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Abstract Consider the equation

−(r(x)y′(x))′ + q(x)y(x) = f(x), x ∈ R, (∗)

where f ∈ Lp(R), p ∈ (1, ∞), and

r > 0, q � 0, 1/r ∈ Lloc
1 (R), q ∈ Lloc

1 (R),

lim
|d|→∞

∫ x

x−d

dt

r(t)

∫ x

x−d
q(t) dt = ∞ ∀x ∈ R.

By a solution of (∗), we mean any function y absolutely continuous together with (ry′) and satisfying (∗)
almost everywhere on R. In addition, we assume that (∗) is correctly solvable in the space Lp(R), i.e.

(1) for any function f ∈ Lloc
p (R), there exists a unique solution y ∈ Lp(R) of (∗);

(2) there exists an absolute constant c1(p) > 0 such that the solution y ∈ Lp(R) of (∗) satisfies the
inequality

‖y‖Lp(R) � c1(p)‖f‖Lp(R) ∀f ∈ Lp(R). (∗∗)

We study the following problem on the strengthening estimate (∗∗). Let a non-negative function
θ ∈ Lloc

p (R) be given. We have to find minimal additional restrictions for θ under which the following
inequality holds:

‖θy‖Lp(R) � c2(p)‖f‖Lp(R) ∀f ∈ Lp(R).

Here, y is a solution of (∗) from the class Lp(R), and c2(p) is an absolute positive constant.

Keywords: linear differential equations; second-order equation; Everitt–Giertz problem
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1. Introduction

In this paper we continue the study developed in [22,23,25–27]. We consider the equation

−(r(x)y′(x))′ + q(x)y(x) = f(x), x ∈ R, (1.1)
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where f ∈ Lp (Lp(R) := Lp), p ∈ (1,∞) and

r > 0, q � 0, 1/r ∈ Lloc
1 , q ∈ Lloc

1 (Lloc
1 := Lloc

1 (R)), (1.2)

lim
|d|→∞

∫ x

x−d

dt

r(t)

∫ x

x−d

q(t) dt = ∞ ∀x ∈ R. (1.3)

Throughout what follows, by a solution of (1.1) we mean any function y that is abso-
lutely continuous together with (ry′) and satisfies (1.1) almost everywhere in R.

In addition to (1.2)–(1.3), we always assume that (1.1) is correctly solvable in Lp,
p ∈ (1,∞). The latter condition means that requirements (I) and (II) hold (see [31,
Chapter III, § 6.2]).

(I) For any f ∈ Lp, there exists a unique solution y ∈ Lp of (1.1).

(II) There exists an absolute constant c(p) > 0 such that the solution y ∈ Lp of (1.1)
satisfies the inequality

‖y‖p � c(p)‖f‖p ∀f ∈ Lp (‖f‖p := ‖f‖Lp). (1.4)

Exact restrictions to r and q that guarantee (I) and (II) are known (see [26] and § 2).
Furthermore, in connection with (1.4), we adopt the following conventions: by the sym-
bol y we denote only solutions of (1.1) belonging to the class Lp; the symbols c, c(·) stand
for absolute positive constants that are not essential for exposition and may differ even
within a single chain of computations.

We now return to (1.1). Our general goal is to study possibilities for strengthening
estimate (1.4). To be more precise, let θ denote an arbitrary non-negative function from
Lloc

p (Lloc
p (R) := Lloc

p ). Our specific goal is to find minimal additional restrictions to θ

under which the solutions y of (1.1) satisfy the inequality

‖θy‖p � c(p)‖f‖p ∀f ∈ Lp. (1.5)

Note that in a particular case (1.5) for θ = q, (1.1) may (or may not) have an interesting
feature, depending on p ∈ [1,∞) and properties of the functions r and q. In order to
describe this feature, we introduce the following definition.

Definition 1.1. Suppose that (1.1) is correctly solvable in the space Lp, p ∈ [1,∞).
We say that this equation is separable in Lp if the following inequality holds:

‖(ry′)′‖p + ‖qy‖p � c(p)‖f‖p ∀f ∈ Lp, (1.6)

or, equivalently,
‖qy‖p � c(p)‖f‖p ∀f ∈ Lp. (1.7)

(Definition 1.1 is sometimes referred to within this paper as the ‘separability problem’
or ‘separability conditions’.)
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The problem on separability was posed by Everitt and Giertz in [35, 36] (in terms
of different operators) and is therefore called the Everitt–Giertz problem. In [35, 36],
the first examples of inseparable operators and the first study of sufficient conditions
for separability (of the Sturm–Liouville operator in L2) were given. These results were
then strengthened and developed by the authors themselves [37–44], and in successive
papers [1–15,17–24,28–30,33,34,46,47,49–56,58–63]. We want to emphasize the fact
that until now unconditional criteria for the validity of (1.5) and (1.7) have been found
only in particular cases (see [3,21,22,24,28,30,45,49,52,53]), and therefore the study
of (1.5) and (1.7) continues to be of interest. All the works cited above represent the
literature on this question as a whole, i.e. not necessarily in connection with (1.1) on the
Sturm–Liouville operator.

Note that in spite of the abundance of outstanding results and the obvious interest
in (1.5) and (1.7), no analytical survey paper has been dedicated to this subject. There-
fore, below, in order to position our work among the above cited papers, we give only
the most general additional necessary information. To stay within a limited framework,
we only discuss (1.7). Thus, we first want to emphasize that the decisive role in study-
ing the separability problem is played by (1.1). This equation (or the corresponding
Sturm–Liouville operator) is the main testing ground for almost all the innovations in
the separability research. In particular, this is the main explanation of the fact that a
significant part of the work cited above is directly related to (1.1). The research ded-
icated to (1.1) can, in turn, be subdivided into two non-intersecting groups. The first
group contains the majority of the papers on (1.1). This group can be characterized
by the fact that separability conditions are expressed in the form of certain require-
ments on the coefficients r and q of (1.1). As for the second group, which consists of
the papers [3,19–21,23,29,30,51,56,61], here separability conditions are expressed in
terms of requirements on certain local integral averages of the functions r and q. (The
first investigation in the second group is due to Otelbaev; see [51, 56].) Each of these
approaches has its advantages and disadvantages, which will be made clear after obtain-
ing unconditional criteria for the separability of (1.1) in Lp for p ∈ (1,∞) (for p = 1, (1.7)
holds automatically; see [22,30,45,53]).

