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Abstract

In pricing insurance contracts based on the individual policyholder’s aggregate losses for non-life insurers, the liter-
ature has mainly focused on using detailed information from policies and closed claims. However, the information
on open claims can reflect shifts in the distribution of the expected claim payments better than closed claims. Such
shifts may be needed to be reflected in the ratemaking process earlier rather than later, especially when insurers are
experiencing environmental changes. In practice, actuaries use ad hoc techniques to adjust data to current levels
to determine premiums. This paper presents an intuitive ratemaking model, employing a marked Poisson process
framework, which ensures that the multivariate risk analysis is done more routinely using all reported claims and
makes an adjustment for Incurred But Not Reported claims. Utilizing data from the Wisconsin Local Government
Property Insurance Fund, we find that by determining rates based on current data, the proposed ratemaking model
leads to better alignment of premiums and provides insurers with a more financially sound portfolio.

1. Introduction

In non-life insurance, premiums are set to cover the expected future cost and also allow for the ear-
marked underwriting profit through a process known as ratemaking. The pure premium method and the
loss ratio are two popular traditional methods used for ratemaking. These methods ensure that the total
premium will cover the total costs while allowing for the targeted underwriting profit. To obtain rates,
historical claims are developed to ultimate using macro-level reserving techniques and adjusted to a
level applicable to the future effective period using trending techniques. See Werner and Modlin (2010)
and Brown and Lennox (2015) for details on these methods.

Accurate risk pricing is expected to provide stronger incentives for more caution, resulting in lower
claim frequencies and reductions in insurance loss costs (Cummins, 2002). As a result, in addition to
determining the overall average rate change from traditional methods, actuaries employ univariate risk
classification techniques to identify a base rate and risk classification variables. The base rate is assigned
relativity of one, and different risk classification variables are assigned other relativities. Thus, the rates
are individual rates, reflecting the individual policyholder’s characteristics.

The main shortcoming of the univariate risk classification techniques is that they do not consider
all rating variables simultaneously. In contrast, multivariate risk classification techniques allow for the
consideration of all rating variables simultaneously and automatically adjust for exposure correlations
between rating variables. Hence, by employing multivariate risk classification techniques, actuaries
develop rates to align premiums with expected costs better. The generalized linear models (GLMs)
and machine learning algorithms are two popular multivariate risk classification techniques (Taylor and
McGuire, 2016; Wiithrich and Merz, 2023).

An observation from the ratemaking literature is that the multivariate analysis data are often based on
closed claims, where the ultimate amount paid for all claims is known. This observation is not surprising
because practitioners want to use the most recent data but are limited by the requirement that the data
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be complete, thus leading to a natural friction between using only closed claims from older policy years
and using the information on all reported claims, including information on open claims. For example,
last year’s data are most representative of current trends but are certainly incomplete (censored).

With closed claims, all uncertainties in information on open claims are eliminated. However, using
only closed claims may not reflect shifts in the expected claim payments’ distribution. Practicing actu-
aries are well aware of these biases and have developed ad hoc on-leveling methods to adjust the data to
the current level. For example, premium trending techniques are used to adjust the historical premium
to the level expected during the future time period, and the actuary needs to determine how to measure
and incorporate the shifts that have occurred. In contrast, the information on open claims can reflect
shifts in the expected claim payments’ distribution automatically. Hence, to better align premiums with
expected future costs, actuaries need to extract all the information they can from open claims, especially
in these pandemic times.

This paper presents an intuitive framework for ratemaking that ensures that the multivariate risk
analysis is done more routinely using the information on claims that have been closed and payments on
open claims. To model the complete development of claims for ratemaking purposes, we employ the
marked Poisson process (MPP) framework with three hierarchical building blocks. The first building
block concerns the number of claims per policy by modeling the number of claims reported and accounts
for the future cost relating to Incurred But Not Reported (IBNR) claims through a unique feature of the
MPP framework by analyzing the reporting delay distribution of claims. The second and third building
blocks model the conditional number of payment transactions for a claim and the conditional payment
sizes for each transaction, respectively. For Reported But Not Settled (RBNS) claims, the number of
transactions is censored at the ratemaking date, which is duly addressed. One advantage of the MPP
is that the likelihood of the claims process can be decomposed into independent blocks, which allows
each block to be maximized in isolation (Larsen, 2007). As a result, the parameters of each block are
estimated with the appropriate GLMs. We use policy covariates that are readily available for new and
existing policyholders for an observation period.

The MPP framework, which was introduced by Arjas (1989), Jewell (1989), Norberg (1993), and
(1999), has been widely used for individual-level loss reserving. For example, Antonio and Plat (2014)
and Verrall and Wiithrich (2016) apply the marked Poisson process for non-life insurance loss reserving
where claims occurrences are assumed to follow a non-homogeneous Poisson process, and the stochastic
characteristics about the claims are treated as marks. The MPP framework’s hierarchical makeup also
provides flexibility in modeling different events and their features in the ratemaking process. In insur-
ance pricing, hierarchical models are not new. For example, the frequency-severity model, a popular
multivariate approach to model the claim frequency and payments arising from closed claims, forms a
two-level hierarchical pricing model. See Frees (2014) for details and the application of the frequency-
severity models. Frees and Valdez (2008) and Frees et al. (2009) extended the frequency-severity model
to a hierarchical model with three building blocks relating to the frequency, type, and severity of claims.
Shi et al. (2016) provide a hierarchical framework for modeling insurance loss cost with a complex struc-
ture and propose a copula regression to accommodate various sources of dependence, and Karoui et al.
(2017) discuss a robust optimization approach to promptly identify shifts in the frequency of insurance
claims by detecting any disruptions in the intensity of the counting process, even when changes occur
at unpredictable and unobservable times.

We contribute to the literature in two main ways: First, the proposed framework ensures that the
multivariate risk analysis is done using the information on both open and closed claims in a more efficient
way leading to better alignment of premiums. Second, by automatically accounting for the expected cost
relating to open claims without using a separate claim reserving model, the proposed framework bridges
the gap between ratemaking and reserving and makes the ratemaking process complete and balanced
for individual risks.

The rest of the paper is organized as follows. Section 2 presents the MPP model and its applica-
tion to ratemaking. Section 3 discusses parameter estimation and the loss cost prediction for the MPP
model. Section 4 evaluates the ratemaking performance of the MPP model using simulation studies.
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Figure 1. Claim occurrence and payment development process.

Section 5 provides the model fitting results using a training dataset and evaluates the MPP model’s
quality of prediction using out-of-sample data. Section 6 concludes.

2. Claim modeling
2.1. Data structure

Letj=1,...,J represent the index for policies in the portfolio, and =1, ..., T; represent the policy
years observed for each policy, then the observable responses at the ratemaking date are:

o N, the number of claims reported within a policy year ¢ for each policy j.

o M;,;, the number of transactions for each claim, where i =1, ..., N, is the claim index. For
open claims, M;,; is censored; then denote §;; = 1 when claim is closed or §;,; = 0 otherwise.

o Pyy, the payment amount per transaction. Where the payment transaction index is

k= 1""’Mff~i'

The exposure ¢;, is measured as a fraction of years, which provides the length of time in the policy
year as of the ratemaking date. For the explanatory covariates, policy-level characteristics represented
by x;; are used. Additionally, Uj; is the reporting delay variable which is the difference between claim
occurrence and reporting times for claim i reported in the {jz} observation period. Then, the data available
can be summarized as:

{ejt’ 1Vjta l]jt,i’ (Aljt,i’ Sjt,i)’ Pjtjk»xjt;t: 15 ey T}’]: 17 ... 9J} (21)

For the ratemaking exercise in this paper, we assume {N;,, M;;} are recorded for each policy year, but
the analysis done in this paper can be easily extended to other periods. Further, insurers usually record
the reporting and claim occurrence dates, and we will assume the reporting delay variable U, is in days.

