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THE WIELANDT SERIES OF METABELIAN GROUPS

C.J.T. WETHERELL

The Wielandt subgroup of a group is the intersection of the normalisers of its subnor-
mal subgroups. It is non-trivial in any finite group and thus gives rise to a series whose
length provides a measure of the complexity of the group's subnormal structure. In
this paper results of Ormerod concerning the interplay between the Wielandt series
and upper central series of metabelian p-groups, p odd, are extended to the class of all
odd order metabelian groups. These extensions are formulated in terms of a natural
generalisation of the upper central series which arises from Casolo's strong Wielandt
subgroup, the intersection of the centralisers of a group's nilpotent subnormal sections.

1. INTRODUCTION

The Wielandt subgroup of a group G, denoted w(G), is the intersection of the nor-
malisers of the subnormal subgroups of G, ie

u(G) = {g e G | S9 = S for all 5 <w G}

The Wielandt series of G is then defined by

cjo(G) = 1 and wi+1(G)/wi(G) = u(G/u>i{G)) for i ^ 0.

The least n for which ujn(G) — G, if it exists, is called the Wielandt length of G and
denoted wl(G). For example a group has Wielandt length one if and only if it is a T-
group, one in which every subnormal subgroup is normal, and in general the Wielandt
subgroup of any group is a T-group.

In [13] Helmut Wielandt, for whom the subgroup and series are named, showed in
particular that every finite group has non-trivial Wielandt subgroup, since it contains the
socle. Therefore for such groups the concept of Wielandt length is well-defined. Since
then there has been much interest in what influence Wielandt length has on other group
invariants; for example, exact bounds on the nilpotent length [3] and derived length [2]
of finite soluble groups are known.
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The way in which Wielandt length bounds the nilpotency class c(G) of a nilpotent
group G is less clear, although significant progress in this direction has been made by
Ormerod in the articles [6, 7, 8, 9, 10]. In particular for odd primes p the class of
metabelian p-groups is well understood.

THEOREM 1 . 1 . (Ormerod [8].) Let p be an odd prime and P a finite meta-

belian p-group. Then wn(P) ^ Cn+i(P) for all n ^ 0, and in particular c(P) ^ wl(P) + 1 .

If wl(P) = 1 then P is Dedekind and c(P) = 1, but for larger Wielandt length
Ormerod has shown in [6] that there exists a metacyclic p-group which attains the bound
in Theorem 1.1.

In this paper we shall extend Theorem 1.1 to the class of all metabelian groups of
odd order. To account for non-nilpotent groups we require a generalisation of the upper
central series due to Casolo [4].

The strong Wielandt subgroup of a group G, denoted uJ(G), is the intersection of the
centralisers of the nilpotent subnormal sections of G, ie

u(G) = {g € G | [5, g) sj 5 " for all S <W G)

(Here Sr11 is the nilpotent residual of S, the unique smallest normal subgroup TV of 5 such
that S/N is nilpotent.) The strong Wielandt series, uJi{G), and strong Wielandt length,

wl(G), are then defined in an analogous way to the Wielandt series and length.

Casolo established in [4] that the strong Wielandt subgroup of any finite group is
non-trivial, since it too contains the socle, and so for such a group the concept of strong
Wielandt length is well-defined. Notice that in a nilpotent group the strong Wielandt
subgroup is equal to the centre, and therefore the strong Wielandt series and strong
Wielandt length coincide with the upper central series and nilpotency class respectively.

We are able to extend Theorem 1.1 as follows.

THEOREM 2 . 4 . Let G be a metabeiian group of odd order. Then for all n ^ 0
tie section u)n(G)/ZJn(G) is central and consequently wn(G) ^ UJn+i(G). In particular
wl(G) ^ wl(G) + 1 and this bound is best possible.

Whether this result extends further to the class of all finite metabelian groups de-
pends, of course, on whether Theorem 1.1 applies to metabelian 2-groups, a problem
which appears to be extremely difficult. Some partial results for even order metabelian
groups, based on Schenkman's embedding of the Kern [11], will be discussed in Section 3.

