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Abstract. In this paper, we study Lagrangian submanifolds M of the nearly
Kihler 6-sphere S(1). It is well known that such submanifolds, which are 3-
dimensional, are always minimal and admit a symmetric cubic form. Following an idea
of Bryant, developed in the study of Lagrangian submanifolds of C3, we then investigate
those Lagrangian submanifolds for which at each point the tangent space admits an
isometry preserving this cubic form. We obtain that all such Lagrangian submanifolds
can be obtained starting from complex curves in S¢(1) or from holomorphic curves in
CP?*(4). In the final section we classify the Lagrangian submanifolds which admit
a Sasakian structure that is compatible with the induced metric. This last result
generalizes theorems obtained by Deshmukh and ElHadi. Note that in this case,
the condition that M admits a Sasakian structure implies that M admits a pointwise
isometry of the tangent space.

2000 Mathematics Subject Classification. 53B25, 53D12.

1. Introduction. It is well known that starting from the Cayley numbers, it is
possible to introduce an almost complex structure J on the 6-dimensional sphere S°(1)
which is compatible with the standard metric. It was shown by Calabi and Gluck,
see [5] that this structure, from a geometric viewpoint, is the best possible almost
complex structure on S°(1). In the study of submanifolds, it is then natural to study
submanifolds for which J preserves the tangent space (and hence also the normal
space) and those for which J interchanges the tangent and normal spaces. The first
class are called almost complex submanifolds and it was shown by Gray that they
have to be two dimensional (complex one dimensional). Further results about these
complex curves were obtained amongst others in [4], [10] and [2].

The second class of submanifolds mentioned, which by its definition have to be
3-dimensional, are called Lagrangian submanifolds. They were first investigated by
Ejiri, [13], who showed that a Lagrangian submanifold is always orientable and
minimal. Moreover, as is the case for Lagrangian submanifolds of complex space
forms, we have that the 3-form C defined by

CX,Y,2)=(WX,Y),JZ),

where /1 denotes the second fundamental form of the immersion is always symmetric.
This implies that at every point p of M, the cubic form can be represented by a
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homogeneous polynomial f, of degree 3 given by
fr(x, . 2) = (h(xey + yes + ze3, xey + yes + ze3), J(xe| + yey + ze3)),

where {e|, e2, e3} is an orthonormal basis at the point p. As M is minimal we see
that the trace of this cubic form with respect to the metric vanishes. As far as such
homogeneous polynomials of degree 3 with vanishing trace on a 3-dimensional real
vector space are concerned, we quote the following result by Bryant [3].

THEOREM 1. Let p € M and assume that there exist an orientation preserving
isometry of the tangent space which preserves f,. Then there exists an orthonormal
basis of T, M such that either

(1) fp =0, in this case f, is preserved by every isometry,

(i) f, = 2M2x3 = 3xy? — 3x2%), for some positive number A in which case f, is
preserved by a 1-parameter group of rotations,

(iii) f, = 6Axyz for some positive number A, in which case f, is preserved by the
discrete group Ay of order 12,

(iv) f, = AMx* = 3xp?) for some positive number A, in which case f, is preserved by
the discrete group S3 of order 6,

V) f, = A2x3 = 3x3% — 3x2%) + n(y® — 3xp?) for some r, > 0, with w # /22,
in which case f, is preserved by the group 73,

(Vi) f, = A(2x3 — 3xp? — 3x2%) + 6uxyz, for some A, > 0, with . # w, in which
case f, is preserved by the group 7, of order 2.

In Section 3, we will assume that one of the special cases of the above theorem
is satisfied at every point of the Lagrangian submanifold. We call M a Lagrangian
submanifold of Type (k) if and only if Theorem 1(k) is satisfied at every point p of
M. As it turns out, several of these classes of Lagrangian submanifolds have been
previously studied. It follows easily that for Lagrangian submanifolds of Type (i) up
to (v) can be characterised by the fact that the Ricci tensor admits at least a double
eigenvalue. Therefore they can be easily recovered from the classification results in
[13] (Type (i) and Type (iii)), [11] (Type (iv)) and [9] (Type (ii) and Type (v)). All such
Lagrangian submanifolds can be obtained starting from complex curves in S¢(1) or
from holomorphic curves in CP*(4).