2.2. Marked Poisson process

Figure 1 elaborates on the timeline for claim occurrence at times V, =v,, V, =v,,...,V, =v, and trans-
action occurrence attimes S| = s,, 5, = $,, .. ., S,, = 5, in a fixed period [0, 7]. In this paper, T represents
the ratemaking date. From the figure, it is clear there are two counting processes, one relating to claims
occurrence and the other the transaction occurrence after reporting.

https://doi.org/10.1017/asb.2023.23 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2023.23

ASTIN Bulletin 599

The associated counting process {N(v), 0 < v} of the claim occurrence process in Figure 1 is Poisson
and records the cumulative number of claims that the process generates. We denote H(v) = {N(u): 0 <
u < v} to be the history of the claims occurrence process at time v. Then, the intensity function,
determined only by v, for the claim occurrence process, is given by:

Pr{AN(v) = 1|H(v)} —i Pr{AN(v) =1} _
Av - Alvrftl) Av -

p(V|H(v)) = lim p(), (2.2)
Av}0

where p(v) is a non-negative integrable function and AN(v) represents the number of claims in the short

interval [v, v 4+ Av). Further, observable covariates x;(v) for policyholders j =1, . . . J that affects claim

occurrence may be incorporated in the model by including the covariate information in the process his-

tory. Thus, the heterogeneities among the policyholders can be accounted for by specifying the intensity

function of the form:

p(vIx)) = po(v) exp(x;()B), (2.3)

where X = {x;(u) :0 <u <v} is the covariate history. py(v) is the baseline function that relates to
policyholders for whom x;(v) = 0 for all v, and B is a vector of regression coeflicients for the covariates.

The marked Poisson process (MPP) framework is employed for the claims modeling for insurance
pricing. For a marked Poisson process in [0, 7], the likelihood that n claims occur at times V, = v, V, =
Vay.o., Vo, =v,, withmarks Z, =z,,2, =2,,...,Z, =z, is given by:

Pr[N=n,(V,Z)=W;,z),i=1,2,...,n]= (l_[ p(v,-)PZM(z,-)) exp(— f p(v)dv) . 2.4)
i=1 0

Here, the claim occurrence counting process N(v) is a Poisson process with intensity function p(v). The
distribution of the marks Py, is conditional on AN(v) = 1.

The MPP framework allows for the modeling of the entire claim process, including occurrence,
reporting, and development after reporting. Let Z;, = (U;, W), with U; and W, denoting the reporting
delay and the claim development process after reporting, respectively. As seen in Figure 1, W, includes
payment transaction occurrence times S; and the severity of each transaction Py, where k=1, ..., m;
index payment transactions for the ith claim. Then, the distribution of the marks Pz, is specified as
Py, = Py, X Py, This paper assumes that the claim occurrence process and the marks, such as the
reporting delay and transaction payments, are independent. It is also assumed the marks are independent
of each other.

The reporting delay distribution U given occurrence time v, Py, = Py, can be modeled using various
distributions from survival analysis, but we specify a mixed distribution comprising of a discrete dis-
tribution for a reporting delay below or equal to r days, and a Weibull distribution for reporting delays
above r days with density function f;;. The likelihood for the reporting delay is given by:

d d
> g lU=r+ (1 - q,) o), 2.5)

r=0 r=0

where the probability mass for a reporting delay of r days is given by ¢,. Specifically, we use d = 0, that
is, a probability mass for a reporting delay of zero days (reporting in the same day of occurrence, ¢).
To incorporate the policyholder characteristics x; that may impact the reporting delay distribution of
claim i, we specify a Weibull distribution with the scale parameter 6; that depends on the policyholder
characteristics and a constant shape parameter k given by:

K—1

Ku
fU\U>r(ui; K,0;)~ 91,( expl—(u;/6)], 6;= eXp(x;-)/). (2.6)

i
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The other component of Py, is the distribution of the claim development process after reporting,
Py,,.. We assume the occurrence of transactions for claim i also follow a non-homogeneous Poisson
process in [0, 7], and transaction payment amounts are treated as marks. Then, the likelihood that m;
transactions occur at times S;; = si1, Sp = S, - . . , Sim; = Siw;» With marks P,y =py, Po =po, ..., Py, =
Dim; 1S given by:

Pr[M; = m;, (S, Pi) = (s> pu), k= 1,2, ... ,m] = ( Zl;] )\i(sik)fP(Pik))

T 2.7
X exp<— / A,-(s)ds) .
0

Here, the transaction occurrence counting process M;(s) is a Poisson process with intensity function
Ai(s), k applies to all payments in [0, ], and the distribution of the transaction payment amounts is
conditional on AM;(s) = 1. The density function for the payment severity is denoted by fp(pi).

3. Statistical inference
3.1. Estimating parameters

At the ratemaking time 7, there are reported claims whose full or partial development process is
observed, thatis, C*” = ((v, u, w) € C|v 4+ u < 7), and IBNR claims whose development process is totally
unobserved, that is, C*"" = ((v,u,w) €Clv < 1,v+u> 7). Then, the occurrence of reported claims fol-
lows an independent Poisson process with intensity function p(v)Fy,,(t — v) and that of IBNR claims
also follows an independent Poisson process with intensity function p(v)(1 — Fy,(t — v)) (Wiithrich
and Merz, 2008).

It follows that the observed likelihood of the claims process is given by:

L= ( 1_[ PV)Fy,(t — Vi)) exp(— / PWFy, (T — v)dv) X vrvmfu"(wi)’ 3.1
0

ivitu <t

where f(-) and F(-) denote a pdf and a cdf, respectively. The superscript in the claim development term
(last term in (3.1)) represents that a claim that occurred at v; and with reporting delay u; is censored at
T — v; — u,; time units after reporting. As discussed earlier, given the occurrence time v and the reporting
delay u, the claim development process W can be decomposed into the payment transactions occurrence
times S and the transaction payment amounts P. Then, the observed likelihood in (3.1) becomes:

L=(T,,.... 09t =) exp = [ pFune —vav)

X l_[i:vﬁ—u,'ﬁ‘( (Hk Ai(si) CXP<— /(: / )»i(S)dS>> (3.2)

X l_[ kaP(pik)~

ivitui <t

Here, k applies to all payments in [0, t;], where 7; = min(t — v; — u;, S;) and S; is the total waiting
time from reporting to settlement of claim i. We emphasize that in addition to the claim occurrence
counting process N(v) with intensity function p(v), the transaction occurrence counting process M;(s)
is also a Poisson process with intensity function A,(s).

Considering the ratemaking data are organized by the {jt} observation period, where j=1,...,J
index policyholders, and t =1, ..., 7; index the policy years for each claim; let the intensity function
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for the counting process of claim occurrence N;(v) be p;(v) and that of counting process of transaction
occurrence M;,;(s) be A;;(s). Then, the likelihood for the observed claims process in (3.2) becomes:

t

d Tj njt
= Hj_l 1_[’_1 (1_['—1 Vi) Fop(T = Vi) exp(— / w; (W p;(WFy(t — V)dv))

, . . —1
/ 7 it Mjt i Tt

<[ T TS <1_L , A (Sjae) exp(— f A_,-,xs)ds)) (3.3)
J= = i= = o
J Tj Njt Mg i

X Hj:] 1_[,:1 1_[1.:1 k:IfP(pjt,ik),

where 7 € [T; — 1, T;], the exposure at time v is given by w;(v), n;, denote the number of reported claims
that occur in the {j¢} observation period, and m;,; is the number of transactions for claim i reported in the
{jt} observation period. With regard to the ratemaking application, the number of transactions to settle-
ment is of interest. But for RBNS claims, the number of transactions is censored at the ratemaking date
. Therefore, we denote, §;,; = I(S;;; < 7;;,;) to indicate whether the claim has been closed by the ratemak-
ing time. Note that, S is the total waiting time from reporting to settlement of claim i reported in the
{jt} observation period. Thus, §;; = 1 for closed claims, and §;; = 0 for RBNS claims at 7. Additionally,
given that S;; > t;,;, for RBNS claims, it means that M;, (S;.,) > M, ,(t;,;) = m;,;.

