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A MAXIMAL GROSS-STADJE NUMBER IN THE EUCLIDEAN PLANE

F . PlLLICHSHAMMER

Let X be a compact, connected Hausdorff space and / a real valued, symmetric, con-
tinuous function on X x X. Then the Gross-Stadje number r(X, f) is the unique real
number with the property that for each positive integer n and for all (not necessarily

n
distinct) x\,... ,xn in X, there exists some x in X such that £ /(z;,x) = nr(X,f).

i=i
This paper solves the following open question in distance geometry: What is the
least upper bound ga(R2) of r(X, d2), where X ranges over all compact, connected
subsets of the Euclidean plane with diameter one and where d? denotes the squared,
Euclidean distance. We show: ff2(R2) = 3 — y/E.

1. INTRODUCTION

Let X be a compact, connected Hausdorff space and / a real valued, symmetric,
continuous function on X x X. Then there is a unique real number r(X,f) with the
property that for each positive integer n and for all (not necessarily distinct) x i , . . . ,xn

in X, there exists some x in X such that

For the case when / is a metricon^fxX this result was proved by 0. Gross [2] in
1964. The more general result stated above was proved by W. Stadje [3] (independendly
from Gross) in 1981. The number r(X, / ) is called Gross-Stadje number and is associated
with X and the function / . If / is a metric d, then r(X, d) is also often called the
rendezvous number of the metric space (X, d). An excellent survey on this topic is given
in [1].

In this paper we consider the case that X is a subset of the Euclidean plane and / is
the squared, Euclidean distance d2 (by ||.|| we denote the Euclidean norm). In general
the explicit calculation of the number r(X, f) for a given compact, connected Hausdorff
space X and a real valued, symmetric, continuous function / on X x X is rather difficult.
It turns out that the calculation of r(X,dP) is much easier.
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THEOREM 1 . (Wilson) Let X be a, compact, connected subset of Rn. Let B\ be

a closed ball and B2 an open ball such that X is contained in Bi\i?2 and the centre of

each ball lies in the closed convex hull of the intersection of X with the boundary of the

other. Further, let B\ have centre u and radius R and let B2 have centre v and radius r.

Then

r(X,cP) = R2 + r2-\\u-v\\2.

For a proof see [4]. The existence of the balls in Theorem 1 is also shown in Wilson's
paper.

For example let X be the Reuleaux triangle with diameter 1. Choose Bx as the
convex hull of the circumscribed circle und Bi as the interior of the convex hull of the
inscribed circle. Then we get with the help of Wilson's Theorem r(X, d2) = (5 - 2y/tj / 3 .
(Remember that r(X,d) of the Reuleaux triangle is still unknown.) For more examples
see [1, 4].

Define the number m(X,(P) as r(X,d2)/D(X,d2), where D(X,<P) = sup{||i - y\\2 |
x,y € X} and <ft(R2) as the supremum of the numbers m(X,(P) as X ranges over all
compact, connected subsets of R2. In [1] the authors ask for the value of ^ (R") , which
is defined analogously. All values 02(R")> n ^ 2, are still unknown. The first information
about the magnitude of ^ (R 2 ) is given in the following inequality: For all compact,
connected metric spaces (X, d) we have

For a proof of this inequality see for example [1]. Wilson conjectured in [4] that

<72(R
2) = f 3 — ^/ll/3j/2, which is the number m(X, d2) for two sides of a Reuleaux

triangle. But we shall show that this value is a little bit too small.

2. RESULTS

The following Proposition leads to the calculation of </2(R2)-

PROPOSITION 1 . Let Si be a circle with centre u and radius R and let S2 be a
circle with centre v and radius r, R^r^O, R>0 and 0 ^ ||u — u|| ^ R. Let X be a

compact, connected subset of conv Si\{coavS2Y where v is in conv(5i H X) and u is in

conv(52 C\X). Then we have

m{X, d2) ^ 3 - \/6 » 0.5505102.

Now we get
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THEOREM 2 . Define g2(R
2) as in Section 1. Then we have

g2(R
2) = 3 - VE.