The paper is organized as follows. In Section 2, we recall the construction of the
almost complex structure on S°(1), starting from the Cayley multiplication, as well
as some basic facts about Lagrangian submanifolds. Next, we start our investigation
of Lagrangian submanifolds of Type (vi). We show that, in contrast to the C*-case
studied by Bryant [3], there does not exist any Lagrangian submanifold of Type (vi).
As a corollary we remark that every Lagrangian submanifold of Type (k) which has
constant scalar curvature must be equivariant and thus congruent to one of the 5
immersions of SU(2) into S°(1), first described by Mashimo in [16]. This gives evidence
to the following conjecture:

CONJECTURE 1. Let ¥ : M3 — S°(1) be a Lagrangian immersion with constant
scalar curvature. Then  is congruent with an open part of one of the 5 previously
mentioned equivariant immersions.

The above conjecture can be seen as the analog for Lagrangian submanifolds of
the well-known conjecture by Chern which states that the set of all possible values for
the scalar curvature of a compact minimal hypersurface in a sphere is a discrete set.
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As a Lagrangian submanifold M of S°(1) is always 3-dimensional, and thus
odd-dimensional, it is a natural question to ask whether M admits a Sasakian
structure compatible with the induced metric. This problem was first considered in
[12], where some partial results were obtained. In Section 4, we completely classify
those Lagrangian submanifolds of Sé(1) which admit such a Sasakian structure.

2. Preliminaries. We give a brief exposition of how the standard nearly Kéahler
structure on S®(1) arises in a natural manner from the Cayley multiplication. We
also describe how we can use the vector cross product on R’ in order to define the
Sasakian structure on S°(1). For further details about the Cayley numbers and their
automorphism group G,, we refer the reader to [18] and [15].

The multiplication on the Cayley numbers O may be used to define a vector cross
product x on the purely imaginary Cayley numbers R’ using the formula

1
UXv= E(uv — vu), (1)
while the standard inner product on R’ is given by

1
(u,v) = —E(uv + vu). (2)
It is now elementary [15] to show that
ux(xw)+ uxv)xw=2u whv—(u v)w—(w, vu, 3)

and that the triple scalar product (u x v, w) is skew symmetric in u, v, w.
Conversely, Cayley multiplication on O is given in terms of the vector cross product
and the inner product by

r+u(s+v)y=rs— W, v)+rv+su+uxv), rsecRe(O),uvelmO) 4

In view of (1), (2) and (4), it is clear that the group G, of automorphisms of O is
precisely the group of isometries of R’ preserving the vector cross product.
An ordered basis uy, ..., u;y is said to be a G,-frame if

Uz = U] X Uy, Us=1U] XUy, Ug=1Uy XUy, U7 =U3 X Uy (5)

For example, the standard basis ey, ..., e; of R’ is a Go-frame. Moreover, if u;, us, uy
are mutually orthogonal unit vectors with u4 orthogonal to u; x uy, then uy, uy, uy
determine a unique G,-frame uy, ..., u; and (R’ x) is generated by u, us, us subject
to the relations:

w; X (X ug) + (U X uj) X uy = 28u; — Sjux — Sjxl;. (6)
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Therefore, for any G,-frame, we have the following very useful multiplication table

[18]:

X Ui 1753 us3 Uy Us Ug uz
uy 0 us —Uy Us —U4 —U7 Ug
[Z5) —Uus3 0 up Ug uz —U4 —Us
us up —U 0 uy —Ug Uus —Uy
Ug —Us —Ug —U7 0 up Uus usz
Uus Uy —u7 Ug —u 0 —U3 U
Ug uz Uy —Us —Us us 0 —Uux
uz —Ug Uus Ug —Uus —Uy uy 0

The standard nearly Kihler structure on S°(1) is then obtained as follows:

Ju=xxu, wueTS%1), xeS°).

It is clear that J is an orthogonal almost complex structure on S®(1). In fact J is a
nearly Kihler structure in the sense that the (2, 1)-tensor field G on S°(1) defined by

G(X,Y)= (VyxJ)Y,

where V is the Levi-Civita connection on S°(1) is skew-symmetric. A straightforward
computation also shows that

GX,Y)=XxY—-(xxX,Y)x.