The likelihood in (3.3) for reported claims can be broken down into three building blocks: the number
of claims per policy in a policy year, the conditional number of payment transactions for a claim, and the
conditional payment sizes for each transaction. The likelihood is decomposed into independent blocks,
which can be maximized in isolation. But, the MPP is a continuous-time model, and the data on the
claims occurrence and transaction occurrence recorded and available for statistical inference are discrete.
Thus, we assume a piece-wise constant specification for the intensity functions that allow the use of
the recorded number of claims and the number of transactions per claim for estimation. Each block is

discussed below.

3.1.1. Poisson process for claim frequency

The first line in the likelihood in (3.3) relates to the occurrence of reported claims. A multiplicative form
of the intensity function is assumed where p;(v) = po(v; o) exp(xj’.,ﬂ ). Here, x;, are the rating variables,
and {a, B} are parameters to be estimated. To estimate p;(v), we assume the claim occurrence follows
a Poisson process with a non-homogeneous piece-wise constant intensity o;, such that the baseline rate
function is given by:

po(vie) =o, ay <v=a, (3.4)
where t=1,...T, and T is the most recent policy effective year. The parameters of the baseline rate
function are denoted by & = (a1, ...,ar), and gy < a, < - - - , ar are the cut-points of the intervals for

the baseline function where ay =0 and ar = T. Then, the occurrence of reported claims follows an
independent Poisson process with intensity function p;Fy,(t — v). The corresponding likelihood for
the occurrence of reported claims is given by:

J T njt '
L= 1_[ (p;ﬂ X 1_[ FU\V(T — Vjt,i) exp (—ejtpjt/ FU\V(T — V)dV)) N (35)
- -1

j=1 =1 i=1

where p;, = «, exp(xj/.tﬂ), and e, = fl ’_1 w;(u)du is the exposure time in (a,_;, a,] for policyholder j. For
ratemaking purposes, the likelihood in (3.5) can be maximized via a Poisson regression with a log link
where p;, = exp(In o, + x_;,ﬁ) is the mean of the response N;,. Here, In(e;,) and ln(fril Fyu(t — v)dv) are
specified as offset variables to account for the exposure as at the ratemaking date and to adjust parameters
to account for IBNR claims, respectively. An estimate of the reporting delay distribution is obtained by
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fitting the distribution in (2.5). Hence, the estimation for the claim frequency is a two-stage approach.
First, the reporting delay model is estimated, and second, the estimated parameters from the reporting
delaying model are plugged in to estimate claim frequency model.

3.1.2. Poisson process for transaction frequency

The second line in the likelihood in (3.3) relates to transaction occurrence conditional on having at
least a claim. The transaction counting process M;,;(s) is also Poisson with intensity measure A, ;(s) =
Ao(s; b) exp(x, 7). Again, a piece-wise constant intensity A;,; is assumed such that the baseline rate
function is given by:

ro(s;b)=b, a._, <s=Za, (3.6)
where b= (by,...,by) are parameters of the baseline rate function. Here, the likelihood for the
transaction occurrence can be specified as proportional to the product of Poisson likelihoods shown

as:

J Tj njt
L= ]‘[ ]‘[ (]‘[ (b, exp(x, 7)) exp(—b, exp(x;.tn))> . (3.7

i=1

For RBNS claims, M;,;(S;;) > m;,;, then the likelihood in (3.7) can be maximized using censored
Poisson regression with a log link where A;; = exp(In b, + x; ) is the mean of the response M;,;. The
likelihood for the censored Poisson is given by:

mjgi—1 1=8j1i
Pr(my,;, 8,1 = [f (my,, )] |:1 - Z f (k)j| ; (3.8)
k=0

where f(-) is a Poisson density function and §;,; = 1 if the claims are closed or §;,; = 0 if open.

3.1.3. Transaction severity modeling

The conditional severity block describes the claim payment size per transaction. Different distributions
can be used to model the transaction payments P, ; with conditional mean p;, ; = exp(x;.tgb). The gamma
GLM is frequently used in insurance pricing to model payment sizes (Henckaerts et al., 2018), but the
goodness-of-fit test needs to be performed to select the proper distribution for the data. Also, certain char-
acteristics of the data may inform model choices. For example, Antonio and Plat (2014) built different
models for the first transaction payments and the later transaction payments.

3.2. Loss cost prediction using the MPP Model
A rating formula based on the MPP ratemaking framework will be achieved by the product of exponen-
tiated estimates from the claim frequency, transaction frequency, and severity models. The following
rating formula calculates the predicted loss cost:

Loss Cost = ¢; exp(In & +x}/§) x exp(In by +x7) x exp(x;.@)
= Exposure
xExpected number of claims (3.9
x Expected number of transaction per claim
xExpected payment per transaction.

where ¢; is the exposure variable and x; are rating factors for the new contract. {¢, by} are the fitted trend
parameters from the most recent policy year for the reported claim and transaction frequency models.
Also, {[3 LT, J)} are the fitted parameters for rating variables from the claim frequency model, transaction
frequency model, and the severity model building blocks.
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In this approach, including information on open claims, such as the number of reported open claims,
the claim transaction frequency on open claims, and the payments on open claims, automatically
accounts for the reserves on reported claims because the regression parameters are accurately adjusted.
Also, the claim frequency regression parameters are adjusted for IBNR claims to account for IBNR
reserves. Further, trends in time are captured by the trend parameter estimates {dr, BT} and will help
to adjust the experience to a cost level applicable to a future effective period. In addition, the trends in
time, other rating variables, and open claims data would help promptly capture environmental changes.
Finally, regulatory requirements are an important challenge in implementing advanced ratemaking mod-
els. Especially, the need to explain and quantify the effect of each policyholder characteristic on the total
premium. By multiplying the fitted parameters found in the three layers, the MPP helps to satisfy this
requirement.

‘We note that the predicted loss cost in (3.9) is based on reported claims on which the insurer has made
payments. However, if the number of payment transactions, M,;, in the transaction frequency model is
allowed to take on the value of zero, where M;,; can be equal to zero when claims are reported, but the
insurer has not made any payment transactions at the ratemaking date; then, the expected payment per
transaction is given by fi;, 4 = g; X exp(x]’.té), where ¢; is the probability of positive payment transactions
from the transaction-level data.

4. Ratemaking performance evaluation using simulated data

This section highlights the importance of open claims in the ratemaking process using simulated data
from the MPP model. We show that using only closed claims for ratemaking leads to biased estimates and
inaccurate premiums. We also underscore the advantages of the MPP model over the frequency-severity
model that incorporates information on open claims.

4.1. Simulation design

In this simulation, for simplicity, the number of claims for policyholder j within a policy year ¢ is assumed
to be a homogeneous Poisson regression with the conditional mean specified as:

pi =exp(Ina, + xj/-,ﬂ) =exp(lno + )?;1/311 + x;zﬁlz), 4.1)

where x; = {x;;, x;} are policy-level covariates. We assume x; ~ Bernoulli(0.3), representing a discrete
rating variable and x, ~ Normal(0, 1), corresponding to a continuous rating variable. The reporting delay
distribution for claims is assumed to be from a Weibull distribution with a constant shape parameter «
and scale parameter 6; given by:

0, = eXP(x},J/) =exp(yio + x}l yu + X_;z)/lz)' 4.2)

For this simulation, we use x = 0.2 and y = {1.5, 0.3, 0.1}. In addition, claim occurence times, v;, are
assumed to follow Uniform(0, 5). In this specific setting, we set T = 5. Given that a claim is reported,
M;,;, the number of transactions to the settlement of claim i reported in the observation period {j} is
also assumed to be a homogeneous Poisson regression with the conditional mean specified as:

A = exp(In b, +x,m) = exp(In b + x;, 771, + X,715). (4.3)

Further, given that there are k=1, ..., M, transactions, the payments are assumed to be from a
gamma regression with logarithmic link function and dispersion parameter 1/o. The conditional mean
is specified as:

Hjrix = CXP(x;-[‘lS) =exp(¢io + x_;1¢]1 + x_;2¢12). (4.4)

Finally, we let §;,; ~ Bernoulli(n), that is, whether a claim is closed or censored is simulated using a
Bernoulli distribution with probability n. We vary n to examine the effect of the proportion of closed
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claims in the portfolio on the estimation and prediction results. The parameters used for data generation
under the claim frequency, transaction frequency, and transaction severity models are shown in Table 1.
We employ Algorithm 1 in the Online Appendix to construct the simulation data.

