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INFINITARY LOGIC HAS NO EXPRESSIVE EFFICIENCY OVER
FINITARY LOGIC

MATTHEW HARRISON-TRAINOR AND MILES KRETSCHMER

Abstract. We can measure the complexity of a logical formula by counting the number of alternations
between existential and universal quantifiers. Suppose that an elementary first-order formula ϕ (in L�,�)
is equivalent to a formula of the infinitary language L∞,� with n alternations of quantifiers. We prove that
ϕ is equivalent to a finitary formula with n alternations of quantifiers. Thus using infinitary logic does not
allow us to express a finitary formula in a simpler way.

§1. Introduction. This paper is about the relationship between finitary elementary
first-order logic (L�,�) and the infinitary logics (such as L∞,�) which extend it by
allowing conjunctions and disjunctions of infinite sets of formulas. These infinitary
logics are more expressive than the finitary logic, but lose compactness. For example,
there are classes such as connected graphs and torsion groups which cannot be
axiomatized in the finitary logic (as shown by a simple compactness argument) but
which can be axiomatized in the infinitary logic.

A natural way of measuring the complexity of a formula is by putting it in
normal form and counting the number of alternations of quantifiers. An ∃n
formula is a formula which begins with a block of existential quantifiers, and has
n alternating blocks of existential and universal quantifiers. Similarly, a ∀n formula
has n alternating blocks of existential and universal quantifiers, beginning with a
block of universal quantifiers. In the infinitary languages, we count alternations
of quantifiers, but we do not count infinitary conjunctions and disjunctions. (This
differs from the standard way of counting quantifiers in computable structure theory,
where formulas are classified as Σn or Πn; a Σn formula is ∃n but not necessarily vice
versa.1 )

Now suppose that we have a finitary formula ϕ(x) which is equivalent to an
infinitary existential (∃1) formula, say

�(x) =
∧∧
i

∨∨
j

∃yi,j �i,j(x, yi,j).
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1818 MATTHEW HARRISON-TRAINOR AND MILES KRETSCHMER

Now one can check that�(x) (and hence ϕ(x)) has the property of being preserved
in extensions: if A ⊆ B, and A |= �(a), then B |= �(a). Since ϕ(x) is preserved
by extensions, a standard preservation result says that ϕ(x) is itself equivalent to a
finitary existential (∃1) formula. In general, one proves that if a finitary formula is
equivalent to an infinitary existential formula, it is equivalent to a finitary existential
formula.

Ifϕ(x) is instead a finitary formula which is equivalent to an infinitary ∀2 formula
�(x), a similar argument works to show that ϕ(x) is equivalent to a finitary ∀2

formula. Instead of preservation in extensions, we use the fact thatϕ(x) is equivalent
to a finitary ∀2 formula if and only if ϕ is preserved under unions of chains of
models: WheneverA0 ⊆ A1 ⊆ A2 ⊆ ··· ⊆ A� =

⋃
n<� An is a chain of models, with

An |= ϕ(a) for all n, then A� |= ϕ(a). In this case, ϕ(x) is preserved under unions
of chains of models because it is equivalent to the infinitary ∀2 formula �(x), which
one can check is preserved under unions of chains of models.

This sort of argument breaks down at the ∀4/∃4 case, as there is no longer a seman-
tic test for finitary ∀4/∃4 formulas which is satisfied by infinitary ∀4/∃4 formulas.
Nevertheless, the main result of this paper is that this result is true in general.

Theorem 1.1. Let T be a finitary (L�,�) theory. Let � be an infinitary (L∞,�) ∃n
(resp. ∀n) formula which is equivalent to a finitary formula ϕ in all models of T. Then,
� and ϕ are equivalent to a finitary ∃n (resp. ∀n) formula in all models of T.

In spite of their greater expressive power, infinitary languages cannot define
relations already definable in finitary first order logic with any greater efficiency
(as measured by quantifier complexity). One can also view this as computing an
intersection: the properties which are expressible by both a finitary formula and an
infinitary ∃n formula are exactly the properties expressible by a finitary ∃n formula.
(One might compare the spirit of this result to Louveau’s theorem [3]: If C ⊂ ��
is Δ1

1 (hyperarithmetic) and Σ0
α , for some α < �CK

1 , then C is Σ0
α(x) for some

hyperarithmetic x.)
The general technique we use is a notion of forcing where the conditions are

elementary extensions of a given structure. This can also be viewed as a form of
Robinson’s model-theoretic forcing [6]. One can perhaps view the forcing as fixing a
deficiency of infinitary formulas; while the truth of an infinitary formula ϕ may not
be preserved by elementary extensions, forcing will be: if A �∗ ϕ and B � A, then
we will have that B �∗ ϕ. If ϕ is equivalent to a finitary formula, then the truth of ϕ
is already preserved under elementary extensions, and we will be able to show that
A |= ϕ if and only if A �∗ ϕ.

The definability of the forcing relation will allow us to characterize those infinitary
formulas which do transfer across elementary extensions. We will show that these
are the infinitary formulas built up using conjunctions and disjunctions of finitary
formulas.

Theorem 1.2. Let �(x) be an infinitary (L∞,�) formula and let T be a finitary
(L�,�) theory. The following are equivalent:

(1) Given A � B, models of T, A |= ϕ(a) if and only if B |= ϕ(a).
(2) �(x) is equivalent in all models of T to an L∞,� formula of the form
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INFINITARY LOGIC HAS NO EXPRESSIVE EFFICIENCY OVER FINITARY LOGIC 1819
∨∨
α

∧∧
�

�α,�(x),

where each �α,� is a finitary formula.
Moreover, if these conditions hold and � is a ∀n (resp. ∃n) formula, then we may take
each �α,� to be ∀n (resp. ∃n).

We call a formula as in (2) an elementary formula. One particular consequence
is that if an infinitary formula ϕ is preserved under elementary extensions, and is
∃n+1, then whenever A |= ϕ and A �n B, B |= ϕ.

Note that even if �(x) is in L�1,� , the formula
∨∨
α

∧∧
��α,�(x) might not be.

However, we show that one can find a formula in L�1,� witnessing that �(x)
is preserved upwards and downwards by elementary extensions. In the following
theorem, we say that an infinitary formula is quantifier-free over finitary formulas
if it can be built by repeatedly taking (infinitary) conjunctions, disjunctions, and
negations of finitary formulas.

Theorem 1.3. Let �(x) be an infinitary L�1,� formula, and let T be a countable
finitary theory. The following are equivalent:

(1) Given A � B, models of T, and a ∈ A, A |= �(a) if and only if B |= �(a).
(2) �(x) is equivalent in all models of T to an L�1,� formula which is quantifier-free

over finitary formulas.
Moreover, if these conditions hold and � is a ∀n formula (or an ∃n formula), then
�(x) is equivalent in all models of T to an L�1,� formula which is quantifier-free over
finitary ∃n/∀n formulas.