For more information on the properties of ., J and G, we refer to [2] and [10].

Let M be a submanifold of S®(1). Then, M is called Lagrangian provided that J
interchanges at every point p of M the tangent and the normal space. It is immediately
clear that a Lagrangian submanifold is 3-dimensional. It was also shown by Ejiri,
[13] that M is minimal, orientable and that for tangent vector fields X and Y to M,
G(X, Y)is normal to M. Decomposing Vy Y and VyJ Y into a tangential and a normal
component it follows that

VyJY =JVyY + G(X, Y),
and that the form defined by
CX,Y,Z2)=(h(X,Y),JZ),

is symmetric in X, Y and Z.

Now, we finish this section, by recalling some basic facts about the Hopf lift, which
we will need in some of the later sections. It is well-known (see for instance [1], page
32 or [11]) that the complex structure of C* induces a Sasakian structure (¢, &, 17, g)
on S3(1) starting from C3. This structure can also be expressed using the vector cross
product. We consider S°(1) as the hypersphere in S°(1) C R’ given by the equation
x4 = 0 and define:

JiS3(1) = C: (x1, x2, X3, 0, X5, X6, X7) > (X1 + x5, X2 + iX6, X3 + iX7).
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Then at a point p = (x1, x3, X3, 0, X5, X¢, X7), the structure vector field & is given by

£(p) = (x5, X6, X7, 0, —X1, —X2, —X3) = €4 X p,

and for any tangent vector v, we get that

@(v) = v x eg — (v X eq, p) p.

Following [19], we call a submanifold M" of $°(1) invariant if (7, M) C T, M for every
p- If nis odd, then & is automatically tangent to M. Assume n = 3. The Hopf fibration
h: S°(1) — CP*(4) annihilates &, i.e. dh(€) = 0. Then if M? is invariant, h(M?) is a
holomorphic curve. Conversely, let ¢ : N — CP*(4) be a holomorphic curve, let PN,
be the circle bundle over Ny induced by the Hopf fibration and let ¥ be the immersion
such that the following diagram commutes:

PN, — s S5(1)

l lr

N —Y CPA4)

Then v is an invariant immersion in the Sasakian space form S°(1) with structure
vector field & tangent along .

3. Lagrangian submanifolds of Type (vi). In this section, we assume that M is a
Lagrangian submanifold of Type (vi). It is easy to see that this implies that at each
point p there exists an orthonormal basis {ej, 2, e3} such that

h(er, e1) = AJer, hler, ex) = ryJes, hies, er) = AzJes,
h(ez, e2) = AxJer, h(ez, e3) =0, h(es, e3) = A3Jey,

where 0 <A =—Ay— A3 andO;ékz #)\,3 7&0
By a straightforward computation we obtain the following:

LEMMA 1. Let {ey, €3, e3} be the orthonormal basis defined previously. Then it follows
that

Ric(el, 61) =1- )\% — )\g — )»2)\.3, Ric(el, 62) = 0, RiC(€3, 6‘1) = 0,
Ric(es, ) = 1 — A3, Ric(es, e3) =0, Ric(es, e3) = 1 — A3

Using the various conditions on A; and A3, we see that the 1-1 symmetric tensor
field P associated with the Ricci tensor has at each point three different eigenvalues,
all with multiplicity 1. Hence there exist orthonormal vector fields {E;, E>, E3} defined
on a neighborhood of the point p and a non vanishing differentiable functions A,, A3,
with A, + A3 < 0 and A, — A3 # 0 such that

h(Ey, E1) = —(h + M3)JE1, WE\, E)) = MJEy, h(Es, E) = A3JE3,
h(Es, Bp) = MJE, h(E,, E3) =0, h(E3, E3) = M3JE).
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As G(E, E>) = £J E5, we may, by replacing E3 with —Ej3 if necessary, assume that

G(E\, E;) = JE5. We then introduce local functions ay, . .., ¢3 by

Ve El =a1k) +aksy, VgkE =-—aE+ak;, Vgky=-mE —ak,
Vi, El =bi1Ey + byE3, Vg Ey =—biE\+b3E3, Vg E3=—bFE| — bk,
Ve Bl = 1By + k3, Vg E = —c B+ aE;, Vg E3=—0FE — k),

