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ORTHOGONALITY OF CERTAIN FUNCTIONS WITH 
RESPECT TO COMPLEX VALUED WEIGHTS 

GEORGE GASPER 

1. I n t r o d u c t i o n . In his work on the Dirichlet problem for the 
Heisenberg group Greiner [5] showed tha t each La-spherical harmonic is 
a unique linear combination of functions of the form 

ei*t sin\"\/20Hk("'n) (eie) 

w i t h £ = 0, 1,2, . . . a n d » = 0, dbl, ± 2 , . . ., where Hk^^(6ie) is defined 
by the generating function 

CO 

(1 _ te-")(«-l»l4-l>/*(1 _ te^-(n+|nl+a+l)/2= £ ^ {a,n){g , y _ 

Since Hk
{0'0)(eid) = Pk(cos 6), where Pk(x) is the Legendre polynomial of 

degree k, and these functions satisfy the orthogonality relation 

v 0 
P,(cos 6)Pk(cos d) sin 6 d6 = 0, j j* k, 

Greiner raised the question of whether the functions Hk
{a,n)(eid) are 

orthogonal or biorthogonal with respect to some complex valued weight 
function. 

In this paper we shall show tha t this is indeed the case and even show 
tha t the more general class of functions Ck

(a,l3) (eie) defined by 

CO 

(1.1) (1 - te'ie)-a(l ~ te'V = £ C*(a,flW 

satisfy the orthogonality relation 

/

'27T 

C,(a'w(eiB)Ch
{aS)(eie)w(a'ff)(6)de = 0, j * k, 

0 

when a, /3, a + /3 > — 1, where 

«;<«•#(0) = (1 - e-2ie)a(l - e2ieY. 

Hence the functions Hk
{a,n) (eie) are orthogonal on (0, 2ir) with respect to 

the weight function 

(I _ e-2id\(\n\-n-a+l) /2 n _ ^2 id\ (»+|»|+a+D /2# 
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Unfortunately, the theory of polynomials orthogonal on the unit circle 
[11, Chapter XI], [2, Chapter V], [4] cannot be applied to Ck^^(eie) 
since these functions are not polynomials in powers of z = eid and the 
weight function w(a'^(6) is not real valued when a ^ /3. It is easy to see 
that when a ^ ft the orthogonality relation (1.2) cannot hold with the 
upper limit of integration 2w replaced by w (even if w{a,l3) {6)dd is replaced 
by dn(0) where JU is a positive measure) or if Ck

{a^){eie) is replaced by its 
complex conjugate (also see the remarks at the end of Section 2). We shall 
also consider q- (basic) analogs of Ck

(a'^ (eie) which contain the continuous 
g-ultraspherical polynomials in [1] as a special case and give conditions 
under which they are orthogonal. 

2. The funct ion Ck<°"V(eie). Since 

(2.i) ( i - * n = £ # * * , 1*1 <i, 

where (a)o = 1 and (a)k = a (a + 1) . . . (a + k — 1) for k ^ 1, it follows 
from (1.1) that 

(2.2) Ck
la-n(eu) = i^Mff / e" 2 ' -» ' 

= ^e-ik\F\(-k,P;l-a-k;eue). 

Thus 
Ck<«'V(eie) = Ck^^{eie) and Céa'a)(ei9) = Ck«(cosd), 

where Ck
a(x) is the ultraspherical polynomial of degree k and order a. 

To prove the orthogonality relation (1.2) we first need to show that 
for any integer n that if a, /3, a + /3 > —1 then 

(2.3) j2\in6w(a^(d)dd = | 0, n odd, 
7 (a,13) 

hn/2 , n even, 
^here 

(ai/S) _ 2irY{a + (3+ 1) ( -g) w 

r(a + i)r(/3 + i) (/3 + i)w-
Note that, since (a)_m = ( ~ l ) w / ( l ~ a)mi ( -a)m / ( /3 + l)m can be 
replaced by ( — @)-m/(a + l )_m when m is a negative integer. By (2.1), 
if III < 1 then 

/ , 

2TT 

•2i6\a/-. , 2*i e~"(l - te-zt")"(l - te"fd9 
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which equals zero when n is odd and equals 

*V (k + m)\kl 

= - ( ~ f ) m r
 2Fx(m - a, -0; m + l;t2) 

ml 

when n = 2m, m = 0, 1, 2, . . .. Letting £ —» 1 — and using Gauss' formula 

gives (2.3) for n ^ 0; while the case n < 0 follows analogously (or by 
using the fact that wia^(-6) = w^'a)(d)). 