A key result in this paper, which enables us to reduce the proof of Theorem 2.4 to
the nilpotent case, is the fact that the strong Wielandt series of a subdirect product of
metabelian groups can be easily determined from that of its subdirect factors; in fact
we need only assume the factors have p-length 1 for all primes p. To make the precise
statement of this result we employ the following notation.
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NOTATION. For an abstract subgroup function a and group G with normal subgroup N,

we denote by a(G -=- N) the normal subgroup A of G such that A/N = a(G/N). For

example ui(G -f- u>t(G)) = wi +i(G).

THEOREM 2 . 2 . Let G be a finite group wit£ p-length 1 for ail primes p and

normal subgroups Ni and A^. Tien for any n ^ 0

wn(G -=- TVi) H wn(G -=- iV2) = oJn(G - (JVi n AT2)).

In Section 4 we construct an example which shows that the p-length 1 hypothesis

cannot be dropped.

2. P R O O F S

In [2] Bryce and Cossey introduced a local version of the Wielandt subgroup, and in

[4] Casolo mimicked this construction for the strong Wielandt subgroup. We begin with

these important definitions. Recall that, for a set of primes TT, a group G is said to be

IT-perfect if it has no non-trivial 7r-quotients, ie O*(G) = G.

Let G be a group and p a prime. Then the p-Wielandt subgroup wp(G) of G is the

intersection of the normalisers of the p'-perfect subnormal subgroups of G, and the p-

strong Wielandt subgroup UJP(G) of G is the intersection of the centralisers of the nilpotent

quotients of p'-perfect subnormal subgroups of G. That is

u"{G) = {g e G | S9 = S for all p'-perfect S«lG}

and uJp(G) = {g € G | [S, g] < S*1 for all p'-perfect S<mG}

Our first lemma collects together some important properties of the Wielandt and

strong Wielandt subgroups and their local counterparts. Most of these results appear in

[2] or [4].

LEMMA 2 . 1 . Let G be a finite group, p a prime and a the set of prime divisors

of\G\. Then

(a) (C(G), SocG) ^ w(G) s$ u(G), and in particular wl{G) ^ wl(G);

(b) w(G) - fl w«(G) and Z3(G) = f| w"(G);

(c) O^(G)^UJ"(G)^CJ"(G);

(d) u'(G) = w(G -r Op-(G)) and ZJ'{G) = u(G + Op-(G));

(e) UK is subnormal in G with p1-index then wp(G) nK = up(K) and wp(G)

nK = uJp(K).

(f) if H is a normal Hall subgroup ofG then u)n(G) D H = wn(H) and uJn[G)

n H = Tdn{H) for alln^O.

Suppose further that G is soluble, then
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(g) CJ(G) ^ C(FitG) and in particular uJ(G) is Abelian;

(h) if Op-(G) = 1 and LJ(G) is non-nilpotent then FitG ^ w(G);

(i) [u(G),G] <Fitw(G).

PROOF: (a)-(e) See [2, 3.7,3.2 and 3.8] and [4, Proposition 1, Lemmas 2 and 3].

(f) The case n — \ was first proved for the Wielandt series in [1]. A shorter proof of
this case, which adapts more readily to the strong Wielandt series, is included here.

Let n be the set of prime divisors of \H\. If p G n then H has p'-index in G and so
LJP(G) HH = LJP(H) by (d). On the other hand if q $. TT then H ^ 0,<(G) ^ UJ"{G) by
(c). Applying (b) gives

u(G) r\H= f)(u>9(G)r\H)n (^[(^{G)r\H) = Hnf>\wp(H) = U(H)

and the case n = 1 is established.

Now let n > 1 and assume the result holds for n — 1. Set W = wn_i(G). By the
case n = 1 and the modular law we have

(un(G) n H)W/W = u(G/W) n HW/W = w(HW/W),

since HW/W is the unique Hall 7r-subgroup of G/W. Via the natural isomorphism
HW/W -> H/(HHW) we see that

(wn(G) n H)/{H nw) = CJ(H/{H n w))

and the result follows at once since HnW = u>n-i(H) by our inductive assumption. The
proof for the strong Wielandt series is identical.

(g) Set F = FitG, then [u(G),F] ^ Fm = 1 and u(G) ^ CG(F) = C(F).

(h), (i) See [2, 3.4 and 3.10]. D

The important result concerning subdirect products of metabelian groups is proved
next.

