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Abstract
We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a
uniform random neighbour at each step, a controller is allowed to choose from two independent uniform
random neighbours. We prove that this allows the controller to significantly accelerate the hitting and
cover times in several natural graph classes. In particular, we show that the cover time becomes linear in
the number n of vertices on discrete tori and bounded degree trees, of order O(n log log n) on bounded
degree expanders, and of order O(n( log log n)2) on the Erdős–Rényi random graph in a certain sparsely
connected regime. We also consider the algorithmic question of computing an optimal strategy and prove
a dichotomy in efficiency between computing strategies for hitting and cover times.

2020 MSC Codes: Primary 05C81, 60J10; Secondary 68R10, 68Q17

1. Introduction
The power of choice paradigm asserts that when a random process is offered a choice between two
or more uniformly selected options, as opposed to being supplied with just one, then a series of
choices can be made to improve the overall performance. This idea was first applied to the ‘balls
into bins’ model [5, 9, 31], where it was proved that the power of choice decreases the maximum
load from �

(
log n

log log n

)
to �

(
log log n

)
when assigning n balls to n bins. The power of choice was

later extensively studied for random graphs under the broader class of rule-based random graph
processes, known as Achlioptas processes, see for example [1, 10, 11, 33, 34] and references therein.
The power of choice has also been studied with regard to the Preferential Attachment process for
growing a random connected graph; in this context, the choices may have a powerful effect on the
degree distribution, see e.g. [24, 30].

In this paper, we extend the power-of-two-choices paradigm to random walk on a graph. We
show that for many natural classes of graphs, this results in a significant speed-up of the cover and
hitting times, which are the expected times to visit all vertices or any fixed vertex from a worst-case
start vertex.We study the choice randomwalk (CRW), which at every step is offered two uniformly
random independently sampled neighbours (with repetition) of the current location and (with full
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knowledge of the graph)must choose one as the next step; see Section 2 for more details.We prove
that the cover time of CRW decreases to �(n) for grids (i.e. finite quotients of Zd) and bounded
degree trees on n vertices, and that the cover time of expander graphs decreases toO

(
n log log n

)
.

We note that for simple random walk (SRW) these cover times are all �(n log n) and some are
�(n2) [2]. We also consider computational questions relating to choosing a good strategy: we
show that an optimal strategy for minimising a hitting time can be computed in polynomial time,
but choosing an optimal strategy for minimising the cover time is NP-hard. See Section 1.2 for
more details and other results.

Part of our motivation is to improve the efficiency of random walks used in algorithmic appli-
cations such as searching, routing, self-stabilization and query processing in wireless networks,
peer-to-peer networks and other distributed systems. One practical setting where routing using
the power of choice walk may be advantageous is in relatively slowly evolving dynamic networks
such as the internet. For example, say a packet has a target destination v and each node stores
a pointer to a neighbour which it believes leads most directly to v. If this network is perturbed,
then the deterministic scheme may get stuck in ‘dead ends’, whereas a random walk would avoid
this fate. The CRW which prefers edges pointed to by a node may be the best of both worlds as
it would also avoid traps but may see a speed-up over the SRW when the original paths are still
largely intact.

1.1 Related literature
To the best of our knowledge, Avin and Krishnamachari [3] were the first to apply the principle
of the power of choice to random walks. However, their version only considers a simple choice
rule where the vertex with fewer previous visits is always preferred, and ties are broken randomly.
This is in the spirit of balanced allocations, the origin of the power-of-two-choices paradigm.
Their results are mainly empirical and suggest a decrease in the variance of the cover time, and
a significant improvement in visit load balancing. This is related to the greedy random walk of
Orenshtein and Shinkar [32], which chooses uniformly from adjacent vertices that have not yet
been visited (if possible). This model is well studied for expanders [8, 17]. The power of choice
has also been studied in the context of deterministic random walks and the rotor–router model
[7, 18].

Perhaps closest to our work, Azar, Broder, Karlin, Linial and Phillips [4] introduced the
ε-biased random walk (ε-BRW) where at each step with probability ε > 0 a controller can choose
a neighbour of the current vertex to move to, otherwise a uniformly random one is selected. The
model is quite similar to ours in the sense that the controller has full knowledge of the graph
when choosing a neighbour. They obtained bounds on the stationary probabilities and show that
optimal strategies for maximising or minimising stationary probabilities or hitting times can be
computed in polynomial time. There is some overlap with our results in Section 7, where in par-
ticular Theorem 7.4 uses a clever substitution from [4] to express an optimisation problem as a
linear program. One major difference is that Azar, Broder, Karlin, Linial and Phillips restrict their
study to time-independent strategies and do not investigate cover times. Three of the authors of
this paper have recently extended [4] to the time-dependent setting and studied cover times for
ε-BRWs [25]. The conference paper [22] collects some of our results on the CRW from here and
on the ε-BRW from [25] giving a comparison between the two processes.

Azar, Broder, Karlin, Linial and Phillips [4] suggest that the most natural choice of bias for the
ε-BRW is ε = �(1/dmax), where dmax is the maximum degree. It is shown in [22, Prop. 1] that the
CRW can emulate the ε-BRW provided ε � 1/dmax. However, the reverse does not hold unless
the bias ε is close to 1; the main obstacle is that avoiding a particular next step is much more
difficult for the ε-BRW. Further evidence that the CRW is more powerful than the ε-BRW is in
the cover time bounds we prove for the CRW in Theorem 6.1 and for the time-dependent version
of the ε-BRW in [25, Thm. 3.2]. For the most natural choice ε = �(1/dmax), these bounds differ
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by a factor which is almost linear in dmax, suggesting that the CRW deals better with high-degree
graphs than the ε-BRW.

With regard to complexity questions, we note that for the SRW, hitting times can be expressed
as the solution to a set of n linear equations and can therefore be computed in polynomial time.
Determining the complexity of computing the cover time, however, is far more challenging and
still remains open [2, Open Problem 6.35]. Significant progress was made by Ding, Lee and Peres
[20] who discovered a deterministic polynomial timeO(1)-approximation algorithm for the cover
time. In this paper, we show that computing an optimal strategy for the cover time of the CRW is
NP-hard.

1.2 Our results
In this section, we shall present the main results we have obtained for CRW. The numbers of these
theorems correspond to where they appear in the paper, although some theorem statements have
been simplified for ease of exposition.

The CRW is not reversible in general; however, we show that it can emulate certain
reversible chains. Combining this with the well-known connection between electrical networks
and reversible Markov chains, we obtain the following general bound on the maximum hitting
time ttwohit (G) between any two vertices of a graph G.

Theorem 1.1. For any finite graph G, we have ttwohit (G)<min{3|E|, n2}.
This is tight up to constants at both ends of the density spectrum and improves considerably

over the well-known O(n|E|) worst-case bound for the SRW. A witness to tightness for sparse
graphs is traversing a path from end to end, and for dense graphs hitting a vertex connected by a
single edge to a clique.

Most of this paper focuses on the cover time ttwocov (G) for CRW on a graph G under an optimal
strategy. For the SRW thit, the maximum hitting time between any two vertices determines the
cover time up to a log n factor by Matthew’s bound [28, Ch. 11.2]. However, due to the effect of
the choices, this does not apply to the CRW and so we develop other methods to bound ttwocov .

The next result implies that ttwocov (T) is linear for a bounded degree tree T:

Theorem 1.2. For every d ∈N and every n-vertex tree T with maximum degree d, we have

ttwocov (T)� 8dn.

Our strategy for achieving this changes with time and covers the vertices of T in a prescribed
order.

Next, we obtain a similar result for d-dimensional grids and tori. The proof technique is differ-
ent: we show that there exists a CRW strategy for the infinite d-dimensional grid under which the
CRW becomes strongly recurrent. In particular, the expected crossing time of any edge is finite.
We use this to deduce

Theorem 1.3. For any d, and any d-dimensional n-vertex torus or grid G, we have ttwocov (G)= �(n)
and ttwohit (G)= �(diam (G)) = �

(
n1/d

)
.

Avin and Krishnamachari [3] conjecture a speed-up for their aforementioned local power of
two choice walk on the two-dimensional grid. Theorem 1.3 corroborates this for our global version
of the process but does not yet prove their conjecture.

We develop a method for boosting the probabilities of rare events in the CRW, which gives
bounds on hitting and cover times. Perhaps the most important application of these methods is to
expander graphs:
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Theorem 1.4. For every sequence (Gn)n∈N of bounded degree expanders, where Gn has n vertices,
we have

ttwocov (Gn)=O
(
n log log n

)
.

Theorem 1.4 is in fact an immediate corollary of a more general bound (Theorem 6.1), bound-
ing ttwocov (G) in terms of the hitting time (of the SRW), relaxation time and degree discrepancy. In
particular, these bounds apply w.h.p. to the random d-regular graph for fixed d. Another applica-
tion of these methods gives the following bounds for the Erdős–Rényi random graph, showing a
significant improvement on cover time for the regime with subpolynomial growth of the average
degree.

Theorem 1.5. Let G d∼ G(n, p) where np� c ln n for any fixed c> 1 and log np= o
(
log n

)
. Then

w.h.p.

(i) ttwocov (G) =O
(
n · log (np) · log log n)

(ii) ttwohit (G) = n1−�(1/ log (np)) .

Finally, Section 7 deals with the computational complexity of computing optimal strategies to
minimise hitting and cover times. We show the following dichotomy: an optimal strategy to hit a
set of vertices can be computed efficiently, whereas choosing between two cover time strategies is
NP-hard. More precisely, we have

Theorem 1.6. For any graph G, S⊂V and x ∈V \ S, a strategy minimising the hitting time of S
from x can be computed in time poly (|V|).

Notice that any strategy for covering a graph must specify a set of choice preferences from
every vertex for every possible set of vertices covered and thus may have size exponential in n.
This makes the second half of the dichotomy as phrased above sound somewhat modest. However,
what we show is that even in the ‘on-line’ setting where one is given the set covered so far then
just choosing the next step (outputting something of polynomial size) is NP-hard.