In view of (2.2) to prove (1.2) it suffices to show that 

*J o 
(2.4) emaCk

{afP)(eza)w{a'P)(e)dd = 0, k > \n\. 
J o 

By (2.2) and (2.3) this holds if k — n is odd; while if k — n = 2m is even 
and k — 2 ^ \n\ then the above integral equals 

(2.5) ^£,-J~k)i(fi)irr- fU ^J-iM)'wla-n(9)d0 
k\ £oj!( l - a - k)j J o 

27rr(a + 13+1) (a)*(-/3)„ 
T(a+ l)r(j8+ !)*!(«+ 1)„ 

X . * ( 1 4 . ~ * * , / J , ~ i a ~ m ,= l ) = n 

\1 + 0 — m, 1 — a — k ! 

from the case p = 2 of the formula 
(2.6) , + 1 ^ ( a ' 6 l +

;
W l - - - ^ + ^ ; l ) = 0 , 

Re ( — a) > mi + . . . + wp, 

where, as elsewhere, it is assumed that mi, . . ., mv are non-negative 
integers and that no denominator parameter is a negative integer or zero ; 
see [7] and [8]. This completes the proof of (2.4) and hence of (1.2). 

To show that 

(«,/3)/ i«u2 (a^)/M / J û _ 27lT(& + g + 13) (2k + Oi + fl) 
(2.7) / o ( C . - ( 0 ) V - ( W » - i ! r ( a ) r 0 s ) ( i + a ) ( t + /s) 

if suffices to apply the summation formula [7] 

/0 Qx j,. /a, &, 61 + wii, . . . ,bp + mp \ T(b + 1)T(1 - a) 
(2.8) p+^P+1y b + ltbl bp ; 1 ) - T(l + b _ a ) -

X ^ ^ ^ f ^ K Re(-a)>mi + ...+mp-l, 
\0l)mi • • • \Pp)mP 
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to the cases n = ±k of the sum in (2.5) to obtain for k > 0 that 

(2.9) eikeCk
(a'm(eie)w(a^(e)dd 

/
* iker (".»)(ii\„J"fi)(ft\rift _ 2fl-r(fe + a + ff) 

(2,0) / ; e - C ^ ( . - ) ^ W - £ $ £ £ & . 

and then to use (2.2) and (2.3). The 3^2 cases of (2.6) and (2.8) can be 
proved by using the Thomae transformation formulas for 3^2 series [10, 
Section 4.3]. 

Remarks. From (2.2) it is clear t h a t neither eie nor e~id can be wri t ten 
as a linear combination of the functions C1c

(a^) (eid) when a ^ 0 and fi 7^ 0. 
Since the functions {ein6}n=-œ are closed in the L2 space of functions 
f{B) with 

J 0 i/(e)rK,w(e)i^<oo, 
it is natural to consider how the system 

(2.11) { C ^ V ) } ^ 
could be enlarged to form a closed orthogonal system. Observing t ha t 
Ck

(a,P}(z) is wha t Jones and Thron [6] call a Lauren t polynomial in the 
complex variable z, one is tempted in analogy with their theory of or tho­
gonal Laurent polynomials on the interval [0, 00 ) to t ry to find constants 
a, b such t ha t the function ae~ie + b is orthogonal (in the sense (1.2)) to 
each Ck

(a'^ (eid). But , in general, the case k = 1 implies t h a t a = 0 and 
so this fails. 

However, when a = /3 we can use the fact t ha t the ultraspherical 
polynomials 

Ck
a+1(cosd) = Ck<

a+lM+»(ei9), 

which are even functions of 0, satisfy the orthogonali ty relation 

J 0 
C/ + 1 (cos d)Ck

a+\cos 6) sin 2dw (a'a\d)dd = 0, j ^ &, 

to see t ha t the functions 

(2.12) {Ck
a(cos 6), sin 0C*a+1(cos 6)}IU 

form a closed (in L2) orthogonal system on (0, 2TT) with respect to the 
weight function w(a'a)(6). Since 

sin 6 C0
a+1(cos(9) = sin 6 = (eid - e~1d)/2i, 

this suggests t ha t when \a\, \(3\ < 1, a ?£ $ we should first consider a 
function of the form 

d(a'^(eie) = ae~ie + b + ceie. 
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In view of (2.3), (2.4), (2.9), and (2.10), in order for this function to be 
orthogonal to each function in (2.11) it is necessary and sufficient t ha t 
b = 0 and a(3((3 + 1) + ca(a + 1) = 0. Thus we may take 