THEOREM 2 . 2 . Let G be a finite group with p-length 1 for all primes p and
normal subgroups Ni and N2. Then for any n ^ 0

u7n(G -5- WO n Un(G -r Nt) = uJn(G -T- (iVi n N2)).

PROOF: By induction it suffices to establish that the case n = 1 holds. Suppose
otherwise and choose G, Ni, N2 and H < G all of minimal order subject to

i/^aJ(G-=-M)nw(GH-A^2) but H £ W(GH- (NX n N2)).

Clearly N\ D iV2 = 1 by the minimality of |G|. Since each &(G/Ni) is Abelian it follows,
from the minimality of \H\, that H is an Abelian p-group for some prime p. For every
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q^pwe have H ^ 0^(G) < u7«(G) and so H ^ w"(G) by Lemma 2.1(b). Thus there
exists a p'-perfect subnormal subgroup S such that [S, H] ^ S m . For any T « H S and
each i = 1,2 we have

[H, T] < T* ty n HS = T* (N< n HS)

and therefore H ^ u(HS 4- (Afj n HS)). If G ^ HS then minimality of \G\ gives
H ^ w(HS) and [S, H] ^ S", thus G = HS. In particular G is p'-perfect and therefore
p-nilpotent, having p-length 1 by hypothesis.

Set A = Cy(G). For every T <&G and each i we have

[T, H] ^ T^Ni C\HK = T^iNi n HA"),

since T" ^ Gm = if, and therefore H ^ uj(G+(NinHK)). The minimality of |ty| shows
that we must have N{ ^ HK. In particular Â A" = Op(Ni) x A and so NiKDN2K - K.
Clearly HA/A s? W(G/K + N{K/K) for each i, thus if A ^ 1 minimality of \G\ and
Lemma 2.1(d) give the contradiction

HA/A ^ u{G/K) = ZJP{G)/K.

Therefore A = 1 and in fact G is a p-group. Now

[H, G] < G^Ni. n G 9 1 ^ = Ni n Â 2 = 1

and we conclude that H ^ £(G) — UJ{G), a final contradiction. This establishes that
Plj^G -i- M) ^ w(G 4- Hi -^i)) a nd the reverse inclusion follows easily from the defini-
tions. D

An easy corollary is that groups in this class with bounded strong Wielandt length
constitute a formation.

COROLLARY 2 . 3 . For any integer n, the class of finite groups with p-length 1
for all primes p and strong Wielandt length at most n is a formation.

This further justifies regarding the strong Wielandt series as a natural generalisation
of the upper central series, since the formation property is true of nilpotent groups with
bounded nilpotency class. In fact for a group G with p-length 1 for all p there is also a
natural generalisation of the lower central series: let w0* (G) = G and for i ^ 0 define

^VI(G) - C\iN <l G i m'i(°) < *(G

Then ZUj*(G) ^ Gt for any normal series

with each G,/Gi+i ^ uJ(G/Gi+i), and moreover {^"(G)} is itself such a series. In
particular this lower series has shortest possible length, equal to the strong Wielandt
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length of G, and it coincides with the lower central series when G is nilpotent. (In fact
the above construction works equally well for many other well-known abstract subgroup
functions and classes of groups. See Chapter 4 of [12] for an introductory investigation
into the general question of when a canonical lower series exists.)

We are now in a position to prove the main result. The reader is referred to [5,
Section A, 12] for standard results on coprime actions.

THEOREM 2 . 4 . Let G be a metabelian group of odd order. Then for all n ^ 0
the section ojn(G)/tJn(G) is central and consequently wn(G) ^ uJn+i(G). In particular
wl(G) ^ wl(G) + 1 and this bound is best possible.

PROOF: Suppose the first claim is false and that G and n > 0 are minimal such
that [u>n(G), G] ^ uJn(G). If G has distinct minimal normal subgroups M\ and M2 then
by minimality of \G\ and Theorem 2.2 we have

[wn(G),G] < f\[wn(G + Mt),G] ^ (\un(G + Mt) = EJB(G),

a contradiction. Thus G has unique minimal normal subgroup M, say, and if p is the
prime divisor of \M\ it follows that Op<(G) = 1. In particular G has a unique Sylow
p-subgroup P = Fit G, and G/P is Abelian.