Note that if � is ∀n, the formula to which it is equivalent could involve both ∃n
and ∀n formulas. We leave open whether this generalizes to Lκ,� for κ > �1.

§2. Preliminaries.

2.1. The infinitary languages Lκ,� and L∞,� . Fix a signature 	 and an infinite
cardinal κ. The language Lκ,�(	), which we will habitually denote Lκ,� , will
be the language which allows infinite conjunctions and disjunctions of size < κ.
We define the language Lκ,� to be the smallest set of formulas with the following
properties.

(1) If � is an atomic formula of L�,� , � ∈ Lκ,� .
(2) If φ ∈ Lκ,� , then ¬φ ∈ Lκ,� .
(3) If φ ∈ Lκ,� , then ∀xφ ∈ Lκ,� and ∃xφ ∈ Lκ,� .
(4) If Φ ⊂ Lκ,� is such that |Φ| < κ and only finitely many variables occur freely

among elements of Φ, then
∨∨
φ∈Φ
φ ∈ Lκ,� and

∧∧
φ∈Φ
φ ∈ Lκ,� .

Note that L�,� is just the standard finitary elementary first-order logic. We say that
a formula is in L∞,� if it is a formula of Lκ,� for some κ. We often refer to the
formulas of L�,� as finitary formulas and to those of L∞,� as infinitary formulas.

A fragment A of Lκ,� is a set of formulas of Lκ,� with the following properties.

(1) If � ∈ A, ¬� ∈ A.
(2) If � ∈ A, every subformula of � is in A.
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1820 MATTHEW HARRISON-TRAINOR AND MILES KRETSCHMER

Starting with any formula� ∈ Lκ+,� and closing under negations and subformulas,
we obtain a fragment A containing �, of cardinality at most κ.

2.2. ∀n and ∃n formulas. In order to count quantifier alternations in infinitary
formulas, we will define a hierarchy of classes of formulas, ranked by natural
numbers. For each n ∈ N, we define the classes ∀n, ∃n of formulas of L∞,� as
follows.

(1) If � is atomic, then for all n, � ∈ ∀n, and � ∈ ∃n.
(2) If� = ¬φ, then� ∈ ∃n (respectively,� ∈ ∀n) if φ ∈ ∀n (respectively, φ ∈ ∃n).
(3) If � =

∨∨
φ∈Φ
φ or � =

∧∧
φ∈Φ
φ, then � ∈ ∃n (respectively, � ∈ ∀n) if for every

φ ∈ Φ, φ ∈ ∃n (respectively, φ ∈ ∀n).
(4) If � = ∃yφ(y), � ∈ ∃n if φ ∈ ∃n and n ≥ 1, and � ∈ ∃n+1 if φ ∈ ∀n.
(5) If � = ∀yφ(y), � ∈ ∀n if φ ∈ ∀n and n ≥ 1, and � ∈ ∀n+1 if φ ∈ ∃n.

For example, ∃0 = ∀0 consists of quantifier-free formulas. We call the ∃1 formulas
existential formulas and the ∀1 formulas universal formulas.

For finitary formulas, we count quantifier alternations in the same way, though
of course in (3) the conjunctions and disjunctions are finitary. We say that A is an
n-elementary substructure of B, and write A �n B, if A ⊆ B and for any finitary ∃n
or ∀n formula φ(x) and a ∈ A, A |= φ(a) if and only if B |= φ(a). Thus, A �0 B
just means that A ⊆ B, and A � B if and only if A �n B for all n < �. We write
A ≡ B (or (A, a) ≡ (B, b)) for elementary equivalence.

For infinitary formulas, we note that this way of counting quantifiers differs from
the standard way of counting quantifiers for L�1,� formulas in computable structure
theory. That is, an ∃n formula is not necessarily Σn and a ∀n formula is not necessarily
Πn (though every Σn formula is ∃n and every Πn formula is ∀n). The difference is
that for Σn and Πn formulas, we count infinite disjunctions the same as existential
quantifiers, and infinite conjunctions the same as universal quantifiers, whereas for
∃n and ∀n formulas we do not count infinite conjunctions and disjunctions at all.
So, for example, a formula of the form

∧∧
i∃x�i(x) is ∃1 but not Σ1.

There are natural reasons to consider both forms of counting. The classes Σn
and Πn have descriptive-set-theoretic meaning via Vaught’s version of the Lopez–
Escobar theorem [2, 7]: An invariant set K of structures is Σ0

n if and only if it is
defined by a Σn formula. Moreover, many connections between definability and
computability-theoretic properties work with Σn and Πn formulas.

On the other hand, Malitz [4] showed that a formula of L�1,� is preserved by
substructures if and only if it is universal (∀1). This is the sort of behaviour we will
consider in this paper, and so the classes ∀n and ∃n are the appropriate ones to
use. We note that because every Πn formula is also ∀n (and there is no difference
for finitary formulas), our results about ∀n formulas apply to Πn formulas as well.
Stating our results for ∀n formulas is simply their strongest form.

§3. Forcing with elementary extensions. In attempting to iteratively construct
models of infinitary sentences using elementary chains, one is faced with the
obstruction that infinitary formulas are not preserved by elementary extensions. In
fact, infinitary sentences can be very unstable with respect to elementary extensions.
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Theorem 3.1. There is a sentence � ∈ L�1,� and a structure A such that for any
B � A with B |= �, there is a C � B with C |= ¬�, and for any B � A with B |= ¬�,
there is a C � B with C |= �.

Proof. Let 	 consist of a unary relation symbol Q, a binary relation symbol
R, and a unary relation Pn for each natural number n. The structures we will be
interested in will be the disjoint unions of certain building blocks. Think of elements
satisfying Q as the roots of a block, and R attaching a number of other elements
to the root. A “standard block” consists of a single element a satisfying Q, and
countably many elements b0, b1, b2, ... not satisfying Q. We let (a, b0), (a, b1), ... ∈ R.
For each n, bn satisfies Pn, but not Pm for m �= n. A “non-standard block” consists
of the same elements but, in addition, one or more “non-standard elements” b∗ that
do not satisfy Pn for any n.

Let A be the disjoint union of countably copies of the standard block. Any
elementary extension B of A is elementarily equivalent to A, and so consists of
the disjoint union of infinitely many blocks which are either standard, or contain
non-standard elements.

Let

� = ∀x
(
Q(x) → ∃y

(
R(x, y) ∧

∧∧
n

¬Pn(y)
))
.

The sentence � says that every element satisfying Q has an associated non-standard
element, and so belongs to a non-standard block.

