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Abstract

Let t, m > 2 and p > 2 be positive integers and denote by N(t, m, p) the largest integer for which
there exists a /-uniform hypergraph with N (not necessarily distinct) edges and having no indepen-
dent set of edges of size m and no vertex of degree exceeding p. In this paper we complete the
determination of N(t, m, 3) and obtain some new bounds on N(t, 2, p).

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 65.

1. Introduction

We continue in this paper our study of the following combinatorial problem
which we investigated in [1], [2] and [3]. Let t, m > 2 and p > 2 be positive
integers and denote by N = N{t, m,p) the largest integer for which there exists
a f-uniform hypergraph with N (not necessarily distinct) edges and having no
independent set of edges of size m and no vertex of degree exceeding p. Such a
graph will be called a (t, m,/?)-graph.

The problem of evaluating N(t, m,p) for all values of the parameters seems to
be very difficult. In our earlier work we established some upper and lower
bounds and obtained exact values of N{t, m,p) for various infinite classes of
values of t, m and p. In this paper, we obtain further exact values and some
improvement on bounds.

In [1], we proved that

N(t, m, 3) = {It + l)(w - 1) if t = 0, 1 (mod 3>
( * (2/ - l)(m - 1) < N(t, m, 3) < {It + l)(m - 1) if t = 2 (mod 3).
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We complete the determination of N(t, m, 3) by proving

THEOREM A. N(t, m, 3) = 2t(m - 1) if t = 2 (mod 3).

In [1], we also proved that

(2) N(t,2,p)<tp-t+l.

We pointed out that equality holds in (2) whenever there exists a block design
B(b, v, r, k, X) with r = t, k — p and X = 1. In [2], we showed that if there exists
a projective plane of order t — \ and if p = 0 (mod t), then

(3) N(t,2,p)>p(t2-t+l)/t.

Consequently, if t is large and p is large compared to it, then the bound given by
(2) is asymptotically correct.

We prove in this paper that if t is considered fixed, the bound given by (2) can
be significantly improved for large p. It will be convenient to formulate our
results in terms of

A
p->K> p

It follows from (2) that /?, < /. We shall prove the following result:

THEOREM B. For all t > 2,

,A\ o i l "(<2 ~ 2') ~ (4 + 4 ' 3 - 6 ' 2 + 4t

(4) p. < t - 1 + max < — ;

» I n2 - n(2t + 1) + t3 - 2t2 + 3t

where the maximum is taken over all n > t2 — t + 1.
In what follows we denote the degree of a vertex x of a graph <<F by d(x) and

ds{x) will denote the degree of x in the subgraph § of ^F.

2. Proof of Theorem A

We use induction on m. Consider first the case m = 2. We have from (1) that
2/ - 1 < N(t, 2,3)<2t + l. That N(t, 2, 3) > 2t is shown by the following
explicit construction: Take a block design B(b, v, r, k, X) with parameters v = 2t
- 1, b = ((? - 1)(2/ - l ) ) /3 , r = t - 1, k = 3, X = 1, that is a Steiner triple
system. The condition t = 2 (mod 3) is sufficient to ensure that such a design
exists. Let the elements be «,, « 2 , . . . , « , and let the blocks be Bx, B2, . . . , fi6.
Let A be the incidence matrix of the design so that A = [atJ] where atj = 1 if
Vj G 5, and 0 otherwise. Let 9 be the family of sets whose incidence matrix is
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A T, the transpose of A. The members of § may be thought of as the edges of a

(/ - l)-uniform hypergraph. No te that each vertex has degree three and each

pair of edges intersect. Let Gx, G2, • • •, G2t_l ^ e the edges of §. Let E =

{ux, u2, . . . , u,} be a set which is disjoint from U § • For / = 1, 2, . . . , M e t

F2i_i = G2,_, u {«,} and for i = 1, 2, . . . , t - 1 let F2i = G^ u {«,}. Let ®s be

the /-uniform hypergraph whose edges are E, Fv F2, . . . , F ^ , . Then it is a

simple matter to check that *% has all of the properties needed to establish that

N(t, 2, 3) > It.
We now have to rule out the possibility that N(t, 2, 3) = 2/ 4- 1. Suppose

N(t, 2,3) = 2t+l and let f be a (t, 2, 3) graph. Not all vertices of % have
degree three since this would give tN = 0 (mod 3). Thus there is a vertex v
which has degree at most 2. Then if v G F we have

1̂ 1 < d(v) + 2 (d(u) - 1) < 2t,

a contradiction. Thus N(t, 2, 3) = 2t.