Set R = G*, W = w(G) and V = 5J(G), noting that R ^ 1 by Theorem 1.1 and
V = C(P) by parts (f) and (g) of Lemma 2.1. If P is Abelian then

[un(G),G] ^G'^P = V^Un(G),

thus we may assume P is non-abelian and therefore not contained in the T-group W. By
Lemma 2.1(h) W must be nilpotent and in fact W = u(P) by Lemma 2.1(f). We show
next that W n R = V.

Since R is Abelian it is complemented in G, by [5, IV,5.18], thus we can find a
complement H, say, to R in P. Now W = u(P) normalises H and it follows that

[W n R, P] = [W n R, RH] ^R'[WnR,H]^Rr\H=l,

that is W D R ^ C,{P) = V.

Let Q be a Hall p'-subgroup of G. Then G/R = P/R x QR/R and it follows that
R = (QR)m and R = [R,QR] = [R,Q\. Now R, being non-trivial, contains M and
therefore M = [M, Q). In particular M is non-central and we must have £(G) = i.
Notice next that G/CG{V) is a p'-group and so V has the decomposition

V = Cv{G)x[V,G\.

One of these factors must be trivial, since G has a unique minimal normal subgroup, yet

if V = CV(G) then V < C(G) = 1. Therefore V = [V, G] and

V = [V,G] = [V,G,. . . ,G] $ [G,G,... ,G] = G™ = R,
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for sufficiently large weight. This establishes the equality W l~l R = V.

Since Q is an Abelian p'-group of operators for P we have

[G,Q] = [PQ,Q] = [P,Q] = [P,Q,...,Q] < R-

Moreover

w»(G) - (wn(G) n P)(un{G) n Q) < wn(P)Q,

via Lemma 2.1(f), and it follows that

[un(G),G] ^ [un{P)Q,PQ] < [un(P),P][G,Q] < [un{P),P]R.

Appealing to Theorem 1.1 and the fact that C(P) = V ^ R we have

[un(G),G] ^ [uin(P),P]R < (n(P)R < (n-l(P + R) < UJn-l(G + R).

On the other hand minimality of n shows that

[un{G),G] = [un-X{G + W),G] ^ui^iG + W),

and by Theorem 2.2 we have

[wn(G),G] ^ZJn-l(G+(WnR))=uJn_1(G + V)=cJn(G),

a final contradiction.

It follows that

un(G) ^C(G + u>n(G)) ^ UJ(G -r un(G)) =un+1(G)

and, when n = wl(G), that wl(G) ^ wl(G) + 1. Any non-abelian soluble T-group
establishes that this bound is best possible for wl(G) — 1, and for wl(G) ^ 2 we appeal
to Ormerod's work [6] on the Wielandt series of metacyclic p-groups. D

In [10] Ormerod considered metabelian p-groups in which the Wielandt subgroup
is either as small or as large as possible, and what restrictions these conditions place on
higher terms of the Wielandt series. One of the main results is

THEOREM 2 . 5 . (Ormerod [10].) Let p be an odd prime and P a finite meta-
belian p-group. Ifw(G) - (,2{G) thenwn{G) = Cn+i{G) foralln ^ 1, andifw2(G) = Q2[G)
then un(G) = Cn(G) for alln^.2.

As an immediate corollary to Theorem 2.4 we see that the first statement of Theo-
rem 2.5 generalises to all odd order metabelian groups.

COROLLARY 2 . 6 . Let G be a metabelian group of odd order. Ifu>(G) — w2(G)
then wn(G) — wn+i(G) for all n > 1 and in particular G/w(G) is nilpotent.
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We have been unable to decide whether the second statement of Theorem 2.5 also
generalises. We might attempt to modify the proof of Theorem 2.4 but two problems arise:
it is not immediately apparent that a minimal counter-example will have unique mini-
mal normal subgroup since the condition w2(G) = w2(G) is not preserved by quotients;
G/UJ{G) has Wielandt and strong Wielandt subgroups which coincide, yet Ormerod has
shown in Section 3 of [10] that in general this places very little restriction on higher terms
of the two series, thus the inductive argument on the quotients G/ui(G) and G/G'31 is not
so fruitful in this setting.