Computing now all components of the Gauss equation, it then follows by a long
but straightforward computation that the functions A,, A3, ay, ..., ¢3 have to satisfy

the following system of partial differential equations:

Ex(ay) — Ei(b1) = 1 = 2)3 — M3 + a} + b} + bac) — bras + arbs — aey,
Es(w) — E(c)=1-— 2/\% — Az + a% + c% + byc1 + braz — ajez + azcy,
Ex(ay) — E\(by) = braz + biby + ajar — a1bs + c2by — 243,

E3(ar) — Ei(c1) = axe3 — azer + ayap + byey + c1c2 + byas,

Ex(c2) — E3(by) = bics — byey — axby + azey — babs — ¢,

Ex(c1) — E3(b1) = b3cy — c3by + ajer — arby — cie3 — bibs,

Es(a3) — Ei(c3) = ajca — axcy + apas + azbs + bsey + cacs,

E\(b3) — Ex(a3) = biay — arby — ayaz — b1bs + ascs — ¢3b,

E3(b3) — Ex(c3) = 14+ Mohs + b% + C% + azby — azcy + bicy — bycy.

()
®)
©)
(10)
(11)
(12)
(13)
(14)

(15)

The number of unknowns in the above equations can be reduced using the Codazzi
equation which states that (VA)(X, Y, Z) = (Vxh)(Y, Z) = VY, Z) — W(Vx Y, Z) —

h(Y, VxZ) is totally symmetric in X, ¥ and Z. In particular we obtain that

LEMMA 2. Let {E}, E», Es} be the local orthonormal basis defined previously. Then,

we have that there exists a function c such that
by = —¢1 = —qr = L
2 = Cl - a3 - 4
A
a=(1- ﬁ)b&

ay = ()‘—2 — 1)6’3,

A3
Cy = CA3,
bl = C)»z.

Moreover, the functions hy and L3 satisfy the following system of differential equations:

Ei1(A2) = —cA2(3h2 + A3),

Ey(x2) = 363)»2(% -1),

E3(%2) = b3(h2 — A3),

Ei1(A3) = —cA3(323 + A2),

E>(23) = c3(h2 — A3),

E3(h3) = 3b3a3(1 — 2).
Proof. As,

(V) (E3, E3) = Ex(A3)JE) + biAsJE> + (3by — D)A3JE3,
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and
(Veh)(Ea, E3) = c3(ha — M) Ey + c2daJ By + c1A3J E3,

it follows from the Codazzi equation (Vg,h)(Es, Ez) = (Vg h)(E,, E3) that

1 = 3b2 - 17 (16)
Aby = cady, 17
E>(A3) = b3(Az — X3). (18)

Similarly, we obtain from (Vg,h)(E3, Ey) = (Vg,h)(E», E;) that

by = 3c1 + 1, (19)
E3(A2) = b3(A2 — 13). (20)

Combining (16) and (19) it then follows that ¢; = —} and b, = §. The remaining
equations follow similarly from the other Codazzi equations. U

Using the previous lemma, the differential equations given by (9) to (15) now imply
that

Ex(c) = 3b3(3£ — 1),
E3(0) = %Q(%} - %)
Ei(c3) = —ceshy + 5bs,
Ei(b3) = —bschs — jc3,
Es(c3) = 3bses — g2,

Ex(b3) = —3b3c3 + 28

C)Lz_)L3 .

We now compute some integrability conditions. As V is torsion free, we know that
for any function f, the following equations are satisfied:

0 = E\(Ex(f)) — E2(Ei(f)) — (Ve E) () + (VEE) (),
0 = E\(E5(f)) — Es(Ei(f)) — (Ve E3)(f) + (Ve E1) (),
0 = Ex(E5(f)) — E3(Ex(f)) — (VEE3)(f) + (Ve E) ().

