at the divide is a function of
the ice-sheet span, which was not explicitly included in our
model. If all modeled ice sheets had the same span, lower
curvature at the divide would correlate with a thinner ice
sheet and greater ice velocities because we maintain the
same ice flux for all models and ice velocities scale as
approximately the fourth power of ice thickness.

As shown in Figure 6, all anisotropic models have less
curvature in the divide region than isotropic models. Further,
the anisotropic models using a linear flow law (AAL and
DAL, Fig. 6b) have less curvature than the non-linear
models. If these models all had the same ice-sheet span,
the anisotropic models would have significantly higher ice

Fig. 4. Plot of the model results for two cone-angle profiles based on the sonic log for Siple Dome. The plotting conventions are the same as in
Figure 3. The dashed line in (a) and (d) is the measured cone-angle profile for Siple Dome (personal communication, Greg Lamorey, 2003).
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velocities. This result was first reached by Mangeney and
others (1996) for the case of a linear flow law. They
examined the effect of a vertically symmetric crystal fabric
on isothermal flow of a two-dimensional plane-strain ice
divide with a linear flow law. Using a fabric that was
isotropic near the surface and progressively more aniso-
tropic with depth, they calculated the accumulation rate
necessary to maintain the same steady-state ice-sheet
thickness at the divide as the isotropic case. They found
that 50% more accumulation is necessary to maintain the
model ice-sheet thickness; this corresponds to larger hori-
zontal and vertical velocities (by a factor of approximately
1.5), relative to the fully isotropic case. Shear was
concentrated in the lower, more strongly anisotropic ice,
causing the horizontal-velocity profile to have slightly higher
curvature at depth and less curvature near the surface.

Because the Mangeney model used a linear flow law, the
shape of the velocity profiles did not vary with distance from
the divide and no special divide-flow pattern was produced.
Our results suggest similar increased velocities for aniso-
tropic ice; additionally, we find that this effect is increased
when a non-linear flow law is used.

Assuming that the cone-angle profiles and corresponding
flow patterns in Figure 5 have existed for as long as the
oldest ice in the ice sheet, we calculated the isochrone
patterns produced from each model run. Selected results are
shown in Figure 7. Model DANL, which most closely
resembles Siple Dome, produced the largest isochrone arch.
Model INL produced the next largest isochrone arch.
Neither of the models using a linear flow law (DAL and IL)
showed the development of an isochrone arch. The iso-
chrone patterns produced by the other anisotropic models

Fig. 5. Velocity profiles for DANL, DAL and INL, to show the effect of the linear vs non-linear flow law. (a) Cone-angle profile (profile D).
(b) Vertical-velocity profiles at divide and flank sites. (c) Horizontal-velocity profiles at 1, 2 and 10 ice thicknesses from the divide. In (b) and
(c) solid lines show results from model DANL, dashed lines show results from model INL and dotted lines show results from DAL. Dashed
line in (a) is measured cone angle for Siple Dome.

Fig. 6. (a) Steady-state surface profiles resulting from models using each of the four cone-angle profiles with a non-linear flow law, identified
with the code given in Table 1. Dashed line shows the surface predicted by the model with isotropic fabric and a non-linear flow law.
(b) Results for isotropic fabric and two cone-angle profiles using a linear flow law. All models are plotted relative to the ice thickness at the
divide for the isotropic model.

Pettit and others: Crystal fabric in flow near an ice divide284

https://doi.org/10.3189/172756507782202766 Published online by Cambridge University Press

https://doi.org/10.3189/172756507782202766


(AANL, BANL and CANL) all have arches with amplitudes
intermediate between DANL and INL.

To quantitatively compare the arches produced from all
cone-angle profiles, we define an arch amplitude as the
fractional height above a smooth curve that fits the isochrone
along its flanks. In Figure 8 we plot this amplitude as a
function of the relative height of the isochrone above the bed
ten ice thicknesses from the divide. This graphical method
for examining the isochrone arches was used by Conway and
others (1999) Conway and others (1999) Conway and others
(1999) and Nereson and Waddington (2002).