Cl("'f»(ei9) = (a)2e-id - (I3)2e
ie, 

which will be linearly independent of the functions in (2.11) as long as 
a 7e 0 and ]3 ^ 0 (note tha t , since 

r (0,/?)/ z0x _ (§)k ikd 
^k \ e ) — 7 | e } 

Cl(o,/3) (gf«) i s a constant multiple of Ci(0i/3) (e™) and Ci(a'0) (e<fl) is a constant 
multiple of G ( a ' 0 ) (e**)). Similarly we find tha t 

c2i«M(eie) = (a)^e-2ie + a0 (a - /3) - (/3)3e
2?* 

and 

C3(«,0)(e**) = ( a ) 4 g-3^ + /3(2a + 3 - /3)(a)2e~^ 

- a(2/3 + 3 - a)(0)2e
i9 - (0) 4 e 8 " 

are orthogonal to each other, to Ci(a,l3) (eid) and to the functions in (2.11). 
Unfortunately, when a ^ 0 and (3^0 the succeeding functions of the 
form 

(2.13) ck
(afi>(eie) = £aj(k;a,p)eiW-k)e 

2=0 

t ha t need to be added to (2.11) to form a closed orthogonal system become 
progressively more complicated and so I have not been able to find any 
simple general formulas for them (except to say tha t if we normalize the 
right hand side of (2.13) so tha t a0(&; a, (3) = (a)*;+i then ak(k; a, 0) = 
-03 )*+ i ) . 

3. T h e ^-analog Ck
ia'^(eie; q). For \z\ < 1 the p + 1 0 p basic hyper-

geometric series is defined by 

(ah . . ., ap+K \ = v* (a i ;g) f e . . . (ap+iîg)fe 
p\ bh . . ., bv ' / fcéo (q\q)k(b1;q)k . . . (bp; q 

where (a; g)* = (1 — a) (1 — ag) . . . (1 — aqk~l), (a; g)0 = 1 and, as 
elsewhere, it is assumed tha t \q\ < 1 and no denominator parameter is 1 
or a negative integer power of q. 

Since the continuous g-ultraspherical polynomials Ck(cos 6; $\q) are 
defined in [1] by 

(o u (Pe-idt;q)œ(peidt;q)œ f . k 

(3-1) („-"*. n\ 7 7 W T ~ = L, Ck(cos 0; p\q)t , 

where (a; q)œ = Y\t=o (1 — aqk), it is natural to consider for a g-analog of 
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Ck
M) {ei6) the functions Ck

{a^ (eie ; q) defined by 

\e t,q)œKe t,q)œ k=o 

Then 
C,(cos6>;/3|g) = Ckv-f»(eie;q) and 

From (3.2) and the g-binomial theorem [10, p. 92] 

it follows tha t 

(3.4) C*("'V;«) = f ^ 4 ^ # ^ ( 2 ^ } " 

( « ; g)fc ,-i/fc© - , ( q > P - i a*«\ 
, x t 2*1 I - 1 l - fc îg ,« ^ ! 

We shall show t h a t if |a| < 1 and |/3| < 1 then these functions satisfy 
the orthogonali ty relation 

(3.5) f 2" C1
(aifi\eie;q)Cjfa'fiHei6;qWa'fi\6;q)de - 0, ; ^ *, 

where 

.,„(«./*>//,. ,\ ^ ; g ) o o ^ ; g ) co 
, / ; (ae '•';q)m(j3e*";q)a, 

Using (3.3) and the transformation formula | 1 , (4.7) | 

A la<b.„ A - ( f e ; ç L ( c / ô ; ç ) œ iabz/c,b \ 

we find, as in the proof of (2.3), t ha t for any integer n 

(o c\ I '* M («>0)//> \JÛ JO, w odd, 
(3.6) l e w - (O\q)d0 = ) 7 {a,$)f , 

J o \rtn/2 (<?), n even, 
where 

L («'f»(n\ _ 27r(q; q)œ((3q; q)co am(pTl\ q)m ( 1 - ft m\ 
m W ~~ ïq;qUa(l;q)œ " tfq;q)m " V + 1 - âq ) 

and we used the fact t ha t 

(a;q)-n = (-l)n<r"q"W*/(q/a;g)n. 