It turns out that in order to make the induction argument go through we need

a fairly strong induction hypothesis. We record first certain properties of the

(r, 2, 3) graphs which we shall need to make use of later.

(a) A (t, 2, 3) graph has no vertex of degree one.

(b) A (/, 2, 3) graph has at least one vertex of degree two, since otherwise we

would have tN = 2t2 == 0 (mod 3).

(c) If a (t, 2, 3) graph has two vertices of degree two, they d o not appear in the

same edge.

(d) A (t, 2, 3) graph does not have / or more vertices of degree two. (It is clear,

by (c) that there cannot be more than / vertices of degree two. If there were /

such vertices, each edge would have to contain exactly one vertex of degree two

and all other vertices would be of degree three, so that if s is the number of

vertices of degree three we have 2t + 3s = tN = 2t2, bu t this implies t =

1 (mod 3).)

Now let m > 2 and take, as the induction hypothesis, the following statement:

for 2 < k < m, N(t, k, 3) = 2t(k — 1) and component of a (/, k, 3) graph is

either a {t, 2, 3) graph or a (t, I, 3) graph, / < k in which each vertex is of degree

three.

Let f be a (t, m, 3) graph. If ®j is not connected, the desired conclusion

follows immediately from the induction hypothesis. Hence we suppose that ^ is

connected. We need to show that 1^1 = 2t(m — 1) and that all vertices of $

have degree 3. We may suppose that n ( > 2) is the least integer for which a

connected (t, m, 3) graph exists.
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We note that if v is a vertex of *$ and if v e E then

(5) |«F| < d{v) + £ id{u) - 1) + 2

It is an immediate consequence of (5) and the induction hypothesis that F̂ has
no vertex of degree one. We therefore need to consider two cases.

Case 1. *$ has a vertex of degree two. Let t> be a vertex of degree two and let
v £ E.It follows from (5) that

| f | < 2 + 2(t - 1) + N(t, m - 1, 3) = 2t(m - 1)

so that 1̂ 1 = 2t(m - 1). Let & = {F: F <E <», F n E ¥= 0) and let $ =
{/": F e.<5,F n E = 0 } . It is clear that |<£| < It. If |tf| < It, then |<S | >
2t(m — 2), so that there is an independent set of edges in ® of size m — 1. This
set, together with E, gives an independent set of size m in Sr. Thus |6E| = 2t, and
I© | = 2t(m - 2) = # 0 , w - 1, 3). It follows that % is a. (t, m - 1, 3) graph.
By the induction hypothesis and the minimality of m, •$ has components Hx,
H2, • • • , Hm_2 which are (t, 2, 3) graphs. Since W is connected, there exists a
vertex x such that x e U & and x £ U § . The structure of ® and (a) imply
that x must appear in two members of % and in only one member of &. By (a),
& is not a (t, 2, 3) graph. Hence there are two sets Fv F 2 £ ^ which are disjoint.
There cannot exist in each H( a set which is disjoint from .F, u F2 since this
would clearly yield an independent set in ^ of size m. Hence for some

j , 1 < j < m — 2, every member of Hj intersects F, u F2, and by (c), in exactly
one place. This implies that Hj contains / vertices x such that dH(x) = 2,
contrary to (d).