Let B be an elementary extension of A. If B |= �, we obtain C � B by adding a
single standard block, in which case C |= ¬�. IfB |= ¬�, we obtain C � B by adding
a single non-standard element to each standard block, in which case C |= �. �

To solve the problem that this phenomenon raises for constructing models, we
define relations between structures and infinitary sentences that keep track of our
ability to make formulas true in further elementary extensions. These relations can
be thought of as a notion of forcing, where as forcing conditions we use structures,
ordered by elementary extension. This is related to the approach taken by Robinson
in [6], and can be viewed as an extension of those methods to infinitary languages,
where all extensions considered are elementary.

As usual, there is a strong forcing and a weak forcing. The strong forcing is
useful for defining genericity, while the weak notion is required for the definability
of forcing.

3.1. The strong forcing relation. Given a structure A, �(x) ∈ L∞,� , and a ∈ A,
we define the strong forcing relation A � �(a) by the following recursive clauses.

(1) If � is atomic, A � �(a) if and only if A |= �(a).
(2) If �(x) = ¬φ(x), A � �(a) if and only if for every B � A, B �� φ(a).
(3) If �(x) =

∨∨
φ∈Φ
φ(x), A � �(a) if and only if for some φ ∈ Φ, A � φ(a).

(4) If �(x) =
∧∧
φ∈Φ
φ(x), A � �(a) if and only if for every B � A, and φ ∈ Φ,

there is a C � B such that C � φ(a).
(5) If �(x) = ∃yφ(xy), A � �(a) if and only if for some b ∈ A, A � φ(ab).
(6) If�(x) = ∀yφ(xy), A � �(a) if and only if for every B � A and b ∈ B, there

is a C � B such that C � φ(ab).

https://doi.org/10.1017/jsl.2023.19 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.19
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This diverges from the definition of the satisfaction relation in clauses (2), (4),
and (6). For finitary formulas, this makes no difference.

Lemma 3.2. If � is finitary, A � �(a) if and only if A |= �(a).

Proof. We will prove this by induction on the complexity of �. All cases except
those covered by clauses (2), (4), and (6) are identical to the satisfaction relation.
For clause (2), let �(x) = ¬φ(x). If φ is finitary, then A � ¬φ(a) if and only if for
every B � A, B �� φ(a). Appealing to induction, this is true if and only if for every
B � A, B |= ¬φ(a), which is true if and only if A |= ¬φ(a).

For clause (4), let � =
∧
φ∈Φ φ(x), where Φ is finite. A � �(a) if and only if

for each φ ∈ Φ and B � A, there is a C � B such that C � φ(a), or appealing to
induction, C |= φ(a). Because φ is finitary, this is true if and only if for every such
B, B |= φ(a), or equivalently, if A |= φ(a), for each φ ∈ Φ. This, in turn, is true if
and only if A |= �(a).

For clause (6), let � = ∀yφ(xy). If φ is finitary, A � ∀yφ(ay) if and only if for
every B � A, and every b ∈ B, there is a C � B such that C � φ(ab). Appealing to
induction, this is true if and only if for every B � A, b ∈ B, there is a C � B such
that C |= φ(ab). Because φ is finitary, this is true if and only if for every B � A,
b ∈ B, B |= φ(ab), or equivalently, for every B � A, B |= ∀yφ(ay). This, in turn, is
true if and only if A |= ∀yφ(ay). �

For infinitary formulas, the relation � is more stable than the satisfaction
relation with respect to elementary extensions. (Contrast the lemma below with
Theorem 3.1.)

Lemma 3.3. If A � B, and A � �(a), then B � �(a).

Proof. We will prove this by induction on the complexity of �. If � is atomic,
this is trivial. If � = ¬φ, and A � �(a), then for any C � B, C � A, so C �� φ(a).
Therefore, B � �(a). If � =

∨∨
φ∈Φ
φ, this follows by induction. If � =

∧∧
φ∈Φ
φ, and

A � �(a), then for any C � B, and φ ∈ Φ, C � A, so there is a D � C such that
D � φ(a). Therefore, B � �(a). If �(x) = ∃yφ(xy), and A � �(a), then for some
b ∈ A, A � φ(ab). Appealing to induction, B � φ(ab), so B � �(a). Suppose
�(x) = ∀yφ(xy), and A � �(a). Let C � B, and c ∈ C. Then, C � A, so because
A � �(a), there is a D � C such that D � φ(ac). Therefore, B � �(a). �

Example 3.4. Let A and � be the structure and formula respectively from
Theorem 3.1. Then A � � (and so this is true for all elementary extensions of
A as well).

Proof. Recall that

� = ∀x
(
Q(x) → ∃y

(
R(x, y) ∧

∧∧
n

¬Pn(y)
))
.

Suppose B � A, and a ∈ B. It suffices to show that for some C � A

C � ¬Q(a) ∨ ∃y
(
R(a, x) ∧

∧∧
n

¬Pn(y)
)
.

In the case that B |= ¬Q(a), we can take C = B, so it suffices to consider the case
that B |= Q(a). In this case, let C be obtained by adding a non-standard element b,

https://doi.org/10.1017/jsl.2023.19 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.19


INFINITARY LOGIC HAS NO EXPRESSIVE EFFICIENCY OVER FINITARY LOGIC 1823

in the sense of Theorem 3.1 to the block corresponding to a. We will show that

C � R(a, b) ∧
∧∧
n

¬Pn(b).

It suffices to show that C � R(a, b), and for each n, C � ¬Pn(b). This is true because
C |= R(a, b), and C |= ¬Pn(b) for each n. �

For a structure A, a ∈ A, and a formula �, it is immediate from the definition of
A � ¬�(a) that it cannot be the case that A � ¬�(a) and A � �(a). We say that
A decides �(a) if either A � �(a) or A � ¬�(a).

Lemma 3.5. For any structure A, a ∈ A, and formula �(x), there is a B � A such
that B decides �(a).

Proof. If A � ¬�(a), we can take B = A. Otherwise, there is some B � A with
B � �(a). �

3.1.1. Generic structures. In order to obtain useful information from the forcing
relation, we will construct structures in which formulas we have forced become true.
Let A be a fragment of L∞,� . We say that a structure G is A-generic if for any
� ∈ A, and a ∈ G, G decides �(a). The next lemma shows that any structure can be
extended to a generic structure.

Lemma 3.6. For any structure A and fragment A, there is an A-generic G � A.

