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The dynamics of an evaporating droplet in an unsteady flow is of practical interest in many
industrial applications and natural processes. To investigate the transport and evaporation
dynamics of such droplets, we present a numerical study of an isolated droplet in an
oscillating gas-phase flow. The study uses a one-way coupled two-phase flow model to
assess the effect of the amplitude and the frequency of a sinusoidal external flow field
on the lifetime of a multicomponent droplet containing a non-volatile solute dissolved in
a volatile solvent. The results show that the evaporation process becomes faster with an
increase in the amplitude or the frequency of the gas-phase oscillation. The liquid-phase
transport inside the droplet also is influenced by the unsteadiness of the external gas-phase
flow. A scaling analysis based on the response of the droplet under the oscillating drag
force is subsequently carried out to unify the observed evaporation dynamics in the
simulations under various conditions. The analysis quantifies the enhancement in the
droplet velocity and Reynolds number as a function of the gas-phase oscillation parameters
and predicts the effects on the evaporation rate.
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1. Introduction

Heat and mass transfers in droplets moving in an unsteady flow are ubiquitous in
both engineering and geophysical systems. For example, fuel droplets are sprayed in an
unsteady turbulent flow in internal combustion engines, gas turbines and liquid-fuelled
rocket engines (Mellor 1980; Law 1982; Birouk & Gokalp 2006; Cantwell, Karabeyoglu
& Altman 2010; Perini & Reitz 2016). The unsteady dynamics of evaporation of the
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droplets and transport of the fuel vapour critically affect the subsequent combustion
processes and, thus, power or thrust generation and ensuing emissions. Interaction
between unsteady flow and evaporating droplets is also present in thermal sprays, where
the injected droplets carrying functional materials undergo evaporation, precipitation
and chemical transformation in either a turbulent plasma (solution precursor plasma
process) (Pawlowski 2009; Jordan, Jiang & Gell 2015) or a high-velocity oxy-fuel flame
environment (Basu & Cetegen 2008; Li & Christofides 2009). Irrespective of the method,
the quality of the coating generated with thermal sprays depends on the evaporation
dynamics and droplet lifetime (Basu, Jordan & Cetegen 2008; Saha et al. 2009a; Saha,
Kumar & Basu 2010).

Among geophysical systems, the unsteady flow in the upper atmosphere has a strong
influence on the formation of raindrops and clouds. Atmospheric turbulence, indeed, is
critical in accumulating or dispersing particles that serve as nucleation sites for water
vapour to condense and form clouds and raindrops (Shaw et al. 1998; Vaillancourt & Yau
2000; Shaw 2003; Ruehl, Chuang & Nenes 2008; Grabowski & Wang 2013).

Recently, droplet evaporation and transport in an unsteady flow have gained great
interest due to their direct relation to the transmission of COVID-19, a disease whose
virus primarily transmits through respiratory droplets. Studies have been performed to
account for the unsteady turbulent jet and puff emanating from oral and nasal cavities
along with the respiratory droplets (Balachandar et al. 2020; Chaudhuri et al. 2020a;
Jayaweera et al. 2020; Mittal, Ni & Seo 2020; World Health Organization 2020; Bourouiba
2021), to understand their effect on evaporation patterns (Basu et al. 2020; Bourouiba
2020; Chaudhuri et al. 2020a; Rosti et al. 2021; Saha et al. 2022) and build disease
transmission models (Chaudhuri, Basu & Saha 2020b). Simultaneously, several studies
have focused on the unsteady dynamics of ambient airflow and their influence on the
transport of respiratory droplets (Dbouk & Drikakis 2020; Chong et al. 2021; Ng et al.
2021; Sharma et al. 2022). For example, Chong et al. (2021) and Ng et al. (2021) have
shown that the unsteadiness in local flow patterns and humidity can lead to growth and
clustering among the dispersed respiratory droplets. Other studies (Bhagat et al. 2020;
Somsen et al. 2020) have investigated how spatial and temporal variation in indoor air can
influence the transport of these respiratory droplets and, hence, the transmission of the
disease.

The above review of the literature demonstrates that droplet evaporation in unsteady
conditions is, indeed, of interest to various engineering, atmospheric and health problems.
Naturally, the fundamental aspects of droplet evaporation have received attention in
the thermal fluids community. Droplet evaporation in a steady or weakly unsteady
environment has been extensively studied in a wide range of situations and configurations,
using both theory, experiment and simulation. These studies have paved the way to a
detailed understanding of the topic, which has been summarized periodically in review
articles (Law 1982; Sirignano 1983; Aggarwal & Peng 1995; Sazhin 2006, 2017; Saha,
Deepu & Basu 2018).

Droplet evaporation in an unsteady flow field has also received attention from the
research community. The interaction between a vortex and a droplet with comparable
length scales has been studied by Kim, Elghobashi & Sirignano (1995), where they
investigated the variations in the droplet drag coefficient due to the droplet–vortex
interplay. Masoudi & Sirignano (2000) investigated the influence of droplet–vortex
collision on the simultaneous heating, evaporation and mass transfer of the droplet.
The interaction of evaporating droplets with a Kármán vortex sheet was studied by
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Effects of oscillating gas flow on an evaporating droplet

Burger et al. (2006) to predict a complex vapour–air mixing process. Fundamental studies
with particle dispersion and phase interaction in large vortex structures have also been
addressed by researchers (Lazaro & Lasheras 1992; Tang et al. 1992; Aggarwal, Park
& Katta 1996; Marcu & Meiburg 1996; Harstad & Bellan 1997; Kim, Elghobashi &
Sirignano 1997). It was shown that the dynamics of vortex structures typically governs
the mass and momentum exchanges of the droplet dynamics (Clemens & Mungal 1995).
Moreover, the dispersion of spray droplets is highly dependent on the surrounding vortex
dynamics, and local shearing vortices tend to govern the response behaviour of the droplets
(Reveillon & Vervisch 2005).

