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Abstract. In this paper, we study Lagrangian submanifolds M of the nearly
Kähler 6-sphere S6(1). It is well known that such submanifolds, which are 3-
dimensional, are always minimal and admit a symmetric cubic form. Following an idea
of Bryant, developed in the study of Lagrangian submanifolds of �3, we then investigate
those Lagrangian submanifolds for which at each point the tangent space admits an
isometry preserving this cubic form. We obtain that all such Lagrangian submanifolds
can be obtained starting from complex curves in S6(1) or from holomorphic curves in
�P2(4). In the final section we classify the Lagrangian submanifolds which admit
a Sasakian structure that is compatible with the induced metric. This last result
generalizes theorems obtained by Deshmukh and ElHadi. Note that in this case,
the condition that M admits a Sasakian structure implies that M admits a pointwise
isometry of the tangent space.

2000 Mathematics Subject Classification. 53B25, 53D12.

1. Introduction. It is well known that starting from the Cayley numbers, it is
possible to introduce an almost complex structure J on the 6-dimensional sphere S6(1)
which is compatible with the standard metric. It was shown by Calabi and Gluck,
see [5] that this structure, from a geometric viewpoint, is the best possible almost
complex structure on S6(1). In the study of submanifolds, it is then natural to study
submanifolds for which J preserves the tangent space (and hence also the normal
space) and those for which J interchanges the tangent and normal spaces. The first
class are called almost complex submanifolds and it was shown by Gray that they
have to be two dimensional (complex one dimensional). Further results about these
complex curves were obtained amongst others in [4], [10] and [2].

The second class of submanifolds mentioned, which by its definition have to be
3-dimensional, are called Lagrangian submanifolds. They were first investigated by
Ejiri, [13], who showed that a Lagrangian submanifold is always orientable and
minimal. Moreover, as is the case for Lagrangian submanifolds of complex space
forms, we have that the 3-form C defined by

C(X, Y, Z) = 〈h(X, Y ), JZ〉,

where h denotes the second fundamental form of the immersion is always symmetric.
This implies that at every point p of M, the cubic form can be represented by a
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homogeneous polynomial fp of degree 3 given by

fp(x, y, z) = 〈h(xe1 + ye2 + ze3, xe1 + ye2 + ze3), J(xe1 + ye2 + ze3)〉,

where {e1, e2, e3} is an orthonormal basis at the point p. As M is minimal we see
that the trace of this cubic form with respect to the metric vanishes. As far as such
homogeneous polynomials of degree 3 with vanishing trace on a 3-dimensional real
vector space are concerned, we quote the following result by Bryant [3].

THEOREM 1. Let p ∈ M and assume that there exist an orientation preserving
isometry of the tangent space which preserves fp. Then there exists an orthonormal
basis of TpM such that either

(i) fp = 0, in this case fp is preserved by every isometry,
(ii) fp = λ(2x3 − 3xy2 − 3xz2), for some positive number λ in which case fp is

preserved by a 1-parameter group of rotations,
(iii) fp = 6λxyz for some positive number λ, in which case fp is preserved by the

discrete group A4 of order 12,
(iv) fp = λ(x3 − 3xy2) for some positive number λ, in which case fp is preserved by

the discrete group S3 of order 6,
(v) fp = λ(2x3 − 3xy2 − 3xz2) + µ(y3 − 3xy2) for some λ,µ > 0, with µ �= √

2λ,
in which case fp is preserved by the group �3,

(vi) fp = λ(2x3 − 3xy2 − 3xz2) + 6µxyz, for some λ,µ > 0, with λ �= µ, in which
case fp is preserved by the group �2 of order 2.

In Section 3, we will assume that one of the special cases of the above theorem
is satisfied at every point of the Lagrangian submanifold. We call M a Lagrangian
submanifold of Type (k) if and only if Theorem 1(k) is satisfied at every point p of
M. As it turns out, several of these classes of Lagrangian submanifolds have been
previously studied. It follows easily that for Lagrangian submanifolds of Type (i) up
to (v) can be characterised by the fact that the Ricci tensor admits at least a double
eigenvalue. Therefore they can be easily recovered from the classification results in
[13] (Type (i) and Type (iii)), [11] (Type (iv)) and [9] (Type (ii) and Type (v)). All such
Lagrangian submanifolds can be obtained starting from complex curves in S6(1) or
from holomorphic curves in �P2(4).