4.2. Parameter estimates

The estimation results using the simulated data at the ratemaking date are given in Table 1 and based
on S = 100 replications. Following the likelihood-based method described in Section 3.1, we obtain the
parameter estimates and the associated standard error of each simulated sample based on data at the
ratemaking date. We present results for different proportions of closed claims and different numbers of
policies. Specifically, we report estimations results when the proportion of closed claims are 30%, 80%,
and 100% and when the number of policies are 500, 1000, and 1500.

In Table 1, we present the average bias (Bias), the nominal standard deviation of the point estimates
(SD), and the average standard error (SE) of the estimates. It can be seen that both the average bias and
uncertainty of the average bias for parameters in the claim frequency, transaction frequency, and transac-
tion severity models decrease as the number of policies increases. Further, for the transaction frequency
model and transaction severity model, the average bias and uncertainty of the average bias decrease as
the proportion of closed claims in the portfolio increases. This observation shows that ignoring open
claims will only lead to more biased parameter estimates. The results also show that the average standard
error is comparable to the nominal standard deviation, indicating the accuracy of variance estimates.

4.3. Loss cost prediction

This section focuses on the proposed MPP model’s prediction performance under different proportions
of closed claims and number of policies in the portfolio. The results reported are based on S = 100
replication. The loss cost prediction for each policy is obtained using (3.9).

We compare the actual loss cost from the simulated data to that of the loss cost predictions from the
MPP model and that of a frequency-severity model which uses only closed claims to estimate parameters
named FS_Closed. For the frequency-severity model, the Poisson model is used to model the claim
frequency, and a gamma GLM with a logarithmic link is used to model the loss amounts from claims
(Frees, 2014). See the Online Appendix for the rating formula based on the frequency-severity model.
Further, we compare the loss cost prediction from the MPP model to a frequency-severity model that
incorporates information on all reported claims named FS_ALL For the open claims in the FS_All model,
to eliminate the uncertainty in reserve predictions, we use the actual ultimate amount in the model of
loss amounts. This implies that the loss cost predictions from the FS_AII are the best-case scenario from
the frequency-severity model.

The Gini index measure, which was motivated by the economics of insurance and developed in Frees
et al. (2011), is employed to aid in the comparison of loss cost predictions between the different models
and the actual loss cost. The Gini index is a measure of profit and thus insurers that adopt a rating
structure with a larger Gini index are more likely to enjoy a profitable portfolio. The Gini index can be
interpreted as the covariance between the profit (loss minus premium) and the rank of relativities (score
divided by premium). In addition, the Gini index can be described as twice the area between the ordered
Lorenz curve and the 45-degree line (line of equality), where the ordered Lorenz curve is a graph of the
ordered premium versus ordered loss distribution based on the relativity measure. The Gini index may
range over [—1,1]. The results in Table 2 assume that the insurer has adopted the FS_Closed as a base
premium for rating purposes, and the insurer wishes to investigate alternative scoring methods (in this
case, the MPP model) to understand the potential vulnerabilities of this base premium. Similarly, the
results in Table 3 assume that the insurer has adopted the FS_AIll as a base premium.

Table 2 summarizes several comparisons using the Gini index when the number of policies are 500,
1000, and 1500 with different proportions of closed claims. We report the average Gini index and the
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Table 1. Estimation results for MPP for different number of policies and different proportion

of closed claims.

S=100 Bias SD SE
Parameter J=500 1000 1500 500 1000 1500 500 1000 1500
Proportion of closed claims = 30%
Poisson claim frequency model
In(e) =—0.105 —-0.003  0.003 —0.004 0.067 0.041 0.035 0.071 0.050 0.041
B =0.25 0.009 0.001 0.001 0.081 0.059 0.041 0.093 0.065 0.053
Bn=1 —0.001 —-0.002  0.005 0.037 0.027 0.024 0.045 0.032 0.026
Censored Poisson transaction frequency model
In(b) = 0.406 0.072  0.078 0.078 0.075 0.056 0.046 0.062 0.043 0.035
m;=0.5 0.063  0.070  0.071 0.094 0.057 0.049 0.072 0.050 0.041
w1, =0.2 0.029 0.025 0.025 0.044 0.032 0.028 0.037 0.025 0.021
Gamma transaction severity model
@10 =15.522 —0.011 —-0.007 —0.006 0.075 0.055 0.045 0.080 0.056 0.046
o =1 0.004  0.010 0.007 0.089 0.063 0.048 0.087 0.061 0.050
¢, =0.75 0.010  0.002 —-0.001 0.044 0.027 0.024 0.045 0.031 0.025
o=07 0.011  0.007 —-0.002 0.028 0.025 0.017 0.031 0.022 0.018
Proportion of closed claims = 80%
Poisson claim frequency model
In(e) =—-0.105 —0.003  0.003 —0.004 0.067 0.041 0.035 0.071 0.50 0.041
B =025 0.009  0.001 0.001 0.081 0.059 0.041 0.093 0.065 0.053
Bn=1 —0.001 —-0.002 0.005 0.037 0.027 0.024 0.045 0.032 0.026
Censored Poisson transaction frequency model
In(b) = 0.406 0.011  0.022 0.018 0.060 0.040 0.036 0.056 0.039 0.032
m =05 0.009  0.007 0.009 0.073 0.042 0.037 0.062 0.043 0.035
w1, =02 0.005  0.001 0.003 0.032 0.023 0.022 0.032 0.022 0.018
Gamma transaction severity model
@10 =15.522 —0.008 —0.006 —0.005 0.068 0.042 0.039 0.068 0.048 0.039
¢ =1 0.004 0.003 0.006 0.074 0.047 0.041 0.074 0.052 0.043
¢, =0.75 0.008 0.003 0.000 0.039 0.021 0.021 0.038 0.027 0.022
o=0.7 0.006  0.004 —-0.002 0.026 0.020 0.013 0.026 0.018 0.015
Proportion of closed claims = 100%
Poisson claim frequency model
In(@)=—-0.105 —0.003  0.003 —0.004 0.067 0.041 0.035 0.071 0.050 0.041
B =0.25 0.009  0.001 0.001 0.081 0.059 0.041 0.093 0.065 0.053
Bn=1 —0.001 —-0.002 0.005 0.037 0.027 0.024 0.045 0.032 0.026
Censored Poisson transaction frequency model
In(b) = 0.406 —-0.003  0.007 0.002 0.052 0.037 0.033 0.054 0.038 0.031
m =05 0.002 —0.003  0.000 0.066 0.039 0.033 0.059 0.042 0.034
m,=0.2 0.001 —-0.004 -0.001 0.030 0.022 0.020 0.031 0.021 0.017
Gamma transaction severity model
10=235.522 —0.008 —0.008 —0.005 0.062 0.043 0.036 0.064 0.045 0.037
én=1 0.000  0.005 0.007 0.070 0.047 0.039 0.070 0.049 0.040
¢, =0.75 0.007  0.003 —-0.001 0.037 0.021 0.019 0.036 0.025 0.020
o=0.7 0.007  0.004 —-0.002 0.025 0.018 0.012 0.025 0.018 0.014
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Table 2. Gini indices of MPP predictive claim scores with frequency-severity model based
on only closed claims (FS_Closed) as base premium.