While the above studies have illustrated droplet dynamics in a complex unsteady
non-uniform vortical flow field, they were mostly performed for droplets containing pure
liquid. However, in many applications, the droplet liquid contains non-volatile dissolved
components. In this work, we describe a framework to study the evaporation dynamics of
an isolated binary droplet (containing solvent and solute) in a simpler unsteady oscillating
flow field. The primary goal is to identify the response in droplet evaporation rate
and the underlying mechanistic description for such a response. Finally, we will show
similarity and dissimilarity among the responses under various unsteady conditions using
proper non-dimensional time scales. We will accomplish these goals by formulating
a two-dimensional numerical model for binary droplets, assuming one-way coupling
between the droplet and the periodic perturbation in gas-phase velocity. This model,
which was originally developed by Abramzon & Sirignano (1989), provides a complete
analysis with a detailed numerical simulation for the liquid phase coupled with the gas
phase governing the droplet dynamics moving in the air. We have imposed an unsteady
gas-phase flow condition to simulate the oscillating flow. The cornerstone of this article
is the development of a theoretical relation between gas-phase frequency and the droplet
velocity responsible for the modified evaporation of the oscillating droplet motion.

2. Mathematical modelling

The motion of any droplet moving in unsteady flow can be described by the drag force
experienced by the droplet due to its relative velocity with respect to the surrounding
gas phase. The transport of these droplets depends on the perturbation characteristics of
the unsteadiness that interacts periodically with the droplets. Moreover, the evaporation
of any binary fluid is an intricate process due to the complex heat and mass transfer in
the gas phase and liquid phase, where the latter is affected by the spatial distribution
of the non-volatile solute and solvent concentration. The two-dimensional model used in
this work uses a detailed description of liquid-phase transport, which on many occasions
is ignored due to computational complexities. The mathematical modelling framework
herein is adapted from Abramzon & Sirignano (1989) for the evaporation of a moving
droplet, extending the classical droplet evaporation model under the influence of Stefan
flow (blowing) on heat and mass transfer and the effect of internal circulation in the liquid
phase of the droplet. We will, next, describe the model and its governing equations.

First, we look into the global transport of the droplet by solving the drag equation. The
complete descriptions of the drag equations are given below:

dUp

dt
= 3CD

8rs

(
ρg

ρl

)
|Ug − Up|(Ug − Up), (2.1)
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dXp

dt
= Up, (2.2)

dVp

dt
= 3CD

8rs

(
ρg

ρl

)
|Vg − Vp|(Vg − Vp) + (ρl − ρg)

ρl
g, (2.3)

dYp

dt
= Vp. (2.4)

Here Xp (or Yp) and Up (or Vp) are the horizontal (or vertical) displacement and
instantaneous velocity of the droplet, respectively; t is time; Ug and Vg are the gas-phase
velocities in the horizontal and vertical directions, respectively; CD is the drag coefficient;
ρg and ρl are the densities of the gas phase and liquid phase, respectively; and rs is the
instantaneous radius of the droplet. The body force is accounted for generally using g,
the gravitational acceleration. The liquid-phase density is calculated based on the mass
fractions of the components. Since the overall solute concentration changes with time due
to evaporation, ρl is not constant with time.

Since we are interested in capturing the unsteady perturbation of one dimension of
the gas-phase flow, we have assumed vertical gas-phase flow is weak (Vg = 0) and have
neglected the body force term (so g = 0). The drag forces from the added-mass effects
and Basset history force (Odar & Hamilton 1964; Berlemont, Desjonqueres & Gouesbet
1990) for our simulation conditions are relatively weak, and hence we have neglected
their contributions. See the supplementary material available at https://doi.org/10.1017/
jfm.2023.30 for the details. The simplified drag equation above can then be linearized for
Stokes flow conditions by setting the drag coefficient, CD = 24/Rep, where the gas-phase
Reynolds number is defined as

Rep = 2ρg|Ug − Up|rs/μg, (2.5)

where μg is the gas-phase dynamic viscosity.
Under these conditions, the droplet motion is described by

dUp

dt
= 9

2τ
(Ug − Up), τ = ρlr2

s

μg
, (2.6)

where τ is the droplet response time. Now, to assess the response of the isolated droplet
exposed to an oscillating gas flow field, the gas velocity Ug in (2.6) is assumed to have a
sinusoidal perturbation,

Ug = Ug,0 + a sin(ωt), (2.7)

where Ug,0 is the mean gas-phase velocity, a is the amplitude and ω (= 2πf ) is the angular
frequency, with f being the frequency of oscillation in the gas-phase velocity.

Next, we describe the mass and heat transfer parts of the model. The change in droplet
radius due to evaporation is defined as

drs

dt
= − ṁ

4πρlr2
s
, (2.8)

where ṁ is the rate of change of the droplet’s liquid mass due to evaporation. In the vapour
phase during droplet evaporation, the average temperature is defined to be Tmean = (2Ts +
T∞)/3 as suggested by Hubbard, Denny & Mills (1975), where Ts and T∞ are, respectively,
the droplet surface temperature and temperature of the gas phase. By assuming the vapour
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phase surrounding the liquid droplet as a quasi-steady-state condition, the expressions for
evaporation mass flux (mass and heat transfer limits) are given as

ṁ = 2πρvDvrsSh∗ log(1 + BM) (2.9)

and
ṁ = 2πρvαgrsNu∗ log(1 + BT), (2.10)

where ṁ is as given above, ρv is the density of water vapour, Dv is the binary diffusivity
of liquid vapour in the gas phase, αg is the thermal diffusivity of the surrounding gas
phase, and the modified Sherwood and Nusselt numbers are defined below. In the above,
BM = (Yw,s − Yw,∞)/(1 − Yw,s) and BT = Cp,l(T∞ − Ts)/(hfg − Q̇l/ṁ) are the Spalding
mass and heat transfer numbers. Here, Yw,s and Yw,∞ are the liquid vapour fractions at the
droplet surface and far field, respectively; Cp,l and hf ,g are the specific heat of the droplet
and latent heat for evaporation of the solvent in the droplet; and Q̇l is the amount of heat
transferred to or from the droplet. Further details can be found in (Abramzon & Sirignano
1989) and Majee et al. (2021).