We now begin the discussion of our present research. Since we are studying (1.1),
according to our classification, this research belongs to the second group of papers. In
particular, we study conditions for the separability of (1.1) in Lp, remaining in the
framework of the approach to (1.7) that was developed in the papers [3, 19, 20, 23,
30,45,53,61].

Our general goal consists of extending the methods of [23], in which r = 1 and 1 � q ∈
Lloc

1 , to the case of (1.1) (with conditions (1.2) and (1.3)) correctly solvable in Lp, p ∈
(1,∞). Similar problems for the cases p = 1 and p = ∞ will be considered in forthcoming
papers. Note that the main result of this paper contains necessary and (nearly) sufficient
conditions for the validity of inequalities (1.5) and (1.7) (see Theorems 3.3 and 3.4).
Unfortunately, although these assertions are general and precise, they are not sufficient
for the study of (1.5) and (1.7) in concrete cases. The point is that the requirements of
Theorems 3.3 and 3.4 are expressed in terms of certain auxiliary functions (averages of
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Otelbaev type of the functions r and q; see § 3). Exact values of these auxiliary functions
can be found only in exceptional cases. However, to apply Theorems 3.3 and 3.4 to
concrete equations, it is enough to have two-sided, sharp-by-order estimates for these
averages. The second part of this paper contains a solution of the problem on the proof
of such inequalities.

We emphasize that, by combining all the results, we obtain an efficient tool for the
study of inequalities (1.5) and (1.7). As an example of such an application, we con-
sider (1.1) with the coefficients

r(x) = 1 + x2, q(x) = e|x| + e|x| cos(eα|x|), x ∈ R, α > 0. (1.8)

In the second part of the paper, we obtain the following fact.

Proposition 1.2. Equation (1.1) with coefficients (1.8) is correctly solvable in Lp for
all p ∈ (1,∞), regardless of α ∈ (0,∞). The inequality

‖e|x|y‖p � c(p)‖f‖p ∀f ∈ Lp (1.9)

holds if and only if α � 1
2 .

The paper has the following structure. Most of the facts used in the following are given
in § 2, all our results are given in § 3, and the proofs are given in § 4.

2. Preliminaries

We adopt the following convention: the requirements (1.2) and (1.3) are assumed to be
valid and do not appear in the statements.

Lemma 2.1 (Chernyavskaya and Shuster [22]). The equation

(r(x)z′(x))′ = q(x)z(x), x ∈ R, (2.1)

has a fundamental system of solution (FSS) with the properties

u(x) > 0, v(x) > 0, u′(x) � 0, v′(x) � 0, x ∈ R, (2.2)

r(x)[v′(x)u(x) − u′(x)v(x)] = 1, x ∈ R, (2.3)

lim
x→−∞

v(x)
u(x)

= lim
x→∞

u(x)
v(x)

= 0. (2.4)

Corollary 2.2 (Chernyavskaya and Shuster [22]). Equation (2.1) has no solutions
z ∈ Lp apart from z ≡ 0.

Throughout the following, by the symbols {u, v} we denote only the FSS from
Lemma 2.1.
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Theorem 2.3 (Chernyavskaya and Shuster [22], Davies and Harrell [32]).
For {u, v}, there exists the following Davies–Harrell representation:

u(x) =
√

ρ(x) exp
(

−1
2

∫ x

x0

dξ

r(ξ)ρ(ξ)

)
, x ∈ R, (2.5)

v(x) =
√

ρ(x) exp
(

1
2

∫ x

x0

dξ

r(ξ)ρ(ξ)

)
, x ∈ R, (2.6)

where ρ(x) = u(x)v(x), x ∈ R, x0 is the unique solution of the equation u(x) = v(x)
in R. In addition, for the Green function G(x, t) corresponding to (1.1),

G(x, t) =

{
u(x)v(t), x � t,

u(t)v(x), x � t,
(2.7)

and, for its ‘diagonal value’ G(x, t)|t=x = ρ(x), x ∈ R, there are the following relations:

G(x, t) =
√

ρ(x)ρ(t) exp
(

−1
2

∣∣∣∣
∫ t

x

dξ

r(ξ)ρ(ξ)

∣∣∣∣
)

, x, t ∈ R, (2.8)

∫ 0

−∞

dξ

r(ξ)ρ(ξ)
=

∫ ∞

0

dξ

r(ξ)ρ(ξ)
= ∞. (2.9)

Remark 2.4. Equations (2.5), (2.6) and (2.8) were given for r ≡ 1 in [32] and in [22]
under the conditions (1.2) and (1.3).

Lemma 2.5 (Chernyavskaya and Shuster [22]). For any given x ∈ R, each of the
equations in d � 0,∫ x

x−d

dt

r(t)

∫ x

x−d

q(t) dt = 1 and
∫ x+d

x

dt

r(t)

∫ x+d

x

q(t) dt = 1, (2.10)

has a unique finite positive solution.

Denote the solutions of (2.10) by d(−)(x) and d(+)(x), respectively. For x ∈ R, we
introduce the functions

ϕ(x) =
∫ x

x−d(−)(x)

dt

r(t)
, ψ(x) =

∫ x+d(+)(x)

x

dt

r(t)
, (2.11)

h(x) =
ϕ(x)ψ(x)

ϕ(x) + ψ(x)
=

( ∫ x+d(+)(x)

x−d(−)(x)
q(t) dt

)−1

. (2.12)

Theorem 2.6 (Chernyavskaya and Shuster [22]). We have Otelbaev’s inequalities

2−1h(x) � ρ(x) � 2h(x), x ∈ R. (2.13)

Remark 2.7. A priori sharp-by-order estimates of the function ρ were first obtained
by Otelbaev in [57] (under some additional requirements on r and q). Therefore, all
relations of the form (2.13) will be called Otelbaev inequalities. Note that the auxiliary
function used in [57] is, probably, more complicated than the function h in (2.13).
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Lemma 2.8 (Chernyavskaya and Shuster [22]). For every x ∈ R, the equation
in d � 0, ∫ x+d

x−d

dt

r(t)h(t)
= 1, (2.14)

has a unique finite positive solution. Denote this solution by d(x). The function d(x) is
continuous for x ∈ R. In addition, (|x| − d(x)) → ∞ as |x| → ∞.