% of closed claims S=100  J=500(%)  J=1000 (%) J = 1500 (%)

30% Mean 11.50 11.17 11.85
SE 3.38 2.60 2.25
80% Mean 4.08 541 5.26
SE 3.41 2.64 2.25
100% Mean 3.32 4.22 4.37
SE 3.40 2.67 2.23

Table 3. Gini indices of MPP predictive claim scores with frequency-severity model based
on all reported claims (FS_All) as base premium.

% of closed claims S=100 J =500 (%) J =1000 (%) J = 1500 (%)

30% Mean 3.81 4.43 4.69
SE 3.36 2.67 2.24
80% Mean 3.24 4.34 4.41
SE 3.42 2.65 2.23
100% Mean 3.30 4.19 4.34
SE 3.41 2.67 222

average standard error (SE) of the Gini index estimates. The standard errors were derived in Frees et al.
(2011) where the asymptotic normality of the Gini index was proved. From the results, with 500 policies
and a 30% proportion of closed claims, the Gini index is 11.50%, which indicates that insurers using
FS_Closed for premiums could look to the MPP model to detect discrepancies between their loss and
premium distributions. The standard error implies that the discrepancy is statistically significant. Similar
observations are made when the policy numbers increase to 1000 and 1500 with just 30% proportion of
closed claims. However, the discrepancies may not be significant when the proportion of closed claims
increased to 80% and 100%, meaning the Frequency-Severity model based on closed claims and the
MPP model produce similar predictions only when the proportion of closed claims is high.

Further, the Gini index results from Table 3, where the FS_AIl model is the base premium, show
that the MPP model produces loss costs that are slightly better than that from the best-case scenario
of the frequency-severity framework. But, the standard error implies that the discrepancies may not be
statistically significant. Even with similar loss cost predictions from the MPP and the FS_AII models,
the MPP framework provides the advantage of performing the ratemaking exercise without needing a
reserving model to develop claims to ultimate.

To show that the MPP can account for claim reserves, Table 4 presents the actual versus expected
analysis of the total loss cost values (A/E). The A/E is a common actuarial model projection tool and
provides the actual total loss cost as a percentage of predicted loss cost from the models. We report
the average A/E scores and the nominal standard deviation of the A/E scores (SD). For accurate model
projections, we expect the average A/E to be close to 100%. The results show that the MPP performs
better than the best-case scenario of the frequency-severity model (FS_AIl) because the FS_AIl model
does not account for IBNR claims. Hence, the FS_AIl model will only be competitive when the claim
occurrence frequency model is adjusted to account for IBNR claims. Also, the frequency-severity mod-
els based on only closed claims (FS_Closed) performed worse because, in addition to not accounting for
IBNR claims, it does not use the information of reported claims that are open. This further shows that
the MPP framework provides the advantage of performing the ratemaking exercise without the need for
a reserving model to develop claims to ultimate and also accounts for IBNR claims.
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Table 4. Loss cost prediction results.

% of A/E % (J = 500) A/E % (J = 1000) A/E % (J = 1500)
closed
claims S=100 MPP FS_AIll FS_Closed MPP FS_All FS_Closed MPP FS_AIl FS_Closed

30%  Mean  94.06 141.01 43839 9396 143.08 44475 94.81 143.92 45291

SD 898 11.04 65.80 5.66 8.49 42.64 576 853 39.76
80%  Mean  98.21 146.54 18298 99.19 148.28 18535 99.22 14891 185.97
SD 6.86 1048  14.83 5.16 8.59 1375 531 846 12.19
100% Mean  98.60 148.18 14826 99.52 149.81 14995 99.78 150.63  150.78
SD 6.88 10.79  10.82 5.06 8.58 859 516 840 8.45

Table 5. Summary statistics at the policy and claim level for building and contents coverage.

Policy level Claim level

Effective Average Average Average Number of Average No. Average payment
year frequency severity coverage (Million) policies of transaction per transaction
2006 0.734 10,083 32.363 1159 1.276 9554
2007 0.925 7095 35.143 1143 1.291 8946
2008 0.746 6730 37.150 1130 1.245 7991
2009 0.924 4864 40.275 1114 1.206 9864
2010 1.088 20,827 41.123 1114 1.123 17,152
2011 0.948 8367 42.426 1096 1.173 17,156

5. Empirical analysis using the MPP
5.1. Data

The data we use for the ratemaking exercise in this paper are from the Wisconsin Local Government
Property Insurance Fund (LGPIF). The Fund insures local government entities, including counties,
cities, towns, villages, school districts, and library boards. The primary coverage of the Fund, which
is the focus of this paper, is the building and contents coverage. But the Fund also provides coverage for
inland marine (construction equipment) and motor vehicles. The dataset has already been used in other
ratemaking papers; for example, see Frees and Lee (2015).

Though the LGPIF data spans from January 1, 2006, to December 31, 2013, we focus on the dataset
from effective years 2006-2011, where all claims are marked as closed as of December 31, 2013. Here,
we use data from the policy, claim, and transaction databases. Table 5 shows the summary statistics, at
the policy and claim level, from effective years 2006-2011. High variability across years in the average
claim frequencies and severity is observed at the policy level, highlighting the importance of using
current information in claim modeling for ratemaking purposes. Further, from the summary statistics
at the claim level, the average number of payments transactions to settlement per claim is gradually
reducing, and the average payment per transaction is increasing. This observation suggests a change in
claims processing of the LGPIF. Such environmental changes affect the distribution of future losses, and
using current information on open claims allows capturing such changes promptly.

Table 6 describes the rating variables considered in this paper. Tables 1 and 2 in the Online Appendix
show that the rating variables are correlated with the claim frequency and severity at the policy level, and
with the transaction severity at the claim level, which indicates that they will be significant predictors of
claims in the ratemaking model. For the ratemaking exercise, the data from effective years 2006-2009
are used as the training sample to calibrate the MPP model. Here, we assume that by December 31, 2009,
policyholders’ rates have to be updated for the policy year 2010. The rating factors from the calibrated
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Table 6. Description of rating variables.

Variable Description
EntityType Categorical variable that is one of six types: Village, City,
County, Misc, School, or Town
Region Categorical variable which identifies region of the county of an entity
belongs to: Northern, Northeastern, Southeastern, Southern, or Western
LnPolicyDed Deductible for the policy in logarithmic of dollars
LnPolicyCov Total building and contents coverage for the policy in
logarithmic millions of dollars
AlarmCredit Categorical variable that is one of five types:(0%, 5%, 10%, 15%,

or a combination of credits), for automatic smoke alarms in main rooms
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Figure 2. Left panel: shows the distribution of total amount of payment per policy by number of claims
per policy year. Right panel: shows the ultimate amount paid by number of transactions to settlement.
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Figure 3. Distribution of marks. The left panel shows the histogram of log-transformed transaction
payment amounts. The right panel shows the observed reporting delay distribution.

MPP model are then applied to the 2010 rating variables to predict 2010 loss costs (claims scores).
The left panel of Figure 2 presents the relationship between the total amount of payment and the
number of claims per policy based on the training sample. We note that the policies are all one-year
policies. The plot suggests an increase in the number of reported claims in a policy year increases the
total amounts paid by the insurer. A similar positive relationship is observed in the right panel between
the ultimate amount paid for claims and the number of transactions to settlement. The small circles
identify outliers. Table 1 in the Online Appendix shows that the transaction payments are heavily right-
skewed. The left panel of Figure 3 shows the histogram of the transaction payment amounts based on
the training sample. Here, the log scale is used to handle the skewness. The reporting delay is a key
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Table 7. Summary statistics for closed, RBNS, and IBNR claims as of December 31, 2009.