In (2.9) and (2.10), Nu∗ and Sh∗ are the modified Nusselt and Sherwood numbers. Using
the quasi-steady assumption, the Nusselt and Sherwood numbers for a non-evaporating
sphere can be defined as (Clift, Grace & Weber 2005)

Nu0 = 1 + (1 + RepPr)1/3f (Re) (2.11)

and

Sh0 = 1 + (1 + RepSc)1/3f (Re), (2.12)

where Pr (= μg/(αgρg)) and Sc (= μg/(Dvρg)) are Prandlt and Schmidt numbers,
respectively; and f (Re) is the correction factor for the Reynolds number effect, the
correction being

f (Rep) = 1, Rep ≤ 1, (2.13)

f (Rep) = Re0.077
p , 1 < Rep ≤ 400. (2.14)

Two physical effects distinguish the heat and mass transfer in evaporating droplets from
those of steady-state non-evaporating spheres. First, the surface-blowing effect due to
evaporation changes the boundary layer. Furthermore, there exists an asymmetry in the
boundary layer along the droplet interface at various angular locations that causes an
asymmetry in local heat and mass transfer. Abramzon & Sirignano (1989) accounted for
these effects by correcting the Nusselt and Sherwood numbers and, thereby, the global
heat and mass transfer rates. The corrected Nusselt and Sherwood numbers, Nu∗ and Sh∗,
can be expressed as

Nu∗ = 2 + Nu0 − 2
F(BT)

(2.15)

and

Sh∗ = 2 + Sh0 − 2
F(BM)

, (2.16)

where F(B) = (1 + B)0.7(ln(1 + B))/B. Further details are provided in Abramzon &
Sirignano (1989) and Sirignano (2010).
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In a binary droplet, the non-volatile component suppresses the vapour pressure of the
volatile component at the droplet surface. This phenomenon is taken into account by
considering an ideal solution that obeys Raoult’s law (Van Wylen & Sonntag 1978),
Pvap(Ts, χw,s) = χw,sPsat(Ts), where χw,s is the mole fraction of volatile solvent at the
droplet surface in the liquid phase. We note that, for non-ideal solutions, the vapour
pressure of the evaporating species at the droplet surface can be evaluated by considering
the activity coefficients of each species in the mixture, as discussed in several studies
(Senda et al. 2000; Bader, Keller & Hasse 2013; Chen et al. 2016; Borodulin, Nizovtsev &
Sterlyagov 2019; Fang et al. 2019).

After having considered the mass evaporation rate of the droplet, we will now look
into the liquid phase to understand the spatio-temporal temperature and concentration
distributions of the evaporating droplet. In this work, any possible deformation in droplet
shape due to aerodynamic forces has been neglected. This can be justified by assessing the
gas-phase Weber number, We = 2ρg(|Up − Ug|)2rs/σ , which is significantly less than 1
for the conditions of this study. The liquid phase of a spherical droplet translating in the
gas phase experiences convective vortical motion due to relative velocity and, thus, shear
stress at the liquid–gas interface. Abramzon & Sirignano (1989) showed, for such droplets,
that the internal flow structure can be modelled as the well-known two-dimensional Hill’s
spherical vortex (Lamb 1993). The explicit solution for a Hill’s spherical vortex renders
expressions for the radial and angular velocities in the spherical coordinate system (r, θ)

in the liquid phase as follows:

Vr = −Us

(
1 − r2

r2
s

)
cos θ, (2.17)

and

Vθ = Us

(
1 − 2

r2

r2
s

)
sin θ. (2.18)

Here Us = (1/32)(Ug − Up)(μg/μl)RepCF is the liquid velocity at the vapour–liquid
interface and is calculated by the continuity of the shear stress across the interface; μl is the
liquid-phase dynamic viscosity; and CF is the skin friction coefficient for an evaporating
sphere calculated using the correlation given by Renksizbulut & Yuen (1983) as

CF = 12.69Re−2/3
p

1 + BM
. (2.19)

It is to be noted that thermal and concentration gradients across the droplet interface
can induce Marangoni stress, which can be important for modelling the evaporation of
multicomponent droplets (Niazmand et al. 1994; Dwyer et al. 1996; Dwyer, Shaw &
Niazmand 1998). However, for the present study, the gradients are small, and, as such,
the Marangoni flow velocity is expected to be smaller than the shear-driven flow (Us) at
the droplet surface. A detailed comparison is shown in the supplementary material.

The non-dimensional conservation equations of energy and mass fraction in the liquid
phase are given by (Ozturk & Cetegen 2004)

r2
s
∂T̄
∂ t̄

+ (0.5PelVrrs − βη)
∂T̄
∂η

+ 0.5Pel
Vθ rs

η

∂T̄
∂θ

= 1
η2

∂

∂η

(
η2 ∂T̄

∂η

)
+ 1

η2 sin θ

∂

∂θ

(
sin θ

∂T̄
∂θ

)
(2.20)
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and

Lelr2
s
∂YN

∂ t̄
+ (0.5PelLelVrrs − Lelβη)

∂YN

∂η
+ 0.5PelLel

Vθ rs

η

∂YN

∂θ

= 1
η2

∂

∂η

(
η2 ∂YN

∂η

)
+ 1

η2 sin θ

∂

∂θ

(
sin θ

∂YN

∂θ

)
, (2.21)

respectively. Equations (2.20) and (2.21) are solved using the initial and boundary
conditions,

t̄ = 0 → T̄ = 0,

η = 1,

⎧⎪⎪⎨
⎪⎪⎩

∂T̄
∂θ

= 0,∫ π

0

∂T̄
∂η

sin θ dθ = Q̇l

2πrsklT0
,

θ = 0, π → ∂T̄
∂θ

= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.22)

and
t̄ = 0 → YN = 0,

η = 1,

⎧⎪⎪⎨
⎪⎪⎩

∂YN

∂θ
= 0,∫ π

0

∂YN

∂η
sin θ dθ = ṁ

2πρlrsDv,zaYN,0,
,

θ = 0, π → ∂YN

∂θ
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.23)

respectively. Here, rs = rs/r0 is the non-dimensional droplet radius; η = r/rs
is the non-dimensional radial coordinate; Vr = Vr/Us and Vθ = Vθ /Us are the
non-dimensional velocities (radial and angular, respectively); T̄ = (T − T0)/T0 is the
non-dimensional temperature; t̄ = αlt/r2

0 is the non-dimensional time; β = 0.5∂rs/∂ t̄ is
the non-dimensional parameter proportional to the droplet’s surface regression rate as it
vaporizes; αl is the thermal diffusivity of the liquid phase; Q̇l is the heat transferred into
the liquid; YN = (YN − YN,0)/YN,0 is the normalized mass fraction of the solute; kl is the
thermal conductivity of the liquid phase; Dv,za is the mass diffusivity of solute in solvent;
and Pel (= rs|Ug − Up|/αl) and Lel (= Dv,za/αl) are the Péclet number and Lewis number
of the liquid phase, respectively.