Lemma 2.9 (Chernyavskaya and Shuster [22]). Let x ∈ R, t ∈ [x−d(x), x+d(x)].
Then,

e−2ρ(x) � ρ(t) � e2ρ(x), (4e2)−1h(x) � h(t) � (4e2)h(x), e = exp(1). (2.15)

Definition 2.10 (Chernyavskaya and Shuster [24]). Suppose that we are given
x ∈ R, a positive continuous function κ(t), t ∈ R, and a sequence {xn}n∈N′ ,
N

′ = {±1,±2, . . .}. Consider the segments Δn = [Δ−
n , Δ+

n ], Δ±
n = xn ± κ(xn), n ∈ N

′.
We say that the segments {Δn}∞

n=1 (respectively, {Δn}−1
n=−∞) form an R(x, κ)-covering

of [x,∞) (respectively, of (−∞, x]) if the following requirements hold:

(1) Δ+
n = Δ−

n+1 if n � 1 (respectively, Δ+
n−1 = Δ−

n if n � −1),

(2) Δ−
1 = x (respectively, Δ+

−1 = x),
⋃∞

n=1 Δn = [x,∞) (respectively,
⋃−1

u=−∞ Δn =
(−∞, x]).

Lemma 2.11 (Chernyavskaya and Shuster [24]). Suppose that a positive contin-
uous function κ(t) for t ∈ R satisfies the relation

lim
t→∞

(t − κ(t)) = ∞ (respectively, lim
t→−∞

(t + κ(t)) = −∞). (2.16)

For every x ∈ R there then exists an R(x, κ)-covering of [x,∞) (respectively, an
R(x, κ)-covering of (−∞, x]).

Remark 2.12. Assertions similar to Lemma 2.11 were introduced by Otelbaev
(see [51]).

Lemma 2.13 (Chernyavskaya and Shuster [22]). For every x ∈ R there exist
R(x, d)-coverings of [−∞, x) and [x,∞).

We introduce the set Dp and the operator Lp:

Dp = {y ∈ Lp : y, ry′ ∈ AC loc(R), −(ry′)′ + qy ∈ Lp}, (2.17)

Lpy = −(ry′) + qy, y ∈ Dp. (2.18)

The linear operator Lp is called a maximal Sturm–Liouville operator, and (I) and (II)
(see § 1) are, obviously, equivalent to the problem of existence and boundedness of the
operator L−1

p : Lp → Lp, i.e. the problem of continuous invertibility of the operator Lp

(see [16]).

https://doi.org/10.1017/S0013091514000431 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000431


Weighted estimates for solutions of the general Sturm–Liouville equation 131

Theorem 2.14 (Chernyavskaya and Shuster [26]). Let p ∈ [1,∞), and let
G : Lp → Lp be the Green operator

(Gf)(x) =
∫ ∞

−∞
G(x, t)f(t) dt ∀f ∈ Lp, x ∈ R. (2.19)

Then, (1.1) is correctly solvable in Lp if and only if the operator G : Lp → Lp is bounded.
In the latter case, for any f ∈ Lp, the solution of y ∈ Lp of (1.1) is of the form y = Gf .
In particular, L−1

p = G.

Theorem 2.15 (Chernyavskaya and Shuster [26]). Let p ∈ (1,∞). Then, (1.1)
is correctly solvable in Lp if and only if

B = sup
x∈R

(h(x)d(x)) < ∞. (2.20)

Theorem 2.16 (Oinarov [53]). Suppose that condition (1.2) holds and that
infx∈R q(x) > 0. The operator G : Lp → Lp is then bounded for all p ∈ [1,∞).

Remark 2.17. In connection to Theorem 2.16, see [22, Theorem 2.3] and [26, Corol-
lary 1.9].

Let μ, θ be almost everywhere finite, measurable, positive functions defined in an
interval (a, b), −∞ � a < b � ∞. We introduce the integral operators

(Kf)(x) = μ(x)
∫ b

x

θ(t)f(t) dt, x ∈ (a, b), (2.21)

(K̃f)(x) = μ(x)
∫ x

a

θ(t)f(t) dt, x ∈ (a, b). (2.22)

Theorem 2.18 (Kufner and Persson [48]). For p ∈ (1,∞), the operator
K : Lp(a, b) → Lp(a, b) is bounded if and only if

Hp(a, b) = sup
x∈(a,b)

Hp(a, b, x) < ∞,

where

Hp(a, b, x) =
[ ∫ x

a

μ(t)p dt

]1/p[ ∫ b

x

θ(t)p′
dt

]1/p′

, p′ =
p

p − 1
. (2.23)

In addition,
Hp(a, b) � ‖K‖Lp(a,b)→Lp(a,b) � (p)1/p(p′)1/p′

Hp(a, b). (2.24)

Theorem 2.19 (Kufner and Persson [48]). For p ∈ (1,∞), the operator
K̃ : Lp(a, b) → Lp(a, b) is bounded if and only if

H̃p(a, b) = sup
x∈(a,b)

H̃p(a, b, x) < ∞,

where

H̃p(a, b, x) =
[ ∫ x

a

θ(t)p′
dt

]1/p′[ ∫ b

x

μ(t)p dt

]1/p

, p′ =
p

p − 1
. (2.25)
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In addition,
H̃p(a, b) � ‖K‖Lp(a,b)→Lp(a,b) � (p)1/p(p′)1/p′

H̃p(a, b). (2.26)

Note that, apart from the facts listed above, in § 4 we use several assertions (mainly
of a technical nature) that are given there in the course of our exposition.

3. Main results

Note that if a pair of functions (in the following, just a ‘pair’) {r, q} satisfies condi-
tions (1.2) and (1.3), then, for every λ � 0, the pair {r, qλ}, where qλ = q + λ, satisfies
the same conditions. We adopt the following convention: throughout what follows instead
of the notation for auxiliary functions,

d(−1), d(+), ϕ, ψ, h, d (3.1)

(see (2.10), (2.11), (2.12), (2.14)) constructed by a pair {r, qλ} for λ � 0, we use the
notation

d
(−1)
λ , d

(+)
λ , ϕλ, ψλ, hλ, dλ, (3.2)

respectively. We reserve the notation of (3.1) for the pair {r, qλ} with λ = 0 if this is
specially mentioned.

Definition 3.1. Let a pair {r, qλ} be given. Assume that for some b > 0 there exist
a � 1 and λ � 0 such that, for all x ∈ R, the following relations hold:

a−1hλ(x)dλ(x) � hλ(t)dλ(t) � ahλ(x)dλ(x) if |t − x| � bdλ(x), (3.3)∫ x+bdλ(x)

x−bdλ(x)

dt

dλ(t)
� b

a
∀x ∈ R, (3.4)

lim
|x|→∞

(|x| − bdλ(x)) = ∞. (3.5)

The value

γ(b) = a exp
(

− b

500a2

)

is then called the exponent of the pair {r, q} corresponding to the number b > 0.