The paper is organized as follows. In Section 2, we recall the construction of the
almost complex structure on S6(1), starting from the Cayley multiplication, as well
as some basic facts about Lagrangian submanifolds. Next, we start our investigation
of Lagrangian submanifolds of Type (vi). We show that, in contrast to the �3-case
studied by Bryant [3], there does not exist any Lagrangian submanifold of Type (vi).
As a corollary we remark that every Lagrangian submanifold of Type (k) which has
constant scalar curvature must be equivariant and thus congruent to one of the 5
immersions of SU(2) into S6(1), first described by Mashimo in [16]. This gives evidence
to the following conjecture:

CONJECTURE 1. Let ψ : M3 → S6(1) be a Lagrangian immersion with constant
scalar curvature. Then ψ is congruent with an open part of one of the 5 previously
mentioned equivariant immersions.

The above conjecture can be seen as the analog for Lagrangian submanifolds of
the well-known conjecture by Chern which states that the set of all possible values for
the scalar curvature of a compact minimal hypersurface in a sphere is a discrete set.
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As a Lagrangian submanifold M of S6(1) is always 3-dimensional, and thus
odd-dimensional, it is a natural question to ask whether M admits a Sasakian
structure compatible with the induced metric. This problem was first considered in
[12], where some partial results were obtained. In Section 4, we completely classify
those Lagrangian submanifolds of S6(1) which admit such a Sasakian structure.

2. Preliminaries. We give a brief exposition of how the standard nearly Kähler
structure on S6(1) arises in a natural manner from the Cayley multiplication. We
also describe how we can use the vector cross product on �7 in order to define the
Sasakian structure on S5(1). For further details about the Cayley numbers and their
automorphism group G2, we refer the reader to [18] and [15].

The multiplication on the Cayley numbers O may be used to define a vector cross
product × on the purely imaginary Cayley numbers �7 using the formula

u × v = 1
2

(uv − vu), (1)

while the standard inner product on �7 is given by

(u, v) = −1
2

(uv + vu). (2)

It is now elementary [15] to show that

u × (v × w) + (u × v) × w = 2(u, w)v − (u, v)w − (w, v)u, (3)

and that the triple scalar product (u × v,w) is skew symmetric in u, v, w.
Conversely, Cayley multiplication onO is given in terms of the vector cross product

and the inner product by

(r + u)(s + v) = rs − (u, v) + rv + su + (u × v), r, s ∈ Re(O), u, v ∈ Im(O) (4)

In view of (1), (2) and (4), it is clear that the group G2 of automorphisms of O is
precisely the group of isometries of �7 preserving the vector cross product.

An ordered basis u1, . . . , u7 is said to be a G2-frame if

u3 = u1 × u2, u5 = u1 × u4, u6 = u2 × u4, u7 = u3 × u4. (5)

For example, the standard basis e1, . . . , e7 of �7 is a G2-frame. Moreover, if u1, u2, u4

are mutually orthogonal unit vectors with u4 orthogonal to u1 × u2, then u1, u2, u4

determine a unique G2-frame u1, . . . , u7 and (�7,×) is generated by u1, u2, u4 subject
to the relations:

ui × (uj × uk) + (ui × uj) × uk = 2δikuj − δijuk − δjkui. (6)
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Therefore, for any G2-frame, we have the following very useful multiplication table
[18]:

x u1 u2 u3 u4 u5 u6 u7

u1 0 u3 −u2 u5 −u4 −u7 u6

u2 −u3 0 u1 u6 u7 −u4 −u5

u3 u2 −u1 0 u7 −u6 u5 −u4

u4 −u5 −u6 −u7 0 u1 u2 u3

u5 u4 −u7 u6 −u1 0 −u3 u2

u6 u7 u4 −u5 −u2 u3 0 −u1

u7 −u6 u5 u4 −u3 −u2 u1 0

The standard nearly Kähler structure on S6(1) is then obtained as follows:

Ju = x × u, u ∈ TxS6(1), x ∈ S6(1).