Then (3.4) and (3.6) yield t ha t 

(3.7) fW e^C^le"; q)w(a^(d; q)dd 

https://doi.org/10.4153/CJM-1981-095-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-095-3


COMPLEX VALUED WEIGHTS 1267 

equals zero when k — n is odd and equals 

( 3 8 ) 27r(a;g)00(i8g;g)00 (a; g M f l g H / T 1 ; g)w 

(q;q)œ(<xP\q)œ (q\ q)k(aq; q)m 

1-/3 /2-*,/s, «-y» 2 u 

when k — n = 2m is even. From the g-analogs of (2.6) derived in [3, (8), 
(15)] it follows tha t both of the above 3$2 series and hence the integral 
(3.7) are equal to zero when k > \n\; which, in view of (3.4), completes 
the proof of (3.5). This can also be derived by writing the sum in braces 
in (3.8) as a 40s series and applying the transformation formula [1, (4, 
10)]. 

Application of the two ç-analogs of (2.8) in [3, (7), (14)] to (3.8) in 
the cases n = ±k ^ 0 gives 

(3.9) \ e ^ C - V ^ V 9 ; q)w{a'm{6; q)dd 

2ir(a; q)œ(Pq; q)œ(aP; q)k 

(q;q)œ(a(3',q)œ(Pq;q)k 

)27r(ag; gLO?; gLfaft; g)k 

(q;q)œ(a/3;q)œ(aq\q)k 

from which it follows tha t 

du» i';'(6v»(«-:S))v«(M)*= „ !J ) i>Mi ,u , iS ) 

n = k > 0, 

n = -k < 0, 

2 - (a + /3)<z* 
X ( l - / 3 2 * ) ( l - a f f V 

Remarks. As in Section 2 one can show tha t the function 

Cli«M(eie;q) = (a;q)2erie- (P;q)2e
i9 

is orthogonal to each Ck
(a'^ (ei9; q) and compute the succeeding functions 

of the form 

3=0 

so tha t , for | d < 1, |/3| < 1, 

{6* " ( * ;g),^*+i (« ;g)}*=o 

is an orthogonal system on (0, 2w) with respect to the weight function 
w(a,^(6; q). In the continuous g-ultraspherical case a = /3, Section 2.5 in 
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[11] yields for the polynomials ck(x; fî\q) defined by 

( l - x 2 K ( x ; / 3 | g ) =Ck+2(l;P\q)Ck(x;P\q) -Ck(l;P\q)Ck+2(x;0\q) 

t h a t 

I c^x; (3\q)ck(x;P\q) sin2 Ow^'^(6; q)dd = 0, j ^ k, 
J o 

and so, analogous to the system (2.12), the functions 

{Cfc(cos<9; /3\q), sin 0c* (cos 0; /3|g)}ÏU 

form a closed (in L2) orthogonal system on (0, 2TT) with respect to the 
weight function w^^ (0; q), |/3| < 1. This suggests t h a t an Hp theory can 
be developed for the continuous g-ultraspherical polynomials analogous 
to t ha t given for the ultraspherical polynomials in [9]. 

4. Add i t i ona l o r t h o g o n a l f u n c t i o n s . The generat ing function (3.2) 
suggests t ha t we should also consider the more general functions Ck

{a,fi,y) 

(eid; q) defined by 

{AI\ (Q*r^;ff)oo(/^;g)co _ v r^^io*. n\*K 

(e t',q)œ(ye t;q)œ ktg 

Then 
Ck(«>P'»(eie;q) = Ck^^(eie;q). 

Note t ha t if {e~lH\ q)œ is replaced by (ôei9t; q)œ, ô ^ 0, in (4.1), then this 
case can be reduced to (4.1) by replacing /, a, 13, y by t/ô, ad, /3ô, yô, 
respectively. 