In (3.3)–(3.5), we formalize a priori properties of any pair {r, q} satisfying condi-
tions (1.2) and (1.3). We also note that if the number γ(b) is small enough, then our
main assertion (see Theorem 3.4) gives the complete answer to the question of (1.7).
These facts are fixed in the following assertion.

Theorem 3.2. Let a pair {r, q} and a number γ̃ > 4e2 be given. There then exist
b > 0 and the exponent γ(b) of this pair such that γ(b) = γ̃.

Throughout the following, by the symbol γ(b), b > 0, we denote the exponent of the
pair {r, q} formed by the coefficients of (1.1).

The next two theorems constitute the main result of this part of the paper.
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Theorem 3.3. Suppose that (1.1) is correctly solvable in the space Lp, p ∈ (1,∞),
and inequality (1.5) holds. Then,

mp(r, q, θ) = sup
x∈R

h(x)d(x)1/p′
[ ∫ x+d(x)

x−d(x)
θp(t) dt

]1/p

< ∞. (3.6)

In particular, (1.7) holds only if mp(r, q, q) < ∞.

Theorem 3.4. Suppose that (1.1) is correctly solvable in the space Lp, p ∈ (1,∞), and
at least one of the exponents γ(b), b > 0, of the pair {r, q} satisfies the inequality γ(b) �
γ0, γ0 = exp(− 1

500 ). The estimate (1.5) then holds if mp(r, q, θ) < ∞. In particular, if
mp(r, q, q) < ∞, then (1.1) is separable in the space Lp(R).

Remark 3.5. The first study of (1.5) and (1.7), with the help of inequalities of
type (3.3) and a functional of type (3.6), was carried out by Otelbaev for r ≡ 1
(see [51,56]).

Remark 3.6. Recall that the main questions related to applying Theorems 3.3 and 3.4
to concrete equations will be considered in the future in part II of this paper.

4. Proofs

Proof of Theorem 3.2. We need some auxiliary assertions.

Lemma 4.1 (Chernyavskaya and Shuster [22, p. 1422]). For x ∈ R, we have
the inequality

|d(x + s) − d(x)| � |s| if |s| � d(x). (4.1)

Lemma 4.2. Let ε ∈ [0, 1) and x ∈ R. Then,

(1 − ε)d(x) � d(t) � (1 + ε)d(x) � (1 − ε)−1d(x) if |t − x| � εd(x). (4.2)

Proof. Set
x + s = t, |s| � εd(x), ε ∈ [0, 1), x ∈ R.

From (4.1), it then follows that

|d(t) − d(x)| = |d(x + s) − d(x)| � |s| � εd(x)

⇒
∣∣∣∣ d(t)
d(x)

− 1
∣∣∣∣ � ε for |t − x| � εd(x)

⇒ (4.2).

�

Remark 4.3. Lemmas of type 4.1 and 4.2 were first obtained by Otelbaev (see [51]).
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We now turn to the proof of Theorem 3.2. We find the exponent of the pair {r, q} for
b = ε ∈ (0, 1). Let x ∈ R and λ = 0. According to (4.2) and (2.15), we then have (here
we use the notation of (3.2)) that

1 − ε

4e2 � hλ(t)dλ(t)
hλ(x)dλ(x)

� 4e2

1 − ε
if |t − x| � εdλ(x). (4.3)

Therefore, following (3.3), a := 4e2(1 − ε)−1. We show that, with such a choice of
parameters a and b, we also have (3.4). Below we use (4.2):

∫ x+bdλ(x)

x−bdλ(x)

dt

dλ(t)
=

∫ x+εdλ(x)

x−εdλ(x)

dλ(x)
dλ(t)

dt

dλ(x)
� 2ε(1 − ε) � ε(1 − ε)

4e2 =
b

a
.

Finally, for b = ε ∈ [0, 1], (3.5) holds by Lemma 2.8. Hence, by Definition 3.1, we have
that

γ(b) = γ(ε) =
4e2

1 − ε
exp

(
− ε(1 − ε)2

500(4e2)2

)
.

It is easy to see that the function γ(ε), ε ∈ [0, 1), is continuous, and as ε increases it
monotonically increases from γ(0) = 4e2 to ∞, which proves the theorem. �

Proof of Theorem 3.3. Clearly, (1.5) is equivalent to boundedness of the operator
θL−1

p : Lp → Lp, p ∈ (1,∞), i.e. to the inequality

‖θL−1
p ‖p→p < ∞ (4.4)

(see (I) and (II) in § 1, (2.17), (2.18) and Theorem 2.14). Below, we show that (4.4)
implies the inequalities

∞ > ‖θL−1
p ‖p→p � c−1mp(r, q, θ),

and thus proves Theorem 3.3.

Lemma 4.4. Let x ∈ R, Δ(x) = [x − d(x), x + d(x)],

fx(t) =

{
1 if t ∈ Δ(x),

0 if t /∈ Δ(x),

and let yx(t) be the solution in the class Lp of (1.1) with f ≡ fx. We then have the
estimate

‖θyx‖p � c−1h(x)d(x)
[ ∫

Δ(x)
θ(t)p dt

]1/p

. (4.5)
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Proof. Let t ∈ Δ(x). Below, we use Theorem 2.14, (2.8), (2.13), (2.14) and (2.15):

yx(t) =
∫ ∞

−∞
G(t, ξ)fx(ξ) dξ

=
∫

Δ(x)
G(t, ξ) dξ

=
∫

Δ(x)

√
ρ(t)ρ(ξ) exp

(
−1

2

∣∣∣∣
∫ ξ

t

ds

r(s)ρ(s)

∣∣∣∣
)

dξ

� c−1ρ(x)
∫

Δ(x)
exp

(
−

∫
Δ(x)

ds

r(s)h(s)

)
dξ

� c−1h(x)d(x).

This inequality implies (4.5):

‖θyx‖p
p �

∫
Δ(x)

|θ(r)yx(ξ)|p dξ � c−1(h(x)d(x))p

∫
Δ(x)

θ(ξ)p dξ.

�

By (4.5), we now obtain that

∞ > ‖θL−1
p ‖p

p→p = sup
f∈Lp

‖θL−1
p f‖p

p

‖f‖p
p

� sup
x∈R

‖θL−1
p fx‖p

p

‖fx‖p
p

= sup
x∈R

‖θyx‖p
p

2d(x)
� c−1 sup

x∈R

h(x)pd(x)p−1
∫

Δ(x)
θp(t) dt ⇒ mp(r, q, θ) < ∞.