It is clear that J is an orthogonal almost complex structure on S6(1). In fact J is a
nearly Kähler structure in the sense that the (2, 1)-tensor field G on S6(1) defined by

G(X, Y ) = (∇̃X J)Y,

where ∇̃ is the Levi-Civita connection on S6(1) is skew-symmetric. A straightforward
computation also shows that

G(X, Y ) = X × Y − 〈x × X, Y〉 x.

For more information on the properties of ., J and G, we refer to [2] and [10].
Let M be a submanifold of S6(1). Then, M is called Lagrangian provided that J

interchanges at every point p of M the tangent and the normal space. It is immediately
clear that a Lagrangian submanifold is 3-dimensional. It was also shown by Ejiri,
[13] that M is minimal, orientable and that for tangent vector fields X and Y to M,
G(X, Y ) is normal to M. Decomposing ∇̃X Y and ∇̃X JY into a tangential and a normal
component it follows that

∇⊥
X JY = J∇X Y + G(X, Y ),

and that the form defined by

C(X, Y, Z) = 〈h(X, Y ), JZ〉,

is symmetric in X , Y and Z.
Now, we finish this section, by recalling some basic facts about the Hopf lift, which

we will need in some of the later sections. It is well-known (see for instance [1], page
32 or [11]) that the complex structure of �3 induces a Sasakian structure (ϕ, ξ, η, g)
on S5(1) starting from �3. This structure can also be expressed using the vector cross
product. We consider S5(1) as the hypersphere in S6(1) ⊂ �7 given by the equation
x4 = 0 and define:

j : S5(1) → �3 : (x1, x2, x3, 0, x5, x6, x7) �→ (x1 + ix5, x2 + ix6, x3 + ix7).
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Then at a point p = (x1, x2, x3, 0, x5, x6, x7), the structure vector field ξ is given by

ξ (p) = (x5, x6, x7, 0,−x1,−x2,−x3) = e4 × p,

and for any tangent vector v, we get that

ϕ(v) = v × e4 − 〈v × e4, p〉 p.

Following [19], we call a submanifold Mn of S5(1) invariant if ϕ(TpM) ⊂ TpM for every
p. If n is odd, then ξ is automatically tangent to M. Assume n = 3. The Hopf fibration
h : S5(1) → �P2(4) annihilates ξ , i.e. dh(ξ ) = 0. Then if M3 is invariant, h(M3) is a
holomorphic curve. Conversely, let φ : N1 → �P2(4) be a holomorphic curve, let PN1

be the circle bundle over N1 induced by the Hopf fibration and let ψ be the immersion
such that the following diagram commutes:

PN1
ψ−−−−→ S5(1)� �h

N1
φ−−−−→ �P2(4)

Then ψ is an invariant immersion in the Sasakian space form S5(1) with structure
vector field ξ tangent along ψ .

3. Lagrangian submanifolds of Type (vi). In this section, we assume that M is a
Lagrangian submanifold of Type (vi). It is easy to see that this implies that at each
point p there exists an orthonormal basis {e1, e2, e3} such that

h(e1, e1) = λ1Je1, h(e1, e2) = λ2Je2, h(e3, e1) = λ3Je3,

h(e2, e2) = λ2Je1, h(e2, e3) = 0, h(e3, e3) = λ3Je1,

where 0 < λ1 = −λ2 − λ3 and 0 �= λ2 �= λ3 �= 0.
By a straightforward computation we obtain the following:

LEMMA 1. Let {e1, e2, e3} be the orthonormal basis defined previously. Then it follows
that

Ric(e1, e1) = 1 − λ2
2 − λ2

3 − λ2λ3, Ric(e1, e2) = 0, Ric(e3, e1) = 0,

Ric(e2, e2) = 1 − λ2
2, Ric(e2, e3) = 0, Ric(e3, e3) = 1 − λ2

3.

