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A COMPARISON OF EIGENVALUES
OF TWO STURM-LIOUVILLE PROBLEMS

BY

YISONG YANG

ABSTRACT. We compare, under some assumptions on mass den-
sity, the eigenvalues of the Sturm-Liouville problems satisfying homoge-
neous Dirichlet and Neumann boundary condition.

1. Introduction. We consider in this note the following two eigenvalue problems
satisfying the Dirichlet and the Neumann boundary condition respectively

(N ")+ ApX)P(x) =0in(—1,1), ¢(=1)=¢(1)=0
and
2 V() +ppY () =0in(—1,1), ¢'(—=)=v'(1)=0

where p(x) > 0 is continuous over [—1, 1]. We have two countable sets of eigenvalues
O< M << ---and0=py < pp < -+ with A\, pt,, — 00 as n — 0o and

3) fn < Ay m=1,2,--

The recent work of Bandle and Philippin [1] sharpens the inequality (3) which states
that for the mass density p(x) satisfying p(—x) = p(x) and p(x) increasing in (—1, 0), we
have

e < Ap—2X1, n=23,---.

The aim of the present note is to continue their work and study another aspect of the
problem: we establish the comparison inequality A, < pn — 2y, forn =1,2,---. It
is interesting to compare our condition on p(x) below with that in [1] stated above.

2. Main Result. In the following three preliminary lemmas we assume p(x) €
C'[-1,1].

LEMMA L. Letn 2> 2. If (., lin) is the n-th eigenpair of the problem (2), then (v,,—1, p,)
is the (n — 1)-st eigenpair of

@ (%)’+pv:0in(—l,l), v(—=1)=v(1) =0
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where

) vt = [ pOYn(s)ds.

PROOF. Substituting (v, 11,,) into (2) and integrating, we get

(6) Un'(X) + fin [ P$n(s) ds =0,

that is,
!

Vh—
(n7l‘)/+unvn—l = 0.

The boundary condition of v, follows obviously from Eq. (6).
It is an elementary fact that {v,} forms an orthogonal basis of L>(—1, 1).

LEMMA 2. Let (v, i12) and (vy, pin+1) be the first and the n-th eigenpairs of the problem
(4). Then wy, = v,/ vi, 0y = ppe1 — W2 is the n-th eigenpair of the singular boundary
value problem

viw
(7 (=Y +oviw=0in(—1,1), m w(x) = lirP w(x)=0.
P : x—1=

li
x——1

PROOF. It is easily checked that w, satisfies the equation in (7) over (—1, 1) with
o = 0,.
For x — 17, using L"Hopital’s rule, (4), and (5), we have
Vivy — vV}

1
lim w,(x) = lim -2 = lim (V,v; —vv')" = 0.
x—1- "( ) x—I1- V% 2\1/1(1)2 x~+l*( nl " l)

Similarly, w/,(x) — 0 for x — —1%.
Conversely, from the equality

/w]lfw,,vfdx:/_ll(fvl)v,,dx, fe((-1,)vidx), n=12,--,

we can verify that { w, } forms an orthogonal basis of Lz((— 1, 1,13 dx)
The observations given above lead us to the conclusion that { (w,, g,,)} is a complete
set of eigenpairs of the singular boundary value problem (7).

LEMMA 3. uy, = viwl,,/ D, Yn = pusa — 212 (n > 1) is a solution of the singular

eigenvalue problem

/ /.
@) =12 P s ypu=0in(=1,1), lim u(x) = lim u(x) = 0.
Vi Vi x——1* x—1-

The verification of this lemma is straightforward.
Now we can state our main result of this note:
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THEOREM 1. If p(x) satisfies (i) p(—x) = p(x) and (ii) p(x) is increasing in (0, 1), then
9 A S s —2p0, n=1,2,---.

PROOF. First we assume p(x) € C'[—1, 1]. Since v, satisfies the problem
!
(10) CY 4y =0in(=1,1), w(=1)=w1)=0
p

where p(—x) = p(x) and the solution space of (10) is one-dimensional, we can conclude
that vi(—x) = v;(x). In particular v’l (0) = 0. Consequently, from (10) follows:
Vi)

an 200 = —;Lz/o vi(s)ds.