It is straightforward to check that applying the above principle for the functions A,
and X3 does not yield any new equations. However, applying the first principle for the
function b3 yields the following differential equation:

M3 (ha — A3)(E3(b3) + Ea(c3)) + A3A3E1(c) = (ha — A3) (3o (Ao — 423) + b3A3(4Rs — 13)).
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Combining this equation, together with the remaining Gauss equations, we then obtain

that
Evby) = (=5 —32b3 4 16¢3) A3 + 242 (5 + 1653 — 8¢5 — 843 — 8¢?13)
3(b3) = T ’
E . (=5 —=32¢3 + 1663) A2 + 243(5 + 163 — 8b3 — 813 — 8c?A3)
2(C3) - 16(}\2 — k3) >
—5—32b3 + 163 2, 2\, —5—324+16k3 , B

Checking now the integrability conditions for ¢, c3 and b3 it immediately follows that
¢ = ¢3 = by = 0. Substituting these values in to the Gauss equations it follows that
A2 = —X3 which is a contradiction. Therefore, we have shown the following theorem:

THEOREM 2. There does not exist a Lagrangian submanifold of Type (vi) in S(1).

4. Lagrangian submanifolds admitting a Sasakian structure. Throughout this
section, we will assume that M is a Lagrangian submanifold of S°(1) which admits
a Sasakian structure which is compatible with the induced metric {.,.) on M. This
implies, see [1], that there exists a unit-length vector field & on M, a 1-form 5 and an
endomorphism & satisfying:

n(X) = (X, §),

P’ =—T+nQE,
@) =0,
no® =0,

(X, ®Y) = (X, Y) — n(X)n(Y),
(Vx@)Y =n(Y)X — (X, Y)§.

Moreover, it is well known, see [1], that the above equations imply that

Vi€ = —dX, 1)

RX, Y)§ = (&, )X —(X,§)Y. (22)

From [1], we recall the following theorem that the previous equation together with the
fact that & is a unit-length Killing vector field are the principal criteria for determining

whether an odd-dimensional manifold admits a Sasakian structure compatible with a
given metric.

LEMMA 3. Let M3 be a Riemannian manifold admitting a unit length Killing vector
field & such that

RX, Y)E =(§ Y)X — (5§, X)7Y.

Then M admits a Sasakian structure which is compatible with the given metric.
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Taking now an orthonormal basis {ej, e, e3} at a point p of M3 such that e3 = £,
it immediately follows from (22) that

Ric(ey, e1) = %((R(el, e)esr,er) +1), Ric(e;,e) =0, Ric(es, e;) =0,
Ric(ez, e2) = J((R(er, e2)ez, e1) + 1), Ric(ez, e3) =0,  Ric(es, e3) = 1.

This implies that all sectional curvatures at the point p equal 1 or the associated
endomorphism P has two eigenvalues: one with multiplicity 1 and one with multiplicity
2. Moreover, in the second case, the eigenvalue with multiplicity 1 equals 1 and the
vector field & spans the corresponding 1-dimensional eigenspace. We now recall the
following lemma from [9] about quasi-Einstein submanifolds.

LEMMA 4. Let M? be a 3-dimensional Lagrangian submanifold of S with the second
fundamental form h. Then the Ricci endomorphism P, associated with the Ricci tensor
Ric, satisfies:

(1) 1 is an eigenvalue of P,

(1) P has an eigenvalue with multiplicity at least 2,
if and only if p is a totally geodesic point or there exist a orthonormal basis {ey, €2, e3} of
T, M such that either

her, er) = AJer,  h(ez, e2) = —AJey,
h(ey, ex) = —AJey, h(er, e3) =0,
h(el, 6’3) = 0, h(€3, 63) = O,

where M is a non-zero number. Moreover, in the second case, the 1-dimensional eigenspace
is determined by e3.

It follows immediately from the above lemma that a Lagrangian submanifold
which admits a Sasakian structure satisfies Chen’s equality. Moreover, if necessary by
restricting to an open dense subset, we may assume that either M is totally geodesic or
in a neighborhood of any point p of M? there exist an orthonormal basis {E}, E>, E3}
such that

h(Ey, Ey) =AME|, WE), E)=—-AME), IE,E)=-\ME,
h(Ey, E3) =0, h(Ey, E3) =0, h(E3, E3) =0,

where E;3 = &. Now, we proceed as follows. We take the frame constructed in the
previous lemma. As G(E3, E}) is a normal vector which is orthogonal to both JE;
and JE it follows that G(E3, E;) = £FE,. Therefore, if necessary by changing the sign
of E,, we may assume that G(F3, E1) = JE;. It then follows that G(E}, E) = JE3
and G(E,, E3) = JE|. Moreover, we also have that ®E| = € E,, where € = 1. It then
follows from (21) that

Vi By = —eks,
Vg, E3 = €k,
Vi Es = 0.
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Introducing now functions a, b and ¢, it follows that we can express the other
components of the connection V respectively by

VElEl =ck,, VE1E2 = —cE| + €E3,
VEZEI = dE2 — EE3, VEZEZ = —dEl,
Vi, El =fEs, Vi, By = —fE;.