Number of claims Average payments
Effective year  Closed @ RBNS  IBNR  Total  Closed RBNS Total
2006 785 1 0 786 16,501 5,398,051 23,348
2007 987 6 4 997 13,281 376,109 15,473
2008 747 20 10 777 13,509 51,165 14,491
2009 478 136 184 798 5631 8904 6356
Total 3230 163 198 3591 14,133 60,668 16,368

driver of IBNR claims, and the right panel of Figure 3 shows the distribution of the reporting delays in
months. The distribution appears to be right-skewed.

Table 7 provides a summary of the number of closed, RBNS, and IBNR claims as of December
31, 2009. As expected, the very recent effective year 2009 is associated with the highest RBNS and
IBNR claims. Therefore, ratemaking models that rely on only closed claims will lose current information
needed to produce accurate premiums. The table also summarizes the average payments for reported
claims (closed and RBNS claims) as of December 31, 2009. It is seen that the average payments across
years for RBNS claims are more significant than closed claims, and RBNS claims tend to decrease as
the effective year increases indicating that bigger claims take a longer time to settle. This is because,
as discussed in Okine et al. (2022), large and complicated claims naturally involve multiple interested
parties, demand special expertise, and are more likely to be litigated. Hence, the payments on the RBNS
claims can reflect the change in the Fund’s risk profile and capture environmental changes in a timely
manner compared to closed claims.

For robustness checks, we also present an analysis of the MPP framework using the effective years
2007-2010 as the training sample. We compare the loss cost predictions from this new model to the
out-of-sample data from 2011.

5.2. Estimation results

This section presents the estimation results from the three building blocks in the MPP framework fitted
using maximum likelihood. The training data contain observations from effective years 20062009, but
we also show the parameter estimates using only data from the recent effective year 2009 to examine
the effect on estimation when the proportion of closed claims in the portfolio is reduced.

Figure 4 explores different distributions to fit the transaction payment amounts. The figure plots the
empirical distribution functions of the transaction payment amounts to the distribution functions from
the fitted Gamma, Pareto, and Log-normal distributions. The Pareto and the Log-normal distributions
appear to provide a reasonable fit to the data. But, the Akaike Information Criterion (AIC) for the Log-
normal fit is 69,749.6, and that of the Pareto fit is 69,758.0. Hence, we select the Log-normal distribution
for modeling the transactions payment block.

Figure 5 compares the reporting delay distribution with the fitted mixed distribution with a proba-
bility mass for a reporting delay of zero and a Weibull distribution for reporting delays above zero. The
fitted mixed distribution seems to fit the observed reporting delay data reasonably well from the plots.
The reporting delay distribution may vary depending on the policyholder characteristics; therefore, we
expand the Weibull distribution for reporting delay to include the entity types. Table A.1 in the Appendix
shows the parameter estimates of the fitted Weibull model in (2.6).

Table A.2. in the Appendix presents the estimation results for the MPP model using the informa-
tion on reported claims at the ratemaking date and following the likelihood-based method described in
Section 3.1. The rating variables used are described in Table 6. The results from the claim frequency
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Figure 4. Comparing the empirical distribution function (DF) to the distribution function of the Gamma
fit (left panel), Pareto fit (middle panel), and Log-normal fit (right panel).
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Figure 5. Comparing the observed reporting delay distribution to the fitted Weibull. Left panel over-
lays fitted Weibull distributiion function (DF) over the empirical DF. The right panel provides the
Quantile-Quantile Plot.

model capture the trend in reported claims across years when using all the training data. For the loss cost
prediction, the baseline parameter from the most recent year o, is used. Further, the censored Poisson
transaction frequency model and the Log-normal severity model results are provided in the middle and
bottom layer of Table A.2. The effect of arating variable can be obtained by adding up the effects from all
three building blocks. For example, using all the training data, the parameter estimate for LnPolicyCov
is positive in the claim frequency model (1.107), negative in the transaction frequency model (—0.022),
and negative in the transaction payment model (—0.349). In this case, the overall effect can be inter-
preted as positive (0.737). In addition, the last two columns in Table A.2 provide results using all the
training data with policy coverage (LnPolicyCov) and time (policy years) as interaction variables. The
results suggest differences in the effect of the policy coverage values on claim frequency in different
years.

5.3. Out-of-sample performance

This section provides the loss cost prediction based on the MPP model fitted in Section 5.2. Thus, we
do not consider expenses associated with the loss amounts. The predictions were generated based on
the 2010 out-of-sample rating variables, and we compare the predictions to the 2010 out-of-sample
claims. Also, loss cost prediction results are provided for the MPP model with policy coverage and
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Figure 6. Comparing the 2010 out-of-sample claims to loss cost predictions from different models
(based on data from effective years 2006-2009), and the 2010 external out-of-sample premiums.

time as interaction variables, named MPP_Int. In addition, we compare the out-of-sample results to
that of a frequency-severity model that uses only closed claims in the estimation of parameters named
FS_Closed and another that uses all reported claims in the model building, named FS_AIl. For the open
claims in the FS_AIl model, we use the incurred payment (amount paid plus loss reserve) as an estimate
for the ultimate payment amount. Further, we compare the 2010 out-of-sample premiums in the dataset,
which an external agency generated, to the loss cost predictions from the models. These external agency
premiums are the actual premiums paid by the policyholder for the 2010 effective year, and results based
on these premiums are named EA_Premiums.

Figure 6 shows the scatterplot of the ranks for the 2010 out-of-sample claims and the predicted loss
costs from the models, where each point relates to a policyholder. It also shows a scatterplot of the ranks
between the out-of-sample claims and the external out-of-sample premiums. The vertical line formed by
the points relates to policyholders without losses in the 2010 effective year, and rank ties are replaced by
their mean. The correlation of the rank of the scores from the MPP and the 2010 out-of-sample claims
is 48.89%, and that of the scores from the external 2010 out-of-sample premiums is 45.36%. The higher
correlation from the MPP model shows that the MPP framework offers a promising alternative to the
existing rating methodology.

The Gini index measure is employed to aid in the comparison of loss cost predictions between the
different models, the external out-of-sample premiums, and the out-of-sample claims. As discussed
in Section 4.3, insurers that adopt a rating structure with a larger Gini index are more likely to enjoy
a profitable portfolio. We show that the MPP framework helps align premiums with the underlying
risk better than the frequency-severity approach and is highly competitive against the existing rating
methodology used to generate the external out-of-sample premiums. As seen from Table 5, for the out-of-
sample year 2010, the average severity is higher than in other years due to two unusually large claims as
a result of the Great Milwaukee Flood. These two large claims were paid to two different policyholders,
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Table 8. Gini indices of projected loss cost based on 2010 hold-out-sample with FS_AIl as base

premium.
Base premium Effective year 2009 Effective years 2006-2009
FS_Closed MPP EA_Premiums FS_Closed MPP MPP_Int EA_Premiums
(%) (%) (%) (%) (%) (%) (%)
With outliers
FS_All —5191 —-8.52 48.22 38.90 49.24 58.70 43.70
Standard errors 15.91 16.85 9.83 25.85 20.40 14091 9.96
Without outliers

FS_All —2499 —-2.30 42.47 12.57 22.17 28.25 44 .88
Standard errors 10.12 10.11 6.87 12.95 10.15 7.95 6.12

and the total amounts paid to the policyholders are $12, 922,218 and $4, 776, 206. Hence, we provide
the Gini index results with and without the policies with the unusual claims in the 2010 out-of-sample
data.