The above set of equations of the model show that the liquid-phase transport affects
the temperature and concentration at the droplet surface. This, in turn, affects the
evaporation rate and, thus, the droplet size. The droplet size, on the other hand,
determines the drag forces, which control the velocity and acceleration of the droplet.
The instantaneous droplet velocity affects the heat and mass transfer in the gas phase
and, hence, the evaporation rate. Both gas-phase and liquid-phase properties play critical
roles in determining the relative effects of these complex coupled processes. In summary,
the evaporation of an isolated droplet moving in the gas phase, indeed, involves complex
coupled processes.

All the above equations (2.1)–(2.23) are solved numerically, for both external
vapour and internal liquid regions. However, in order to solve the liquid phase, the
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boundary conditions presented in (2.22) and (2.23) need values from the vapour-phase
solution. Therefore, a numerical integration method using a forward marching scheme
is implemented to solve (2.1). Moreover, the instantaneous droplet radius (2.8) is also
computed by a forward marching scheme using the mass flux ṁ generated from (2.9).
Furthermore, Q̇l is solved using Spalding heat transfer number BT , and both Q̇l and ṁ are
employed in the boundary conditions (2.22) and (2.23).

After deriving the boundary conditions from the vapour-phase solution, the energy
(2.20) and species (2.22) conservation equations of the droplet’s liquid phase along with
the boundary conditions (2.22) and (2.23) are numerically computed by a fully implicit
iterative finite difference scheme called standard second-order Peaceman–Rachford
alternating direction implicit method (Peaceman & Rachford 1955). The details of
the numerical algorithm used in this work can be found in Majee et al. (2021). The
consideration of an implicit scheme guarantees an unconditionally stable method. It is to
be noted that the liquid phase inside the droplet was solved using a polar (r–θ ) coordinate
system, where both dimensions were discretized using an equal number (20 for this study)
of grid points, leading to �η = 0.05 and �θ = 0.157 being taken for the entire simulation
process. We have performed a grid convergence study using various grid sizes (see the
supplementary material for details). We used a time step of �t = 0.0001, which is short
enough to capture the transport processes. The property values used for this study can be
found in the supplementary material.

3. Results and discussion

As mentioned before, the primary goal of this work is to assess the response in droplet
evaporation rate under various degrees of oscillations in gas-phase velocity, given by
(2.7). This will be attained by modulating the frequency (f ) and amplitude (a) of the
oscillation. As for the binary droplet, we assumed that it contains 1 % (w/w) of NaCl
(solute) dissolved in water (solvent). Here, we note that a wide range of solute–solvent
combinations can be selected for such a study. However, we chose the NaCl solution
because (1) it is easily available for experimental validation and (2) it closely resembles
surrogate respiratory fluids (Vejerano & Marr 2018; Basu et al. 2020). Similarly, a wide
range of ambient (temperature and humidity) conditions could be selected for this study.
However, we used conditions that closely resemble that of our ambient air (Tamb = 301 K
and RHamb = 48 %).

3.1. Model validation
To validate the model, we first compare the numerical result with a simple experimental
set-up. The experiments were conducted by measuring the evaporation rate of an isolated
acoustically levitated droplet with 1 % (w/w) NaCl aqueous solution in 301 ± 0.2 K
ambient temperature and 48 % ± 1 % relative humidity. For these experiments, the
droplets were at the same temperature as the surrounding air (301 K). Air vortex rings
were generated with amplitude a = 1.9 m s−1 and frequency f = 5 Hz and are made to
interact with the levitated droplet of initial diameter D0 = 1.8 mm. The mean flow in the
experimental set-up is 0.3 m s−1. The details of these experiments are provided in Sharma,
Singh & Basu (2021) and Sharma et al. (2022). Experimentally, we can only measure
the droplet diameter as a function of time, which has been compared with the model
for two cases, i.e. with the vortex (unsteady case) and without the vortex (steady case).
Since the precipitation kinetics was not included in the current approach, the comparison
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Figure 1. Model validation: comparison of diameter regression, (D/D0)
2, between experimental (levitated

droplet) and model data. ‘Steady’ represents experiments with no vortical flow. ‘Vortex’ represents experiments
with vortical flow over a levitated droplet. In experiments, the initial droplet diameter is D0 = 1.8 mm.

was performed until the maximum local concentration of the solution (NaCl in this case)
reached the critical value YN,S (= 0.393 for NaCl). Nevertheless, figure 1, which shows
the (D/D0)

2 versus t comparisons between the experiments and the model, confirms that
they show reasonably good agreement. Similar agreements were also observed for other
amplitude and frequency cases. Thus, we are confident that the model can capture the
effects of unsteady gas flow on the evaporation dynamics of an isolated droplet.

3.2. Evaporation dynamics of the droplet
In the remainder of this article, we discuss the results from the model to illustrate the
effect of a broad range of periodic oscillations in the gas-phase velocity on the evaporation
dynamics of an isolated droplet. As mentioned before, we will keep the ambient conditions
fixed with RHamb = 48 % and Tamb = 301 K. The initial droplet temperature was taken as
303 K, which closely resembles the temperature of respiratory droplets ejected during
respiratory events (Carpagnano et al. 2017). To avoid a negative gas-phase velocity, the
mean velocity of the gas phase was kept equal to the amplitude of the gas-phase oscillation,
i.e. Ug,0 = a.

We now present the diameter regression rate for various degrees of flow oscillation
for two different droplet sizes. First, we compare the evaporation dynamics of a 100 μm
droplet under various frequencies of oscillation at amplitude (a) of 0.1 m s−1 (figure 2a)
and 1 m s−1 (figure 2b). We observed that, for a lower amplitude of perturbation
(a = 0.1 m s−1), the deviation in (D/D0)

2 with the steady (a = 0) case is minimal
compared with the high-amplitude (a = 1 m s−1) case. Although, with an increase in
frequency, the evaporation time becomes shorter for the low-amplitude oscillations, the
difference between various frequencies is minimal (figure 2a). For larger amplitude,
however, we see almost 30 % decrease in time for (D/D0)

2 to reach 0.1 (approximately
when precipitation is triggered) for f = 30 Hz compared with f = 1 Hz, as shown in
figure 2(b).