�

Proof of Theorem 3.4. Below, we study the equation

−(r(x)y′(x))′ + (q(x) + λ)y(x) = f(x), x ∈ R, (4.6)

where λ � 0 and the functions r and q satisfy conditions (1.2) and (1.3). Note that, by
the assumption of the theorem, (4.6) is correctly solvable in Lp, p ∈ (1,∞), for λ = 0,
and for λ > 0 this equation is correctly solvable in Lp, p ∈ [1,∞), by Theorems 2.14
and 2.16. This implies that the semi-axis [0,∞) is the resolvent set for the operator Lp

(see (2.17) and (2.18)). Define Rλ = (Lp + λE)−1, where λ � 0, E : Lp → Lp is the
identity operator. We now apply Hilbert’s formula

Rμ − Rλ = (λ − μ)Rλ · Rμ

to our case for μ = 0 and λ > 0 to obtain that

R0 = Rλ + λRλ · R0 = Rλ(E + λR0), λ > 0,

or
L−1

p = (Lp + λE)−1[E + λL−1
p ], λ > 0
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(which is the same). Since ‖L−1
p ‖p→p � cB < ∞ (see Theorem 2.15), this implies that

‖θL−1
p ‖p→p � ‖θ(Lp + λE)−1‖p→p(1 + cλB). (4.7)

Thus, we are reduced to proving (under the assumptions of the theorem) the inequality

‖θ(Lp + λE)−1‖p→p � c(λ)mp(r, q, θ). (4.8)

(In (4.8), the parameter λ is chosen according to the assumption of the theorem such
that the inequality γ(b) � γ0 = exp(− 1

500 ) holds for at least one b > 0 for some a � 1,
λ � 0; see Definition 3.1.)

In connection with (4.8), consider the operator (Lp +λE)−1 in more detail. Our nota-
tion is as follows. Throughout the following an FSS of the equation

(r(x)z′(x))′ = (q(x) + λ)z(x) := qλ(x)z(x), x ∈ R, λ � 0,

with the properties (2.2)–(2.4) is denoted by {uλ, vλ}, ρλ := uλ · vλ, and, finally, the
Green function G(x, t, λ) (see (2.7)) of (4.6) is denoted by Gλ(t, x)(t, x ∈ R). Let f ∈ Lp,
p ∈ (1,∞). By Theorem 2.14 and (2.7), we then have that

[(Lp + λE)−1f ](x) = (Gλf)(x)

=
∫ ∞

−∞
Gλ(x, t)f(t) dt

= uλ(x)
∫ x

−∞
vλ(t)f(t) dt + vλ(x)

∫ ∞

x

uλ(t)f(t) dt

:= (G1,λf)(x) + (G2,λf)(x), x ∈ R.

Here

(G1,λf)(x) = uλ(x)
∫ x

−∞
vλ(t)f(t) dt, x ∈ R, (4.9)

(G2,λf)(x) = vλ(x)
∫ ∞

x

uλ(t)f(t) dt, x ∈ R, (4.10)

‖θ(L + λE)−1‖p→p = ‖θGλ‖p→p

= ‖θ(G1,λ + G2,λ)‖p→p

� ‖θG1,λ‖p→p + ‖θG2,λ‖p→p. (4.11)

To extend (4.11), we use Lemma 4.6, which is a straightforward consequence of (4.9)
and (4.10), Lemma 2.1, and Theorems 2.18 and 2.19. We first introduce some more
notation. Let f1(x) and f2(x) be positive continuous functions defined for x ∈ (a, b),
−∞ � a < b � ∞. If there exists a constant c ∈ [1,∞) such that

c−1f1(x) � f2(x) � cf1(x) ∀x ∈ (a, b),

then we write f1(x) 	 f2(x), x ∈ (a, b).
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Lemma 4.5. We have that

‖θG1,λ‖p→p 	 sup
x∈R

μ
[p]
λ (x), λ � 0, (4.12)

‖θG2,λ‖p→p 	 sup
x∈R

ν
[p]
λ (x), λ � 0, (4.13)

where

μ
[p]
λ (x) =

[ ∫ x

−∞
vp′

λ (t) dt

]1/p′[ ∫ ∞

x

(θ(t)uλ(t))p dt

]1/p

, x ∈ R, (4.14)

and

ν
[p]
λ (x) =

[ ∫ x

−∞
(θ(t)vλ(t))p dt

]1/p[ ∫ ∞

x

uλ(t)p′
dt

]1/p′

, x ∈ R. (4.15)

Lemma 4.6. Define

J(x, t) = exp
(

−
∣∣∣∣
∫ t

x

dξ

r(ξ)ρλ(ξ)

∣∣∣∣
)

, x, t ∈ R.

For x ∈ R and λ � 0 we then have the inequalities

μ
[p]
λ (x) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[∫ x

−∞
ρλ(t)J(x, t) dt

]1/p′[ ∫ ∞

x

ρλ(t)θp(t)J(x, t)p−1 dt

]1/p

if p ∈ (1, 2],

[ ∫ x

−∞
ρλ(t)J(x, t)p′−1 dt

]1/p′[ ∫ ∞

x

ρλ(t)θ(t)pJ(x, t) dt

]1/p

if p ∈ (2,∞),

(4.16)

ν
[p]
λ (x) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[∫ x

−∞
ρλ(t)θ(t)pJ(x, t)p−1 dt

]1/p[ ∫ ∞

x

ρλ(t)J(x, t) dt

]1/p′

if p ∈ (1, 2],

[ ∫ x

−∞
ρλ(t)J(x, t)θ(t)p dt

]1/p[ ∫ ∞

x

ρλ(t)J(x, t)p′−1 dt

]1/p′

if p ∈ (2,∞).

