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A COMPARISON OF EIGENVALUES 
OF TWO STURM-LIOUVILLE PROBLEMS 

BY 

YISONG YANG 

ABSTRACT. We compare, under some assumptions on mass den­
sity, the eigenvalues of the Sturm-Liouville problems satisfying homoge­
neous Dirichlet and Neumann boundary condition. 

1. Introduction. We consider in this note the following two eigenvalue problems 
satisfying the Dirichlet and the Neumann boundary condition respectively 

(1) <j)"(x) + Xp(x)(t)(x) = 0 in (-1,1), (H- l ) = </>(l) = 0 

and 

(2) \l)"{x) + iip(x)i){x) = 0 in (-1,1), I A ' ( - I ) = ^ ' 0 ) = 0 

where p(x) > 0 is continuous over [—1,1]. We have two countable sets of eigenvalues 
0 < Ai < À2 < • • • and 0 = /zi < /i2 < • • • with Xn, \in —> oo as n —-> oo and 

(3) [in < \n, n = 1,2, •••. 

The recent work of Bandle and Philippin [1] sharpens the inequality (3) which states 
that for the mass density p(x) satisfying p(—x) = p(x) and/?(x) increasing in (— 1,0), we 
have 

M«<An —2Aj, n = 2,3, •••. 

The aim of the present note is to continue their work and study another aspect of the 
problem: we establish the comparison inequality \n < p,n+2 — 2/X2, for n = 1,2, • • •. It 
is interesting to compare our condition onp(x) below with that in [1] stated above. 

2. Main Result. In the following three preliminary lemmas we assume p(x) G 
C ' t - U ] . 

LEMMA 1. Let n>2. If(ipn, M«) ^ ^e n-th eigenpair of the problem (2), then (v„_i, /xn) 
is the (n — \)-st eigenpair of 

(4) ( - / + /xv = 0 in (-1,1), v( - l ) = v(l) = 0 
P 
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where 

(5) v„_i(*) = J p(s)\l)n(s)ds. 

PROOF. Substituting (t/;„, fin) into (2) and integrating, we get 

( 6 ) %/jn (x) + M* / _ P(s)^n(s) ds = 0 , 

that is, 

(l^ziy + ZX^-, = 0 . 
P 

The boundary condition of vn_i follows obviously from Eq. (6). 
It is an elementary fact that { vn} forms an orthogonal basis of L2(—1,1). 

LEMMA 2. Let (vi, /X2) and (vn, p,n+\ ) be the first and the n-th eigenpairs of the problem 
(4). Then wn = vnj v\, <J„ = /xw+i — /12 w f/ie n-f/i eigenpair of the singular boundary 
value problem 

2 / 

(7) ( — ) ' + ov\w = 0 in (-1,1), lim w'(x) = lim W'(JC) = 0. 11: 
p ' ^ x^-\+ ^ ' x-+\~ 

PROOF. It is easily checked that wn satisfies the equation in (7) over (—1,1) with 
a = an. 

For x —» 1~, using L'Hôpital's rule, (4), and (5), we have 

lim Wn(x) = lim ^ " ^ i = — ^ lim (v>! - vnv
,
1)

,/ = 0. 
J f — » 1 ~ J Ï — » 1 " V\ Z V j ( I ) z x-+\-

Similarly, w'n(x) —> 0 for x —• —1+ . 
Conversely, from the equality 

f_xfwnv\dx = f_<jvx)vndx, f e L 2 ( ( - l , 1), v]dx), n = 1,2, • • •, 

we can verify that { wn} forms an orthogonal basis of L2((—1,1), v\ dx}. 
The observations given above lead us to the conclusion that {(vvn, crn)} is a complete 

set of eigenpairs of the singular boundary value problem (7). 

LEMMA 3. un = v\\v'n+x/ p, ln = /in+2 — 1[ii (n > 1) is a solution of the singular 
eigenvalue problem 

v' D'V' 

(8) u - [2{—f - ^—j-]u + lpu = 0 in (-1,1), lim u(x) = lim u(x) = 0. 
Vl pV\ x-^-\+ x-*\-

The verification of this lemma is straightforward. 
Now we can state our main result of this note: 
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THEOREM 1. Ifp(x) satisfies (i) p(—x) — p(x) and (ii) p(x) is increasing in (0,1), then 

(9) Xn < pn+2 - 2/i2, n= 1,2, • • •. 