Next, we compare the same amplitude and frequency of oscillations for a larger droplet
(D0 = 594 μm) in figure 2(c,d). We observe similar behaviour, in that an increase in
amplitude and frequency increases the evaporation rate. However, for both amplitudes,
we do not observe significant changes in evaporation rate across various frequencies from
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Figure 2. Normalized droplet diameter as a function of time for various combinations of initial droplet
diameters (D0), amplitude (a) and frequency (f ) of gas-phase oscillation: (a) D0 = 100 μm and a = 0.1 m s−1;
(b) D0 = 100 μm and a = 1 m s−1; (c) D0 = 594 μm and a = 0.1 m s−1; and (d) D0 = 594 μm and
a = 1 m s−1. Legends: ‘steady’, no gas-phaseoscillation; D0, initial droplet diameter in μm; f , frequency in
Hz; and a, amplitude in m s−1.

1–30 Hz. Nevertheless, the evaporation is much faster with oscillations (non-zero a) than
the steady (a = 0) case (14 % for a = 0.1 m s−1 and 40 % for a = 1 m s−1). The cause
of such varying influence of oscillation on the evaporation rate for different droplet sizes
and oscillation parameters will be discussed later in the context of the modified Reynolds
number.

3.3. Velocity of gas phase and droplet motion
The comparisons in the previous subsection show that the effect of oscillation in gas-phase
velocity on the evaporation rate is nonlinear. We note that the evaporation rate of the
droplet strongly depends on the Nusselt and Sherwood numbers ((2.9) and (2.10)), which
depend on the droplet Reynolds numbers ((2.11)–(2.16)), and hence on the relative velocity
between the droplet and the surrounding gas phase (2.5). Thus, we investigate the effects
of oscillation in gas-phase velocity on the bulk velocity of the droplet. In figures 3
and 4, we compare the instantaneous gas-phase velocity (Ug) and droplet velocity (Up)
during the evaporation process for two different droplet diameters and frequencies of
oscillation. In both cases, the mean velocity (Ug,0) and amplitude (a) of the gas-phase
flow were maintained to be 1 m s−1.

For smaller droplets (D0 = 100 μm) and lower-frequency oscillation (f = 5 Hz), we
observe the droplet velocity (Up) to exhibit a periodic behaviour as well (figure 3).
Figure 3(b), which shows an expanded view of the initial 1 s of the droplet lifetime,
confirms that, initially, the amplitude of the induced oscillation in the Up has an amplitude
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Figure 3. The instantaneous velocities of the gas phase (Ug) and the droplet (Up) as functions of time for
initial droplet size D0 = 100 μm. The gas-phase oscillation has amplitude a = 1 m s−1 and frequency of
f = 5 Hz.
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initial droplet size D0 = 594 μm. The gas-phase oscillation has amplitude a = 1 m s−1 and frequency of
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slightly smaller than that of the gas phase, and that there exists a phase lag. However, at
a later stage (figure 3c), the difference between the two velocities, gas phase (Ug) and
droplet (Up), becomes negligible, and their oscillations become almost identical in both
phase and amplitude.

On the other hand, for a larger droplet (D0 = 594 μm) and higher frequency
(f = 30 Hz) of oscillation, we observe different dynamics (figure 4). In particular, the
oscillation in droplet velocity takes longer to attain that of the gas phase. Furthermore,
we observe much slower growth in the amplitude of oscillation in Up, which never grows
beyond 10 % before precipitation is triggered (∼265 s). We also observe a consistent phase
lag between the oscillation in Ug and Up.

3.4. Theoretical scaling analysis
In this section, we present a time-scale analysis to understand the observed dynamics
of induced oscillation in the droplet velocity (Up). For gas-phase oscillation of
Ug = Ug,0 + a sin(2πft), we can evaluate the induced oscillation in droplet velocity by
integrating the equation for drag (2.6) with the initial condition of Up = 0 at t = 0 (initial
droplet velocity is zero). We recall the definitions of the drag coefficient (CD = 24/Rep)
and Reynolds number (Rep = 2ρg|Ug − Up|rs/μg). We can also define τ = (ρlr2

s )/μg
as the response time for a spherical droplet in a viscous flow, and tg = 1/f as the
characteristic time scale for gas-phase oscillation. The droplet response in an unsteady
flow is characterized by Stokes number St = τ/tg (Crowe, Sommerfeld & Tsuji 1998),
which represents the ratio of the characteristic time scale for droplet response (τ ) to that
of the external flow (tg). In the context of our study with oscillatory gas-phase velocity,
the Stokes number can be written as St = τ f .

Now substituting these definitions in (2.6), we get a non-dimensional drag equation:

d((Up − Ug,0)/a)

d(t/tg)
= − 9

2St

(
Up − Ug,0

a

)
+ 9

2St
sin
(

2π
t
tg

)
. (3.1)

In the equation above, we notice that the non-dimensional droplet velocity, (Up − Ug,0)/a,
depends on St, which includes the effect of instantaneous droplet radius and t/tg, a
non-dimensional time.

For simplicity, we restrict the analysis to a non-evaporating spherical droplet, and, hence,
the droplet radius (rs) and the Stokes number (St) are assumed to be constant. Later, we
will discuss the effect of this assumption on the obtained results. With this assumption, we
can integrate (3.1) to find an explicit form of the non-dimensional droplet velocity:

Up − Ug,0

a
= sin(2π(t/tg) − φ)√

1 + (16π2St2/81)
+
(

−Ug,0

a
+ 4πSt/9

(1 + (16π2St2/81))

)
e−9t/(2tgSt),

(3.2)
where φ = tan−1(4πSt/9).