Case 2. All vertices of ®i have degree three. It follows from (5) and the
induction hypothesis that |<f | < 2t + 1 + N(t, m - 1, 3) = 2t(m - 1) + 1.
Thus all that remains is to rule out the possibility 1̂ 1 = 2t(m — 1) + 1. Let E be
an edge of <$ and let & = {F: F e <5, F n E ¥= 0} and let 9 = { F : f G f ,
f n f = 0 } . Then |ft| < 2t + 1. If \&\ < 2t we have |® | > JV(f, m - 1, 3) so
that ® contains an independent set of size m — \ and this, with E, gives an
independent set of size m in W. Hence we may suppose |6E| = 2 f + l , |®| =
2t{m — 2) and % is a (t, m — 1, 3) graph. Since *3 is connected, not all vertices
x in U $ satisfy rf(x) = 3. Thus, by the minimality of m, % has components
Hv H2, . . . , Hm_2 where each Hi is a (/, 2, 3) graph. Now |# | > 2t = AT(f, 2, 3)
implies that there are two members of &, say /", and F2, which are disjoint. The
remainder of the argument now parallels that given in Case 1. Thus |<F| =
2t{m — 1) + 1 cannot occur. This completes the proof of the theorem.
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We do not know whether the (/, m, 3) graphs for m > 3 consist of m — 1
components, although we suspect that this is the case. Such is not the case in
general, however. For example, as was pointed out in [3], N(3, 3, 4) = 16 and
the following graph is a connected (3, 3, 4) graph. The heavy edges have
multiplicity two and all others have multiplicity one.

3. Proof of Theorem B

Let h > 0 be defined by

(6) N(t, 2,p) = tp - t + 1 - h

and let 'S be an extremal graph; that is, 'S has N = N(t, 2,p) edges, maximal
degree p and any two edges of <3r intersect.

Every edge of *$ has a vertex of degree p, since if there were an edge all
vertices of which have degree less than p the multiplicity of this edge could be
increased. If follows from this observation that if there were fewer than / vertices
of degree p then N < {t — Y)p and our theorem would be proved. Hence we
may suppose there are at least / vertices of degree/?. Let n denote the number of
vertices of <S. We may suppose n > t2 — t + 1 since otherwise we get tN < pn
< p{t2 — i) so that n < (t — \)p. Let v be a vertex of minimal degree. Then

(7) d(v)(n - t)+ pt < tN

and it follows from (6) and (7) that

(8)
n — t

Let § = {F: F G <5, v G F). Since S ^ d^x) = (t - l)d(v) the average
value of ds(x) is (/ — l)d(x)/(n — 1). It is clear that there exists E G § which is
"at least average" in the sense that

(9) 2 «M > <4tf*i.
x¥-v
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Thus

FnE+o

< d(v) + (t — l)p — 2 ds(x),

and this, with (9), gives

(10) N < d(v) + (t — l)p -.

\ / / n — \

and it follows from (6) and (10) that

d(v)>
n - t2 + It - 2

The maximum value of the right side of (10), subject to (8) and (11) occurs
when (8) and (11) hold with equality. One finds, after some routine manipula-
tions, that

N < It - 1 + -A- '- p + a(n, t)
{ n2 - n(2t + 1) + t3 - It2 + 3t j K '

where a(n, t) depends only on n and /. The theorem now follows immediately.
Since the right side of (4) is fairly complicated, the improvement over (2) may

not be apparent. We illustrate for the case t = A. When / = 4, it follows from (2)
and (3) that 3.25 < /34 < 4, while (4) gives

/ 8« - 80 \
A, < 3 + max — .

n>n\n2 - 9n + 44/
One finds that the maximum occurs at n = 17 so that j64 < 149/45 < 3.312.

References

[1] H. L. Abbott, D. Hanson and A. C. Liu, 'An extremal problem in graph theory', Quart. J.
Math., Oxford Ser. 131, 121, 1980.

[2] H. L. Abott, M. Katchalski and A. C. Liu, 'An extremal problem in graph theory II', J.
Austral. Math. Soc., (to appear).

[3] H. L. Abbott, M. Katchalski and A. C. Liu, 'An extremal problem in hypergraph theory",
Discrete Mathematical Analysis and Combinatorial Computation, Conference proceedings,
School of Computer Science, University of New Brunswick, Fredericton, (1980) pp. 74-82.

https://doi.org/10.1017/S1446788700033395 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033395


[7] An extremal problem in hypergraph theory 135

Mathematics Department
University of Alberta
Edmonton, Alberta
Canada

Department of Mathematics
University of Regina
Regina
Canada S4S 0A2

Mathematics Department
University of Alberta
Edmonton, Alberta
Canada

https://doi.org/10.1017/S1446788700033395 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033395