PROOF. First we assume p(x) G C[[— 1,1]. Since vj satisfies the problem 

(10) ( - ) ' + p2v = 0 in (-1,1), v ( - l ) = v(l) = 0 
P 

where p(—x) = p(x) and the solution space of (10) is one-dimensional, we can conclude 
that v\(—x) = v\(x). In particular v'^0) = 0. Consequently, from (10) follows: 

v\ (x) rx 

(11) ^ = - M 2 / V{(s)ds. 
p(x) Jo 

As the first eigenfunction of the problem (4), vi is of constant sign in the interval (—1,1); 
so (11) gives us v\/ v\ < 0 forx > 0. Under the hypothesis, that/?(;t) is increasing in 
(0,1), we have p'v\ /v\<0 for x > 0. By symmetry, we obtain p'v\ / v\ < 0 for x < 0. 
In particular, 

(12) 2(-î-)2 - y—± > 0 in (-1,1). 
vi pv\ 

Because (8) is a singular boundary value problem, we cannot apply the classical mono-
tonicity theorem (cf., e.g., [2, p. 174]) directly to the problems (1) and (8) and using (12) 
to conclude that 

(13) ln >A„, n= 1,2,- ••, 

and hence (9). But, still, the inequality (13) can be established by imitating the argument 
in the proof of the classical monotonicity theorem ([2, p. 174]). 

In fact, it follows from the well-known oscillation theorem ([2, p. 174]) that, as the 
n-th eigenfunction of (4), vn has exactly n — 1 zeros in (—1,1). Hence so does wn. Con­
sequently, w'n(x) has at least max(rc — 2,0) zeros in (—1,1). This proves that un has at 
least n + 1 zeros on [—1,1]. 

Suppose, otherwise, ln < Xn for some n > 1. Let <j>n be the n-th eigenfunction of 
the problem (1) and a < (5 two consecutive zeros of un. We claim that there ex­
ists at least one zero of (f>n in (a, /? ). Otherwise we can find two consecutive zeros 
a\ < /3\ of (f>n such that (a,/3) C («i,/3i). Since <j>n is the first eigenfunction of (1) 
over (au/3\), we have, by virtue of (8) and the standard minimax principle for regular 
eigenvalue problems, the inequality 

In = f ((u'nf + [ 2 Â 2 - ^H)dx/ f pal dx 

> inf 

> inf 
KeWj'2(cri,0i) 

pv\ 

it. 
pv\ 

J<*\ V Vi pV\ ' I JOL\ J 

rPi , 2 I rP\ 2 1 
/ (u) dx/ pu dx) 

JCt\ / J(X\ J 
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This achieves a contradiction. 
Now, since un has at least n + 1 zeros on [—1,1], <j)n has at least n zeros in (—1,1). 

This contradicts the assertion of the oscillation theorem ([2, p. 174]) that <j>n has exactly 
n — 1 zeros in (—1,1). 

Therefore the inequality (13) is proved for p(x) G C1 [— 1,1]. 
If p{x) G C°[- l , 1], we can approximate p in C°[- l , 1] by a suitable sequence of 

functions {PJ}°1{ taken from C1 [— 1,1]. The continuous dependence of A„ and p,n on 
p again yields the inequality (13) (cf. [1]). 

The proof of Theorem 1 is complete. 

3. A More General Theorem. We can also apply Theorem 1 to some other prob­
lems. 

First observe that the theorem holds on any interval [a, b] provided we assume that 
p{x) is even about the point x = (a+b)/ 2 and increasing over the interval ({a+b)/ 2, b). 

Consider the problems 

(14) (p(x)$f(x))' + \q(x)$(x) = 0 i n ( - l , 1), </>(-!) = </>(l) = 0 

and 

(15) (p{xW{x))' + tiq(x)tl>(x) = 0 in (-1,1), i / / ( - l ) = i/>'(l) = 0 

THEOREM 2. Ifp(-x) = p(x), q(—x) = q(x) andp(x)q{x) is increasing in (0,1), then 
the inequality (9) still holds. Here we keep the assumption p,q > 0. 

PROOF. Under the change of variables: 

r* ds r /-i ds 
J-\ p(s) J-\ p(s) 

the problems (14) and (15) become 

(16) ^ -y + \p(x(t))q(x(t))<t) = 0 in (0,L), 0(0) = 0(L) = 0 

and 

(17) ^ + fip(x(t))q(x(t))i; = 0 in (0,L), V>'(0) = V>U) = 0. 

Now since p is even with respect to x = 0, so x — 0 corresponds to t — Lj 2. 
Because (pq)(x(tf) is even with respect to t — Lj 2 and increasing in (L/ 2, L), applying 
Theorem 1 to (16) and (17) we see immediately that A„, \in satisfy (9). 
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COROLLARY 1. Under the assumption of Theorem 2, we have /X3 > 2/i2-

COROLLARY 2. Under the assumption of Theorem 2, we have the following lower 
bound estimate for the gap of the first two nonzero eigenvalues of the Neumann problem 
(15): 

M - fl2 > Ai +/X2. 
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