(4.17)

Proof. Let p ∈ (1, 2] and κ = (p′ − p)(p′ + p)−1 (where κ is an element of [0, 1)). We
now use (2.2), (2.5) and (2.6) to give that

μ
[p]
λ (x) �

[ ∫ x

−∞
vλ(t)(1−κ)p′

dt

]1/p′[ ∫ ∞

x

θp(t)vκp
λ (t)up

λ(t) dt

]1/p

=
[ ∫ x

−∞
ρλ(t)J(x, t) dt

]1/p′

exp
(

1
p′

∫ x

x0

dξ

r(ξ)ρλ(ξ)

)

×
[ ∫ ∞

x

θp(t)ρλ(t)J(x, t)p−1 dt

]1/p

exp
(

− 1
p′

∫ x

x0

dξ

r(ξ)ρλ(ξ)

)

=
[ ∫ x

−∞
ρλ(t)J(x, t) dt

]1/p′[ ∫ ∞

x

θp(t)ρλ(t)J(x, t)p−1 dt

]1/p

⇒ (4.16).
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Similarly, for p ∈ (2,∞) and κ = (p − p′)(p + p′)−1 (where κ is an element of (0, 1)), we
have that

μ
[p]
λ (x) �

[ ∫ x

−∞
vλ(t)p′

uκp′

λ (t) dt

]1/p′[ ∫ ∞

x

θ(t)pμ
(1−κ)p
λ (t) dt

]1/p

=
[ ∫ x

−∞
ρλ(t)J(x, t)p′−1 dt

]1/p′

exp
(

1
p

∫ x

x0

dξ

r(ξ)ρλ(ξ)

)

×
[ ∫ ∞

x

θ(t)pρλ(t)J(x, t) dt

]1/p

exp
(

−1
p

∫ x

x0

dξ

r(ξ)ρλ(ξ)

)

=
[ ∫ x

−∞
ρλ(t)J(x, t)p′−1 dt

]1/p′[ ∫ ∞

x

θ(t)pρλ(t)J(x, t) dt

]1/p

⇒ (4.16).

Inequality (4.17) is proved in a similar way. �

Below, we need the following lemma.

Lemma 4.7 (Chernyavskaya and Shuster [26]). For given x ∈ R and λ � 0, we
introduce the functions

F
[λ]
1 (η) =

∫ x

x−η

dt

r(t)

∫ x

x−η

(q(t) + λ) dt,

F
[λ]
2 (η) =

∫ x+η

x

dt

r(t)

∫ x+η

x

(q(t) + λ) dt,

F
[λ]
3 (η) =

∫ x+η

x−η

dt

r(t)hλ(t)
.

The following assertions then hold.

(1) The inequality η � d
(−)
λ (x) (0 � η � d

(−)
λ (x)) holds if and only if F

[λ]
1 (η) � 1

(F [λ]
1 (η) � 1).

(2) The inequality η � d
(+)
λ (x) (0 � η � d

(+)
λ (x)) holds if and only if F

[λ]
2 (η) � 1

(F [λ]
2 (η) � 1).

(3) The inequality η � dλ(x) (0 � η � dλ(x)) holds if and only if F
[λ]
3 (λ) � 1

(F [λ]
3 (η) � 1).

Lemma 4.8. We have the inequality (see (3.6))

mp(r, qλ, θ) � mp(r, q, θ), λ � 0. (4.18)

Proof. The following relations are obvious (see Lemma 2.5):∫ x

x−d(−)(x)

dt

r(t)

∫ x

x−d(−)(x)
(q(t) + λ) dt �

∫ x

x−d(−)(x)

dt

r(t)

∫ x

x−d(−)(x)
q(t) dt = 1.
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Hence (see Lemma 4.7), d
(−)
λ (x) � d(−)(x), x ∈ R, and, similarly, d

(+)
λ (x) � d(+)(x),

x ∈ R. Therefore, ϕλ(x) � ϕ(x), ψλ(x) � ψ(x) for x ∈ R, since, say,

ψλ(x) =
∫ x+d

(+)
λ (x)

x

dt

r(t)
�

∫ x+d(+)(x)

x

dt

r(t)
= ψ(x), x ∈ R.

Then, clearly, hλ(x) � h(x) for x ∈ R, since

1
hλ(x)

=
1

ϕλ(x)
+

1
ψλ(x)

� 1
ϕ(x)

+
1

ψ(x)
=

1
h(x)

, x ∈ R.

This implies (see Lemma 4.7) that dλ(x) � d(x), x ∈ R, since

1 =
∫ x+d(x)

x−d(x)

dt

r(t)h(t)
�

∫ x+d(x)

x−d(x)

dt

r(t)hλ(t)
, x ∈ R.

The obtained estimates imply that

mp(r, qλ, θ) = hλ(x)dλ(x)1/p′
[ ∫ x+dλ(x)

x−dλ(x)
θ(t)p dt

]1/p

� h(x)d(x)1/p

[ ∫ x+d(x)

x−d(x)
θ(t)p dt

]1/p

= mp(r, q, θ).

�

Lemma 4.9. Let a pair {r, q} be such that, for some λ � 0 and α ∈ (0, 1), and for all
x, t ∈ R, the following inequalities hold:

c−1 exp
(

−α

∣∣∣∣
∫ t

x

dξ

ρλ(ξ)r(ξ)

∣∣∣∣
)

� ρλ(t)dλ(t)
ρλ(x)dλ(x)

� c exp
(

α

∣∣∣∣
∫ t

x

dξ

r(ξ)ρλ(ξ)

∣∣∣∣
)

. (4.19)

Then, for p ∈ (1,∞) we have the estimates

‖θG1,λ‖p→p � c(λ, p)mp(r, q, θ), (4.20)

‖θG2,λ‖p→p � c(λ, p)mp(r, q, θ). (4.21)

Proof. Below, we check (4.21) for p ∈ (1, 2]. Inequality (4.21) for p ∈ (2,∞) and the
estimate (4.20) are established in a similar way. Let x ∈ R, λ � 0.

Define (see (4.17))

Hλ(x) =
∫ ∞

x

ρλ(t) exp
(

−
∫ t

x

dξ

r(ξ)ρλ(ξ)

)
dt, (4.22)

S[λ]
p (x) =

∫ x

−∞
θ(t)pρλ(t) exp

(
−(p − 1)

∫ x

t

dξ

r(ξ)ρλ(ξ)

)
dt. (4.23)

https://doi.org/10.1017/S0013091514000431 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000431


140 N. A. Chernyavskaya and L. A. Shuster

Our next goal is to get uniform estimates of Hλ(x) and S
[λ]
p (x) with respect to x ∈ R.