As the first eigenfunction of the problem (4), v, is of constant sign in the interval (—1, 1);
so (11) gives us v}/ v; < 0 forx > 0. Under the hypothesis, that p(x) is increasing in
(0, 1), we have p'v| /v <0 for x > 0. By symmetry, we obtain p’v} /v; <0 forx < 0.
In particular,
vl plvl
(12) 212 — 2L >0in(—1,1).
Vi pvi
Because (8) is a singular boundary value problem, we cannot apply the classical mono-
tonicity theorem (cf., e.g., [2, p. 174]) directly to the problems (1) and (8) and using (12)
to conclude that

(13) 7n2>\n’ﬂ=1,2,"',

and hence (9). But, still, the inequality (13) can be established by imitating the argument
in the proof of the classical monotonicity theorem ([2, p. 174]).

In fact, it follows from the well-known oscillation theorem ([2, p. 174]) that, as the
n-th eigenfunction of (4), v, has exactly n — 1 zeros in (—1, 1). Hence so does w,. Con-
sequently, w/,(x) has at least max(n — 2,0) zeros in (—1, 1). This proves that u, has at
least n + 1 zeros on [—1, 1].

Suppose, otherwise, v, < A, forsomen > 1. Let ¢, be the n-th eigenfunction of
the problem (1) and @ < (B two consecutive zeros of u,. We claim that there ex-
ists at least one zero of ¢, in (a,3). Otherwise we can find two consecutive zeros
a; < 3 of ¢, such that (cx, 3) C (ay,f1). Since ¢, is the first eigenfunction of (1)
over (ay, 81), we have, by virtue of (8) and the standard minimax principle for regular
eigenvalue problems, the inequality

/6 ! /. ! ﬂ
[ (2 + 222 = i) ax / | pud ax
a Vi PVi a
. B Vi j% B
inf W+ [2(2)? — 22 dx/ uzdx}
MGW(.),Z(W{ [ (v = Eonlyas / [

B B
inf { ‘(u')2 dx// I pu? dx}
ueWy?(a By Ve i

= A\

Tn

Il

v

v
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This achieves a contradiction.

Now, since u, has at least n + 1 zeros on [—1, 1], ¢, has at least n zeros in (—1, 1).
This contradicts the assertion of the oscillation theorem ([2, p. 174]) that ¢, has exactly
n—1 zerosin (—1,1).

Therefore the inequality (13) is proved for p(x) € C'[—1, 1].

If p(x) € C°[—1, 1], we can approximate p in C°[—1, 1] by a suitable sequence of
functions { pj};il taken from C'[—1, 1]. The continuous dependence of ), and p, on
p again yields the inequality (13) (cf. [1]).

The proof of Theorem 1 is complete.

3. A More General Theorem. We can also apply Theorem 1 to some other prob-
lems.

First observe that the theorem holds on any interval [a, b] provided we assume that

p(x) is even about the point x = (a+b)/ 2 and increasing over the interval ((a+b) /2, b).
Consider the problems

(14) (P’ @) +Xg)dp () = 0in (~1,1), $(~1)=¢(1)=0
and
(15) (P’ @) +pg@w () = 0in (=1,1),  $'(=1) = p'(1) =0

THEOREM 2. If p(—x) = p(x), q(—x) = q(x) and p(x)q(x) is increasing in (0, 1), then
the inequality (9) still holds. Here we keep the assumption p,q > 0.

PROOF. Under the change of variables:

1 ds
/I p(s) - /;l p(—s)’

the problems (14) and (15) become

2
(16) d‘f +Ap(x(0)q(x(t))¢ =0in (0,L), ¢(0)=¢(L)=0
and

d’y /
a7 — +up(x®)q(x0)Y = 0in (0,L), '(0) = ¢'L) =

Now since p is even with respect to x = 0, so x = 0 corresponds to r = L/2.
Because (pgq) (x(t)) is even with respect to ¢ = L/ 2 and increasing in (L/ 2, L), applying
Theorem 1 to (16) and (17) we see immediately that \,, i, satisfy (9).
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COROLLARY 1. Under the assumption of Theorem 2, we have p3 > 24;.

COROLLARY 2. Under the assumption of Theorem 2, we have the following lower
bound estimate for the gap of the jirst two nonzero eigenvalues of the Neumann problem
(15):

B3 — P2 = A+ .
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