Proof. Let C be a structure. We will construct a structure F (C) extending C as
follows. Consider the set of pairs (�(x), c) with � ∈ A, and c ∈ C of length x. Let
{(�α(x), cα)|α < �} be a well ordering of this set. We will define an elementary
chain of length � by transfinite recursion. Let C0 = C. Having defined Cα , we define
Cα+1 as follows. By Lemma 3.5, there is some B � Cα that decides �α(cα). Let
Cα+1 = B. For limit ordinals � < �, let C� =

⋃
α<� Cα . This defines an elementary

chain {Cα |α < �}.
Let F (C) =

⋃
α<� Cα . Then, F (C) � C, and for every �(x) ∈ A, c ∈ C, F (C)

decides �(c). Now consider the elementary chain

A � F (A) � F 2(A) � ··· .
Let G =

⋃
n F

n(A). Then, A � G. For any�(x) ∈ A, a ∈ G, a ∈ F n(A) for some n,
so F n+1(A) decides �(a), which implies that G decides �(a) because F n+1(A) � G.
Therefore, G is A-generic. �

The next lemma shows that generic structures have the desired property, providing
models of formulas we have forced.

Lemma 3.7. Suppose �(x) ∈ A, G is A-generic, and a ∈ G. Then, G � �(a) if and
only if G |= �(a).

Proof. We prove this by induction on the complexity of �. For � atomic, this is
true by definition. Suppose �(x) = ¬φ(x). Then G � �(a) if and only if G �� φ(a),
because G is A-generic. Appealing to induction, this is true if and only if G �|= φ(a),
or equivalently, if G |= ¬φ(a). For� =

∨∨
φ∈Φ
φ, or� = ∃yφ(y), the defining clause of

� is identical to that of the satisfaction relation, and the claim follows by induction.
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Suppose � =
∧∧
φ∈Φ
φ. If G � �(a), then for any φ, there is a B � G such that B �

φ(a). Because G decides φ(a), it must be that G � φ(a), so appealing to induction,
G |= φ(a). We conclude that G |= �(a). Suppose conversely that G |= �(a). Then,
for each φ ∈ Φ, G |= φ(a), so appealing to induction, G � φ(a). For any B � G,
Lemma 3.3 implies that B � φ(a). We conclude that G � �(a).

Suppose �(x) = ∀yφ(xy). If G � �(a), then for every b ∈ G, there is a B � G
such that B � φ(ab). In this case, G �� ¬φ(ab), so G � φ(ab). Appealing to
induction, G |= φ(ab). We conclude that G |= �(a). Suppose conversely that G ��
�(a). Then there is some B � G, and b ∈ B, such that for any C � B, C �� φ(ab).
Let G′ � B be A-generic. Then, G′ � ¬φ(ab). This implies that G′ � ∃y¬φ(ay), so
G � ∃y¬φ(ay). That is, there is some b ∈ G such that G � ¬φ(ab). In this case,
G �� φ(ab), so appealing to induction, G �|= φ(ab). Then, G �|= �(a). �

It may seem as though we are making arbitrary choices about which formulas
to force when we construct a generic extension of a structure A. However, due to
elementary amalgamation, these choices can only be made in one way. We highlight
this as one of the key special features of this forcing.

Lemma 3.8. Let A be a structure, a ∈ A, and �(x) be a formula. If B � A, and
B � �(a), then for every C � A that decides �(a), C � �(a).

Proof. Suppose A � C and C � ¬�(a). By the elementary amalgamation
theorem, there is a D such that B � D, and C � D. Then, Lemma 3.3 implies
that D � �(a), and D � ¬�(a), which is a contradiction. �

Because of Lemma 3.8, we can regard all the information as to which formulas
will be forced by extensions of a structureA as already present inA. The next section
defines a relation that captures this information.

3.2. The weak forcing relation. It will be convenient to work with the weak forcing
relation, denoted A �∗ �(a). This can be defined in a variety of ways, all of which
are equivalent. We will provisionally define A �∗ � to be A � ¬¬�. It is a standard
fact that the weak forcing relation satisfies the following recursive clauses:

(1) If � is atomic, A �∗ �(a) if and only if A |= �(a).
(2) If �(x) = ¬φ(x), A �∗ �(a) if and only if for every B � A, B ��∗ φ(a).
(3) If �(x) =

∨∨
φ∈Φ
φ(x), A �∗ �(a) if and only if for each B � A, there is C � B

and φ ∈ Φ such that C �∗ φ(a).
(4) If �(x) =

∧∧
φ∈Φ
φ(x), A �∗ �(a) if and only if for every φ ∈ Φ, A �∗ φ(a).

(5) If �(x) = ∃yφ(xy), A �∗ �(a) if and only if for all B � A, there is C � B
and b ∈ C such that C �∗ φ(ab).

(6) If �(x) = ∀yφ(xy), A �∗ �(a) if and only if for every B � A and b ∈ B,
B �∗ φ(ab).

The following lemma establishes other equivalent characterizations of the weak
forcing relation, which are unique to this notion of forcing and result from
elementary amalgamation. (In essence, elementary amalgamation allows us to
simplify being “dense below.”)
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Lemma 3.9. Let � be an L∞,� formula. The following are equivalent.

(1) A �∗ �(a).
(2) For some B � A, B � �(a).
(3) For every B � A that decides �(a), B � �(a).
(4) If � ∈ A, and G � A is A-generic, G |= �(a).

Proof. First, we will show that (1) implies (2). IfA � ¬¬�(a), then A �� ¬�(a),
so there is aB � A such thatB � �(a). That (2) implies (3) follows from Lemma 3.8.

Now, we will show that (3) implies (4). If � ∈ A, and G � A is A-generic, then
G � A decides �(a). If (3) holds, G � �(a), so by Lemma 3.7, G |= �(a).

Next, we will show that (4) implies (1). Suppose that if � ∈ A and G � A is
A-generic, G |= �(a). By Lemma 3.7, G � �(a). Suppose B � A. By Lemma 3.5,
there is some C � B that decides �(a). By Lemma 3.8, C � �(a). Consequently, for
all B � A, B �� ¬�(a), so A � ¬¬�(a). �

From the second characterization of the weak forcing relation, we have the
following.

Corollary 3.10. If A � �(a), then A �∗ �(a).

We can now establish some useful properties enjoyed by the weak forcing relation.

Lemma 3.11. If A � B, then for any� ∈ L∞,� , and a ∈ A, A �∗ �(a) if and only
if B �∗ �(a).

Proof. Suppose that A �∗ �(a). Then, if C � B, and C decides �(a), C � A, so
C � �(a). We conclude that B �∗ �(a). Suppose now that B �∗ �(a). Then, for
some C � B, C � �(a). C � A, so A �∗ �(a). �

As a consequence of elementary amalgamation, we get the following lemma which
is an important and special property of this forcing notion.

Lemma 3.12. For anyA, a ∈ A, and formula�, eitherA �∗ �(a) orA �∗ ¬�(a).