As shown in the velocity profiles in Figures 3 and 4 and
the arch amplitude profile in Figure 8, a linear flow law does
not produce a significant arch in the isochrones, even when
the ice has anisotropic fabric. As we discussed above, in
order to produce the special divide-flow pattern, the
effective viscosity for vertical strain must be a function of
distance from the divide; this occurs when the viscosity is a
function of the deviatoric stress. In other words, an
isochrone arch is formed when the vertical strain rate is
significantly different at the divide to that at the flank. Our
results show that for a linear flow law and vertically oriented
fabric, the anisotropic effective viscosities are minimally
affected by the smaller deviatoric stress in the divide region.
The subtle variations that do appear among the results from
the linear-flow-law models in Figure 8 are due to the
interaction between components of the anisotropic stress
and strain-rate tensors (unlike the isotropic stress–strain-rate
relationships, in which the strain-rate component is depend-
ent only on the magnitude of the respective stress com-
ponent, with anisotropy there is no one-to-one relationship
between tensor components). If the cone-angle profile
changes significantly with distance from the divide, it would
be possible for a model with a linear flow law to produce an
isochrone arch.

With the non-linear flow law, however, there is feedback
between the deviatoric stress tensor and the effective
viscosities. This feedback tends to redistribute the stresses
within an ice sheet, such that regions of stiff ice support
higher stresses (a form of ‘bridging’). These higher stresses
then increase the strain rate; this decreases the stiffness,
which, in turn, feeds back on the stress distribution. This
feedback process does not exist for ice deforming with a
linear rheology. When anisotropy is added to the non-linear
constitutive relation, the crystal orientation affects this stress-
redistribution feedback process; which, in turn, alters the
divide-flow pattern.

CONCLUSIONS
From five cone-angle profiles (four anisotropic profiles and
one isotropic profile), we find three primary effects on the
ice-flow pattern near a divide. First, with the same
accumulation rate, all models with a vertical preferred-
orientation fabric reach steady state with an ice-sheet
surface profile that has less curvature at the divide. If all
models had the same ice-sheet span, the models that include
a strong crystal fabric would be thinner at the divide and
have higher velocities than models with isotropic fabric. To
first order, this result does not depend on whether the flow
law is linear or non-linear, although the details do depend
on the non-linear flow law.

Second, when a non-linear flow law is used, anisotropic
ice significantly affects the pattern of flow in the divide
region when the effective cone angle decreases to less than
�258. With the vertically oriented crystal fabric typically
found near ice divides, a strong crystal fabric always
increases the amplitude of the existing arch in the isochrones
relative to the isotropic case. With a linear flow law, no arch
exists in either the anisotropic or isotropic case.

Third, for the model with cone-angle profile most similar
to Siple Dome (DANL), the crystal fabric tends to concentrate
horizontal shearing within the band of small cone angles,
producing a false-bed effect. Cone-angle profile B also shows
shearing concentrated higher off the bed than in the isotropic

Fig. 7. Isochrones in the divide region produced by anisotropic and
isotropic fabric for an ideal ice sheet. The isochrones are plotted
relative to the ice thickness on the flank (at ten ice thicknesses from
the divide). The oldest isochrones are deep in the ice sheet, the
youngest are near the surface. The largest isochrone arch is from the
model with cone-angle profile D (Fig. 4d) and a non-linear flow law
(DANL); the second largest is from the model with isotropic fabric
and a non-linear flow law (INL). The flat isochrones are from the
model using isotropic fabric and a linear flow law (IL), which is
indistinguishable from the model using anisotropic fabric and a
linear flow law (DAL).

Fig. 8. Amplitude of the isochrone arch as a function of depth.
Labels identify results from each model. The results for the
corresponding models with a linear flow law are shown with the
group label ‘all linear models’. We express the arch amplitude (B )
as the distance above a curve that best fits each isochrone along the
flank of the ice sheet. It is plotted as a function of the relative height
of the isochrone ten ice thicknesses from the divide.
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case; because the gradients are not as strong, BANL does not
show as strong a shear band as DANL.