Theorem 1.7. Given the covered set X and position v of the walk at some time, it is NP-hard to
choose the next step from two neighbours of v so as to minimise the expected time for the CRW to
visit every vertex not in X, assuming an optimal strategy is followed thereafter.

Our proof shows that this remains NP-hard if G is constrained to have maximum degree 3.
To the best of our knowledge, this is the first intractability result for processes involving random
walks with choice.

Our results for fundamental graph topologies are summarised in Table 1, along with the
corresponding hitting and cover times for the SRW for ease of comparison.

2. Preliminaries
The CRW is a discrete time stochastic process (Xt)t�0 on the vertices of a connected graph
G= (V , E), influenced by a controller. The starting state is a fixed vertex; at each time t ∈N the
controller is presented with two neighbours {ct1, ct2} of the current state Xt chosen uniformly at
random with replacement and must choose one of these neighbours as the next state Xt+1. We
assume that at each time t the controller knows the graph G, its current position Xt ∈V , and
Ht :=

(
Xi, {ci1, ci2}

)t
i=0, the history of the process so far. The controller has access to arbitrary

computational resources and an infinite string of random bits ω in order to choose Xt+1 from
{ct1, ct2}. A CRW strategy is a function which given any t, Ht and {ct1, ct2} ⊆ �(Xt), outputs one
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Table 1. All graphs are on n vertices. The third and fifth columns contain our results on the hitting and cover times of
the choice random walk. The second and fourth columns give corresponding quantities for the simple random walk for
comparison, which can be found in [2] and elsewhere. For random graphs, these bounds apply w.h.p

Hitting time Cover time

Graph family SRW CRW SRW CRW

Subcubic (dmax � 3) O(n2) �
(
diam (G)

) O(n2) �(n)

2-dim. torus/box �(n log n) �
(
n1/d

)
�
(
n log2 n

)
�(n)

d-dim. torus/box �(n) �
(
n1/d

)
�(n log n) �(n)

Bounded degree tree O(n2) O(n) O(n2) �(n)

d-regular expander �(n) n1−�(1/ log d) �(n log n) O(n log (d) log log n)
G(n, polylog (n)/n) �(n) n1−�(1/ log log n) �(n log n) O(n( log log n)2)
Complete graph n− 1 (n−1)2

2n−3 ∼ n ln n ∼ (n ln n)/2

1 5/9 5/9

1/9 13/9 1/9
3/9

1/4

3/4
Figure 1. Optimal CRW transition proba-
bilities on the bull graph for hitting the
rightmost vertex. The corresponding Markov
chain is not reversible.

of {ct1, ct2} (where we write �(v) := {w:vw ∈ E} for the neighbourhood of v). Note that any such
strategy defines a Markov chain on V .

We say that a CRW strategy is unchanging if it is independent of both time and the history
of the walk. We say that an unchanging strategy is reversible if the Markov chain it defines is
reversible. We recall that any reversible Markov chain is identically distributed with a random
walk on an edge-weighted graph as explained, for example, in [2], we shall make use of this
representation. For many graphs with a high degree of symmetry, we can find good reversible
strategies, and we can then use tools from the theory of reversible Markov chains to analyse the
CRW on these graphs. The strategies we consider may use random bits in addition to those used
for choosing {ct1, ct2}; we say a strategy is deterministic if no additional random bits are used.

If we are trying tominimise the expected hitting time of a given vertex, it is easy to see that there
is an unchanging, deterministic optimal strategy. However, it need not be reversible; an example
where it is not is given in Figure 1. We shall use reversible strategies to bound the hitting time of
the optimal strategy; these will also in general not be deterministic.

For a strategy α and for a vertex v and distinct neighbours i, j let α
j
v,i ∈ [0, 1] be the prob-

ability that when the walk is at v it chooses i when offered {i, j} as choices, that is, α
j
v,i :=

P
[
Xt+1 = i | Xt = v, ct = {i, j} ] (this probability is also conditional on Ht but we suppress this

for notational convenience). These are the only parameters we may vary, but we shall find it
convenient to define αi

v,i := 1/2 for each i adjacent to v. Thus,

for each v ∈V : αj
v,i ∈ [0, 1] and αi

v,j = 1− α
j
v,i for all i, j ∈ �(v). (1)

The transition probabilities qv,i for the strategy α are then given by:

qv,i =
2
∑

j∈�(v) α
j
v,i

d(v)2
. (2)
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For a family of parameters α
j
v,i to yield a valid set of transition probabilities qi,j they must satisfy

∑
i∈�(v)

∑
j∈�(v)

α
j
v,i =

d(v)2

2
, (3)

for every v ∈V . Notice that any weights satisfying (1) also satisfy (3).
Let Ctwov (G) denote the minimum expected time (taken over all strategies) for the CRW to

visit every vertex of G starting from v and define the cover time ttwocov (G) := maxv∈V Ctwov (G).
Analogously, let Htwo

x (y) denote the minimum expected time for the CRW to reach y, which
may be a single vertex or a set of vertices, starting from a vertex x and define the hitting time
ttwohit (G):=maxx,y∈V Htwo

x (y). We drop the superscript from this notation when referring to the
associated quantities for the SRW.

3. Bounds fromweighted graphs
In this section, we analyse CRW strategies which emulate a randomwalk on a weighted graph.We
prove a tight general bound on hitting times and show that any vertex of a graph with maximum
degree 3 can be hit in time proportional to its distance from the start vertex.

3.1 An extremal hitting time result
In this section, we prove that ttwohit (G)=O(e(G)) for an arbitrary graph G, where e(G) is the num-
ber of edges. This bound is best possible up to the implied constants: for sparse graphs, the path
has ttwohit around 2e(G). For dense graphs, a clique with a pendant path, where the length of the
path is growing much slower than the size of the clique, gives ttwohit around 3n2/8.

Lemma 3.1. Fix a vertex v, and partition its neighbours into two sets, A and B. There is an unchang-
ing strategy for the CRW such that whenever the walker is at v, it moves to a random neighbour
according to the probability distribution in which every vertex in B is twice as likely as every vertex
in A.

Proof. Fix some number p ∈ [0, 1] and consider the following strategy for moving from v. If
offered two choices from the same set, choose between them uniformly at random, but if offered
one choice from A and one choice from B, choose the one from A with probability p. Clearly, all
elements of A are equiprobable, as are all elements of B, so it is sufficient to show that for some
p this strategy chooses an element of A with probability q= |A|

|A|+2|B| . If this is the case, each ele-
ment of A will be chosen with probability 1

|A|+2|B| and each element of B w.p. 2
|A|+2|B| . If p= 1/2

the probability of choosing an element of A is |A|
|A|+|B| � q, and if p= 0 then it is q′ := ( |A|

|A|+|B|
)2
.

Since (|A| + |B|)2 � |A|(|A| + 2|B|), we have q′ � q, and hence for some p ∈ [0, 1/2] we have the
required probability by continuity.

By considering the strategy at each vertex separately, we immediately get the following
consequence.

Corollary 3.2. Let G= (V , E) be a locally finite weighted graph with weight function w:E→R+,
having the property that for any two incident edges xy, xz either w(xy)=w(xz), or w(xy)= 2w(xz),
or 2w(xy)=w(xz). Then there is an unchanging strategy for the CRW on G which simulates the
random walk defined by the weights w.
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Here, by the random walk defined by the weights w, we mean the reversible Markov chain where
the transition probability from a vertex x to a neighbour y is proportional to w(xy). For a weighted
graph (G,w), write w(G)=∑

e∈E(G) w(e).

Lemma 3.3. Let (G,w) be a finite weighted graph, and let x be a vertex such that every edge incident
with x has weight 1. Then for any vertex y adjacent to x, we have

Hy(x)�w(G)+w(G \ x).

Proof. Since the stationary distribution is given by πv = 1
2w(G)

∑
u∼v w(uv), we have expected

return time to x of π−1
x = 2w(G)

d(x) , see for example [2, Sect. 3.2]. Thus,

2w(G)
d(x)

= 1+
∑
z∼x

1
d(x)

Hz(x),

implying

Hy(x)�
∑
z∼x

Hz(x)= 2w(G)− d(x)=w(G)+w(G \ x).

We now restate and prove our result for CRW hitting times.

Theorem 1.1 For any finite graph G, we have ttwohit (G)<min{3|E|, n2}.

Proof. We have to show that the above bounds apply to Htwo
y (x) for two arbitrary vertices x, y.

Define a weight function w:E(G)→R+ by w(uv)= 2−min (d(u,x),d(v,x)). Note that w satisfies the
requirements of Corollary 3.2, so we can bound Htwo

y (x) by the corresponding hitting time of the
random walk on (G,w). We will now bound the latter hitting time.

Write d for the maximum distance of a vertex from x, and Vk for the set of vertices at distance
exactly k from x. Note that if y ∈Vk+1 then

Hy(x)�Hy(Vk)+max
z∈Vk

Hz(x),

and consequently

max
y∈V(G)

Hy(x)�
d−1∑
k=0

max
z∈Vk+1

Hz(Vk).

For each 0� k� d − 1, let Gk be the simple weighted graph obtained by deleting
⋃

i<k Vi and
identifying vertices in Vk to give a vertex vk; if a vertex in Vk+1 has multiple edges to Vk, delete
all but one of them to leave a simple graph. Since removing edges between Vk+1 and Vk cannot
reduce the hitting time ofVk, we have for any z ∈Vk+1 thatHG

z (Vk)�HGk
z (vk). Note that the latter

hitting time is unchanged by multiplying all weights by 2k, and since every z ∈Vk+1 is adjacent to
vk in Gk, by Lemma 3.3 we have HGk

z (vk)� 2k(w(Gk)+w(Gk \ vk)). Thus,

max
y∈V(G)

Hy(x)�
d−1∑
k=0

2k(w(Gk)+w(Gk \ vk)).