Proof. By Lemma 3.5, there is some B � A such that either B � �(a), or B �
¬�(a). In the first case, A �∗ �(a), and in the second, A �∗ ¬�(a) �

This implies that A �∗ ¬φ(a) if and only if A ��∗ φ(a). Moreover, using
Lemma 3.11 and elementary amalgamation we have the following:

Theorem 3.13. The weak forcing�∗ is defined by the following recursive conditions:

(1) If � is atomic, A �∗ �(a) if and only if A |= �(a).
(2′) If �(x) = ¬φ(x), A �∗ �(a) if and only A ��∗ φ(a).
(3′) If �(x) =

∨∨
φ∈Φ
φ(x), A �∗ �(a) if and only if for some φ ∈ Φ, A �∗ φ(a).

(4) If �(x) =
∧∧
φ∈Φ
φ(x), A �∗ �(a) if and only if for every φ ∈ Φ, A �∗ φ(a).

(5′) If �(x) = ∃yφ(xy), A �∗ �(a) if and only if there is B � A and b ∈ B such
that B �∗ φ(ab).

(6) If �(x) = ∀yφ(xy), A �∗ �(a) if and only if for every B � A and b ∈ B,
B �∗ φ(ab).
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Proof. As noted previously,�∗ satisfies clauses (1), (4), and (6). That�∗ satisfies
(2′) follows immediately from Lemma 3.12.

For (3′), suppose � =
∨∨
φ∈Φ
φ, and that A �∗ �(a). Then, there is a B � A such

that B � �(a). Consequently, B � φ(a) for some φ ∈ Φ, so A �∗ φ(a). Suppose
conversely that A �∗ φ(a) for some φ ∈ Φ. Then, for some B � A, B � φ(a), so
B � �(a). We conclude that A �∗ �(a).

For (5′), suppose �(x) = ∃yφ(xy), and that A �∗ �(a). Then, there is a B � A
such that B � �(a), so there is a b ∈ B such that B � φ(ab), in which case B �∗

φ(ab). Conversely, if for some B � A, b ∈ B, B �∗ φ(ab), then for some C � B,
C � φ(ab). In this case, C � �(a) so A �∗ �(a). �

Note that (1), (2′), (3′), and (4) are the same as the conditions for the satisfaction
relation; it is only (5′) and (6) that differ. Only the quantifiers, and not the infinitary
connectives, are treated differently; this is why we use the ∃n/∀n hierarchy rather
than the Σn/Πn hierarchy. Moreover, we obtain the following.

Corollary 3.14. If � is quantifier-free, A �∗ �(a) if and only if A |= �(a).

The following lemma shows that the weak forcing relation respects entailment
and equivalence of formulas.

Lemma 3.15. If �1 |= �2 and A �∗ �1(a), then A �∗ �2(a).

Proof. Suppose that A �∗ �1(a) and A ��∗ �2(a). By Lemma 3.12, A �∗

¬�2(a). Let A be a fragment containing �1 and ¬�2, and let G � A be A-generic.
Then, G |= �1(a) and G |= ¬�2(a), so �1 � �2. �

We can also define generic structures in terms of the weak forcing relation.

Lemma 3.16. G is A-generic if and only if for �(x) = ∃yφ(xy) ∈ A, a ∈ G, if
G �∗ �(a), there is a b ∈ G such that G �∗ φ(ab).

Proof. Suppose G is A-generic. Let �(x) = ∃yφ(xy) ∈ A, and a ∈ G, If G �∗

�(a), then G |= �(a), so for some b ∈ G, G |= φ(ab). By Lemma 3.7, G � φ(ab),
so G �∗ φ(ab).

Conversely, suppose that for any�(x) = ∃yφ(xy) ∈ A, a ∈ G, if G �∗ �(a), then
for some b ∈ G, G �∗ φ(ab). We will show that G is A-generic. By Lemma 3.12, it
suffices to show that if � ∈ A, and G �∗ �(a), then G � �(a). We will prove this by
induction on the complexity of �.

If � is atomic, then A �∗ �(a) if and only if A � �(a) if and only if A |= �(a).
If � = ¬φ, and G �∗ �(a), then for every B � G, B ��∗ φ(a). By Corollary 3.10,
for every such B, B �� φ(a), so G � �(a). If � =

∨∨
φ∈Φ
φ, and G �∗ �(a), then G �∗

φ(a) for some φ ∈ Φ. Appealing to induction, G � φ(a), so G � �(a). Likewise, if
� =

∧∧
φ∈Φ
φ and G �∗ �(a), then G �∗ φ(a) for every φ ∈ Φ, so G � φ(a) for every

φ ∈ Φ, which implies that G � �(a).
Suppose that �(x) = ∃yφ(xy). If G �∗ �(a), then for some b ∈ G, G �∗ φ(ab).

Appealing to induction, G � φ(ab), so G � �(ab). Suppose �(x) = ∀yφ(xy), and
G �∗ �(a). Then, for anyB � G, b ∈ B,B �∗ φ(ab). Let C � B decide φ(ab). Then,
C � φ(ab). We conclude that G � �(a). �
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The following lemma shows that the weak forcing relation depends only on finitary
first order properties, namely whether A forces that φ is true of a depends only on
the type of a in A.

Lemma 3.17. Suppose (A, a) ≡ (B, b), then, for any formula �, A �∗ �(a) if and
only if B �∗ �(b).

Proof. If (A, a) ≡ (B, b), the elementary amalgamation theorem implies that
there is a structure C and elementary embeddings f : A ↪→ C and g : B ↪→ C such
that f(a) = g(b). We can then identify A and B with elementary substructures of C
so that a = b. Using Lemma 3.11, we have that A �∗ �(a) if and only if C �∗ �(a)
if and only if B �∗ �(b). �

3.2.1. Definability. Lemma 3.17 showed that the weak forcing relation depends
only on finitary first order properties. The next lemma shows that, moreover,
quantifier complexity is maintained. Recall that we said that a formula � ∈ L∞,� is
elementary if it is of the form � =

∨∨
α

∧∧
��α,� , for �α,� finitary formulas.

Lemma 3.18. For each � ∈ L∞,� , there is an elementary formula Force� such that
A �∗ �(a) if and only if A |= Force�(a). Moreover, if � is a ∀n (resp. ∃n) formula,
then Force�(a) can be taken to be of the form

∨∨
α

∧∧
�

�α,�(x),

where each �α,� is a finitary ∀n (resp. ∃n) formula.

Without the last clause, the lemma follows quite simply from Lemma 3.17.
Consider the following set of types T . Let T = {tpA(a) : A �∗ �(a)} where A
ranges over all structures. By Lemma 3.17, B �∗ �(a) if and only if, for some
p ∈ T , B |= p(a). Then let

Force�(x) =
∨∨
p(x)∈T

∧∧
ϕ∈p(x)

ϕ(x).