Table 8 presents the Gini index results, where we use FS_AIl as a base premium. The columns
summarize results using the FS_Closed, MPP scoring methods in addition to the external premium
(EA_Premiums). The table shows that when the ratemaking model was built using data from the effec-
tive year 2009, the frequency-severity model based on only closed claims did not fare well compared
with the base model. Also, the MPP model discrepancies were not statistically significant compared
to the base model, and the external agency premiums fared well compared to the base premium (with
or without the unusual claims). However, when the data from the effective years 2006-2009 are used
in the model building and the unusual claims are used in the 2010 out-of-sample data, the Gini index
for the MPP model and the external agency premiums are 49.24% and 43.70%, respectively. Also, the
MPP model with interaction variables has a Gini index of 58.70%. The standard error implies that the
differences are statistically significant. The results suggest that the MPP framework promotes equity in
pricing compared to the base premium (FS_AIl) and indicates loss cost predictions from the MPP model
will lead to more equitable rates. Similar results are seen when the unusual claims are removed from the
2010 out-of-sample data. It is worth noting that, when all the training data are used in the model build-
ing, with the proportion of closed claims increased, the difference between the base model FS_AIl and
the FS_Closed is not statistically significant. The ordered Lorenz plots relating to the Gini indexes with
FS_ALL as a base premium are shown in Figure 7. The figure demonstrates that the area between the
Lorenz curve and the 45-degree line generally decreased when unusual claims were removed, visually
explaining the changes in the Gini index.

Table 9 further investigates the FS_AIll model loss cost projection using reserve predictions instead of
the incurred payment in the dataset. Here, the reserves for reported but not settled claims are estimated
using two individual-level reserving methods, the joint model and the Marked Poisson Process. The
former jointly model the longitudinal model for cumulative payments and the survival model for time-
to-settlement data, incorporating the payment-settlement association in the reserving process. The entire
claim process is modeled in the latter, including the claim occurrence reporting and development after
reporting. Both methods were applied in Okine et al. (2022) on the LGPIF dataset for reserving purposes.
FS_AIll_JM and FS_AIll_MPP are the names for the Frequency-Severity model that uses the joint model
and Marked Poisson Process models to obtain the ultimate amount of reported but not settled claims,
respectively. The models are based on data from effective years 2006-2009. Not surprisingly, the results
are similar to that reported in Table 8.

With the external agency premiums being the actual premiums policyholder paid, these premiums
provide an interesting state-of-the-art baseline for model comparison. Hence, we provide the Gini index
results with the external agency premiums as a base premium in Table 10 and the corresponding ordered
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Table 9. Gini indices of projected loss cost from different frequency-severity models based
on 2010 hold-out-sample.

Base premium FS_Closed (%) MPP (%) MPP_Int (%) EA_Premiums (%)
With outliers
FS_AIl_JM 38.69 48.72 58.61 43.82
Standard errors 25.82 20.52 14.84 9.52
FS_All_MPP 38.86 47.67 58.38 40.82
Standard errors 26.77 20.36 14.25 9.17
Without outliers
FS_All_JM 11.99 21.08 27.62 44.53
Standard errors 12.96 10.39 7.90 6.13
FS_AIl_MPP 10.04 20.92 27.68 44,12
Standard errors 12.78 9.34 7.31 6.28

Model = FS_Closed,

Gini index (With Outliers) = 38.90 Gini index (With Outliers) = 49.24

Model = MPP,

Model = MPP_Int,

Model = EA_Premiums,

Gini index (With Outliers) = 58.70  Gini index (With Outliers) = 43.70
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Figure 7. Ordered Lorenz curve of projected loss cost based on 2010 hold-out-sample with FS_All as

base premium.
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Model = FS_ALL,

Gini index (With Outliers) = 8.59

Model = MPP,

Model = MPP_Int,

Gini index (With Outliers) = 35.35 Gini index (With Outliers) = 38.84
o (=]

Losses
0.0 0.2 04 0.6 0.8 1.0

Losses
0.0 0.2 04 06 08 1

Losses
0.0 0.2 04 06 08 1

00 02 04 06 08
Premium

Model = FS_Closed,

Gini index (No Outliers) = -1.29

1.0

00 02 04 06 08

Premium

Model = FS_ALL,

1.0

Gini index (No Outliers) = 1.01

00 02 04 06 08
Premium

Model = MPP,

Gini index (No Outliers) = 0.75

1.0

00 02 04 06 08 1.0
Premium

Model = MPP_lInt,
Gini index (No Outliers) = 3.21

Losses
0.0 0.2 04 06 08 1.0

Losses
0.0 0.2 04 06 08 1.0

Losses
0.0 0.2 04 06 0.8 1.0

Losses
0.0 0.2 04 06 0.8 1.0

00 02 04 06 08
Premium

10

00 02 04 06 08

Premium

10

00 02 04 06 08
Premium

10

00 02 04 06 08 1.0
Premium

Figure 8. Ordered Lorenz curve of projected loss cost based on 2010 hold-out-sample with
EA_Premiums as base premium.
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Table 10. Gini indices of projected loss cost based on 2010 hold-out-sample with external agency
premium (EA_Premium) as base premium.

Base premium Effective year 2009 Effective years 2006-2009
FS_Closed FS_All MPP FS_Closed FS_All MPP MPP_Int
(%) (%) (%) (%) (%) (%) (%)
With outliers
EA_Premium  —16.34 —0.44 0.11 28.64 8.59 35.35 38.84
Standard errors 14.04 8.76 11.00 14.14 7.89 13.76 12.19
Without outliers
EA_Premium —5.72 —1.09 0.39 —1.29 1.01 0.75 3.21
Standard errors 8.77 7.32 6.98 10.25 6.16 9.16 8.70

Table 11. Gini indices of projected loss cost for robustness check based on 2011 hold-out-sample with
FS_All as base premium.

Base premium Effective year 2010 Effective years 2007-2010
FS_Closed MPP EA_Premiums FS_Closed MPP MPP_Int EA_Premiums
(%) (%) (%) (%) (%) (%) (%)
FS_All 1.69 16.26 7.73 0.97 2.85 0.5 23.35
Standard errors 9.22 10.98 6.82 10.89 11.06 10.99 7.87

Table 12. Gini indices of projected loss cost for robustness check based on 2011 hold-out-
sample with external agency premium (EA_Premium) as base premium.

Base premium Effective year 2009 Effective years 2006-2009
FS_Closed FS_All. MPP FS_Closed FS_All MPP MPP_Int
(%) (%) (%) (%) (%) (%) (%)
EA_Premium 22.25 19.75  23.01 16.07 24.06  16.61 14.69
Standard errors 5.97 6.06 7.27 6.80 6.34 6.68 6.41

Lorenz plots in Figure 8, and the results show that the MPP framework offers a promising alternative to
the existing rating methodology.

Tables 11 and 12 provide a robustness check for the results in Tables 8 and 10. Here, we use data
from the effective years 2007-2010 as the training dataset and observations from the effective year 2011
as the hold-out-sample. Again, the performance of the MPP models is higher than the base models,
which emphasizes that the MPP model promotes equity in rates and will lead to a more profitable
portfolio.

5.4. Limitations of current framework

Based on simulations and real-world data analysis via the Marked Poisson Process, this paper has shown
that extracting information from open claims leads to more accurate insurance pricing. However, the
proposed framework has some limitations which will be the focus of future research and discussed
below:

1. Independence assumption between claim occurrence and marks and between marks: In this
paper, for simplicity, it is assumed that the claim occurrence process and the marks, such as
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the reporting delay process and transaction payments, are independent. We also assume the
marks are independent of each other. But, we do not need to require independence. We could
allow dependence by incorporating unobservable policy-specific random effects or by using
copula modeling. For example, Shi et al. (2016, 2022) and Frees et al. (2021) accommodate
the dependence of the multilevel structure of claims using copula modeling, and Okine et al.
(2022) use random effects to capture the association between the size of claims and time to
settlement. However, we note that Frees et al. (2016) verify that dependence modeling has
little influence on the claim scores under the frequency-severity model approach. The analysis
of incorporating dependence modeling under the MPP framework is left to explore in the future.