3 . METABELIAN GROtfPS WITH EVEN ORDER

By the nature of its proof we can see that the conclusion of Theorem 2.4 applies to
all finite metabelian groups if and only if it applies to finite metabelian 2-groups. (There
is only one place in the proof, other than appealing to Theorem 1.1, where we have
assumed the prime p is odd: that P is not a T-group if it is non-abelian and therefore,
via Lemma 2.1(h), that W must be nilpotent. The same argument does not work when
p = 2 since P might be Hamiltonian. However W is already nilpotent in this case since
it is 2-nilpotent, being a T-group and hence supersoluble, and C>2'(G) = 1.)

While metabelian 2-groups are far from understood in this context, we do know
that the Wielandt subgroup of any nilpotent group is contained in the second centre:
Schenkman proved in [11] that the Kern of a group, the intersection of normalisers of all
subgroups, is contained in the second centre, but of course in a nilpotent group the Kern
and Wielandt subgroup coincide since all subgroups are subnormal. Thus we can easily
adapt the proof of Theorem 2.4 to find partial results for metabelian groups with even
order; indeed the proof relies only on the fact that Gm is Abelian, since we do not need
to assume the Sylow subgroups are metabelian to apply Schenkman's result.

THEOREM 3 . 1 . Let G be a finite Abelian-by-nilpotent group. Then u>(G)/ZJ(G)

is central and in particular w(G) ^ w2(G).

Finally we note that Schenkman's result for nilpotent groups can also be extended
to the wider class of groups with p-length 1 for all p, although for such a group G we
may lose the centrality of the section w(G)/w(G).

THEOREM 3 . 2 . Let G be a Bnite group with p-length 1 for all primes p. Then

u(G)^uJ2(G).

PROOF: Let G be a minimal counter-example, then it has a unique minimal normal
subgroup so that 0 ^ (G) = 1 for some prime p and P = Fit G is the unique Sylow p-
subgroup of G. Applying parts (f), (h) and (i) of Lemma 2.1 shows that u)(G) must
be nilpotent, since cv{G)P/P is central and consequently P ^ uJ(G) = (,{P). Therefore

Qi(P) ^ &2{G), a contradiction. D
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4. EXAMPLES

We begin with an example which establishes that Theorem 3.1 is best possible in
the sense that, even for a nilpotent-by-abelian group, the Wielandt subgroup need not
be central modulo the strong Wielandt subgroup. Let L = SL,2(3), the special linear

group of degree 2 over GF(3) with generators i = I I and j> = I I of order 4

(i A V2 °J v v
and a = I I of order 3. Then L has normal Sylow 2-subgroup P = (i,j) isomorphic
with the quaternions of order 8. Moreover Oy(L) = 1 and, since w(L) must therefore be
nilpotent, w(L) = u(P) = P and u(S) = £{P) = (i2) by Lemma 2.1(f). However

[u(L),L] 3[i,a] = ij$w(L).

Next we show that the p-length 1 condition is necessary for the crucial intersection
property of Theorem 2.2. Let Q = (x, y) be quaternion of order 8 and define an action
of Q on L by

Form the semi-direct product G = L xi Q, noting that G has 2-length equal to 2. Since
i2 = j 2 and x2 = y2 are both central in G the subgroups Ni = (y2) and 7V2 = (i2y2) are
normal in G. Clearly iV~i n N2 = 1.

Notice next that [G, L] = L since a = [a, x] and L = (a, U). Since G/L is nilpotent
we have L = Gm. If Mi = (x, L) and M2 = (xy, L) then for the same reasons L = Aff1

= M™. All other subnormal subgroups of G are contained in (y, L) and are therefore
centralised by y. On the other hand [G, y] — (y2) and

L$y2 G LNi = £iV2-

It follows therefore that y G C7(G -=- M ) D tJ(G -=- ^V2) but y $ U(G).

Note however that the group G is not the subdirect product of two groups with
strictly smaller strong Wielandt length (this is because its strong Wielandt length and
derived length coincide). Indeed we have been unable to construct an example of such a
group, thus the formation property of Corollary 2.3 might hold in larger classes of groups
than just those with p-length 1 for all primes p.
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