If e is an edge between Vj and Vj+1, then the contribution of e to the kth term of the above sum
is 2k−j+1 if k< j, at most 1 if k= j and 0 otherwise, so its total contribution is less than 3 and
is less than 2 if e is one of the edges deleted to make Gj simple. If e is an edge within Vj, then
its contribution to the kth term is 2k−j+1 if k< j and 0 otherwise, so its total contribution is less
than 2. The first bound follows. Note that of the edges of the first type which are not deleted,
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there is exactly one from each vertex (other than x) to a vertex in a lower layer of G, and so
these edges form a tree. Thus, there are n− 1 such edges, whose contribution is bounded by 3,
and at most

(n
2
)− (n− 1) other edges, whose contribution is bounded by 2, giving a bound of

2
(n
2
)+ n− 1= n2 − 1.

3.2 Cover times of subcubic graphs
In this section, we prove the CRW cover time of any subcubic graph is linear in the number of
vertices, where we remind the reader that a subcubic graph is a graph with maximum degree 3.

Proposition 3.4. Let G be any connected graph of maximum degree 3. Then, Htwo
u (v)� 9 for any

uv ∈ E(G). If in addition G is finite with n vertices, then ttwocov (G)= �(n).

Proof. For each w 	= v, choose a neighbour f (w) such that d(f (w), v)< d(w, v). Set f (v)= u. Let
(Xt) be a CRW starting at u using the strategy of choosingXt+1 = f (Xt) whenever possible. Couple
this with a random walk Yt on Z starting at 1, with Yt+1 = Yt − 1 if Xt+1 = f (Xt) and Yt+1 =
Yt + 1 otherwise. Clearly Yt � dist (Xt , v) at every step of the walk, and so Xt reaches v on or
before the first time t that Yt = 0. Since P [ Yt+1 = Yt − 1 ]� 5/9, we have

Htwo
u (v)�E [ min{t:Yt = 0} | {Y0 = 1} ]� 9. (4)

If G has n vertices, let v be any vertex and choose a spanning walk in the graph starting at v
and having at most 2n− 3 edges. Such a walk always exists, for example, a depth-first exploration
of a spanning tree. Proceed in 2n− 3 rounds, in each round using the strategy above to hit the
next vertex of the walk. Each round has expected duration at most 9 by (4), and so ttwocov (G)�
18n− 27.

Remark. Since ttwohit (G)� ttwocov (G), this is also linear. Even for 3-regular graphs the diameter could
grow linearly, so this is the best possible.

4. Trees
In this section, we show that ttwocov (T)= �(n) for trees T of bounded degree. Even more, we will
prove that we can even specify an arbitrary (closed) walkW traversing each edge of T once in each
direction and cover the vertices of T in the order dictated by W in linear expected time. This is
the gist of the following result:

Theorem 1.2 For every d ∈N and every tree T with maximum degree d, we have∑
x,y∈V(T),xy∈E(T)

Htwo
x (y)� 8d|V(T)|.

This result will be proved by realising a strategy to cover T as a sequence of weighted walks,
and then bounding the hitting times in these walks using the Essential Edge Lemma.We shall now
remind the reader of the setting and statement of this lemma: we say that an edge vx of a graph is
essential if its removal would disconnect the graph, into two components A(v, x) and A(x, v), say,
containing v and x, respectively. Let E(v, x) be the set of edges of A(v, x).

Lemma 4.1. Essential Edge Lemma [2, Lem. 5.1]. Let G be any graph with edge weights {wi,j}ij∈E.
If vx is an essential edge, then

Hv(x)=
2
∑

{i,j}∈E(v,x) wi,j

wv,x
+ 1,

where Hv(x) is the hitting time of the reversible Markov chain defined by these edge weights.
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We now define the CRW strategies we use in the proof of Theorem 1.2. Given a tree T, we pick
an arbitrary ‘root’ vertex r ∈V(T). In order to obtain an upper bound on Htwo

x (y) for x, y ∈V(T)
such that xy ∈ E(T), we follow the (unchanging) strategy σ xy making the following choices at each
vertex v:

Reduce the distance to y if possible. Otherwise, choose uniformly
an option that increases distance to r if at least one is available.

(5)

In other words, σ xy prefers the unique neighbour w of v with d(w, y)< d(v, y), avoids the unique
neighbour z with d(z, r)< d(v, r) and is indifferent among all other neighbours of v.

We emphasise that r was an arbitrary vertex, but it is important for our calculations below that
it is fixed for all σ xy, x, y ∈V(T).

Since the strategy σ xy is unchanging, there is an assignment of weights wx,y(e), e ∈ E(T) such
that the corresponding random walk (as defined after Corollary 3.2) is equidistributed with the
CRW under strategy σ xy when both walks start at x and stop when first visiting y. These weights
can be multiplied by any positive constant without changing the random walk they define, and
we normalise by fixing wx,y(xy)= 1 for concreteness. The rest of the weights can be calculated
explicitly, and so we can apply the Lemma 4.1 to give the bound:

Htwo
x (y)< 2

∑
e∈E(T)

wx,y(e), (6)

with the understanding that we set wx,y(e)= 0 if y separates x from e as this edge does not
contribute to the sum in Lemma 4.1.

The latter formula expresses Htwo
x (y) as a sum of contributions of each e ∈ E(T). The main

surprise in the proof of Theorem 1.2 is the following lemma, which says that for each e ∈ E(T), the
sum of these contributionswx,y(e) over allHtwo

x (y), x, y ∈V(T), xy ∈ E(T), is bounded. An obvious
double-counting argument involving (6) will then establish Theorem 1.2.

Lemma 4.2. For every d ∈N, every tree T with maximum degree d, and every edge e ∈ E(T), we
have

∑
x,y∈V(T),xy∈E(T) wx,y(e)� 4d.

We emphasise that this sum is taken over all ordered pairs of adjacent vertices. The proof of
Theorem 1.2 is based on the fact that, for a fixed e, the values wx,y(e) decay fast with the dis-
tance d(xy, e), and even more so in the direction of r. (Here, we define the distance between
two edges xy,wz ∈ E to be d(xy,wz) := min{d(x,w), d(y, z), d(x, z), d(y,w)}.) The following two
propositions will yield quantitative bounds on the speed of this decay.

Proposition 4.3. Let G be any graph, x ∈V(G), and v ∈N(x). Consider a CRW strategy that when
at x always chooses v when that choice is available, otherwise it chooses each of the available options
independently with probability 1/2. Then for every w 	= v ∈N(x), the transition probabilities satisfy
qx,w/qx,v < 1/2.

Proof. Let d := d(x). We have qx,v = 1−
(
d−1
d

)2 = d2−(d2−2d+1)
d2 = 2d−1

d2 and qx,w =
(
d−1
d

)2 1
d−1

since eachw 	= v is chosen with equal probability, and only when v is not among the options. Thus,

qx,w/qx,v =
(
d−1
d

)2 d2
(d−1)(2d−1) = d−1

2d−1 < 1/2 as claimed.

Proposition 4.4. Let G be any graph, x ∈V(G), and v, z ∈N(x) where v 	= z. Consider a CRW
strategy that when at x always chooses v when that choice is available, never chooses z unless there
is no other option, and it chooses each of the other available options independently with probability
1/2. Then the transition probabilities satisfy qx,z/qx,v = 1

2d(x)−1 .
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Proof. As in the proof of Proposition 4.3, we have qx,v = 2d(x)−1
d(x)2 . Easily, qx,z = 1

d(x)2 . Thus,

qx,z/qx,v = d(x)2
(2d(x)−1)d(x)2 = 1

2d(x)−1 as claimed.

Armed with these propositions, we can now prove Lemma 4.2.

Proof of Lemma 4.2. Fix e ∈ E(T). We split 
 := ∑
x,y∈V(T),xy∈E(T) wx,y(e) as a sum 
 =∑

i∈N 
i of ‘layers’ 
i, corresponding roughly to distance from e, and show that 
i decays
exponentially in i.

Let P be the path from e to r in T (excluding e), and let L0 be the set of all edges of P and all
edges incident with P (including e). Let 
0 := ∑

x,y∈V(T),xy∈L0 wx,y(e) be the total weight assigned
to e by pairs of adjacent vertices of L0. Define Li, i� 1 recursively as the set of edges incident with
Li−1 not contained in

⋃
j<i Lj, and let
i := ∑

x,y∈V(T),xy∈Li wx,y(e). See Figure 2 for an illustration
of the different sets Li.

Claim The following inequalities hold
(i) 
0 � 2d,
(ii) 
i �
i−1/2.

Proof of Claim (i). Let x1, x2, . . . , xk, where xk = r be the vertices of P as they appear from e to r.
Recall that wxi+1,xi(e)= 0 for every i� 1, as e is separated from xi+1 by removing xi and thus does
not contribute to the sum in the formula forHxi+1 (xi) from Lemma 4.1. In the other direction, we
claim wxi,xi+1 (e)< (1/2)i for every i� 1. Indeed, by Proposition 4.3, we have wxi ,xi+1 (xi−1,xi)

wxi ,xi+1 (xi,xi+1) < 1/2

because this ratio coincides with the ratio of the corresponding transition probabilities qxi ,xi−1
qxi ,xi+1

by the definitions. Moreover, at each xj, 1� j< i, the strategy σ xixi+1 makes the same choices as
σ xjxj+1 , hence

wxi,xi+1 (xj−1, xj)
wxi,xi+1 (xj, xj+1)

= wxj,xj+1 (xj−1, xj)
wxj,xj+1 (xj, xj+1)

< 1/2,

by Proposition 4.3 again, with the convention that x0x1 = e. Our claim follows by multiplying
these fractions for j ranging from 1 to i.