As in Section 3, it follows from (4.1) t ha t 

(4.2) C*(tt''"V; q) = È % i - % i ^ i f l l y*e«w 
U (q;q)h-j(q;q)j 

= / „ . „ N e 2*11 -ix-k;q,ya qe I . 
(q;q)k \a q / 

Analogous to (3.5) one is led to expect t h a t for |a|, |/3|, |7 | < 1 the 
orthogonali ty relation 

/

'27T 

0 
(4.3) C / a " " " V ; q)Ck

{a^y>(e'°; q)w{"-p-y)(0; q)dd = 0, j * k, . (a ,0,7) (ni$. „ \ r (a,$,y){nid, „\„Ja,0,y)/ 

0 

should hold with 

/ -2 id N / 2 id x 

^ v^» q) — / - 2 ^ \ ( 0 2id \ • 

Unfortunately this is not the case, as we shall show, wi thout addit ional 
restrictions on the parameters . 
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Using (3.3) we find tha t 

(4.4) J* eindw(a'P'y)(d;q)dd 
J o 

equals zero if n is odd and equals 

k k+m nk 

(4.5) 2T 2^ —7 N ; x OL p 

2>Kam(a 1;q)m (qm/a, y 
' 2 <Pl I m+ \/fi;q,ap) 

(q_\q)m \ qn 

if n = 2m, m = 0, 1, . . .. 
When 7 = q this 20i can be summed by the g-analog of Gauss ' theorem 

[10, p. 247] to give 

(4.6) f2T e2im6w(a'0'Q\d; q)dO = ^-^llldÊlÛ^i^ ^g)» 
J o 

Jimeani(a,(3,q) ^ ^ ^ _ 

(q;q)œ(a/3;q)m (P\q)n 

which also holds for negative integer values of m. Then, from (4.2), 

(4.7) P ein6Ck
(a'P'Q)(eie; q)w(a^'ç\d; q)dd 

J 0 

equals zero when k — n is odd and equals 

2T(aq; q)Jfi; q)œ (a; g) f c/T(g//3; g)m /y-*, fl/y, ̂ ' f " 1
 2 \ 

( 4 - 8 ) (qiqU^-.q^ {q;q)k{aq-q)m-^\ ft-, «"V"* 'q'q J 

when k — n = 2m is even. By formula (8) in [3] the above 302 and hence 
the integral in (4.7) is equal to zero when k > \n\. Hence (4.3) holds for 
\a\, |/31 < 1 when y = q and, by (3.5), when 7 = 1. The integral in (4.3) 
can also be computed for 7 = q, j = k, by applying formula (7) in [3] to 
(4.8) and using (4.2). 

Since, by (4.1), 

Ck<"-PM(eie;q) = Ck^^(eie;q) 

it follows from the above tha t (4.3) also holds when 7 = fi. A simple 
computat ion shows tha t (4.3) also holds when a = 1. 

To see tha t (4.3) does not hold for |a|, \/3\, \y\, \q\ < 1 without addi­
tional restrictions it suffices to consider the case q = 0. From (4.5), 

/

'2TT 

^2zm0o /„(a,/3,7)/ 

0 
(4.9) I em*w™'y)(0;0)d0 

0 

1 — j# + 7 — ay , ra = 0, 
,am~ (a — 1)(1 — cry), m ̂  1, 

[/r-^i-flos-T), « ^ -1. 
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Hence 

J 0 1 — OLP 

which shows that in order for (4.3) to hold for q = 0 it is necessary that 
at least one of the following conditions must be satisfied 

(4.10) a = 0, 7 = 0, a = 1, y = 1, y = (3. 

That a = 0 is also a sufficient condition when q = 0 follows easily by 
using (4.9), while the sufficiency of the last four conditions in (4.10) 
follows from our previous observations. This completes our analysis of 
(4.3) for q = 0. Due to computational difficulties we so far have not 
been able to completely determine when (4.3) holds for q ^ 0. 

Added in proof. It should be noted that since, by page 3 of N. Levinson 
[Gap and Density Theorems, Amer. Math. Soc, 1940], the functions 
eikd, k = 1 , 2 , . . . , are closed over any interval of length less than 2ir, it 
follows that the functions Ck

{1'^(eie; q), k = 0, 1, 2, . . . , cannot be 
orthogonal with respect to any weight function over any interval of 
length less than 27r. In addition, this suggests the conjecture that the 
functions Ck<

a'f»(eie) and the functions Ck^^(eid;q), k = 0, 1, 2, . . . , 
are closed (in L1) over any interval of length less than 2w for suitable 
values of a, 0, and q. 
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