REMARK 1. The value 3 — \/6 is attained, for example for the following set: Let 5i
be a circle with centre u and radius R = I, S2 be a circle with centre v and radius

T = JS/Us/E-GJ and let \\u - v\\ = y/5/2 - 1. Let {xux2} be the intersection of

Si and 52. Further let x3 be the intersection point of 5i \conv52 and the line which is
determined by u and v and let 14 be the intersection point of 52 n conv5i and the line
which is determined by u and t;. Then define the set A as follows: A consists of the arc
joining i j and x2 in 52 D conv5j and the line segment X3X4 (see Figure 1). Observe that

Figure 1: The set A.

3. P R O O F S

For the proof of Proposition 1 we need the following Lemmas:

LEMMA 1 . Let 5 be a circle with centre u and radius R. Let v be a point in conv 5
and g be the line with v in g and g perpendicular to the line segment uv. Further let h

be an arbitrary line with v in h. Then wehave with {x\,x2} = SC\g and {3/1,1/2} = Sf\h

The proof is straight forward.

LEMMA 2 . Let S be a circle with centre u and radius R. Let xi,x2, X3 be points
in S with u in conv{ii, 12, £3}- Then we have

max \\xi-Xj\\zV3R.
l<tj<3

The proof is straight forward.

LEMMA 3 . Let 5 be a circle and let X be a subset of conv 5 with 5 D X is not

empty. Let v be a point in conv(5 l~l X). Then there are points Xi,x2, x3 in X ("I 5 with

v in conv{i[, 12,13}.
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The Lemma follows from Caratheodory's Theorem.

LEMMA 4 . Let Si be a circle with centre u and radius R and let S2 be a circle

with centre v and radius r, R "^ r ^ 0, R > 0 and 0 ^ \\u — v\\ ^ R. Assume v is in

conv(conv5i\(convS2)°). Then we have

PROOF: If SinS2 is empty, the assertion is trivial. Let SinS2 be not empty. Assume
that \\u - v\\2 + r2 > R2. Let L := c o n v ^ D S2), I := D(L,d) and a := 1/2. Define
d := min{||a: - u\\ : x € L). Then we have o2 + <P = R2 and a2 + (||u - t<|| - rf)2 = r2.
From this we get

and hence

So the line which is determinated by L separates conv(conv5i\(conv52)°) and v, which
is a contradiction. D

LEMMA 5 . Define the following functions:

1. / , : [0,1/2] —» R, x f—)• 5/3 - (2>/3>/l - x + x2 + i ) / 3 .

2. For 0 $ to < 1/2: / , : [0,1] —>• R,

(l + z2-u>2)(l+u;)2

x , y —
x +

\2 •
+ to)3 — WX2\

3. For w > 0: f3 : (0,1] —>• R, x >-^ (1 + x2 - u;2) / (4x2) .

4. U • [0,1/2] —y R, x i—> 1/4 + (1 + 3x - 4x 2 ) / (4 ( l + * ) ) .

Then we have:

< 0 for x < (1 - w2)/U/\ +6w + wA

2. /i(x)< = 0 for x = (1 - w2)/(yi + 6w + u;2) .

> 0 for x > (l - w2)/ (\/l + 6to + to2)

3. fs is monotonic decreasing.
4. max /4(x) = fA(y/ZJ2-\) =3-y/E.
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The proof is straight forward.

PROOF OF PROPOSITION 1: Without loss of generality, let R = 1. From Lemma 4

we have

and from Theorem 1 we have

1 -i-r* — II,, _ ,,112

(2) m(X,<P) =v " ; D(X,<P) •

If r = 0 we get u = v and therefore u is in conv(Si OX). From this we get D(X,<P) > 3
and hence

So assume r > 0. Then it is easy to see that \X D Si\ > 1.

CASE 1. \X n S , | = 2. SoXnS1 = {3/1,1/2} and D(X,eP) ^ ||y, - y2| |2. Let g be the

line with v is in 17, with g perpendicular to the line segment uv and let {xi, 12} = Si l~lg.