The special divide-flow pattern first proposed by Raymond
(1983) results from the non-linearity of the flow law. The
divide-flow pattern can also be altered by boundary
conditions and ice-flow processes. In this paper, we focused
on one ice-flow process: anisotropic deformation due to
vertically oriented crystal fabric. Pettit and Waddington
(2003) focused on the other important ice-flow process: the
shift to a linear deformation mechanism at low deviatoric
stresses. They showed that when flow near a divide is
described by a flow law combining a linear term and a non-
linear (Glen) term, the size of the isochrone arch is a function
of the relative importance of the linear term: the isochrone
arch is smaller when the linear term is larger. If we combine
this two-term flow law with the anisotropic flow law
presented here, the effect of the anisotropy is to modify the
non-linear term almost exclusively. Therefore we expect that
the pattern of flow at a divide that has low deviatoric stresses
(low enough to be dominated by the linear term in the flow
law) will not be significantly affected by crystal fabric, except
for an overall decrease in thickness and increase in velocities.
For divides that exhibit higher deviatoric stresses, strongly
anisotropic ice will significantly affect the ice-flow pattern
and, consequently, the interpretation of ice-core records,
borehole logs, radar images and deformation measurements.
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APPENDIX
T2001 and ModT2001 are based on the homogeneous-stress
assumption, with deformation occurring as slip on the basal
planes. Under this assumption, the applied stress is the same
on all crystals within the aggregate. The deformation is
determined by the crystal orientation through the resolved
shear stress, which is the component of the applied stress
acting on the three slip systems of the basal plane (the three
a axes of the hexagonal ice crystal).

According to Thorsteinsson (2001), for a single crystal,
the strain rate based on these assumptions is:

_"c ¼ �A Tð Þ
X
s

R sð Þ� sð Þðn�1Þ� sð Þ, ðA1Þ

where _" (superscript c refers to a single crystal) and � are the
strain-rate and deviatoric stress tensors, respectively, � is a
constant, AðT Þ is the softness parameter from Glen’s law for
isotropic ice and n is the power-law exponent. R(s) ¼ (S þ
ST Þ=2 is the symmetric part of the Schmid tensor (S ¼ b� n)
for each slip system, s, where n is the normal to the basal
plane and b is the Burgers vector. The resolved shear stress
for a particular slip system, � (s), has the general form:

� sð Þ ¼ n1b
sð Þ
1 �11 þ n2b

sð Þ
2 �22 þ n3b

vð Þ
3 �33

þ n1b
sð Þ
2 þ n2b

sð Þ
1

� �
�12 þ n1b

sð Þ
3 þ n3b

ðsÞ
1

� �
�13

þ n2b
sð Þ
3 þ n3b

sð Þ
2

� �
�23: ðA2Þ

The bulk strain rate for the material results from the integral:

_" ¼
Z 2�

0

Z �=2

0
_"c 	,
ð ÞF 	,
ð Þd	 d
 , ðA3Þ

where Fð	,
) is the c-axis-orientation distribution function
(
R R

F 	,
ð Þd	d
 ¼ 1), 	 is the zenith angle measured from
vertical and 
 is the azimuth in the external reference frame.

From this point, we assume that n ¼ 1 and that the
Fð	,
) function describes a single-maximum fabric with a
vertical cone angle (�): Fð	,
Þ ¼ sin	=½2�ð1� cos�Þ�, for
0 � 	 � � < �=2. We incorporate the non-linearity of the
isotropic Glen flow law through iteration on �eff, which is
the effective viscosity from Glen’s law:

�eff ¼ 2EA0e
�Q
RT �n�1

eff

� ��1

, ðA4Þ

where � has been absorbed into the enhancement factor, E.
At each step, �eff is calculated at the integration points of
each element using the gradients of the velocities which
were calculated in the previous step.

With these assumptions, Sachs’ law can be written:

_"Sij ¼
1
�eff

a�11 þ c�22 þ b�33 d�12 e�13
d�12 c�11 þ a�22 þ b�33 e�23
e�13 e�23 b �11 þ �22 � 2�33ð Þ

2
4

3
5,

ðA5Þ
where

a ¼ 1
48

100þ 95cos�þ 36cos2�þ 9cos3�ð Þsin2 �

2

� �
,

b ¼ � 1
12

20þ 25cos�þ 12cos2�þ 3cos3�ð Þsin2 �

2

� �
,

c ¼ �a� b,

d ¼ 1
8

20þ 15cos�þ 4cos2�þ cos3�ð Þsin2 �

2

� �
,

e ¼ 1
8

10þ 4cos�þ 3cos2�þ 2cos3�þ cos4�ð Þ:
ðA6Þ

In the limit of isotropy (lim�!90o ), a ¼ 2=3, b ¼ c ¼ �1=3
and d ¼ e ¼ 1.