Using now the Codazzi equation, see also Lemma 5.3 of [8], it follows that f =
—%(1 + ¢). We now consider two different cases. First, we assume that ¢ = —1. In
that case, we have that

Vi, JE3 = G(Ey, E3) + JVg E3
=—JE,+JE, + W(E, E3) =0,
Vi, JEs = G(Es, E3) + JV i, E3
= JE| — JE, + W(E,, E3) = 0,
Vi JEy = JVg,E3 = 0.

Hence, JE; is a constant vector along M which is tangent to S°(1). Consequently M
lies in the totally geodesic S°(1) which is obtained as the intersection of S®(1) with
the linear hyperplane orthogonal to JE3. Using now the classification of Lagrangian
submanifolds contained in a totally geodesic subspace, see Theorems 1 and 4 of [11],
we obtain that M is locally congruent to the Hopf lift of a complex curve in CP*(4)
to S°(1) and S°(1) is immersed in S®(1) as described in Section 2. As the Hopf lift of a
complex curve is a Sasakian manifold, the converse is obvious.

Finally, we consider the case that ¢ = 1. In this case, we denote the immersion by F'
and proceed as in [11] to show that the map JE3 = F x Ej3 defines an almost complex
curve. Specializing the formulas there, to our case, i.e. using that the functions ¢ and b
defined in [11] are respectively given by a = 0 and » = 1, we get that:

Dg (F x E3) =2E;| x E3,
Dg,(F x Ez) =2E; x E3,
Dg(F x E3) =0,
Dg(E1 X E3) =(cEy+AF X E1 — F) x E3 — E| X Ey = cEy X E3 — AEy, — 2F x Es,
Dp,(Ey x E3) = (dEy — AF x E») x E3 =dEy, x E3 — AE),
Dg (Ey x E3) = (—cE| — AF X Ey) x E3 = —cE| x E3 — AE],
Dg,(Ex X E3) =(—dE| —AF X E| —F)x Es+ Ey X Ey=—dE| x E3s+ ) E; — 2F x Ej3,
DpE\=cE,+ A X Ey — F =cE, + AE, x E3 — F,
D Ey = —cEy — AF x E) + E3 = —cE1 + AE| x E3 + E3,
DpE) =dE, — MF X E; — E3y =dE, + AE| x E3 — Es,
DpE; = —dE, —M\F X Ey — F = —dE, — ME, x E3 — F.
The above formulas now imply immediately that the complex curve defined by JEj3 is
superminimal. A representation of superminimal complex curves was obtained in [4].

It now follows from [11] that M is obtained as in Theorem 2 of [11], starting from a
superminimal complex curve in S®(1).
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In order to show that we can start with an arbitrary superminimal complex curve
it is sufficient to check that the vector field %, defined in the proof of Theorem 2 of [11],
is a Killing vector field satisfying the conditions of Lemma 3, which can be verified by

a straightforward computation. Therefore, we have shown the following theorem:

THEOREM 3. Let ¥ : M3 — S°(1) be a Lagrangian immersion. Then M admits a
Sasakian structure compatible with the induced metric if and only if locally M is congruent
with (1) a totally geodesic immersion,

(ii) the immersion F : PNy — S°(1), where ¢ : Ny —> CP*(4) is a holomorphic
curve in CP*(4), PNy is the circle bundle over Ni induced by the Hopf fibration p
S3(1) — CP*(4), S°(1) is embedded in S as described in Section 2 and F is the isometric
immersion such that the following diagram commutes:

PN, —L s S5(1)
| l
N —2 cP).

(ii1) the immersion

G:UN> — S°(1): v > ¢,(v) x 20V

(BTG

where ¢ : No —> SO(1) is a superminimal almost complex curve (with second
fundamental form o) without totally geodesic points and U N, is the unit tangent bundle
over N».
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