Then we have | | i i — z2 | | 2 = 4 ( l —||u —v||2) . Since v is in conv{j/i,t/2} we get from Lemma

1 II2/1 - !/2|| ^ j|a?i - x2\\ and therefore

Now we get with (1) and (2):

C A S E 2. \X n 5 i | > 2. From Lemma 3 we get points 2/1,2/2,1/3 in Si ("I X with i> in

conv{j/i,y2,2/3}-

C A S E 2 . 1 . u is not in conv{j/i,j/2,i/3}. Then there are two points in {yi,yj) Jfa}, without

loss of generality, j/i and y2> such that the line segment yiy2 does intersect the line segment

uv. That is, yiyiduv = {v}. It follows that ||u—17|| ^ ||u—u||. Define two lines g, h which

are perpendicular to the line segment uv with v on g and v on h. Let {yx,y2} = Si fl g

and {£1,2:2} = Si D h. From Lemma 1 we get \\yl — y2|| ^ ||yi — y2||. Further we get

and hence

0 > ||y i - y 2 | | 2 > h'x-yiW2 > \\xt - X2II2 = 4(1 - ||U - t ; | |
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Again we use (1) and (2) and get

m(X^) $ I

CASE 2.2. u is in conv{yl,y2,y3\. From Lemma 2 we have

1<I,J<3

and so D(X,<P) ^ 3. Assume \\u - v\\ > 1/2. Then we get together with (1) and (2)

So in the following we only have to consider the case \\u — v\\ ^ 1/2.
We have r in the interval / = (0,1]. Define the intervals

and

Therefore r is in Ix U li U I3.

CASE 2.2.1. r is in h.

Since D(X,d?) ^ 3 we get together with (2) and Lemma 5,

1 + r2 - llu - vll2

(X,cP)

^ 5
3

- \ h l \ « 0.5425728.

CASE 2.2.2. r is in /2. For 1 < i < 3 define the lines gt, v + t(v - t/;) for t ~£ 0. Since
2/i, J/2, !/3 are points in X and X is connected there are at least two indices »i,:» G {1,2,3},
ii / i2

 a n d two points a1 ;a2 in X with ai € <?i, and a2 G <7«2. Then define i ! := t/in

x2 := y<2 and 13 := yi,, where A: ^ i i , i 2 . From this it is clear that \\xi — Oi|| ^ ||xi — v|| + r
and ||x2 — a2|| ^ | | i 2 — v\\ + r. So we have

) > max{||x, - *2||, ||xa - x3||, | |z, - x,||, ||x, - v | | + r, ||x2 - »|| + r } 2 .
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If | | i , - x 2 | | > 2y/l - \\u - v\\2 we have D(X, <P) > 4(1 - \\u- v\\2) and therefore together
with (1) and (2), we have m(X,cP) < 1/2. So we only have to consider \\xi — x2|| ^

Consider the arc joining Xi and x2 on Si which contains x3. Let x'3 be on this arc
with ||ii — X3II = ||x2 — X3II. Then we have

and so we get

D(X,d2) > maxilla - x2||, ||x, - x'3\\, \\Xl - v\\ + r, ||xa - t»|| + r} 2 .

Now let T : Si —• Si be a rotation with centre u and Tx'3 = u + t(u — v) for a t > 0.
Then we have

\\Tx1-v\\+r = \\Tx2-v\\ + r.

Of course ||Xl - x,\\ = \\Txx - Tx2\\, ||z, - x'3\\ = \\Txi - Tx'3\\ and

max{||x, - v|| + r, ||x, - v|| + r} ^ ||Txi - v|| + r.

So we get

(3) D(X, <P) > maxlHrx, - Tx2||, ||Tz, - Ti^l , flr*! - v|| + r } 2 .

For short write again X\ := Tx\,x% := Tx2 and 13 := Tx'3. Let x,- be the intersection

point of the circle 52 and the line segment ux,-, for 1 ^ i ^ 3. Now define the following

set X': X' is the arc joining xi and x2 in 52 with u in the convex hull of this arc, together

with the line segments x;x,-, for 1 ̂  i ^ 3. Then we have

1. X' is a compact, connected subset

2. u is in conv(52 PI X), and since | | i i — x2|| ^ 2-y/l — \\u — v\\2 also v is in
conv{x,,x2,x3}.

3. D(X',cP) = maxjUx, - x2\\,\\Xl - x3||, ||x, - v|| + r } 2 < D(X,cP) and
therefore m(X',cP) > m(X,<P).

So in the following we only consider sets of the kind of X'.