For each of the at most d − 1 other edges xiz 	= e of L0 incident with xi, where i� 1, we
use the rather generous bound wxi,z(e)< (1/2)i−1, which is true by similar arguments because
wxi ,z(xi−1,xi)
wxi ,z(xi,z)

< 1. Again we have wz,xi(e)= 0.
Finally, we have wx0,x1 (e)=wx1,x0 (e)= 1 since e= x0x1. Adding these contributions, we obtain


0 � 2+∑
i�0 (d − 1)(1/2)i = 2+ 2(d − 1)= 2d as claimed. ♦

Proof of Claim (ii). Let yv ∈ Li−1. We will bound the contribution of the edges incident with yv
to 
i in terms of the contribution of yv to 
i−1. For this, let vw ∈ Li. Note that v separates w
from r and so first, ww,v(e)= 0. Second, this implies σ vw avoids moving from v to y whenever
possible by (5). Thus, Proposition 4.4 yields wv,w(yv)

wv,w(vw) = 1
2d(v)−1 . Moreover, when at a vertex other

than v, the strategies σ vw and σ yv make the same choices since the directions of r as well as of the
corresponding target vertex coincide. Therefore, wy,v(f )

wy,v(g) = wv,w(f )
wv,w(g) for every two edges f , g incident

with a common vertex on the y–e path. It follows that wv,w(e)= wy,v(e)
2d(v)−1 , and summing over all

such neighbours w of v we obtain
∑

vw∈Li wv,w(e)�
wy,v(e)(d(v)−1)
2(d(v)−1)+1 <wy,v(e)/2. Applying this to
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Figure 2. Illustration of the edge sets Li and
path P in the proof of Lemma 4.2. The ver-
tices y, v andw are labelled consistently with
the proof of Lemma 4.2, Claim (ii) in the case
where yv ∈ L1 and vw ∈ L2.

each edge yv ∈ Li−1, and adding together, noting that at most one end vertex v of yv is incident
with edges in Li by construction, we finally deduce


i =
∑

yv∈Li−1

∑
vw∈Li

wv,w(e)<
∑

yv∈Li−1

wy,v(e)/2= 
i−1/2,

as desired. ♦
Combining both parts of the Claim proves our statement, as 
 =∑

i 
i � 2
0 � 4d.

It is now easy to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By (4.1), we have∑
x,y∈V(T),xy∈E(T)

Htwo
x (y)<

∑
x,y∈V(T),xy∈E(T)

2
∑

e∈E(T)
wx,y(e).

Changing the order of summation, and then applying Lemma 4.2 to each summand, we bound
the right-hand side by

2
∑

e∈E(T)

⎛⎝ ∑
x,y∈V(T),xy∈E(T)

wx,y(e)

⎞⎠� 2
∑

e∈E(T)
4d = 2(|V(T)| − 1)4d� 8d|V(T)|.

5. Infinite graphs and cover time of tori
In this section, we bound the cover time of the d-dimensional discrete torus Zd

k , which has n= kd
vertices. Here, we think of the dimension d as being fixed while the side length k grows. In order to
prove a linear bound on the cover time, we will instead consider the infinite limit Zd and infinite
(but locally finite) graphs more generally.

For infinite graphs, it is meaningless to ask about the CRW cover time, but still interesting
to ask about hitting times. The most fundamental question is whether these can be made finite,
which corresponds to asking for positive recurrence.

Definition 5.1. A graph is positive choice recurrent (PCR) if there exists an unchanging strategy for
the CRW such that the expected return time to any given vertex is finite. A graph is strongly PCR
if for every p ∈ (0, 1) there exists an unchanging CRW strategy such that expected return times
are finite for the process which, at every time step, takes a step of the CRWwith that strategy with
probability p and a step of the SRW otherwise.

A natural question is whether there is a strategy under which the walk becomes a tran-
sient Markov chain. The answer is always yes: fixing a root r and giving each edge uv weight
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2min (d(u,r),d(v,r)) produces a suitable weighting to apply Corollary 3.2. This weighted graph is tran-
sient because any infinite geodesic starting at the root has total resistance 2 (see e.g. [29, Thm.
2.3]), and taking other edges into account cannot increase the effective resistance to infinity.

While positive recurrence is the property which will be useful to us, we might also ask for the
weaker property of choice recurrence, where we simply require return times to be almost surely
finite. It is possible for a graph to be choice recurrent but not PCR; indeed, there are graphs which
are recurrent under the SRW but not PCR.

Remark. Proposition 3.4 implies that any graph of maximum degree 3 is PCR. This is not true for
higher degrees, since for the infinite 4-regular tree any strategy is more likely to move away from
a given target vertex than towards it.

Note that Zd =Z
d−1�Z, where� indicates the Cartesian product. We will need the following

result about Cartesian products of PCR graphs.

Lemma 5.2. If G is PCR, H is strongly PCR and both G,H are regular, then G�H is PCR.

Proof. Define the p-product of two time-homogeneous Markov chains A, B to be the chain with
state space S(A)× S(B) where at each time step with probability p a transition of B occurs, and
otherwise a transition of A occurs. If both chains are irreducible and positive recurrent, then so is
the p-product (this follows easily from the existence of stationary distributions). Now we define
a strategy for the CRW on G�H as follows. If at least one of the choices given is a move in the
H co-ordinate, we make such a move. Now the probability of exactly one of the options being a
move in H is 2rs

(r+s)2 , where G is r-regular and H is s-regular, and the probability of both options

being moves inH is s2
(r+s)2 . Thus, conditional on at least one option being inH, both are inH with

probability s
2r+s . There is a strategy onH, for this probability of having two choices, which reaches

the root in finite time; whenever wemove in theH co-ordinate we use this strategy. If both choices
are moves in G, then we follow the appropriate strategy for the random walk with two choices in
G. The resulting Markov chain is the 2rs+s2

(r+s)2 -product of positive recurrent Markov chains onG and
H, hence positive recurrent.

The same argument shows that if in addition G is strongly PCR, then so is G�H. Lemma 5.2
allows us to conclude that Zd is PCR and consequently obtain a bound on its cover times and
hitting times.

Theorem 1.3 For any d, the cover time of the CRW in the finite d-dimensional torus Zd
k or grid [k]

d

is �(n) and the hitting time is �
(
k
)=O

(
n1/d

)
, where n is the number of vertices.

Proof. Note thatZ is strongly PCR, since alwaysmoving towards 0 if possible gives a randomwalk
which moves towards 0 with probability 1

2 + p
4 > 1

2 (where p is the probability of taking a step of
the CRW). Inductively applying Lemma 5.2 implies Zd is PCR for any d, and so the hitting time to
a neighbour is some constant cd. This gives an upper bound on the hitting time to a neighbour in
Z
d
k or [k]

d, and the strategy of visiting the vertices of a Hamilton path in order gives a cover time
of less than cdkd. Similarly the hitting timeHtwo

x (y) is bounded by constant times the length of the
shortest path between x and y, and the worst-case value of this is d
k/2� for the torus and dk for
the grid, so �

(
k
)
. Both bounds are trivially best possible up to the constant.

https://doi.org/10.1017/S0963548321000183 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000183


Combinatorics, Probability and Computing 85

6. Hitting and cover times in expanders
In this section, we prove bounds on the cover and hitting times of the CRW on a graph G in terms
of fundamental parameters. First, we introduce our notation. Let G be a graph with n vertices, and
write dmax, dmin and davg for the maximum, minimum and average degree of G, respectively. Let
trel be the relaxation time of G, defined as 1

1−λ2
, where λ2 is the second largest eigenvalue of the

transition matrix of the lazy random walk (LRW) on G with loop probability 1/2. Recall that thit
is maximum over all pairs uv ∈V of the expected time it takes the SRW to reach u from v. Our
first result bounds the CRW cover time.

Theorem 6.1. For any connected n-vertex graph G the following holds

ttwocov (G)=O
(
thit · log (dmax) · log

(davg · trel · log n
dmin

))
,

We also bound hitting times. First, we define the exponent γd = logd
d2

2d−1 ; note that γd is
increasing in d, γd < 1 and 1− γd ∼ 1/ log2 d. Also recall that for a set S⊆V let π(S)=∑

s∈S π(s)
be the stationary probability of S.

Theorem 6.2. For any graph G, and any x ∈V and S⊂V, we have
Htwo
x (S)� 12 · π(S)−γdmax · trel · ln n;

this bound also holds for return times. Consequently,

ttwohit (G)� 12
(n · davg

dmin

)γdmax · trel · ln n.

We say that a sequence of graphs (Gn) is a sequence of expanders if trel(Gn)= �(1). Theorems
6.1 & 6.2 yield the following corollary:

Theorem 1.4 For every sequence (Gn)n∈N of bounded degree n-vertex expanders, we have
ttwocov (Gn)=O

(
n log log n

)
and ttwohit (Gn)� nα for some fixed α < 1.

These are significantly less than the corresponding cover and hitting times by the SRW, which
are �(n log n) and �(n), respectively [2, Thm. 10.1].

Theorems 6.1 and 6.2 will follow from Theorem 6.3 below. For a given graph G, we consider
possible trajectories of a (non-lazy) walker, that is, finite sequences of vertices in which any two
consecutive vertices are adjacent; the length of a trajectory will be the number of steps taken. In
the following, we use bold characters to denote trajectories inG and if u ∈V(G), then uwill denote
the length 0 trajectory from u. Fix a non-negative integer t and a set S of trajectories of length t.
Let px,S denote the probability that extending a trajectory x to length t according to the law of a
SRW results in a member of S. Let qx,S denote the corresponding probability under the CRW law;
this probability will depend on the particular strategy used. This function can encode probabilities
of many events of interest such as ‘the graph is covered by time t’, ‘the walk is in a set X at time t’
or ‘the walk has hit a vertex x by time t’ for example. However, let us emphasise that our result in
fact applies to any possible event.

Theorem 6.3. Let G be a graph, u ∈V, t > 0 and S be a set of trajectories of length t from u. Then,
there exists a strategy for the CRW such that qu,S �

(
pu,S

)γdmax .
We also give an analogue of Theorem 6.3 for bad events. This analogue, unlike Theorem 6.3,

gives an exponent which does not depend on the maximum degree dmax of G, and so a significant
reduction is possible even if dmax is large.

Theorem 6.4. Let G be a graph, u ∈V, t > 0, and S be a set of trajectories of length t from u. Then
there exists a strategy for the CRW such that qu,S �

(
pu,S

)2.
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Remark. The exponent 2 in Theorem 6.4 is best possible, since we have equality whenever t =
1 and therefore also when t > 1 but every trajectory of the SRW of length t − 1 has the same
probability to reach S. Similarly the exponent given in Theorem 6.3 is best possible, as evidenced
by the case where this probability is 1/dmax for every trajectory of length t − 1.