We start with Hλ(x). The next chain of computations is based on properties of an
R(x, dλ)-covering of [x,∞) (see Lemma 2.13) and inequality (2.15):

Hλ(x) =
∞∑

n=1

∫
Δn

ρλ(t) exp
(

−
∫ t

x

dξ

r(ξ)ρλ(ξ)

)
dt

� c
∞∑

n=1

ρλ(xn)dλ(xn) exp
(

−
∫ Δ−

n

Δ−
1

dξ

r(ξ)ρλ(ξ)

)
. (4.24)

From the upper estimate in (4.19), Definition 2.10 and (2.13) and (2.14), we obtain,
for every n � 1, that

ρλ(xn)dλ(xn) � cρλ(x)dλ(x) exp
(

α

∫ xn

x

dξ

r(ξ)ρλ(ξ)

)

= cρλ(x)dλ(x) exp
(

α

∫ Δ−
n

Δ−
1

dξ

r(ξ)ρλ(ξ)

)
exp

(
α

∫ xn

Δ−
n

dξ

r(ξ)ρλ(ξ)

)

� cρλ(x)dλ(x) exp
(

α

∫ Δ−
n

Δ−
1

dξ

r(ξ)ρλ(ξ)

)
exp

(
2α

∫
Δn

dξ

r(ξ)hλ(ξ)

)

= cρλ(x)dλ(x) exp
(

α

∫ Δ−
n

Δ−
1

dξ

r(ξ)ρλ(ξ)

)
. (4.25)

Note that Definition 2.10 and (2.14) imply the inequalities

∫ Δ−
n

Δ−
1

dξ

r(ξ)hλ(ξ)
=

n−1∑
k=1

∫
Δk

dξ

r(ξ)hλ(ξ)
= n − 1 if n � 2. (4.26)

We now extend (4.24), taking into account (4.24), (4.25) and (2.13), as

Hλ(x) � cρλ(x)dλ(x)
∞∑

n=1

exp
(

−(1 − α)
∫ Δ−

n

Δ−
1

dξ

r(ξ)ρλ(ξ)

)

� cρλ(x)dλ(x)
∞∑

n=1

exp
(

−1 − α

2

∫ Δ−
n

Δ−
1

dξ

r(ξ)hλ(ξ)

)

= cρλ(x)dλ(x)
∞∑

n−1

exp
(

−1 − α

2
(n − 1)

)

= cρλ(x)dλ(x). (4.27)

We now turn to S
[λ]
p (x). Below, we estimate this integral using the same tools as in

the proof of (4.27). Obvious differences are technical. Say, instead of the upper estimate
in (4.19) we use the lower one, and instead of an R(x, dλ)-covering of [x,∞), we use an
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R(x, dλ)-covering of (−∞, x]. Therefore, we do not comment on the following computa-
tions:

S[λ]
p (x) =

−1∑
n=−∞

∫
Δn

θp(t)ρλ(t) exp
(

−(p − 1)
∫ x

t

dξ

r(ξ)ρλ(ξ)

)
dt

� c
−1∑

n=−∞
ρλ(xn)

[ ∫
Δn

θp(t) dt

]
exp

(
−(p − 1)

∫ Δ+
−1

Δ+
n

dξ

r(ξ)ρλ(ξ)

)

= c

−1∑
n=−∞

[
hp

λ(xn)dp−1
λ (xn)

∫
Δn

θp(t) dt

](
ρλ(xn)
hλ(xn)

)p

×
(

1
(ρλ(xn)dλ(xn))p−1 exp

(
−(p − 1)

∫ Δ+
−1

Δ+
n

dξ

r(ξ)ρλ(ξ)

))

� cmP (r, qλ, θ)
−1∑

n=−∞

1
(ρλ(xn)dλ(xn))p−1 exp

(
−(p − 1)

∫ Δ+
−1

Δ+
n

dξ

r(ξ)ρλ(ξ)

)

� c
mp

p(r, qλθ)
(ρλ(x)dλ(x))p−1

−1∑
n=−∞

exp
(

−(1 − α)(p − 1)
∫ Δ+

−1

Δ+
n

dξ

r(ξ)ρλ(ξ)

)

� c
mp

p(r, qλ, θ)
(ρλ(x)dλ(x))p−1

−1∑
n=−∞

exp
(

−1 − α

2
(p − 1)(|n| − 1)

)

= c
mp

p(r, qλ, θ)
(ρλ(x)dλ(x))p−1 . (4.28)

Inequality (4.21) follows from Lemmas 4.6, 4.7, 4.9 and (4.27) and (4.28). �

Remark 4.10. In all the following lemmas, except for Lemma 4.12, we always assume
that the pair {r, q} has the exponent γ(b) with internal parameters a � 1 and λ � 0 (see
Definition 3.1). Therefore, for brevity, we formulate our statements by writing γ(b) =
γ(b, a, λ).

Lemma 4.11. Suppose that the pair {r, q} has the exponent γ(b) = γ(b, a, λ) � γ0,
γ0 = exp(− 1

500 ) (see Theorem 3.4). Then, b � 1.

Proof. Assume the contrary, that b ∈ (0, 1). Then,

exp
(

1
500

)
=

1
γ0

� 1
γ(b)

� 1
a

exp
(

b

500a2

)
� exp

(
b

500

)
< exp

(
1

500

)
,

which is a contradiction. Hence, b � 1. �

Lemma 4.12. Suppose that the pair {r, q} has the exponent γ(b) = γ(b, a, λ) � γ0.
Then, for all x ∈ R the following inequalities hold:

1
4e2a

� dλ(t)
dλ(x)

� 4e2a if |t − x| � dλ(x). (4.29)
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Proof. Since b � 1 by Lemma 4.11, for t ∈ [x−dλ(x), x+dλ(x)] from (3.3) and (2.15),
we obtain the relations

1
4e2a

� 1
a

hλ(x)
hλ(t)

� dλ(t)
dλ(x)

� a
hλ(x)
hλ(t)

� 4e2a.

�

Lemma 4.13. Suppose that the pair {r, q} has the exponent γ(b) = γ(b, a, λ) � γ0.
Then, for all t, x ∈ R the following inequality holds:

∣∣∣∣
∫ t

x

dξ

r(ξ)ρλ(ξ)

∣∣∣∣ � 1
16e2a

∣∣∣∣
∫ t

x

dξ

dλ(ξ)

∣∣∣∣ − 1
2
. (4.30)

Proof. Let t � x (the case t � x is treated in a similar way), let {Δn}∞
n=1 be an

R(x, dλ)-covering of [x,∞), and let t ∈ Δn. Together with (4.29), this leads to the
relations

∫ t

Δ−
n

dξ

r(ξ)ρλ(ξ)
� 0,

∫ t

Δ−
n

dξ

dλ(ξ)
�

∫
Δn

dξ

dλ(ξ)
=

∫
Δn

dλ(xn)
d(ξ)

dξ

dλ(xn)
�

∫
Δn

4e2a
dξ

dλ(xn)
= 8e2a.