Using the vector notation for the stress and strain tensors,
Equation (A5) can be written as

_"S11
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In order to invert the matrix in Equation (A7), we use the fact
that the trace of the deviatoric stress tensor (�11 þ �22 þ �33)
is zero and add a multiple (g ) of that trace to the equation:

_"S11

_"S22

_"S33

_"S13

_"S23

_"S12

2
666666666664

3
777777777775

¼ 1
�eff

aþ g c þ g b þ g 0 0 0

c þ g aþ g b þ g 0 0 0

b þ g b þ g �2b þ g 0 0 0

0 0 0 e 0 0

0 0 0 0 e 0

0 0 0 0 0 d

2
666666666664

3
777777777775

�11

�22

�33

�13

�23

�12

2
666666666664

3
777777777775

:

ðA8Þ

Pettit and others: Crystal fabric in flow near an ice divide 287

https://doi.org/10.3189/172756507782202766 Published online by Cambridge University Press

https://doi.org/10.3189/172756507782202766


The inverse of this vertical-cone anisotropic constitutive
equation, Equation (A8), is:
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When we assume plane strain, _"22 ¼ _"12 ¼ _"23 ¼ 0, and
Equation (A9) reduces to:

�11

�33

�13

2
664

3
775 ¼ �eff

h11 h13 0

h13 h33 0

0 0 1=e

2
664

3
775

_"11

_"33

_"13

2
664

3
775 ðA11Þ

�12 ¼ �23 ¼ 0

�22 ¼ h12 _"11 þ h13 _"33:
ðA12Þ

The transverse stress term, �22, is equal to zero for isotropic
ice; however, for anisotropic ice this is not generally true,
even under incompressibility, _"11 ¼ � _"33. The main impli-
cation of this is that �11 6¼ ��33. For an anisotropic material,
non-zero deviatoric stresses may be required in all three
directions to keep the flow confined within the plane. When
we substitute velocity gradients for the strain rates, the
constitutive Equations (A11) and (A12) become:

ux ¼ _"11

wz ¼ _"33

ðuz þwxÞ=2 ¼ _"13

ðA13Þ

�11

�33

�13

2
6664

3
7775 ¼ �eff

h11 h13 0

h13 h33 0

0 0 1=e

2
6664

3
7775

ux

wz

ðuz þwxÞ=2

2
6664

3
7775: ðA14Þ

The final step in this derivation is to incorporate Equa-
tions (A13) and (A14) into the stress balance equations for
the ice sheet. The stress balance equations are

@�11
@x

þ @�13
@z

� @p
@x

¼ f1

@�13
@x

þ @�33
@z

� @p
@z

¼ f3,

ðA15Þ

or:

�eff h11uxx þ h13wzx þ 1
2e

ðuzz þwxzÞ � px

� �
¼ f1 ðA16Þ

�eff
1
2e

ðuzx þwxxÞ þ h13uxz þ h33wzz � pz

� �
¼ f3, ðA17Þ

where f1 and f3 are source terms (in this application, we use
f1 ¼ 0 and f3 ¼ �g). These two equations plus incompres-
sibility, uxþwz ¼ 0, form the basis for our finite-element
model. Incompressibility can, though, be used to simplify
these equations to a form that is closer to the familiar form of
Laplace’s equations,

�eff
�1
3b

a� b
2aþ b

� 1
2e

� �
uxx þ �eff

1
2e

uzz � px ¼ f1 ðA18Þ

�eff
1
2e

wxx þ �eff
�1
3b

� 1
2e

� �
wzz � pz ¼ f3: ðA19Þ

For isotropic ice with a ¼ 2=3, b ¼ �1=3, e ¼ 1, these two
equations simplify to

�eff
2

uxx þ �eff
2

uzz � px ¼ f1

�eff
2

wxx þ �eff
2

wzz � pz ¼ f3:
ðA20Þ

This derivation for Equations (A18) and (A19) assumes
spatially uniform cone-angle functions (a through e) and a
uniform �eff. This assumption applies to an individual
element, not to the flow field as whole.
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