After stating two technical lemmas in Section 6.2, we then explain an alternative way of consid-
ering the CRW in Section 6.3, which enables the proof of Theorems 6.3 and 6.4 to be completed.
To motivate the importance of Theorem 6.3, we shall begin by showing how it implies our main
results on cover time and hitting times.

6.1 Deducing Theorems 6.1 and 6.2 from Theorem 6.3
In order to prove our main bounds from the key tool, Theorem 6.3, we must first overcome the
obstacle that Theorem 6.3 is expressed in terms of the SRW probabilities, whereas our bounds
involve the relaxation time, which is defined in terms of the LRW. The reason for using the LRW
to define relaxation time is to ensure that the associated Markov chain is aperiodic. Our next
lemma resolves this issue by relating the relaxation time to SRW probabilities.

Write p(t)x,· and p̃(t)x,· for the distribution of the SRW and LRW, respectively, after t steps started
at x, and write π(S) for the stationary probability of a set S (note that the two walks have the same
stationary distribution).

Lemma 6.5. For any graph G, S⊂V and x ∈V, there exists t� 4trel ln n such that

p(t)x,S � π(S)/3.

Proof. If G is bipartite, then we may find a subset S̄⊆ S which lies entirely within one part sat-
isfying π(S̄)� π(S)/2. Otherwise, the SRW is aperiodic and we set S̄= S. We now consider the
multigraph Ḡ formed from G by contracting S̄ to a single vertex s̄, retaining all edges (with edges
inside S̄ becoming loops at s̄). Retaining edges ensures that the stationary probability of s̄ in Ḡ is
precisely π(S̄). Let λ̄2 be the second largest eigenvalue of the LRW on Ḡ. Then for any x /∈ S̄ and
t� 0, by [28, (12.11)], we have |̃p(t)x,s̄ − π(S̄)|�

√
π(S̄)/π(x) · e−t(1−λ̄2). It follows that if we run the

LRW on Ḡ for T = log (3/
√

π(S̄)π(x))/(1− λ̄2) steps then

p̃(T)x,s̄ � π(S̄)−
√

π(S̄)
π(x)

·
√

π
(
S̄
)
π(x)

3
� 2π(S̄)

3
.

Now, we can express the density of the LRW by p̃(T)x,S =E

[
p(XT )
x,S

]
, where the random variable

XT ∼ Bin (T, 1/2) is the number of non-lazy steps taken by the LRW in time T. Thus,

max
t�T

p(t)x,S � p̃(T)x,S � 2π(S̄)
3

� π(S)
3

.

We can assume n� 2 or else the result holds trivially, so log (3/
√

π(S̄)π(x))� log 3+ 2 log n�
4 log n. Finally, [2, Cor. 3.27] gives that λ̄2 � λ2, so T � 4trel ln n.

Our strategy to bound the cover time will be to emulate the SRW until most of the vertices are
covered, only using the additional strength of the CRW when there are few uncovered vertices
remaining. We will need a simple lemma to bound how long the first stage takes.

https://doi.org/10.1017/S0963548321000183 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000183


Combinatorics, Probability and Computing 87

Lemma 6.6. Let U(t) be the number of unvisited vertices at time t by a SRW on a graph and let
Tn/2x be the number of SRW steps taken before U � n/2x. Then

E [U(2x · thit) ]� n
2x

and E
[
Tn/2x

]
� 4(x+ 1)thit.

Proof. Let v ∈V . Then by Markov’s inequality Pw[Xt 	= v, ∀0� t� 2thit]� 1/2, for any w ∈V .
Thus, the probability v is not visited by time 2x · thit is at most 2−x by sub-multiplicity and so the
expected number of unvisited vertices at time 2x · thit is at most n · 2−x.

By the above E [U(2(x+ 1)thit) ]� n/(2 · 2x) and so P [U(2(x+ 1)thit)� n/2x ]� 1/2 by
Markov’s inequality. Considering sections of length 2(x+ 1)thit separately, and continuing until
one section covers the required number of vertices, we use in expectation at most two such
sections, thus E

[
Tn/2x

]
� 4(x+ 1)thit.

We now have what we need to prove the cover and hitting time bounds.

Proof of Theorem 6.1. For convenience, we write γ = γdmax . We first emulate the SRW (i.e. set
αz
x,y = 1/2 for all x, y, z ∈V(G) with y, z ∈ �(x)) until all but m= ⌊

n/ logC n
⌋
vertices have been

visited, for some C to be specified later. Let τ1 be the expected time to complete this phase. Then,
by Lemma 6.6, we have τ1 � 4thit · C log2 log n.

We cover the remaining vertices inm different phases, labelledm,m− 1, . . . , 1, each of which
reduces the number of uncovered vertices by 1. In phase i, a set of i vertices are still uncovered,
and we write Si for this set. By Lemma 6.5 for any vertex x, there is some t� 4trel log n such that

p(t)x,Si �
π(Si)
3

= 1
3

·
∑

s∈Si d(s)
ndavg

� dmin · i
3ndavg

,

and thus q(t)u,Si �
(
dmin · i/(3ndavg)

)γ by Theorem 6.3. Since from any starting point, we can
achieve this probability of hitting a vertex in Si within the next 4trel log n steps, the expected num-
ber of attempts needed to achieve this is at most

(
dmin · i/(3ndavg)

)−γ , meaning that the expected
time required to complete phase i is at most

O
((n · davg

i · dmin
)γ

· trel · log n
)
.

Hence, the expected time τ2 to complete allm phases satisfies

τ2 =
n/ logC n∑

i=1
O
((ndavg

idmin

)γ

trel log n
)

=O
((ndavg

dmin

)γ

trel log n
) n/ logC n∑

i=1
i−γ .

Then, since
∑n/ logC n

i=1 i−γ �
(
n/ logC n

)1−γ ·∑n/ logC n
i=1 i−1 �

(
n/ logC n

)1−γ · log n, we have

τ2 =O
((ndavg

dmin

)γ

trel log n
)

·O
((

n
logC n

)1−γ

· log n
)

=O
(
n ·
( davg
dmin

)γ

· trel · log2 n
logC(1−γ ) n

)
. (7)
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For the first bound, we choose C = log
(
( davgdmin ) · trel · log2 n

)
/
(
(1− γ ) · log log n) then since

logC(1−γ ) n= (davg/dmin)trel · log2 n and γ < 1 this gives τ2 =O(n) by (7) above. Since in any
graph thit = �(n),a the total time is thereforeO(τ1), and for this value of C we have

τ1 =O

⎛⎝ log
(
( davgdmin ) · trel · log2 n

)
(1− γ ) · log log n thit log log n

⎞⎠=O
(
thit · log (dmax) · log

(davg · trel · log n
dmin

))
;

since 1− γ = �(1/ log dmax).

Proof of Theorem 6.2. Write T = 4 · trel · ln n. For any x ∈V and S⊂V , Lemma 6.5 gives a t� T
such that p(t)x,S � π(S)/3, and Theorem 6.3 consequently gives a strategy for the CRW such that
q(t)x,y � (π(y)/3)γ . Thus, for any target set S and start vertex x, we need in expectation at most
(3/π(S))γ attempts to hit S in at most T steps, since if an attempt fails, ending at some vertex z,
we have the same bound on the probability of hitting S from z. Therefore, there is a strategy for
the CRW where the hitting time Hx(S)� 12 · π(S)−γ · trel log n. The second result follows since
for any vertex π(v)� dmin

ndavg .

6.2 Themax choice andmin choice operations
In this section, we introduce two operators which represent the effect of making optimal choices
for a single step of the randomwalk, assuming that the effects of choice on future steps are already
known and prove inequalities relating them to power means.

Define the max choice operator MC2 : [0,∞)m → [0,∞) as follows:

MC2 (x1, . . . , xd)= 1
m2

d∑
i=1

d∑
j=1

max{xi, xj}. (8)

For p ∈R \ {0}, the p-power meanMp of non-negative reals x1, . . . , xm is defined by:

Mp(x1, . . . , xm)=
(
xp1 + · · · + xpm

m

)1/p

.

We use a key lemma which could be be described as a multivariate anti-convexity inequality.

Lemma 6.7. For any 1� d�m and x1 . . . xd ∈ [0, 1], we have

M
γ −1
m
(x1, . . . , xd)�MC2 (x1, . . . , xd).

Proof. By the power-mean inequality, since γ −1
m � γ −1

d it is sufficient to prove the case m= d.
We show this by induction on d; we have equality for d = 1. Suppose that either d = 2 or d� 3
and the result holds for d − 1. Without loss of generality, using symmetry and homogeneity of
both operators, we may assume that max{x1, . . . , xd} = xd = 1.

We first claim that we may further assume x1 = · · · = xd−1. If d = 2, this claim is trivial. If
d� 3, then write x̄=M

γ −1
d
(x1, . . . , xd−1). Note that

M
γ −1
d
(x1, . . . , xd−1, xd)=M

γ −1
d
(x̄, . . . , x̄, xd).

aLet τv be the first time that v is visited during a random walk from u. Then
∑

v 	=u τv �
∑n−1

i=1 i= (n
2
)
, since each τv is

distinct. Thus, thit �
∑

v 	=u Hu(v)/n� (n− 1)/2.
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Also we have

MC2 (x1, . . . , xd−1, xd)= 2d − 1
d2

xd +
(
d − 1
d

)2
MC2 (x1, . . . , xd−1)

� 2d − 1
d2

xd +
(
d − 1
d

)2
M

γ −1
d−1

(x1, . . . , xd−1)

� 2d − 1
d2

xd +
(
d − 1
d

)2
x̄

=MC2 (x̄, . . . , x̄, xd),

where the first inequality uses the assumption that the result holds for n− 1 and the second
uses the power-mean inequality. Thus, replacing x1, . . . , xd−1 by x̄, . . . , x̄ does not increase the
difference between the two operators, proving the claim.