However, we need a more involved argument if we want Force� to have the same
quantifier complexity as �.

Proof. We will define Force� by recursion (recalling Theorem 3.13 which gives
simplified conditions for the weak forcing). At each step, we will ensure that Force�
is at most the complexity of �. If � is atomic, let Force� = �. Suppose � = ¬φ. By
Lemma 3.12, A �∗ �(a) if and only if A ��∗ φ(a). Let Forceφ =

∨∨
α

∧∧
�

�α,� . Then,

A �∗ �(a) if and only if A |=∼ Forceφ(a), the formal negation of Forceφ . This is

∼ Forceφ =
∧∧
α

∨∨
�

∼ �α,� ,

which is equivalent to
∨∨
f:α �→�

∧∧
α

∼ �α,f(α).

We define Force� to be this.
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Suppose � =
∨∨
φ∈Φ
φ. We can then define Force� as

∨∨
φ∈Φ

Forceφ . Suppose � =
∧∧
φ∈Φ
φ. Then,A �∗ �(a) if and only if for everyφ ∈ Φ,A |= Forceφ(a). Let Forceφ =

∨∨
α

∧∧
��
φ
α,� . Then, A �∗ �(a) if and only if

A |=
∧∧
φ∈Φ

∨∨
α

∧∧
�

�φα,�(a).

This formula is equivalent to
∨∨
f:φ �→α

∧∧
φ∈Φ,�

�φ
f(φ),� .

We define Force� to be this.
Suppose �(x) = ∃yφ(xy). Let Forceφ =

∨∨
α

∧∧
��α,� . The following are

equivalent.

(1) A �∗ �(a).
(2) For some B � A and b ∈ B, B �∗ φ(ab).
(3) For some B � A and b ∈ B, B |=

∨∨
α

∧∧
��α,�(ab).

(4) For some B � A, b ∈ B, and α, B |= �α,�(ab) for each � .
(5) For some α, the partial type pα(y) =

{
�α,�(ay)

∣∣�} is finitely satisfiable in A.
(6)

A |=
∨∨
α

∧∧
S finite

∃y
∧
�∈S
�α,�(ay).

We define Force� to be this formula. Suppose �(x) = ∀yφ(xy). By Lemma 3.15,
A �∗ �(a) if and only if A �∗ ¬∃y¬φ(ay), so we can use the rules for existential
quantifiers and negations to construct Force� = Force¬∃y¬φ(y). �

A drawback of this definition is that for a cardinal κ, if � ∈ Lκ,� , Force� may
not be in Lκ,� . For instance, if 	 is countable, and � ∈ L�1,� , Force� may involve a
disjunction over uncountably many formulas. The next results show that this cannot
be avoided.

Lemma 3.19. There is a countable signature 	, and a sentence � ∈ L�1,�(	) such
that for any tree T ⊂ �<� , there is a countable 	-structure AT , uniformly computable
in T, satisfying AT �∗ � if and only if T has an infinite path.

Proof. Let 	 consist of unary relation symbols Ri,j for i, j ∈ N. Let � =
∃x

∧∧
i

∨∨
jRi,j(x). For a tree T ⊂ �<� , we define AT as follows. For each 
 ∈ T ,

there is an element of AT satisfying exactly the relations Ri,
(i) for each i less than
the length of 
.

If AT �∗ �, then for some B � AT , and b ∈ B, B �∗ ∧∧
i

∨∨
j

Ri,j(b). In this case,

B |=
∧∧
i

∨∨
j

Ri,j(b). Then, for some function f ∈ �� , B |= Ri,f(i)(b) for each i. This

implies that the partial type
{
Ri,f(i)

∣∣i < �}
is finitely satisfiable in AT , so for every n,

there is an a ∈ AT such that AT |= Ri,f(i)(a) for i < n. That is, f� n ∈ T , for all n,
so f is a path in T. Suppose conversely that f is a path in T. Then, the partial type
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{
Ri,f(i)

∣∣i < �}
is finitely satisfiable inAT , so for some elementary extensionB � AT ,

there is a b ∈ B realizing this type. Then, B |=
∧∧
i

Ri,f(i)(B), so B |=
∧∧
i

∨∨
j

Ri,j(b).

In this case, B �∗ ∧∧
i

∨∨
j

Ri,j(b), so AT �∗ �. �

Let Mod	 be the Polish space of �-presentations of 	-structures. The mapping
T �→ AT witnesses the following.

Corollary 3.20. The set {A ∈ Mod	 |A �∗ �} is Σ1
1 hard.

We conclude that this set is not Borel, so is not the set of models of an L�1,�

sentence. As such, we cannot have Force� ∈ L�1,� .

3.3. Structures of bounded cardinality. The apparatus built up in the previous
sections can be adapted to consider only structures of cardinality below a particular
bound κ. In the recursive definitions of the strong and weak forcing relations, one
replaces elementary extensions in general with those of cardinality below κ. In
order to construct generic structures of cardinality below κ, one also needs that the
fragment A satisfies |A| < κ, and so consists of Lκ,� formulas. Otherwise, the proofs
go through without any changes.

§4. Applications of the forcing notion. We now apply the forcing with elementary
extension introduced in the previous section to prove the main theorems of this
paper.

4.1. The main theorem. In this section, we will prove Theorem 1.1.

Theorem 1.1. Let T be a finitary (L�,�) theory. Let � be an infinitary (L∞,�) ∃n
(resp. ∀n) formula which is equivalent to a finitary formula ϕ in all models of T. Then,
� and ϕ are equivalent to a finitary ∃n (resp. ∀n) formula in all models of T.

To prove this, we will use the fact that a finitary formula ϕ is equivalent to an ∃n
formula over a theory T if and only if whenever A �n–1 B are models of T, a ∈ A,
and A |= ϕ(a), then B |= ϕ(a). This generalises the fact that a finitary formula is
equivalent to an existential formula if and only if it is preserved upwards under
superstructures.

However, while an infinitary ∃1 formula is preserved upwards under superstruc-
tures, it is not generally true that an infinitary ∃n formula is preserved upwards under
(n – 1)-elementary superstructures. Instead, we will show that they are preserved
upwards under (n – 1)-elementary superstructures if we consider weak forcing rather
than satisfaction.

Lemma 4.1. Suppose A �n–1 B and a ∈ A. Let� be an infinitary ∃n formula. Then
if A �∗ �(a) then B �∗ �(a).

Proof. Let Force� =
∨∨
α

∧∧
��α,� , where each �α,� is a finitary ∃n formula.