2. Modeling claim and transaction frequencies with distributions other than Poisson: The Marked
Poisson Framework employed in this paper means that we focus on using the Poisson distribu-
tion to model the claim and transaction frequencies. The Poisson process possesses attractive
mathematical properties for insurance applications and thus is the most popular claim number
process. However, insurance claim counts often experience over-dispersion. For this reason,
other distributions, such as the negative binomial distribution or zero-inflated versions of dis-
tributions, are used to model the claim frequencies. One approach to modeling over-dispersion
is using random effects in the intensity function to capture process dependencies and unobserv-
able characteristics (Cook and Lawless 2007). Hence, future work will focus on incorporating
over-dispersions in the proposed framework.

6. Conclusion

Through the ratemaking process, insurance rates are set to cover the total future expected cost, which
includes liabilities from both RBNS and IBNR claims. Actuaries develop rates by employing multivari-
ate risk classification techniques based on information from the policy and the claim history to promote
better alignment of premiums with claims experience. But the observation from the literature is that the
data used in the multivariate analysis are usually based on closed claims, where the ultimate amount paid
for all claims is known, leaving out open claims. Ignoring the information from open claims could lead
to inaccurate rates because the ratemaking data lacks the current information that may capture shifts in
the insurer’s book risk profile. Practicing actuaries are well aware of these biases and have developed
cumbersome on-leveling methods to adjust the data to the current level and develop claims to ultimate
during the ratemaking exercise.

This paper employs the marked Poisson process (MPP) framework, which has primarily been used
for micro-level reserving, to provide formal procedures to make adjustments and improve on insurance
pricing. The MPP framework specified ensures that the multivariate risk analysis is done using the infor-
mation on claims that have been closed by the ratemaking date, payments on claims not yet closed, and
reporting times to adjust rates to account for IBNR claims. The MPP framework specified for ratemaking
purposes uses three hierarchical building blocks. The first building block drives the number of claims
per policy, the second building block models the conditional number of payment transactions for a claim,
and the third building block concerns the conditional payment sizes for each transaction. Each block is
modeled with the appropriate GLMs. The results using data from a property insurance provider show
that the proposed framework promotes equity in the ratemaking algorithm and leads to a more profitable
portfolio.

In these COVID-19 pandemic times and in addition to the insurance industry experiencing a rapid
pace of product innovation and intense competition, by using the information on all reported claims,
the proposed approach will provide actuaries and regulators a more disciplined method of ascertaining
promptly if rate increases are necessary.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2023.23.
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Appendix
Appendix A: Estimation results for the MPP model

Table A.2. presents the estimation results for the MPP model based on reported claims at the ratemaking
date and following the likelihood-based method described in Section 3.1 of the paper. The upper layer
of the table presents the estimation results for the claim frequency Poisson model. The baseline trend
parameters and the rating variables with parameter estimates that are not significant are not shown. When
using all the training data (without interaction), as expected, the coefficient for LnPolicyDed is negative,
meaning higher deductible is associated with lower claim frequency, but the coefficient switches to
positive and significant when using only observations from the effective year 2009. Also, the coefficients
for the LnPolicyCov are positive and significant in both results. Compared to the reference category
“Village,” all entity types experience lower claims frequency except “Town” in both results. In addition,
based on the Region rating factor, there are significant differences in claim frequency driven by the
geographical location. Further, when using all the training data, the difference in the baseline parameters
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Table A.2. Parameter estimates for Poisson reported claim frequency model, censored
Poisson transaction frequency model, and Log-normal transaction severity model.

Table A.1

Weibull model parameter

estimates for reporting delay (using all
observations in the training data).

Estimate Std. error
(Intercept) 3.461 0.075
TypeCity 0.581 0.086
TypeCounty 0.930 0.087
TypeSchool 0.292 0.085
TypeTown 0.302 0.188
TypeMisc 0.832 0.192
In(x) —0.283 0.014

ASTIN Bulletin

Effective year 2009 Effective years 2006-2009
Without interaction With interaction
Estimate  Std. error Estimate Std. error Estimate  Std. error
Poisson claim frequency model
(Intercept) —4.983 0.272 —2.600 0.133 —2.646 0.161
o7 - - 0.159 0.048 0.423 0.150
08 - - —0.136 0.051 0.148 0.160
02009 - - 0.114 0.055 —0.372 0.180
LnPolicyDed 0.214 0.035 —0.161 0.014 —0.164 0.014
LnPolicyCov 1.148 0.049 1.107 0.021 1.122 0.029
TypeCity —0.595 0.195 —0.522 0.077 —0.520 0.077
TypeCounty —0.729 0.206 —0.425 0.084 —.0422 0.085
TypeSchool —1.412 0.197 —1.005 0.076 —1.001 0.076
TypeTown 0.089 0.474 0.421 0.149 0.409 0.149
TypeMisc —2.209 0.364 —1.780 0.150 —1.758 0.150
RegionNorthern —0.280 0.180 0.153 0.084 0.152 0.084
RegionSoutheastern ~ —1.335 0.126 0.261 0.055 0.256 0.055
RegionSouthern 0.142 0.107 0.714 0.055 0.713 0.055
RegionWestern —0.386 0.142 0.232 0.065 0.233 0.065
AlarmCredit(0%) - - —0.110 0.063 —0.115 0.063
AlarmCredit(5%) - - —0.387 0.169 —0.374 0.169
AlarmCredit(10%) - - —0.324 0.132 —0.321 0.132
AlarmCredit(15%) - - —0.011 0.046 —0.001 0.047
o007 X LnPolicyCov - - - - —0.057 0.031
aop0s X LnPolicyCov - - - - —0.061 0.033
0009 X LnPolicyCov - - - - 0.097 0.035
—2LogL 2186 9959 9932

617

o, compared to oy captures the trend in reported claims across years. The last two columns in Table A.2
provide results using all the training data with LnPolicyCov and policy years as interaction variables.
The results suggest differences in the effect of the policy coverage values on claim frequency in different
years. The estimation results for the Log-normal severity model with dispersion parameter o> are given
in third layer of Table A.2. The dependent variable is the observed transaction payments P; ; and the
results show a significant difference in claim transaction payments based on geographical location. When
using all the training data, there are also differences in the transaction payments by entity types.
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Table A.2. continued
Effective year 2009 Effective years 2006-2009
Without interaction With interaction
Estimate  Std. error  Estimate  Std. error  Estimate  Std. error
Censored Poisson transaction frequency model
(Intercept) 0.097 0.042 0.307 0.052 0.261 0.087
baoo7 - - —0.012 0.043 0.034 0.112
Doog - - —0.029 0.046 0.042 0.126
baono - - —0.097 0.053 0.015 0.163
LnPolicyCov - - —0.022 0.009 —-0.012 0.017
boyo7 x LnPolicyCov - - - - —0.010 0.023
bogos X LnPolicyCov - - - - —0.016 0.026
bagoe X LnPolicyCov - - - - —0.023 0.032
—2LogL 1040 6968 6967
Log-normal transaction severity model

(Intercept) 10.921 0.417 9.125 0.159 9.125 0.159
LnPolicyDed —0.574 0.043 —0.076 0.022 —0.076 0.022
LnPolicyCov - - —0.349 0.0293 —0.349 0.0293
TypeCity - - 0.292 0.112 0.292 0.112
TypeCounty - - 0.959 0.130 0.959 0.130
TypeSchool - - 0.523 0.118 0.523 0.118
TypeTown - - —0.630 0.224 —0.630 0.224
TypeMisc - - 0.080 0.231 0.080 0.231
RegionNorthern 1.318 0.304 0.573 0.128 0.573 0.128
RegionSoutheastern 2.055 0.179 0.766 0.085 0.766 0.085
RegionSouthern 1.250 0.186 0.221 0.085 0.221 0.085
RegionWestern 1.315 0.240 0.340 0.098 0.340 0.098
Ino 0.445 0.030 0.484 0.012 0.484 0.012
—2LogL 9361 69,295 69,295
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