Next, we claim that the function f (x)=M
γ −1
d
(x, . . . , x, 1) is convex. Since MC2 (x, . . . , x, 1)

is linear, and the two functions agree at 0 (by choice of γd) and at 1, this will complete the

proof. Indeed, we have f (x)γ
−1
d = d−1

d xγ −1
d + 1

d , giving f ′(x)= d−1
d
( x
f (x)
)γ −1

d −1. Also, xγ
−1
d

f (x)γ
−1
d

is an

increasing function of x; since γ −1
d − 1> 0, we have f ′(x) is increasing, as required.

Lemma 6.7 will be used to prove Theorem 6.3. In order to prove Theorem 6.4, we will need
a corresponding inequality for an appropriate operator. To that end, we define the min choice
operator mC2 :[0,∞)m → [0,∞) by:

mC2 (x1, . . . , xm) = 1
m2

m∑
i=1

m∑
j=1

min{xi, xj}.

Lemma 6.8. For any m� 1 and non-negative reals x1, . . . , xm, we have

mC2 (x1, . . . , xm)�M1/2(x1, . . . , xm).

Proof. Observe that (
1
m

m∑
i=1

√
xi
)2

= 1
m2

m∑
i=1

m∑
j=1

√
xixj

� 1
m2

m∑
i=1

m∑
j=1

min{xi, xj}.

6.3 The tree gadget for graphs
In this section, we prove Theorem 6.3. To achieve this, we introduce the tree gadget which encodes
trajectories of length at most t from u in a rooted graph (G, u) by vertices of an arborescence
(Tt , r), that is, a tree with all edges oriented away from the root r. Given (G, u), we represent each
trajectory of length i� t started from u in G as a node at distance i from the root r in the tree Tt .
The root r represents the trajectory of length 0 from u. There is an edge from x to y in Tt if x is
obtained from y by deleting the final vertex. See Figure 3 for an illustration of the tree gadget.

Also for x ∈V(Tt) let �+(x)= {y ∈V(Tt):xy ∈ E(Tt)} be the offspring of x in T ; as usual we
write d+(x) for the number of offspring. Write |x| for the length of the trajectory x. To prove
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u

v

w

x

y

z

y

z

u7
18

215
364

uv1
3

5
9

uy1
2

3
4

uw1
3

5
9

uvu

0

uvx

0

uvz

1

uyu

0

uyz

1

uwu

0

uwx

0

uwz

1

Figure 3. Illustration of a (non-lazy) walk on a non-regular graph starting from u with the objective of being in {y, z} at step
t= 2. The probabilities of achieving this are given in blue (left) for the SRW and in red (right) for the CRW.

Theorem 6.3, we shall need to discuss SRW trajectories; let Wu(k) := (Xi)ki=0 be the trajectory of
a SRW Xi on G up to time k, with X0 = u.

Proof of Theorem 6.3. For ease of notation, we write η = 1/γdmax . To each node x of the tree
gadget Tt , we assign the value qx,S under the CRW strategy of preferring the choice which extends
to a trajectory y ∈ �+(x) giving a higher value of qy,S. This is well defined because both the strategy
and the values qx,S can be computed in a ‘bottom up’ fashion starting at the leaves, where if x ∈
V(Tt) is a leaf then qx,S is 1 if x ∈ S and 0 otherwise.

Suppose x is not a leaf. The controller is presented with two uniformly random offspring y, z ∈
�+(x) and chooses y if qy,S � qz,S and z otherwise. Thus, we have

qx,S = 1
d+(x)2

∑
y,z∈�+(x)

max{qy,S, qz,S} =MC2
((
qy,S

)
y∈�+(x)

)
. (9)

We define the following potential function �(i) on the ith generation of the tree gadget T :

�(i) =
∑
|x|=i

qη
x,S · P [Wu(i)= x ] ; (10)

where the sum ranges over all trajectories x of length i. Notice that if xy ∈ E(Tt) then
P
[
Wu(|y|)= y

]= P [Wu(|x|)= x ] /d+(x).
Also since each y with absy= i has exactly one parent x with |x| = i− 1, we can write

�(i) =
∑

|x|=i−1

∑
y∈�+(x)

qη
y,S · P [Wu(i− 1)= x ]

d+(x)
. (11)

We now show that �(i) is non-increasing in i. By combining (10) and (11), we can see that the
difference �(i−1) − �(i) is given by:

∑
|x|=i−1

⎛⎝qη
x,S − 1

d+(x)
∑

y∈�+(x)
qη
y,S

⎞⎠ P [Wu(i− 1)= x ] .

Recalling (9), to establish �(i−1) − �(i) � 0, it is sufficient to show the following inequality holds
whenever x is not a leaf:

MC2
((
qy,S

)
y∈�+(x)

)η

� 1
d+(x)

∑
y∈�+(x)

qη
y,S.
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Raising both sides to the power 1/η = γdmax , since d+(x)� dmax this inequality holds by Lemma
6.7, and thus �(i) is non-increasing in i.

Observe �(0) = qη
u,S. Also if |x| = t then qx,S = 1 if x ∈ S and 0 otherwise. It follows that

�(t) =
∑
|x|=t

qη
x,S · P [Wu(t)= x ]=

∑
|x|=t

1{x∈S} · P [Wu(t)= x ]= pu,S.

Thus, since �(t) is non-increasing qη
u,S = �(0) ��(t) = pu,S, as required.

Theorem 6.4 now follows similarly to Theorem 6.3.

Proof of Theorem 6.4. Construct the tree gadget to height t. We associate each node x with the
probability qx,S under a strategy which always prefers the smaller value. For a leaf this is simply
the indicator function 1{x∈S}, whereas for an internal vertex it is given by mC2

(
(qy,S)y∈�+(x)

)
. We

define a potential function � by:

�(i) =
∑
|x|=i

P [Wu(i)= x ]√qx,S.

As before,

�(t) =
∑
|x|=t

P [Wu(t)= x ] · 1{x∈S} = pu,S.

Further, for each internal vertex x we have, using Lemma 6.8,

P [Wu(|x|)= x ]√qx,S = P [Wu(|x|)= x ]
√
mC2

(
(qy,S)y∈�+(x)

)
� P [Wu(|x|)= x ]

√
M1/2

(
(qy,S)y∈�+(x)

)
=

∑
y∈�+(x)

P
[
Wu(|x|)= y

]√qy,S.

Summing over all x at level i, we obtain �(i) ��(i+1) for each i< t, and consequently √qu,S =
�(0) ��(t) = pu,S, as required.

6.4 Random graphs
We now consider CRW hitting and cover times in the Erdős–Rényi random graph G(n, p). This
is the probability distribution over all n-vertex simple graphs generated by sampling each possible
edge independently with probability p, see [12] for more details.

Theorem 1.5 Let G d∼ G(n, p) where np� c ln n for any fixed c> 1 and log np= o
(
log n

)
. Then

w.h.p.

(i) ttwocov (G) =O
(
n · log (np) · log log n)

(ii) ttwohit (G) = n1−�(1/ log (np)) .

Proof. To begin, we show that the graph is almost regular w.h.p.

Claim For p as above, dmin, dmax = �
(
np
)
w.h.p.

Proof of claim. In G d∼ G(n, p) since each edge is independent with probability p, each
degree d(u) is distributed as a binomial random variable Bin (n− 1, p). The Chernoff bound
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[14, Thm. 3.2] states that for any λ,P
[
Bin (n, p)� np+ λ

]
� exp

(
− λ2

2(np+λ/3)

)
. Thus, by a union

bound over all vertices dmax � 5np w.h.p.. For dmin note that the expected number of vertices
of degree k is given by xk = n

(n−1
k
)
pk(1− p)n−1−k. We shall consider k= κnp for κ � 1/2, in

this case xk/xk−1 = np
k(1−p) � 2 and so the expected number of vertices with degree k is O(xk).

Observe that xk �
(npe

k
)k exp ( ln n− np) and so if np� 5 log n then choosing k= np/e yields

xk � (e2)np/e exp ( log n− np)= e−�( log n). Otherwise since np� c ln n where c> 1 fixed, setting
k= κnp we have xk �

( ce
κ

)κ ln n exp (− (c− 1) ln n), thus if κ satisfies κ ln ( ce
κ
)< (c− 1) then

xk = o(1). Choosing κ = (c− 1)2/500 suffices. Since in either case, we showed xk = o(1) for some
k= �(np) by Markov’s inequality dmin = �(np) w.h.p. ♦

Cooper & Frieze [16] show that for np= c ln n, c> 1 w.h.p. the conductance of G(n, p) is at
least 1/6, implying that trel =O(1) [28, Thm. 13.14]. For larger values of np, Coja-Oghlan [15,
Thm. 1.2] showed that there exists some c< ∞ such that for np� c log n the spectral gap of the
normalised Laplacian of G(n, p) is 1−O

(
1/√np

)
w.h.p. Since the normalised Laplacian L is sim-

ilar to the random walk Laplacian L′, and the later is given by L′ = I − P, we see that also in this
range trel =O(1). We have shown that, in this regime, G(n, p) is almost regular and has constant
relaxation time w.h.p., thus thit =O(n) w.h.p. by [13, Thm. 5.2]. Theorems 6.1 & 6.2 now yield
the results.

Thus, the CRW gives a significant improvement in the cover and hitting times whenever
degrees of G(n, p) are subpolynomial in n.

7. Computing optimal choice strategies
In this section, we focus on the following problem: given a graph G and an objective, how
can we compute a series of choices for the walk which achieves the given objective in optimal
expected time? In particular, we consider the following computational problems related to our
main objectives of max/minimising hitting times, cover times and stationary probabilities πv.

Stat (G,w): Find a CRW strategy min/maximising
∑

v∈V wvπv for vertex weights wv � 0.

Hit (G, v, S): Find a CRW strategy minimising Htwo
v (S) for a given S⊆V(G) and v ∈V(G).

Cov (G, v): Find a CRW strategy minimising Ctwov (G) for a given v ∈V(G).

