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YOSIDA FUNCTIONS AND PICARD VALUES
OF INTEGRAL FUNCTIONS AND THEIR DERIVATIVES

CHEN HuAlHUI

In this paper we improve and generalise a result of J. Clunie by proving that if
f(z) is a transcendental integral function with only zeros of order at least k + 1,
then f(k)(z) assumes every finite non-zero complex value infinitely often. Also,
the related criterion for normality of a family of holomorphic functions is given,
and the value distribution of f? + af{*®) is discussed.

Hayman’s conjecture [6, 7] that if f is a transcendental meromorphic function,
then ff' assumes every finite non-zero complex value infinitely often, has been proved.
First, Bergweiler and Eremenko proved the conjecture for functions of finite order;
and then, Bergweiler and Eremenko (1], the author of this paper and Fang [2], and
Zalcman [18] proved the conjecture for the case of infinite order simultaneously and
independently. The principal aim of the present paper is to improve and generalise this
result further in the case of integral functions. We prove the following theorem.

THEOREM 1. If f(z) is a transcendental integral function with only zeros of order
at least k+1, then f(¥)(z) assumes every finite non-zero complex value infinitely often.

Obviously, Hayman’s conjecture in the case of integral functions, which was proved
by Clunie [4] many years ago, is a direct consequence of the above theorem for k = 1.
In fact, if f(z) is a transcendental integral function, then {f(z)}? has only zeros of
order > 2. Thus, applying Theorem 1 to {f(z)}* and k = 1, we see that 2f(z)f'(z)
assumes every finite non-zero complex value infinitely often.

We also give a criterion for normality corresponding to Theorem 1, which is stated
as follows.

THEOREM 2. Let F be a family of holomorphic functions. H, for every function
f € F, f has only zeros of order at least k +1 and f®) does not assume the value 1,
then F is normal.

Yang and Zhang [15) have proved a criterion for normality of a family of holo-
morphic functions in which, for every function f in the family, f and %) — 1 have
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only zeros of order at least | and p respectively, where the positive integers k, [ and
p satisfies (k+1)/I+1/p < 1. Let p = oo, this means that f(*¥) — 1 has no zero,
then k and [ should satisfy k41 < I. So, in this special case, Theorem 2 weakens the
assumption of their criterion. The example {nzF :n = 1,2, ..} shows that the lower
bound k + 1 of the order of zeros in the assumption of Theorem 2 is best possible.

Besides the above theorems, we discuss the value distribution of f2 + af(*). We
us the standard notation of value distribution theory [8, 14].

1. Yosipa FUNCTIONS

The method of proving Theorem 1 is to prove it for a Yosida function first and,
then, to reduce the case of an arbitrary integral function to that of a Yosida function. A
meromorphic function f(z) defined on the complex plane C is called a Yosida function,
if its spherical derivative f#(z) = |f'(z)| /(1 + |f(z)|2) is uniformly bounded on C.
This notion was introduced by Yosida [17] who established some basic properties of this
class of functions. For example, the order of a Yoshida function is at most two and this
bound is sharp. Also, f is a Yosida function if and only if the family {f(z' + z) : z' € C}
is normal on C. Clunie and Hayman [5] proved that the order a holomorphic Yosida
function is at most 1. Minda [10] gave a precise estimate for the growth of a holomorphic
Yosida function, and the proof is based on a distortion theorem for holomorphic normal
functions on the unit disk, which is due to Pommerenke [13]. This fact as well as
the following theorem, which reduces an arbitrary meromorphic function to a Yosida
function inheriting some properties of the former, plays a key role in the proof of

Theorem 1.

THEOREM 3. Let f(z) be a meromorphic function on C with the property that
its zeros all have order at least k (a positive integer). If f(z) is not a Yosida function,
then for 0 < a < k, there exist a sequence of complex numbers z, — oo and a sequence
of positive numbers p, — 0, such that p;®f(zn + pn{) converges to a non-constant
Yosida function g(¢) spherically and locally uniformly on C.

By Marty’s criterion, f(z) is a Yosida function if and only if the family {f(a + z) :
a € C} is normal on C. Thus, Theorem 3 is a direct consequence of the following result.

THEOREM 4. Let F be a family of meromorphic functions with the property
that every function f € F has only zeros of order at least k(a positive integer). If F
is not normal at a point zy, then for 0 < a < k, there exist a sequence of functions
frn € F, a sequence of complex numbers 2], — 2z, and a sequence of positive numbers
pn — 0, such that p®f(z! + pn() converges to a non-constant Yosida function g(()
spherically and locally uniformly on C.