Let z be the intersection point of Si and the line u + t(u — v) for t J? 0. If Si C\ S2

is not empty, let y be in Si fl S2. Otherwise let y be the intersection point of Si and
the line u + t(u — v) for t ^ 0. Let B be the shortest arc joining y and z on Si. Let
g be the line which is perpendicular to uv and which contains v and define p as the
intersection point of B and ̂ . Each point x on B corresponds to an angle <j> between the
line segments uv and ux. Therefore we write x = x(4>). Now define the angles <j>i and
4>2 with y = x{<t>i) and p = x(<j>i). Clearly 4>i ~Z 0. Assume 4>i > "73. Then we have
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r > y/1 - \\u - v\\ + ||u - t>||2 ^ (1 + ||u - v\\)/(y/4\\u-v\\ + l\ a n d therefore r is not

in /2- Hence we have <f>i ^ T / 3 . On the other hand we have cos<fo = ||" — v\\. Since

0 ^ \\u - v|| < 1/2 we get ir/3 < fa < T / 2 .

By definition of X ' we have now X3 = z, x\ = x(<j>) for <̂ i ^ <j> ^ ^2 and x-i is the

point on S\ with a^ ^ 12 and ||i3 — xi|| = ||i3 — isll-

Now we have

and

||z(^>) — u|| + r = y 1 — 2||u — u||cos<^+ \\u — w||2 + r.

It is easy to see that \\x(4>) — X3|| is a monotonic decreasing function of <f> and
j>) — u|| + r is a monotonic increasing function of <j>. If Si f"l ̂ 2 is not empty we have
>̂i) —1>|| + r = 2r. Since <f>i is the angle between the line segments uy, and uv we have

and therefore

Hence we get

Since r is in 1% we get

and therefore

https://doi.org/10.1017/S0004972700022061 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022061


[9] A maximal Gross-Stadje number 117

On the other hand we have ||z(02) — X3JJ ^ | | I(TT/3) — Z3H = \/3 and j|i(<^2) — t;|| + r
||x(ir/3) — v|| + r ^ y/3 since r is in / j . So there is <j>o in [^1,^2] with

If SinS2 is empty we have <j>i = 0 and therefore we get ||x(02)—13|| ^ \ / 3 , ||i(0)—13U = 2,
||z(^j) — u|| + r ^ V^ and ||o;(0) — v\\ + r ^ 1 + r ^ 2. As above there is <f>o in [0i,<fe]
with

For short we define w := \\u — u||. Therefore we have

Since cos2(</>o/2) = (1 + cos <^o)/2 and with V" := <̂ o/2 we have

1 - 2iw(2 cos2 T/>-l) + u>2 = r2 + 4 cos2 ̂  -

So we get the following equation for cos t/>:

(4 + 4 w ) c o s 2 ^ - 4 r c o s ^ + r 2 - ( l + wf = 0.

Solving this equation we get

Since -^(1 +w)3 — w r2 > r we get

r ±

r +

2(1
to) 3 — to r 2

+ to)

w)3 -wr2

2(1

(Otherwise we have coŝ > < 0 and that is a contradiction to 0 ̂  0 ^ 7r/4-) Now we get
together with (3)

D(X',<P) (

= 4 cos ip

_ \r+y/(l+w)3-W
(1 + w)

and hence

(r +
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From Lemma 5 we have

max/2(x) = m a x | f2 (V5 - Vl - w + w2),/2 ( ,- ) >
x£h { V / \s/4w+lj)

and

1 f 3 - y ^ j.

The value / 2 m + w)/y/\w + I) will be calculated later.

CASE 2.2.3. r is in /3. We have D{X,cP) ^ 4r2 and so

where ID is chosen as \\u — v\\. We have

l + ||n-t»|| \ = / l + | |u-« | | \
v/4||u-t;|| + i; /2V4||«-»|| + 1/

Since f$ is a monotonic decreasing function on I3 we have

-u i i +

= 3-\/6.

So we have

and we are done.

D
PROOF OF THEOREM 2: Let X be a compact, connected subset of R2. Then there

is a circle S\ with centre u and radius R and a circle Si with centre t> and radius r with
X contained in convSJ\(convS2)° and u in conv(52 n X) and v in conv(5i n X) (see
Theorem 1). Therefore we get from Proposition 1

and hence

2) ̂  3 - y/6.
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Now we consider the set A from Remark 1 in Section 2. We have

So we get with Wilson's Theorem,

M(A,d2) =

= 3-\/6.
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