The analogous problems to Stat (G,w) and Hit (G, v, S) were studied in [4] for the BRW. While
Stat is not one of our primary objectives, we include it here both as a natural problem to consider
but also because of its relationship to Hit in the case where w is the indicator function of a set S;
we shall abuse notation by writing Stat(G, S) for this case. Clearly for Stat, we must restrict
ourselves to unchanging strategies for the stationary probabilities πv to be well defined; we shall
show that Hit also has an unchanging optimal strategy.

For Hit and Cov, there are two possible interpretations of what it means to ‘find’ a CRW strat-
egy. Perhaps the most natural is to compute a sequence of optimal choices in an online fashion,
that is at each time step to compute which of the two offered choices to accept. For any partic-
ular walk, with suitable memoisation, at most a polynomial number of such computations will
be required for either problem: which choice to accept depends only on the current vertex, the
two choices, and in the case of Cov the vacant set, which can change at most n times. We might
alternatively want to compute a complete optimal strategy in advance; for Hit this requires only a
polynomial number of single-choice computations, but for Cov the number of possible situations
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our strategy must cover will be exponential. However, we shall show that Cov is hard even for
individual choices.

7.1 A polynomial-time algorithm for Stat and Hit
First, we show how the (unknown) optimal values Htwo

x (v) determine an optimal strategy for
Hit(G, ·, v). In the following two lemmas, we will need to work with a multigraph F; in this
context, the choice offered at each stage is between two random edges from the current vertex.

Lemma 7.1. Let F be a multigraph and fix a vertex v. Let v= v0, v1, . . . be an ordering of the vertices
such that for all i< j, we have Htwo

vi (v)�Htwo
vj (v). Let β be the deterministic unchanging strategy

given by β
vk
vi,vj = 1 whenever j< k. Then β is optimal (among all strategies) for Hit(F, x, v) for every

x 	= v, and also for the problem of minimising Ev
[
τ+
v
]
.

Proof. Fix an optimal strategy α for Hit(F, x, v), and for each y ∈ �(x) write qy for the probability
that the first step under this strategy is from x to y. Recall that qy =∑

z∈�(x)
2αz

x,y
d(x)2 . Now given that

the first step is at y, an optimal strategy for the remaining steps is precisely an optimal strategy for
Hit(F, y, v), and thus

Htwo
x (v)= 1+

∑
y∈�(x)

qyHtwo
y (v).

Suppose there exist y, z ∈ �(x) with Htwo
y (v)<Htwo

z (v) but αz
x,y < 1 at the first step. By instead

(at time 1 only) always choosing y in preference to z, the expected hitting time is decreased by
2

d(x)2 (1− αz
x,y)(Htwo

z (v)−Htwo
y (v)), a contradiction. Thus, we have αz

x,y = 1 if Htwo
y (v)<Htwo

z (v)
and αz

x,y = 0 if Htwo
y (v)>Htwo

z (v). If Htwo
y (v)=Htwo

z (v), then the expected hitting time does not
depend on αz

x,y, and so any strategy satisfying these conditions at time 1, and thereafter following
an optimal strategy, is itself optimal.

It follows by induction that following β for k turns and thereafter following α is optimal; since
this gives arbitrarily good approximations of the expected hitting time under β , β is itself optimal
for Hit(F, x, v), and, since the definition of β does not depend on x, for Hit(F, y, v) for any y 	= v.

Next, we show that β is also an optimal strategy for minimising Ev
[
τ+
v
]
. Suppose not, and let

γ be an optimal strategy. Write qγ
x for the probability of moving from v to x at time 1 under γ ,

and Hγ
v (v+) for Ev

[
τ+
v
]
under γ . Now

Hγ
v (v+)= 1+

∑
x∈�(v)

qγ
x H

γ
x (v)

� 1+
∑

x∈�(v)
qγ
x Hβ

x (v),

by optimality of β for Hit(F, x, v). Suppose γ
y
v,x 	= β

y
v,x for some x, y ∈ �(v). Replacing γ

y
v,x and γ x

v,y

by β
y
v,x and βx

v,y, respectively, changes
∑

x∈�(v) q
γ
x Hβ

x (v) by 2
d(v)2 (β

y
v,x − γ

y
v,x)(Htwo

x (v)−Htwo
y (v)),

which is non-positive by choice of β . Thus, after a sequence of such changes, we obtain

Hγ
v (v+)� 1+

∑
x∈�(v)

qγ
x Hβ

x (v)

=Hβ
v (v

+).
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Remark. In particular, recalling that for an unchanging strategy πv = 1/Ev
[
τ+
v
]
, it follows that

β is an optimal strategy for Stat(F, {v}). However, this is true in a somewhat stronger sense, since
optimality for Stat only requires minimising Ev

[
τ+
v
]
among unchanging strategies, whereas

Lemma 7.1 shows that β minimises this quantity among all strategies; we shall need this extra
strength.

Note that there may be other deterministic unchanging optimal strategies for Hit(F, x, v). For
example, if there are multiple vertices with the same optimal hitting time, we may choose between
them arbitrarily, and in particular may have a cyclic order of preference which is not consis-
tent with any single ordering. The following lemmas will enable us to show that a good enough
approximation to an optimal strategy must itself be optimal.

Lemma 7.2. Let F be a multigraph with at most n vertices and at most
(n
2
)
edges and fix a ver-

tex v. Let α be any unchanging strategy for Stat(F, {v}). Suppose there exist vertices x, y, z with
y, z ∈ �(x), Htwo

y (v)<Htwo
z (v) and αz

x,y � 1/2. Then πα
v differs from the optimal value by at least

n−4(n+1)(Htwo
z (v)−Htwo

y (v)).

Proof. First, we bound Hα
v (v+)−Hβ

v (v+), where β is as described in Lemma 7.1. Consider the
strategy of following α until the first time the walk either reaches v or is at x and offered a choice
between y and z, and in the latter case following β until v is reached. The difference between this
strategy and following α is p(αz

x,yHα
y (v)+ α

y
x,zHα

z (v)−Hβ
y (v)), where p is the probability of the

latter event occurring before the walk returns to v. Note that

αz
x,yH

α
y (v)+ α

y
x,zHα

z (v)−Hβ
y (v)� (αz

x,y − 1)Hβ
y (v)+ α

y
x,zHβ

z (v)

= (1− αz
x,y)(H

two
z (v)−Htwo

y (v))

� (Htwo
z (v)−Htwo

y (v))/2

by Lemma 7.1 and the assumptions. Further,

p� 2
(

1
dmax(F)2

)d(v,x)+1
�
(
n
2

)−2n
,

since with at least this probability, the walk is forced along a specific shortest path to x, then offered
a choice of y or z.

Thus, the difference in Ev
[
τ+
v
]
between α and this hybrid strategy is at least

ζ := 1
2

(
n
2

)−2n
(Htwo

z (v)−Htwo
y (v)),

and since β minimises this quantity among all strategies by Lemma 7.1, the same bound applies
to the difference between α and β , giving

πα(v)−1 � πβ(v)−1 + ζ ,

and consequently

πα(v)� πβ(v)− ζ
πβ(v)2

1+ πβ(v)ζ
. (12)

We have 1� πβ(v)�
(n
2
)−1 by comparison with a SRW. Also we may crudely bound ttwohit by not-

ing that a SRW has probability at least
(n
2
)1−n of reaching any given vertex in at most n− 1 steps,

giving ζ < 1. Combining these bounds with (12) gives the required result.
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Lemma 7.3. For any simple graph G of order n and every pair of vertices x, y with Htwo
x (S)<

Htwo
y (S) we have Htwo

y (S)−Htwo
x (S)> n−2n2 .

Proof. Note that the hitting times
(
hx
)
x∈V of S from x for any given unchanging strategy are

uniquely determined by the equations:

hx =
{
1+∑

y Pxy · hy if x 	∈ S

0 if x ∈ S,

where P is the transition matrix for the strategy. This set of equations can be written as Ah= b,
where A := (I−Q), Qi,j = Pi,j if i /∈ S and 0 otherwise, and b is a 0-1 vector. Notice that A is
diagonally dominant, and from any row where equality occurs there is a path of non-zero entries
to a strictly dominant row. It is straightforward to check that such a matrix is invertible: see for
example [6, Lem. 3.2]. For any non-random strategy, and in particular for the optimal strategy
described above, every transition probability from x is a multiple of d(x)−2. Thus, all the elements
of A can be put over a common denominator D, where D := LCM (d(x)2 )x∈V < (n!)2 < n2n/2.

We have h=A−1b = |A|−1CTb, where C is the matrix of cofactors. Each entry in C can be put
over a common denominator which is at most Dn, and so the same applies to each entry of CTb.
Also, |A| < 2n by Hadamard’s inequality [26, Thm. 7.8.1]. It follows that if two hitting times differ,
they differ by at least (2D)−n.

For any graph G and weighting w:V → [0,∞) on the vertices of G we can phrase Stat (G,w)

as an optimisation problem as follows, where we shall encode our actions using the probabilities
αz
x,y = P

[
Xt+1 = y | Xt = x, c= {y, z} ] from Section 2.

maximise:
∑
v∈V

wvπ(v)

subject to: π(x)=
∑

y∈�(x)
π(y) · 2

∑
z∈�(y) α

z
y,x

d(x)2
, ∀x ∈V

∑
x∈V

π(x)= 1,

α
y
x,z ∈ [0, 1], ∀xz, xy ∈ E

α
y
x,z = 1− αz

x,y, ∀xz, xy ∈ E

(13)

For minimising the stationary probabilities, we maximise −1 times the objective function.
To prove Theorem 7.4, the quadratic terms in (13) can be eliminated using the same

substitution as [4, Thm. 6]; we can then solve (13) as a linear program.

Theorem 7.4. For any multigraph G and weight function w:V → [0,∞) a policy solving the
problem Stat (G,w) to within an additive ε factor can be computed in time poly

(|E|, log (1/ε)).
Proof. We prove the simple graph case; this proof may be easily extended for multigraphs with
suitably adapted notation. The optimisation problem (13) above can be rephrased as a linear pro-
gram by making the substitution rx,y,z = π(x) · αz

x,y. Either the Ellipsoid method or Karmarkar’s
algorithm will approximate the solution to within an additive ε > 0 factor in time which is
polynomial in the dimension of the problem and log (1/ε), see for example [23, 27].
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We now show how one can now use this linear program to determine the hitting times.