These relations imply the following obvious estimates:

∫ t

Δ−
n

dξ

r(ξ)ρλ(ξ)
� 1

16
2a

∫ t

Δ−
n

dξ

dλ(ξ)
− 1

2
, t ∈ Δn. (4.31)

In particular, for n = 1 from the inequality Δ−
1 = x, we see that (4.31) coincides

with (4.30). Now Let t ∈ Δn, n � 2.
Below we use Definition 2.10, Lemmas 2.13, 2.5, 2.8, 4.11 and (4.31) to obtain that

∫ t

x

dξ

r(ξ)ρλ(ξ)
=

n−1∑
k=1

∫
Δn

dξ

r(ξ)ρλ(ξ)
+

∫ t

Δ−
n

dξ

r(ξ)ρλ(ξ)

� 1
2

n−1∑
k=1

∫
Δk

dξ

r(ξ)hλ(ξ)
+

∫ t

Δ−
n

dξ

r(ξ)ρλ(ξ)

= 1
2

n−1∑
k=1

1 +
∫ t

Δ−
n

dξ

r(ξ)ρλ(ξ)

= 1
2

n−1∑
k=1

1
2

∫
Δk

dλ(ξ)
dλ(xk)

dξ

dλ(ξ)
+

∫ t

Δn−

dξ

r(ξ)ρλ(ξ)
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� 1
4

n−1∑
k=1

1
4e2a

∫
Δk

dξ

dλ(ξ)
+

1
16e2a

∫ t

Δ−
n

dξ

dλ(ξ)
− 1

2

=
1

16e2a

{ n−1∑
k=1

∫
Δk

dξ

dλ(ξ)
+

∫ t

Δ−
n

dξ

dλ(ξ)

}
− 1

2

=
1

16e2a

∫ t

x

dξ

dλ(ξ)
− 1

2
.

�

Lemma 4.14. Suppose that the pair {r, q} has the exponent γ(b) = γ(b, a, λ) � γ0,
and let x ∈ R. There then exist R(x, bdλ)-coverings of (−∞, x] and [x,∞).

Proof. This follows from Lemma 2.8, condition (3.5) and Lemma 2.11.

Lemma 4.15. Suppose that the pair {r, q} has the exponent γ(b) = γ(b, a, λ) � γ0,
and let x ∈ R. Denote by {Δn}−1

n=−∞ and {Δn}∞
n=1 the R(x, bdλ)-coverings of (−∞, x]

and [x,∞), respectively. Then, if t ∈ Δn, |n| � 1, we have the inequalities

1
a2|n| � hλ(t)dλ(t)

hλ(x)dλ(x)
� a2|n|, |n| � 1, (4.32)∣∣∣∣

∫ t

x

dξ

dλ(ξ)

∣∣∣∣ � b

a
(|n| − 1), |n| � 1. (4.33)

Proof. Let t ∈ Δn, n � 1 (the case n � −1 is treated in a similar way). Then, by (3.3)
we obtain the inequalities

1
a

� hλ(t)dλ(t)
hλ(xn)dλ(xn)

� a,

1
a

� hλ(xn)dλ(xn)
hλ(Δ−

n )dλ(Δ−
n )

� a

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇒ 1
a2 � hλ(t)dλ(t)

hλ(Δ−
n )dλ(Δ−

n )
� a2 for t ∈ Δn, n � 1.

(4.34)
�

In particular, for n = 1, from (4.34) and the equality Δ−
1 = x, we obtain (4.32). Now

let t ∈ Δn, n � 2, and k = 1, n − 1. Once again, we use (3.3) and obtain that

1
a

� hλ(Δ+
k )dλ(Δ+

k )
hλ(xk)dλ(xk)

� a,

1
a

� hλ(xk)dλ(xk)
hλ(Δ−

k )dλ(Δ−
k )

� a

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇒ 1
a2 � hλ(Δ+

k )dλ(Δ+
k )

hλ(Δ−
k )dλ(Δ−

k )
� a2 for k = 1, n − 1.

(4.35)
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By (4.34), (4.35) and Definition 2.10, we now have that

hλ(t)dλ(t)
hλ(x)dλ(x)

=
hλ(t)dλ(t)

hλ(Δ−
1 )dλ(Δ−

1 )

=
[ n−1∏

k=1

hλ(Δ+
k )dλ(Δ+

k )
hλ(Δ−

k )dλ(Δ−
k )

]
hλ(t)dλ(t)

hλ(Δ−
n )dλ(Δ−

n )

≶
[ n−1∏

k=1

a±2
]

· a±2 = a±2|n| ⇒ (4.32).

We now turn to (4.33). Let t � x (the case t � x is treated in a similar way). For n = 1,
the estimate (4.33) is obvious. For n � 2, using Definition 2.10 and (3.4), we obtain that∫ t

x

dξ

dλ(ξ)
=

n−1∑
k=1

∫
Δk

dξ

dλ(ξ)
+

∫ t

Δ−
n

dξ

dλ(ξ)
�

n−1∑
k=1

b

a
=

b

a
(n − 1).

�

We finally turn to the proof of the theorem. To this end, we show that if the pair {r, q}
has the exponent γ(b) = γ(b, a, λ) � γ0 = exp(− 1

500 ), then, for the given λ and α = 1
2 ,

inequalities (4.19) hold. First note that, under our assumptions, we have the relations

ae−(1/64e2)(b/a2) < e−(1/500)(b/a2) < e−1/500 < 1

⇒ a2(n−1) � e(1/32e2)(b/a2)(n−1) for n � 1

⇒ 4a2n � c0e(1/32)(b/a2)(n−1)−1/4, c0 = 4a2e−1/4, n � 1.

(4.36)

Let t, x ∈ R be given, and let t � x. There then exists a segment Δn, n � 1, from an
R(x, bdλ)-covering of [x,∞) such that t ∈ Δn. By (4.32) and (2.13), we have that

ρλ(t)dλ(t)
ρλ(x)dλ(x)

� 4
hλ(t)dλ(t)
hλ(x)dλ(x)

� 4a2n, n � 1. (4.37)

On the other hand, from (4.30) and (4.33), it follows that

1
2

∫ t

x

dξ

r(ξ)ρλ(ξ)
� 1

32e2

1
a

∫ t

x

dξ

dλ(ξ)
− 1

4

� 1
32e2

b

a2 (n − 1) − 1
4
, n � 1. (4.38)

For t � x, x ∈ R, this implies, taking into account (4.36), (4.38) and (4.37), that

ρλ(t)dλ(t)
ρλ(x)dλ(x)

� 4a2n � c0 exp
(

1
32

b

a2 (n − 1) − 1
4

)

� c0 exp
(

1
2

∫ t

x

dξ

r(ξ)ρλ(ξ)

)
⇒ (4.19).

The lower estimate in (4.19) and the case t � x are treated in a similar way, and
inequalities (4.19) are proved. The theorem now follows from (4.20) and (4.21). �
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