Equation (3.2) depicts the response in velocity of a non-evaporating spherical droplet
when the surrounding gas phase has an oscillatory perturbation. The first term on
the right-hand side represents the induced oscillation in droplet velocity. We notice
that the frequency of the induced oscillation in droplet velocity is the same as the
gas-phase perturbation ( f or 1/tg), while the non-dimensionalized amplitude of the
induced oscillation is Aosc = 1/

√
1 + (16π2St2/81). The induced oscillation in the droplet

velocity lags the oscillation in gas-phase velocity by a phase angle, φ. The second term
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Figure 5. (a) Contour plot of non-dimensional change in droplet velocity, (Up − Up,0)/a, with Stokes number
(St) and non-dimensional time (t/tg), where tg is the gas-phase perturbation time. History of Stokes number (St)
for different initial diameters and frequencies is plotted on the contour map. Legend: D0, initial diameter in μm;
and f , frequency of gas-phase oscillation in Hz. For all five cases, the amplitude of the gas-phase oscillation
is a = 1 m s−1. (b) Variation in amplitude (Aosc = 1/

√
1 + (16π2St2/81)) and phase lag (φ = tan−1(4πSt/9))

of the induced oscillation in non-dimensional droplet velocity, (Up − Ug,0)/a, as a function of Stokes number
(St).

on right-hand side shows the effect of viscous drag, which exponentially reduces the
difference between the mean velocities of the droplet and the gas phase. It is worth noting
that, for a steady gas-phase flow (i.e. a = 0), the oscillatory term vanishes, and (3.2)
reduces to the classical exponential relation for a non-evaporating droplet (or spherical
object) in a gaseous flow field, Up,0 = Ug,0(1 − e−9t/(2tgSt)).

To graphically illustrate the droplet response expressed in (3.2), we present the contour
plot of the normalized droplet velocity, (Up − Up,0)/a, for a large range of St (Y-axis) and
non-dimensional time t/tg (X-axis) in figure 5(a). Since Up,0 is the droplet velocity in a
steady gas-phase flow, (Up − Up,0)/a measures the modification in droplet velocity due
to the unsteady oscillations in the gas phase. Furthermore, we also plotted the amplitude
(Aosc) and phase (φ) of the induced oscillation in droplet velocity as a function of St in
figure 5(b).

From the contour plot (figure 5a), we can see that, for a small St (�1), the droplet
velocity, (Up − Up,0)/a, exhibits a periodic behaviour with time, expressed by the colour
bands in the horizontal direction. The periodicity in the colour band appears to be
non-uniform due to the log scale used on the X-axis. A dominant periodic behaviour at
small St is expected, as the second term on the right-hand side of (3.2) is small. The
amplitude of the induced oscillation for this case (St � 1) is also high and close to
that of the gas-phase perturbation (Aosc ≈ 1), as seen in figure 5(b). As St increases and
approaches 1, the periodic pattern still exists, but the difference between the maximum and
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minimum instantaneous velocity (colour variation in figure 5a) becomes weaker due to the
reduced amplitude of the induced oscillation (Aosc in figure 5b). We also notice that the
maximum velocity zones (bright yellow zones) in the contour plot shift towards the right.
This is the outcome of increased phase lag φ between droplet and gas-phase velocities with
increasing St (figure 5b). For very large St (	1), the denominator of the first term on the
right-hand side of (3.2) becomes significantly greater than unity. As such, the amplitude
of the oscillation becomes minimal (Aosc in figure 5b). This is why the colour variation in
the horizontal direction (as a function of time) diminishes in the top half of the contour
plot (St 	 1 in figure 5a).

The above analyses can also be performed by considering the variation in droplet radius
due to evaporation. However, such an approach, shown in Appendix A, does not lead
to a closed-form expression for the droplet velocity. Furthermore, it can be shown (see
Appendix A) that the difference in the change in droplet velocity due to oscillation, (Up −
Up,0)/a, evaluated using the two approaches (with and without the assumption of constant
droplet radius) is relatively insignificant. Hence, we used the constant droplet assumption
for the rest of the study.

Now, to illustrate the range of St experienced by the evaporating droplets, we plotted the
instantaneous St obtained from the simulation of various cases on the theoretical contour
plot in figure 5(a). Since the droplet diameter and, hence, τ decrease due to evaporation,
the St value shows a downward decreasing trend with non-dimensional time (t/tg). We
observe that the cases with a small initial diameter (D0 = 100 μm) and lower-frequency
oscillations ( f = 1 and 5 Hz) experience low St and, hence, large-amplitude oscillations
in velocity (figure 5a). This effect is also observed in figure 3, where we showed that,
for D0 = 100 μm and f = 5 Hz, the amplitude of oscillation in droplet velocity quickly
attains that of the gas-phase velocity. As the frequency of oscillation in gas-phase velocity
(f ) increases, St increases, reducing the amplitude of induced oscillation in droplet velocity
(f = 1, 5 and 30 Hz in figure 5a). For larger droplets (D0 = 594 μm), the St value
becomes significantly greater than unity, and hence they do not exhibit significant induced
oscillations in velocity. For D0 = 594 μm and f = 30 Hz, we observe a weak response,
and hence the amplitude becomes inconsequential to the frequency change (figure 4).

Next, we will assess the effect of oscillation in gas-phase flow on Rep, which, in
turn, affects the evaporation rate. Since the external conditions are kept constant in our
simulations, the changes in diameter reduction rate observed in figure 2(a–d) are through
the Sherwood (Sh∗) and Nusselt (Nu∗) numbers in (2.9) and (2.10), respectively. Equations
(2.11)–(2.16) subsequently show that an increase in Rep increases both Sh∗ and Nu∗, and
hence the evaporation rate. Since the Reynolds number (Rep) is defined based on the
relative velocity between the gas phase and the droplet, one can evaluate the induced
Rep due to gas-phase velocity oscillation by substituting Up (3.2) and Ug (2.7) into (2.5).
Similarly, it is also possible to evaluate the Reynolds number of the droplet without the
gas-phase oscillation (a = 0) as Rep,0 = 2ρg|Ug,0 − Up,0|rs/μg. Clearly, higher (or lower)
values of the ratio Rep/Rep,0 signify stronger (or weaker) effects of gas-phase oscillation
on the evaporation rate compared with the steady condition (a = 0).