Suppose that A �∗ �(a). Then A |= Force�(a), and so for some α, and every
� , A |= �α,�(a). Because each �α,� is a finitary ∃n formula, B |= �α,�(a) for the same
α, and every � . Therefore, B |= Force�(a), so B �∗ �(a). �

With Lemma 4.1, we can now prove Theorem 1.1.
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Proof of Theorem 1.1. We prove the ∃n case; the ∀n case can be obtained by
taking negations.

Suppose that, as in the hypotheses of Theorem 1.1, � is an infinitary ∃n formula
which is equivalent to a finitary formula ϕ in all models of T. We want to show
that � and ϕ are equivalent to a finitary ∃n formula in all models of T. To do this,
suppose that A �n–1 B are models of T, a ∈ A, and A |= ϕ(a); we must show that
B |= ϕ(a).

Now since A |= ϕ(a) and ϕ is finitary, by Lemma 3.2 we have that A �∗ ϕ(a).
Since ϕ and � are equivalent in A, and forcing respects this (Lemma 3.15), we have
that A �∗ �(a). But we just proved in Lemma 4.1 that forcing an ∃n formula is
preserved upwards under (n – 1)-elementary superstructures, and so B �∗ �(a).
Using the same equivalences as before, we get that B �∗ ϕ(a) and then that
B |= ϕ(a). This completes the argument. �

Remark 4.2. Suppose that 	 is a countable and ϕ is a sentence of L�,� . By the
Löwenheim–Skolem theorem for L�1,� , if � is a sentence of L�1,� and ϕ and � are
equivalent in all countable structures, they are equivalent in all structures. Using
Theorem 1.1 and Vaught’s version of the Lopez-Escobar theorem [7], we have that
the following are equivalent.

(1) ϕ is equivalent to a finitary ∃n sentence (respectively ∀n).
(2) {A ∈ Mod	 |A |= ϕ} is Σ0

n (respectively, Π0
n).

Thus Vaught’s version of the Lopez-Escobar theorem specialises to the case of
finitary formulas.

The proof of Theorem 1.1 we gave above makes use of standard ideas that show
up in forcing, like the definability of forcing. One can also give a more hands-on
proof which has a different sort of explanatory power. The outline of this proof is
as follows. We prove the contrapositive: Supposing that ϕ ∈ L�,� is not equivalent
to any finitary ∃n formula over T, we aim to produce a model witnessing that ϕ
is not equivalent over T to some particular ∃n formula �. Using the fact that ϕ is
not equivalent to any finitary ∃n formula, we can construct models of T, A �n–1 B,
such that for some a ∈ A, A |= ϕ(a) and B |= ¬ϕ(a). It suffices then to construct
either an elementary extension of A modeling ¬�(a) or an elementary extension
of B modeling �(a). Considering A-generic elementary extensions of A and B
for a fragment A containing �, it suffices to show that either A �∗ ¬�(a) or that
B �∗ �(a). This is the content of Lemma 4.1. This lemma can be proved by a
more semantic route, using the following amalgamation lemmas, both of which are
applications of compactness.

Lemma 4.3. Suppose A �n B and A � A′. There is a B′ such that B′ � B and
B′ �n A′.

Lemma 4.4. If A �n+1 B, then there is a C �n B with C � A.

We then proceed by induction on n. Appealing to induction on the complexity
of �, we can reduce to the case that �(x) is of the form ∃y�(xy), where � is ∀n–1.
Suppose A �∗ �(a). Then, for some A′ � A, and a′ ∈ A′, A′ � �(aa′). Applying
Lemma 4.3, we have a B′ � B, such that A′ �n–1 B′. Applying Lemma 4.4, there
is a C �n–2 B′ such that C � A′. Then, C �∗ �(aa′). Appealing to induction on n,
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in the case of the pair of structures B′ �n–2 C and the ∃n–1 formula ¬�, we have
that B′ �∗ �(aa′), so B �∗ �(a). Unraveling this argument, the recursive definition
of the weak forcing relation guides a construction of a sequence of elementary
extensions containing witnesses for subformulas of either � or ¬�.

4.2. Preservation by elementary extensions.

4.2.1. Preservation of formulas in L∞,� . We will now prove Theorem 1.2.

Theorem 1.2. Let �(x) be an infinitary (L∞,�) formula and let T be a finitary
(L�,�) theory. The following are equivalent:

(1) Given A � B, models of T, A |= ϕ(a) if and only if B |= ϕ(a).
(2) �(x) is equivalent in all models of T to an L∞,� formula of the form

∨∨
α

∧∧
�

�α,�(x),

where each �α,� is a finitary formula.
Moreover, if these conditions hold and � is a ∀n (resp. ∃n) formula, then we may take
each �α,� to be ∀n (resp. ∃n).

Proof. Suppose that � is equivalent to an elementary formula φ =
∨∨
α

∧∧
��α,�

in all models of T. It suffices to show that φ transfers across elementary extensions.
Let A � B, a ∈ A. If A |= φ(a), then for some α, and every � , A |= �α,�(a). Then,
for the same α, and every � , B |= �α,�(a), so B |= φ(a). Conversely, if B |= φ(a),
then for some α, and every � , B |= �α,�(a), in which case, for the same α and every
� , A |= �α,�(a). We conclude that A |= φ(a).

Suppose that � transfers across elementary extensions of models of T. We will
show that � is equivalent to Force� in every model of T. Let A be a fragment
containing �. If A |= T + �(a), then because � transfers across elementary
extensions of models of T, for any A-generic G � A, G |= �(a). Consequently,
A �∗ �(a), soA |= Force�(a). Suppose conversely thatA |= T + Force�(a). Then,
A �∗ �(a). Let G � A be A-generic. Then, G |= T + �(a), so because � transfers
across elementary extensions of models of T, A |= �(a). �

4.2.2. L�1,� and the Malitz interpolation theorem. Note that in Theorem 1.2,
even if the formula�(x) is in L�1,� , the resulting formula in (2) may not be in L�1,�

(as in Corollary 3.20). For the language L�1,� , one can obtain a better result. First,
we show what one can get from the Malitz interpolation theorem.

Theorem 4.5 (Malitz interpolation theorem [4]). Suppose the signature 	 has no
function symbols. Let ϕ, � be sentence of L�1,� such that � is universal (∀1), and
ϕ |= �. Then, there is a universal sentence � of L�1,� such that ϕ |= �, � |= � and
every symbol occurring in � occurs in both ϕ and �.

As a consequence of this, Malitz proves the following, which applies to any
signature 	. (The version below, in which everything happens relative to a
background theory represented by 
, appears in [1]; Malitz also shows that if
a formula is preserved both upwards and downwards then it is equivalent to a
quantifier-free sentence, but this is not true relative to a sentence 
.)
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Theorem 4.6 (Malitz [4]). Let ϕ and 
 be sentences of L�1,� . The following are
equivalent.