Theorem 1.6 For any graph G and any S⊂V, a solution to Hit (G, x, S) for every x ∈V \ S can be
computed in time poly (n).

Proof. Contract S to a single vertex v to obtain a multigraph F; where a vertex x has more than
one edge to S in G, retain multiple edges between x and v in F. Note that F has at most n ver-
tices and at most

(n
2
)
edges. Provided that the CRW on G has not yet reached S, there is a natural

correspondence between strategies on G and F with the same transition probabilities, and it fol-
lows thatHtwo

x (S) for G andHtwo
x (v) for F are equal for any x ∈V(G) \ S. We compute an optimal

strategy to Stat(F, {v}) to within an additive error of ε := n−10n2 ; note that log (1/ε)= o(n3) and
so this may be done in time poly (n) by Theorem 7.4. Applying Lemma 7.2 to F and Lemma 7.3
to G, using the equality of corresponding hitting times, implies that this strategy has αz

x,y > 1/2
wheneverHtwo

y (v)<Htwo
z (v), and so rounding each of the probabilities αz

x,y to the nearest integer
gives an optimal strategy (on F) for every x, which may easily be converted to an optimal strategy
for G.

7.2 A hardness result for Cov
We show that in general even the online version of Cov (G, v) is NP-hard. To that end, we intro-
duce the following problem, which represents a single decision in the online version. The input
is a graph G, a current vertex u, two vertices v and w which are adjacent to u, and a visited set X,
which must be connected and contain u.

NextStep (G, u, v,w, X): Choose whether to move from u to either v or w so as to minimise the
expected time for the CRW to visit every vertex not in X, assuming an
optimal strategy is followed thereafter.

Any such problem may arise during a random walk with choice on G starting from any vertex in
X, no matter what strategy was followed up to that point, since with positive probability no real
choice was offered in the walk up to that point.

Theorem 1.7 NextStep is NP-hard, even if G is constrained to have maximum degree 3.

Proof. We give a (Cook) reduction from the NP-hard problem of either finding a Hamilton path
in a given graph H or determining that none exists. This is known to be NP-hard even if H is
restricted to have maximum degree 3 [21].

We shall find it more convenient to work with the following problem, which takes as input a
graph G, a current vertex u and a connected visited set X containing u.

BestStep (G, u, X): Choose a neighbour of u to move to so as to minimise the expected time
for the CRW to visit every vertex not in X, assuming an optimal strategy is
followed thereafter.

We may solve BestStep(G, u, X) by computing NextStep(G, u, v,w, X) for every pair v,w of
neighbours of u; since all optimal neighbours must be preferred to all others, this will identify a
set of one or more optimal choices for BestStep(G, u, X). Consequently, it is sufficient to reduce
the Hamilton path search problem to BestStep.

Given an n-vertex graph H, construct the graph G as follows. First replace each edge of H by a
path of length 2cn2 through new vertices. Next add a new pendant path of length n3 starting at the
midpoint of each path corresponding to an edge ofH. Finally, add edges to form a cycle consisting
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of the end vertices of these pendant paths (in any order). Note that if H has maximum degree 3,
so does G.

Fix a starting vertex u and a non-empty unvisited set Y ⊆V(H) \ {u} and set X =V(G) \ Y .
(The purpose of the second and third stages of the construction is to make X connected without
affecting the optimal strategy.) Suppose that H contains at least one path of length |Y| starting at
u which visits every vertex of Y ; in particular if Y =V(H) \ {u} this is a Hamilton path of H. We
claim that any optimal next step is to move towards the next vertex on some such path. Assuming
the truth of this claim, an algorithm to find a Hamilton path starting at x, if one exists, is to set
u= x and Y =V(H) \ {x}, then find the vertex y such that moving towards y is optimal, set u= y
and remove y from Y , then continue. If this fails to find a Hamilton path, repeat for other possible
choices of x.

To prove the claim, first we argue by induction that there is a strategy to visit every vertex in
|Y| in expected time (4cn2 +O(n) )|Y|, where the implied constant does not depend on c. This
is clearly true for |Y| = 0. Let y be the next vertex on a suitable path in H, and let z be the mid-
dle vertex of the path corresponding to the edge uy. Attempting to reach z by a straightforward
strategy, the distance to z evolves as a random walk with probability 3/4 of decreasing unless the
current location is a branch vertex. We thus reach z in expected time 2cn2 plus an additional con-
stant time for each visit to u, of which we expect O

(
d(u)

)=O(n), giving a total expected time of
2cn2 +O(n) (if the walker is forced to a different branch vertex first, the expected time to return
from this point is polynomial in n, but this event occurs with exponentially small probability).
Similarly, the time taken to reach y from z is 2cn2 +O(1). Once y is reached, there is (by choice
of y) a path of length |Y| − 1 in H starting from y and visiting all of Y \ {y}. Thus, by induction,
the required bound holds. Secondly, suppose that an optimal first step in a strategy from umoves
towards a vertex y′ ofH which is not the first step in a suitable path. Since the expected remaining
time decreases whenever an optimal step is taken, two successive optimal steps cannot be in oppo-
site directions unless the walker visits a vertex of Y in between. Thus, the optimal strategy is to
continue in the direction of y′ if possible, and such a strategy reaches y′ before returning to u with
at least constant probability p, and this takes at least 2cn2 steps. Note that the expected time taken
to reach another vertex ofH from a vertex inH, even if the walker is purely trying to minimise this
quantity, is at least 4cn2, and from either u or y′ at least |Y| such transitions are necessary to cover
Y . Thus, such a strategy, conditioned on the first step being in the direction of y′, has expected
time at least 4cn2 + 2pcn2, which, for suitable choice of c, proves the claim.

7.3 Computing Cov via Markov decision processes
To compute a solution for Cov (G, v), we can encode the cover time problem as a hitting time
problem on a (significantly) larger graph.

Lemma 7.5. For any graph G= (V , E), let the (directed) auxiliary graph G̃= (Ṽ , Ẽ) be given by Ṽ =
{(v, S):S⊆V , v ∈ S} and Ẽ= {

((i, S), (j, S∪ j)) | ij ∈ E
}
. Then solutions to Cov (G, v) correspond to

solutions to Hit
(
G̃, ṽ,W

)
and vice versa, where W = {(u,V) | u ∈V}.

Proof. There is a natural bijection between the out-edges in G from u and those in G̃ from (u, T)
for any u ∈V , T ⊆V . This extends to a natural bijection from finite walks (which we may think of
as a vertex together with a history) in G starting from v to walks in G̃ starting from ṽ, and also to a
measure-preserving bijection between the choices which may be offered from u and (u, T). Thus,
there is a natural bijection between strategies for the two walks, and both the choices offered and
any random bits used may be coupled so that corresponding strategies produce corresponding
walks. Since the walk in G has covered V if and only if the walk in G̃ has hit some vertex inW, the
times that these events first occur are identically distributed for corresponding strategies, and in
particular the sets of optimal strategies correspond.
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In light of Lemma 7.5, it may appear that we can solve Cov(G, v) by converting it to an instance
of Hit

(
G̃, ṽ,W

)
and appealing to Theorem 1.6. This is unfortunately not the case as G̃ is a directed

graph and Theorem 1.6 cannot handle directed graphs. Lemma 7.5 is still of use as we can phrase
Hit in terms of Markov decision processes (MDPs) and then standard results tell us that an
optimal strategy for the problem can be computed in finite time.

A MDP is a discrete time finite-state stochastic process controlled by a sequence of decisions
[19]. At each step, a controller specifies a probability distribution over a set of actions which may
be taken and this has a direct affect on the next step of the process. Costs are associated with each
step/action and the aim of the controller is to minimise the total cost of performing a given task,
for example, hitting a given state. In our setting, the actions are orderings of the vertices in each
neighbourhood and the cost of each step/action is one unit of time. The problem Hit

(
G, u, v) is

then an instance of the optimal first passage problem which is known to be computable in finite
time [19].

Corollary 7.6. For any graph G and v ∈V, an optimal policy for the problem Cov (G, v) can be
computed in exponential time.

Proof. We first encode the problem Cov (G, v) as the problem Hit
(
G̃, ṽ,W

)
as described in

Lemma 7.5. Now as mentioned Hit
(
G̃, ṽ,W

)
is an instance of the optimal first passage problem

which for a given graph G̃, start vertex ṽ and target vertexW can be computed in finite time using
either policy iteration or linear programming, see for example [19, Ch. 5, Cor. 1]. Examination
of the linear program on [19, page. 58] reveals that there is a constraint for every ordering of the
neighbours of each vertex. Since G̃ has at most 2n vertices and each of these has at most n neigh-
bours, we see that there are at most 2n · n!� en3 constraints. It follows that this linear program
can be solved in time poly (en3 ), thus Cov (G, v) ∈ EXP.

Remark. Since in our setting actions are orderings of neighbourhoods, the space of actions may
be factorial in the size of the graph. The algorithms for computing Hit

(
G, u, v) from [19] used

to establish Corollary 7.6 are polynomial in the number of actions and thus will not yield a
polynomial-time algorithm for the problem. This is why we resisted appealing to MDP theory
when finding a polynomial-time algorithm for Hit

(
G, u, v) on undirected graphs in Section 7.1.

8. Summary
In this paper, we proposed a new random walk process inspired by the power of choice paradigm.
We derived several quantitative bounds on the hitting and cover times and also presented a
dichotomy with regard to computing optimal strategies.

While we were able to show that on an expander graph, the CRW significantly outperforms
the SRW in terms of its cover time, we do not yet know the exact order of magnitude of ttwocov .
In fact, we do not have any lower bound on ttwocov improving the trivial �(n) for any sequence
of bounded degree graphs. Constructing a sequence of graphs (Gn), especially expanders, with
ttwocov (Gn)= ω(n) would be very interesting.

We have shown that Cov ∈ EXP and that the problem is NP-hard. It would be interesting to find
a complexity class for which the problem is complete, and we suspect it is PSPACE-complete.
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