Figure 6(a) shows the contours of this ratio (Rep/Rep,0) for a range of St and normalized
time, t/tg. Based on the colour, the map can be divided (almost diagonally) into two parts
separated by the dotted line, Stcrit. The top-left half, where the instantaneous values of
Rep/Rep,0 are close to unity (100 in the plot), represents a zone where the relative effects of
gas-phase oscillation on Re with respect to Rep,0 is small, and hence can be characterized
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Figure 6. (a) Contour plot for Rep/Rep,0 with Stokes number (St) and non-dimensional time (t/tg), where tg
is the gas-phase perturbation time. History of Stokes number (St) for different initial diameters and frequencies
is plotted on the contour map. Legend: D0, initial diameter in μm; and f , frequency of gas-phase oscillation in
Hz. For all five cases, the amplitude of the gas-phase oscillation is a = 1 m s−1. (b) Time history of changes
in droplet Reynolds number due to gas-phase oscillation (�Rep = Rep − Rep,0) for amplitude a = 1 m s−1,
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droplet Reynolds number due to gas-phase oscillation (�Rep, averaged �Rep) as a function of frequency f of
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as a ‘zone of silence’. The change in droplet velocity (Up − Up,0 ≈ 0) due to gas-phase
oscillation is, indeed, weak, as observed in figure 5(a). Furthermore, under steady flow
conditions, the relative velocity between the droplet and the gas phase (hence, Rep,0)
is high.

On the other hand, the bottom-right half of figure 6(a) represents a zone where
Rep/Rep,0 has a very high value, and hence can be characterized as a ‘zone of influence’.
In this regime, droplet velocity (Up) displays strong oscillatory behaviour, as shown in
figure 5(a). Furthermore, under steady gas-phase flow (a = 0), the differences between
the droplet velocity become small (and hence Rep,0 → 0). Consequently, for a given t/tg,
the transition between the ‘zone of silence’ and the ‘zone of influence’ can be marked by
a critical Stokes number (Stcrit) for which Up,0 → Ug,0. In figure 6(a), a representative
transitional boundary is drawn by setting (Up,0 − Ug,0)/Ug,0 = 10−5. The St history from
a few simulated conditions are superimposed on the contour plot. We observe that, initially,
the droplet starts from the ‘zone of silence’, but transitions into the ‘zone of influence’
(figure 6) as time progresses and the droplet becomes smaller due to evaporation.

While Rep/Rep,0 depicts the relative change in Rep due to oscillation in the gas phase,
it is to be recognized that Rep,0 ≈ 0 in the ‘zone of influence’, and, as such, the ratio
becomes large, even for a small Rep. To circumvent this bias and to assess the true effect
on the evaporation rate, one should evaluate their differences, i.e. �Rep = Rep − Rep,0.
In figure 6(b), we plotted �Rep as a function of time for a given initial droplet size
(D0 = 594 μm) and amplitude (a = 1 m s−1), but for three different frequencies (f = 1,
10 and 30 Hz) of gas-phase oscillation. The plot displays large-amplitude oscillations
in �Rep at the initial stage. However, the amplitude decays with time and becomes
almost constant in the later stage of the droplet lifetime (see inset of figure 6b).
This behaviour, indeed, corroborates the dynamics of droplet velocity, Up, described
before.

To estimate an overall change in Rep due to oscillation in gas-phase flow, we
evaluated the mean of �Rep (denoted by �Rep) for four combinations of amplitude
(a) and initial droplet diameter (D0) and plotted them as a function of frequency
(f ) of gas-phase oscillation in figure 6(c). For smaller droplets (D0 = 100 μm) and
lower amplitude (a = 0.1 m s−1) of oscillation, the �Rep value is small (∼ 10−1),
which explains why we did not observe significant changes in evaporation rate among
various frequencies as shown in figure 2(a). On the other hand, for larger amplitude
(a = 1 m s−1), �Rep is relatively higher (∼ 1), and increases with f . Thus, we observed
a faster evaporation rate with oscillations, which increases with frequency (figure 2b).
Figure 6(c) also confirms that �Rep for larger droplets (D0 = 594 μm) is higher
and remains almost constant for all f , irrespective of the amplitude (a = 0.1 and
1 m s−1). This explains the observed faster evaporation under unsteady gas-phase flow
but the insignificant difference between various frequencies (figure 2c,d) for the larger
droplets.

3.5. Temperature and concentration distributions in the liquid phase
Since our model includes transport equations for the liquid phase, we can compare the
temperature and concentration distributions inside the droplet to illustrate the effect of
unsteadiness in gas-phase velocities on the liquid-phase transport. Figures 7 (temperature)
and 8 (mass fraction of solute) display the evolutions of the internal dynamics for three
instances on the lifetime of a D0 = 100 μm droplet and compare them for three different
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Figure 7. Temperature distribution in the liquid phase at different time steps for D0 = 100 μm with initial
droplet temperature, T0 = 303 K. The ambient condition is Tamb = 301 K and RHamb = 48 %. The gas-phase
perturbation: (a) amplitude, a = 0.1 m s−1, and frequency, f = 5 Hz; (b) a = 1 m s−1 and f = 5 Hz; and
(c) a = 1 m s−1 and f = 30 Hz.

degrees of oscillations in the gas phase. Similar contour plots for D0 = 594 μm are
shown in figures 9 (temperature) and 10 (mass fraction of solute). Here, we recall that
the ambient condition for the simulation was Tamb = 301 K and RHamb = 48 %, while
the initial droplet temperature was set at 303 K and initial solute (NaCl) concentration
dissolved in water was YN,0 = 1 %.

Figures 7 and 9 depict that, in the early stage of evaporation, the temperature distribution
displays a symmetric concentric profile. This is the hallmark of stronger diffusional
transport than advective transport of thermal energy (Sirignano 1983; Abramzon &
Sirignano 1989; Saha et al. 2009b) caused by large thermal diffusivity in the liquid phase.
The enhanced thermal transport and smaller initial temperature difference between the
gas phase and liquid phase enable the droplet to reach the wet-bulb temperature and
attain homogeneity in a short duration, as seen in both figures 7 and 9. Owing to the
dominant diffusive transport in the liquid phase, the effects of amplitude and frequency of
the gas-phase oscillation on the temperature profiles are not significant.