(1) If A ⊂ B, A |= 
, B |= 
, and A |= ϕ, then B |= ϕ.
(2) There is an existential sentence � of L�1,� such that 
 |= ϕ ↔ �.

Note that these theorems are valid only forL�1,� (andL�,�). Malitz [5] has shown
that the Craig interpolation theorem fails in Lκ,� for κ > �1, and indeed there are
examples with no interpolant in L∞,� . We are not sure to what degree Theorem 4.6
fails in Lκ,� , but Malitz [4] has shown that there is a set of L�1,� sentences closed
under substructures which is not equivalent to any set of universal L�1,� sentences.
This set of sentences is, however, equivalent to a universal L�2,� sentence.

Using this theorem, we can give a different characterization of formulas L�1,�

that are preserved by elementary extensions. We say that a formula is ∃1 over
finitary formulas if it can be obtained from finitary formulas by taking conjunctions,
disjunctions, and existential quantification. Similarly, we say that a formula is∀1 over
finitary formulas if it can be obtained from finitary formulas by taking conjunctions,
disjunctions, and universal quantification.

Theorem 4.7. Suppose � is a formula of L�1,� . The following are equivalent.

(1) Given A � B, A |= ϕ(a) if and only if B |= ϕ(a).
(2) There are formulas α and � of L�1,� such that α is ∀1 over finitary formulas, �

is ∃1 over finitary formulas, and �, α, and � are all equivalent.

Proof Sketch. We omit the full proof as it is straightforward and this
theorem will be subsumed by Theorem 1.3. Essentially one expands the signature
by introducing a new relation symbol for each finitary formula and applies
Theorem 4.6. �

Theorem 4.7 has the advantage that α and � are formulas of L�1,� , while
Theorem 1.2 has the advantage of giving us a single formula, all of whose quantifiers
occur in finitary subformulas with complexity bounded by that of �. We can for
the most part combine these advantages, in the following theorem. We say that a
formula is quantifier-free over finitary formulas if it can be obtained from finitary
formulas by taking conjunctions, disjunctions, and negation.

Theorem 1.3. Let �(x) be an infinitary L�1,� formula, and let T be a countable
finitary theory. The following are equivalent:

(1) Given A � B, models of T, and a ∈ A, A |= �(a) if and only if B |= �(a).
(2) �(x) is equivalent in all models of T to an L�1,� formula which is quantifier-free

over finitary formulas.

Moreover, if these conditions hold and � is a ∀n formula (or an ∃n formula), then
�(x) is equivalent in all models of T to an L�1,� formula which is quantifier-free over
finitary ∃n/∀n formulas.

Recall that the formula that �(x) is equivalent to might involve both ∃n and ∀n
formulas. We do not know if this is necessary.

Proof. It is a straightforward induction that if φ is quantifier-free over finitary
formulas (2), then φ transfers across elementary extensions (1).
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Suppose � transfers across elementary extensions of models of T (1). Restricting
the signature to symbols occurring in � and T, and adding constants for the free
variables of �, it suffices to consider the case where the signature 	 is countable and
� is a sentence. Suppose that � is ∃n. We say that A ≡n B if A and B satisfy the
same finitary ∃n sentences (and hence the same ∀n sentences).

First we show that for A |= T , whether A |= � depends only on the finitary n-
theory of A; that is, if A,B are models of T and A ≡n B, then A |= � if and only if
B |= �. By Theorem 1.2, � is equivalent in all models of T to

Force� =
∨∨
α

∧∧
�

�α,� ,

where each �α,� is a finitary ∃n sentence. If A ≡n B, then A |= Force� if and only if
B |= Force�, and so A |= � if and only if B |= �.

Let D be the set of (finitary) ∃n sentences of L�,� . Given a set S ⊆ D, we identify
S with the infinitary formula

�S =
∧∧
ϕ∈S
ϕ ∧

∧∧
ϕ /∈S

¬ϕ.

Consider the set

X� = {S ⊆ D | T + �S is satisfiable and T + �S |= �} ⊂ 2D.

D is countably infinite, so we can identify 2D with Cantor space, with subbasic clopen
sets [�] = {S ⊆ D | � ∈ S} and [¬�] = {S ⊆ D | � /∈ S}, for � ∈ D. We will show
that X� is a Borel set by showing that it is Σ1

1 and Π1
1. If there is a countable

model A |= T + �S ∧ �, then T + �S is satisfiable. For any B |= T + �S , B ≡n A,
so B |= �, by the above considerations. Thus, T + �S |= �, so S ∈ X�. Conversely,
if S ∈ X�, the Löwenheim–Skolem theorem for L�1,� implies that T + �S ∧ � has
a countable model. Thus

X� = {S ⊆ D | T + �S ∧ � has a countable model} ,

which is Σ1
1. On the other hand, the Löwenheim–Skolem theorem implies that if

T + �S � �, there is a countable model A |= T + �S ∧ ¬�. Consequently,

X� = {S ⊆ D | T + �S ∧ ¬� does not have a countable model }
∩ {S ⊆ D | T + �S is satisfiable} ,

which is the intersection of a Π1
1 set with a Borel set, so is Π1

1.
We can assign to each Borel set Y ⊆ 2D an L�1,� sentence φY which is quantifier-

free over finitary ∃n/∀n formulas, and equivalent to the L(2�)+,� sentence
∨∨
S∈Y
�S .

• If Y = [�], we can take φY = �, and if Y = [¬�], we can take φY = ¬�.
• IfY = ZC , we can take φY = ¬φZ . (This works because �S and �S′ are always

inconsistent for S �= S ′.)
• If Y =

⋃
n
Zn, we can take φY =

∨∨
n
φZn .

Any Borel set can be built starting from subbasic clopen sets using countable unions
and complements, so we can construct a φY for any Y.
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We will now show that� is equivalent to φX� in all models of T. If A |= T + φX� ,
then for some S ∈ X�, A |= �S . Because T + �S |= �, A |= �. Conversely, suppose
A |= T + �. LetS = {� ∈ D|A |= �} so thatA |= �S . IfB |= T + �S , thenA ≡n B,
so B |= �. Therefore T + �S |= � and so S ∈ X�. Because A |= �S , A |= φX� .

Thus� is equivalent in all models of T to the formula φX� which is quantifier-free
over finitary ∃n/∀n formulas. If we do not assume � to be an infinitary ∃n or ∀n
formula, we have that if A ≡ B, A |= � if and only if B |= �. Replacing D with all
of L�,� , the rest of the argument goes through as before. In this case, φX� is just
quantifier-free over finitary formulas. �
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