The above theorem is a generalisation of Zalcman’s lemma [19] and is almost the
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same as [3, Theorem 2]. It differs in that the limit function g(¢) is not only a non-
constant meromorphic function, but also a Yosida function. The proof in [3] did show
that ¢(¢) is a Yosida function. The cases “k = 1” and “k = 00” in [3, Theorem 2
were first proved by Pang [11] and Pang and Xue {12] respectively, in a different way.

One can obtain Theorem 3 from Theorem 4 directly. However, It remains to show
that z, — oo as n — oo. Suppose that z,; — 2. Since f(z) has only zeros of order
at least k, by Hurwitz’ theorem, g(¢) has no zero of order less than k. Thus g(() is
not a polynomial of degree less than k, and g(¥)(¢) # 0. Let g(¢o) # o0, g¥)(¢o) # 0.

Since
g®(G) = lim ¢{(¢o) = lim pl=*f(2n + palo),

we have

On the other hand, since
9(¢o) = Lim gn((o) = lim pr"f(2n + pno),

we have

fz0) = Jim (2, +pn;0) = 0.
This contradiction shows that z, — oo as n — oo.

2. PROOF OF THEOREM 1

Now, we are going to prove Theorem 1. First, we assume that f(z) is a Yosida
function. Then f(z) and f(*¥)(z) have order at most 1. Suppose that f(¥)(z) — a has
only finitely many zeros for a finite non-zero value a. Then f(*)(z) —a = p(z)e,
where b # 0 is a constant and p(z) # 0 is a polynomial. Thus,

f(z) = az* + q(2) + p1(2)e™,
f'(2) = akz*"1 + ¢'(2) + p2(2)e®?,
where, g(z), p1(z) and p,(z) are polynomials, g(z) has degree at most £k — 1 and
p2(2z) Z 0 has the same degree as p;(z) Z 0. Since p1(z)e®® has the Picard exceptional
values 0 and oo, f(z) = az*+¢(z)+p1(2z)e’* must have infinitely many zeros z, — oo,
for az* + g(z) is a small function with respect to p;(z)eb*.
According to the assumption that f(z) has only zeros of order at least k+ 1, we

have

azk 4+ g(2zn) + p1(2zn)e?™ =0,
akzE! 4 ¢'(2,) + p2(zn)eb™ =0
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for n =1,2,---. Hence,

P1(2n) a+z.%q(2n)
(zn) = =(k-1) )
P2\zn ak + 2, q'(z5)

This is impossible, for the left side tends to 1/b, while the right side tends to oo as
n — oo. We have proved the theorem for a transcendental and holomorphic Yosida
function f(z).

If f(z) is not a Yosida function, then, according to Theorem 3, we have a sequence
n(¢) = p7* f(2n + pn¢) with p, — 0 and 2, — oo, which converges to a non-constant
and holomorphic Yosida function g(¢) locally uniformly on C. By Hurwitz’ theorem,
g(¢) has only zeros of order at least k+ 1 and cannot be a polynomial of degree less
than £+ 1.

For a given finite non-zero complex value a, if g({) is a polynomial of degree at
least k41, then g(¥)(¢) assumes a finitely many times; if g(¢) is transcendental, then,
as proved for the first case, g{*)({) assumes a infinitely often. Let ¢’ be a point such
that g(®)(¢") = a. Since g(¥)({) # a, by Hurwitz’ theorem, there exists a sequence
of points ¢} — (' such that g&k)((;) = f)Nz, + pnC.) = a for n > ny. Note that
Zn + pn], — oo as n — oo. This completes the proof of Theorem 1. a0

The proof of Theorem 2 is an application of Theorem 4. We omit it as the reasoning
is almost the same as the second part of the proof of Theorem 1 for the case that f is

not a Yosida function.

3. ZEROS OF f2 +af(®

Let g be a transcendental meromorphic function. Then a well-known result of
Hayman [6] asserts that either g itself assumes every finite complex value infinitely
often, or g{*) assumes every finite non-zero value infinitely often for any positive integer
k. As a consequence of this theorem, we have that if f is a transcendental integral
function. Then f2+af' has infinitely many zeros for any finite non-zero complex value
a. In fact, for an integral function f, g = 1/f has no zero and the zeros of g¢' —1/a are
zeros of f% 4+af'. Ye [16], Hua and Chen [9] independently proved that this conclusion
can be generalised by substituting f(*) for f'. However, this generalisation is no longer
a consequence of Hayman's theorem again. Now, We shall prove the generalisation in
the same way as Theorem 1 is proved. In fact, our proof produces a stronger conclusion
in the case that f is not a Yosida function.