Figures 8 and 10 show the concentration distribution of solute in the liquid phase for
two different droplet sizes. We notice that the lower amplitude of gas-phase oscillation
(a = 0.1 m s−1) leads to a diffusion-dominated concentric distribution even in the early
stage of droplet lifetime (figures 8a and 10a). On the other hand, for high-amplitude
oscillations (a = 1 m s−1), a recirculation pattern was formed inside the droplet, which
resembles the internal flow pattern (Hill’s spherical vortex) (figures 8b,c and 10b,c).
This indicates strong advective transport. The relative strength between advective and
diffusive mass transport can be expressed by the Péclet number, Pel = RelSc, where Sc
is the Schmidt number (roughly constant). The liquid-phase Reynolds number, Rel, is
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Figure 8. Solute concentration distribution in the liquid phase at different time steps for D0 = 100 μm with
initial droplet temperature, T0 = 303 K. The ambient condition is Tamb = 301 K and RHamb = 48 %. The
gas-phase perturbation: (a) amplitude, a = 0.1 m s−1, and frequency, f = 5 Hz: (b) a = 1 m s−1 and f = 5 Hz:
and (c) a = 1 m s−1 and f = 30 Hz.
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Figure 9. Temperature distribution in the liquid phase at different time steps for D0 = 594 μm with initial
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Figure 10. Solute concentration distribution in the liquid phase at different time steps for D0 = 594 μm with
initial droplet temperature, T0 = 303 K. The ambient condition is Tamb = 301 K and RHamb = 48 %. The
gas-phase perturbation: (a) amplitude, a = 0.1 m s−1, and frequency, f = 5 Hz; (b) a = 1 m s−1 and f = 5 Hz;
and (c) a = 1 m s−1 and f = 30 Hz.

defined based on the (liquid-phase) velocity at the vapour–liquid interface (Us) driven
by gas-phase flow or Rep ((2.17) and (2.18)). As shown in figure 5, an increase in the
amplitude of oscillation increases Rep, and hence Pel. This is why we observe stronger
advective transport for the higher amplitude of gas-phase oscillation (figures 8 and 10) in
the early stage of evaporation. As the droplet evaporates, Rep decreases. As such, both
Pel and the advective transport in the liquid phase become weaker, resulting in more
concentric iso-concentration lines for D0 = 100 μm droplets (figure 8b,c). However, for
D0 = 594 μm, Rel and Pel remain comparatively higher throughout the droplet lifetime
due to larger droplet diameters. Thus, convective transport remains strong, as reflected in
vortical isocontours in figure 10(b,c).

It is to be noted that, for the conditions used in this study, the droplet exhibits
almost uniform temperature and concentration distributions except for the initial period of
evaporation. One can also employ the rapid mixing model for the liquid phase (Law 1976),
which assumes an infinitely fast diffusion process that leads to homogeneous temperature
and concentration inside the droplet. Since our goal is to provide a framework that can be
used for a wide range of ambient conditions, we used the detailed liquid-phase transport
model proposed by Abramzon & Sirignano (1989).

4. Summary and outlook

In summary, we have presented a numerical investigation assessing the effect of oscillation
in gas-phase velocity on the evaporation rate of an isolated binary droplet. Using a
detailed one-way coupled two-phase model, we demonstrated that the evaporation rate
increases with the amplitude and frequency of gas-phase oscillations and that the influence
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of oscillation becomes stronger for larger droplets. Subsequently, a scaling analysis
illustrated that the oscillation in gas-phase velocity induces an oscillatory response in the
instantaneous droplet velocity, whose amplitude, frequency and phase lag depend on three
time scales, leading to two non-dimensional parameters, Stokes number (ratio of inertial
versus time period of oscillation) and normalized time (ratio of physical time and the time
period of oscillations).

Subsequently, a theoretical estimate of augmentation in the droplet Reynolds number
was performed based on the scaling of the induced droplet velocity. Furthermore, the
effects of the amplitude and the frequency of oscillation in gas-phase velocity on the
increase in effective Reynolds number were evaluated. An increase in Reynolds number
was shown to induce faster gas-phase transport at the droplet interface, which explains the
enhanced evaporation rate for higher amplitude and frequency of gas-phase oscillations.
Finally, we discussed transport processes inside the droplet to show that gas-phase
oscillation has a minimal effect on liquid-phase thermal transport due to high thermal
diffusivity and hence diffusive transport. The solute concentration, on the other hand,
shows stronger advective transport for a larger amplitude of oscillation, confirmed by
enhanced liquid-phase Péclet number.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.30.
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Appendix A. Effect of evaporation on the scaling analyses

In § 3.4, we used the approximation of constant droplet radius for the scaling analyses.
Now, we will perform the analyses without assuming a constant droplet radius. It is to be
recognized that a variation in droplet size essentially results in a variation in St with time
in (3.1). To find a theoretical expression for changes in droplet radius or Stokes number,
we can assume that the droplet quickly attains a steady state (constant temperature and
concentration). Thus, the d2 law (Law 1982), dr2

s (t)/dt = −Kv , can be applied to evaluate
instantaneous droplet radius. Here, the constant Kv can be expressed using BM , i.e. Kv =
2(ρg/ρl)αgln(1 + BM). It is to be noted that a similar expression for Kv can also be derived
using BT (Law 1982). The Spalding mass (or heat transfer) numbers BM (or BT ) can be
evaluated based on the final (steady-state) droplet temperature. Here, αg is the gas-phase
thermal diffusivity.
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the change in evaporating droplet radius.
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Figure 12. Contour plot of the error, defined as the absolute difference in (Up − Up,0)/a using the constant
diameter and variable diameter.

It can be seen that Kv dictates the droplet lifetime or evaporation rate. For the ambient
conditions used for this study, Kv has a value of approximately 2.2 × 10−10 m2 s−1.
However, for hot–dry and cold–humid ambient conditions, Kv is expected to be larger
and smaller, respectively. By substituting the Stokes number (St = τ/tg) in the d2 law, we
find a regression equation for the Stokes number:

dSt
d(t/tg)

= −Kv(ρl/μg). (A1)

To obtain a time history of droplet velocity, one has to solve the coupled ordinary
differential equations (ODEs) represented by (3.1) and (A1). Unfortunately, a compact
closed-form solution does not exist for this set of ODEs. However, we can solve these
equations numerically.

Based on the analysis with the evaporating droplet, we present the contour plot of
the normalized droplet velocity, (Up − Up,0)/a, for a large range of St (Y-axis) and
non-dimensional time, t/tg (X-axis) in figure 11.

Visual comparison of figures 5(a) and 11 suggests that the results are practically
identical, although the former used the constant radius approximation and the latter did
not. We also plot the error, defined as the absolute differences between the constant-radius
and variable-radius methods, in figure 12. The difference is less than 1 %, confirming that
the constant droplet size assumption is satisfactory.
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