THEOREM 5. Let f be a transcendental integral function. Then f? 4 af(*) has
infinitely many zeros for any finite non-zero complex number a and any positive integer
k. Furthermore, if f is not a Yosida function (in particular, if f is a function of order
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greater than 1), then, for any finite non-zero complex number a and any positive integer

k, f2 + af(*) assumes every finite complex value infinitely often.

PROOF: First we assume that f is a Yosida function. Then f and f2+af(*¥) both
have order at most 1. If f2 4+ af(¥) has only finitely many zeros, then we have

(1) fz + a’f(k) = Pebz,
(2) 2ffl + af(k+l) — (bp+pl)ebz’

where p # 0 is a polynomial and b is a complex number. If b = 0, then from (1)
f2 + a’f(k) =D
and consequently

2m(r, f) = m(r,fz) < m(r,f2 + a.f(k)) +'m.(r,af(k)) +0(1)

<m(r, f) +m (7‘, ﬁf-k-)) + O(1),

m(r, f) < m(r, A+ af(k)) + O(log 7).

This contradicts the assumption that f is transcendental, and it is proved that b # 0.
Eliminating e®* between (1) and (2) gives

(3) f—-2qf =4

with ¢ = p/(bp + p') and
flE+1) Jil
—a—.

f f
By differentiating (3) k£ — 1 times, we obtain

A=aq

@ f —20f® = 4,
g1 f + g2 f® — 2953 = 4D,
qea f' + a2 P+ qup-n fETD — 2¢f8) = 47,

where, gj,; are rational functions, AU) are polynomialsin f'/f, f)/f,-.., f@*)/ f with
coefficients of rational functions. Eliminating f', 3. fE-1) among the above k

equalities, we arrive at

(4) F®) = hf + A,
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where h is a rational function and A, is a polynomial like A
Substituting (4) in (1), we have

(5) (f + “2—")2 +ado — “24"2 = pe®*.
Set g = f + ah/2, B = aAy — a®h?/4, then (5) becomes
(6) 9> + B = pe®=.
Differentiating (6) gives

(7) 2g¢' + B' = (bp + p')e".

By eliminating eb* between (6) and (7), we have

(8) 9(9 —2¢¢') = ¢B' - B.

Since B and B' are polynomials like AW,

(9) m(r,g(g — 299')) = m(r,¢B’' — B) = O(log 7).

To estimate m(r,g — 2qg’'), we note the inequality
gl
(10) 19~ 2ag') < ol (1+ 21al|£).
If |g(z)| > 1, then, from (8),
(11) l9(2) — 29(2)g(2)'| < |gB'(2)| + | B(2)] -
If |g(z)| €1, then, from (10),

!

g'(

%)

(12) () ~ 2a(2)g'(2)| < (1+ 212
It follows from (11) and (12) that
(13) m(r,g — 249') = O(log ).

If g—2q¢' =0, then
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Integrating the differential equation gives g?> = Apeb”. By substituting this equality in
(6), we obtain B = (1 — A)pe®*. This is possible only if A = 1, for B is a polynomial
like A9 such that m(r, B) = O(logr). From g? = pe®* we obtain f = ,/pe®*/2 —ah/2.
Thus, from (1),

(—ahy/p + h1)eb*/? + ia.zh2 - %azh(k) =0,

where hye?*/2 = a(\/ﬁeb’/z)(k). Hence, h; is a polynomial in z of same degree as
/P Since both of —ah,/p+ k1 and a?h?/4 — a?h(¥) /2 are rational functions, we have,
from the above equality, that these two functions are all equal to zero identically. From
—ah,/p+hy =0, we obtain h = hl/(a\/z_)), and h(oo) # 0,00 for hy and ,/p are poly-
nomials of the same degree. Consequently, (a2 h?/4 — @? h(")/2) loo = a2 {h(c0)}?/4 #0,
a contradiction. Thus, we have g — 2q¢' # 0.

Now, from (13) and (9), using Jensen’s formula, we have

1
m(r,g) < m(r,g(g — 2¢4')) + m (7‘, g——2qg_')

< N(r,9 —2qg') + O(log r) = O(log 7).

Consequently,
ah
m(r,f) <m(r,g) +m (r, %) +0(1) = Olog)

We arrive at a contradiction for f is transcendental according to the assumption, and
the theorem is proved in case that f is a Yosida function. a

Now suppose that f is not a Yosida function. Then, ¢ = 1/f is not a Yosida
function either, and ¢ has no zero. For a given positive integer k, by applying Theorem
3 to the function ¢, we have a sequence hn(¢) = p;*¢(2n + p¢) with p, — 0 and z, —
o0, which converges to a non-constant Yoshida function h((), without zero, spherically
and locally uniformly on C. Consequently, g,(¢) = 1/hn({) = pE f(2n + pn) converges
to the non-constant and holomorphic Yosida function g({) = 1/k(().

For a given finite non-zero complex number a, if g2 4+ ag®) = 0, then

g(®
g=-a- =, T(r,g) = m(r,g) = o(T(r,g))

outside of a set of finite linear measure, a contradiction. We have proved that g2 +
ag®) £ 0. If g is a polynomial, then g2 + ag® has finite many zeros; if g is a
transcendental and holomorphic Yosida function, then g? + ag(*) has infinitely many
zeros by the result just proved. Let g2({o) + ag‘*(¢o) = 0.
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For a given finite complex value b, the sequence of functions
93(0) +ag{(¢) — p2b = g2 ({f(2a + PuO)} + afD(C) - b)

uniformly converges to g2(¢) + ag(¥)(¢) near the point (. Using Hurwitz’s theorem,
we know that there exists a sequence of points (, — (o such that {f(zn + pnln)}* +
af(®¥)(¢,) — b =0 for n > ng. Note that z, + ppln — o0. This completes the proof of
Theorem 5. 1]

REFERENCES

[1] W. Bergweiler and A. Eremenko, ‘On the singularities of the inverse to a meromorphic
fuction of finite order’, Rev. Mat. Iberoamericana (to appear).
[2] H. Chen and M. Fang, ‘On the value distribution of f*f'’, (in Chinese), Sci. China Ser.
A 25 (1995), 121-127: (in English) 38 789-798.
[3] H. Chen and Y. Gu, ‘Improvement of Marty’s criterion and its application’, (in Chinese),
Sci. China Ser. A 23 (1993), 123-129: (in English) 36 674-681.
[4] J. Clunie, ‘On a result of Hayman’, J. London Math. Soc. 42 (1967), 389-392.
[6] J. Clunie and W.K. Hayman, ‘The spherical derivative of integral and meromorphic func-
tions’, Comment. Math. Helv. 40 (1966), 117-148.
[6] W. Hayman, ‘Picard values of meromorphic functions and their derivatives’, Ann. of
Math. 70 (1959), 9-42.
[7] W.K. Hayman, Research problems in function theory (Athlone Press, University of Lon-
don, 1967).
[8] W.K. Hayman, Meromorphic functions (Clarendon Press, Oxford, 1964).
[9] X. Hua and H. Chen, ‘Normal families of holomorphic functions’, J. Austral. Math. Soc.
Ser. A 59 (1995), 112-117.
[10] D. Minda, ‘Yosida functions’, in Lectures on Complez Analysis, (Qi-tai Zhuang, Editor)
{World Scientific Publishing co., Singapore, 1988), pp. 197-213.
[11] X. Pang, ‘Bloch principle and normality criterion’, Sci China Ser. A 11 (1988), 1153-1159.
[12] X.Pangand G. Xue, ‘A criterion for normality of a family of meromorphic functions’, (in
Chinese), J. Fast China Norm. Univ. Natur. Sci. Ed. 2 (1988), 15-22.
[13] Ch. Pommerenke, Normal functions, Proc. NRL Conf. on Classical Function Theory
(Math. Res. Center, Naval Res. Lab., Washington, DC, 1970).
[14] L. Yang, Theory of value distribution and its new researches (Science Press, Beijing, 1982).
[15] L. Yang and G. Zhang, ‘Recherches sur la normalité des familles de fonctions analytiques
4 des valeurs multiples I. Un nouveau critére et quelques applications’, Sci. China Ser. A
14 (1965), 1258-1271; “IL. Géneralisations’, (ibid.) 16 (1966), 433-453.
[18] Y. Ye, ‘A new normal criterion and its applications’, Chinese Ann. Math. Ser. A (supple-
mentary issue) 12 (1991), 44-49.
[17] K. Yosida, ‘On a class of meromorphic functions’, Proc. Physico-Math. Soc. Japan 16
(1934), 227-235.

https://doi.org/10.1017/5000497270002178X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270002178X

(9] Yosida functions 381

(18] L. Zalcman, ‘On some problems of Hayman’, Preprint, (Bar-Ilan University).

[19] L. Zalcman, ‘A heuristic principle in complex function theory’, Amer. Math. Monthly 82
(1975), 813-817.

Department of Mathematics
Nanjing Normal University
Nanjing, Jiangsu 210024
People’s Republic of China

https://doi.org/10.1017/5000497270002178X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270002178X