Using the various conditions on λ2 and λ3, we see that the 1-1 symmetric tensor
field P associated with the Ricci tensor has at each point three different eigenvalues,
all with multiplicity 1. Hence there exist orthonormal vector fields {E1, E2, E3} defined
on a neighborhood of the point p and a non vanishing differentiable functions λ2, λ3,
with λ2 + λ3 < 0 and λ2 − λ3 �= 0 such that

h(E1, E1) = −(λ2 + λ3)JE1, h(E1, E2) = λ2JE2, h(E3, E1) = λ3JE3,

h(E2, E2) = λ2JE1, h(E2, E3) = 0, h(E3, E3) = λ3JE1.
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As G(E1, E2) = ±JE3, we may, by replacing E3 with −E3 if necessary, assume that
G(E1, E2) = JE3. We then introduce local functions a1, . . . , c3 by

∇E1 E1 = a1E2 + a2E3, ∇E1 E2 = −a1E1 + a3E3, ∇E1 E3 = −a2E1 − a3E2,

∇E2 E1 = b1E2 + b2E3, ∇E2 E2 = −b1E1 + b3E3, ∇E2 E3 = −b2E1 − b3E2,

∇E3 E1 = c1E2 + c2E3, ∇E3 E2 = −c1E1 + c3E3, ∇E3 E3 = −c2E1 − c3E2,

Computing now all components of the Gauss equation, it then follows by a long
but straightforward computation that the functions λ2, λ3, a1, . . . , c3 have to satisfy
the following system of partial differential equations:

E2(a1) − E1(b1) = 1 − 2λ2
2 − λ2λ3 + a2

1 + b2
1 + b2c1 − b2a3 + a2b3 − a3c1, (7)

E3(a2) − E1(c2) = 1 − 2λ2
3 − λ2λ3 + a2

2 + c2
2 + b2c1 + b2a3 − a1c3 + a3c1, (8)

E2(a2) − E1(b2) = b1a3 + b1b2 + a1a2 − a1b3 + c2b2 − c2a3, (9)

E3(a1) − E1(c1) = a2c3 − a3c2 + a1a2 + b1c1 + c1c2 + b1a3, (10)

E2(c2) − E3(b2) = b1c3 − b3c1 − a2b2 + a2c1 − b2b3 − c2c3, (11)

E2(c1) − E3(b1) = b3c2 − c3b2 + a1c1 − a1b2 − c1c3 − b1b3, (12)

E3(a3) − E1(c3) = a1c2 − a2c1 + a2a3 + a3b3 + b3c1 + c2c3, (13)

E1(b3) − E2(a3) = b1a2 − a1b2 − a1a3 − b1b3 + a3c3 − c3b2, (14)

E3(b3) − E2(c3) = 1 + λ2λ3 + b2
3 + c2

3 + a3b2 − a3c1 + b1c2 − b2c1. (15)

The number of unknowns in the above equations can be reduced using the Codazzi
equation which states that (∇h)(X, Y, Z) = (∇X h)(Y, Z) = ∇⊥

X h(Y, Z) − h(∇X Y, Z) −
h(Y,∇X Z) is totally symmetric in X , Y and Z. In particular we obtain that

LEMMA 2. Let {E1, E2, E3} be the local orthonormal basis defined previously. Then,
we have that there exists a function c such that

b2 = −c1 = −a3 = 1
4 ,

a2 = (
1 − λ3

λ2

)
b3,

a1 = (
λ2
λ3

− 1
)
c3,

c2 = cλ3,

b1 = cλ2.

Moreover, the functions λ2 and λ3 satisfy the following system of differential equations:

E1(λ2) = −cλ2(3λ2 + λ3),

E2(λ2) = 3c3λ2
(

λ2
λ3

− 1
)
,

E3(λ2) = b3(λ2 − λ3),

E1(λ3) = −cλ3(3λ3 + λ2),

E2(λ3) = c3(λ2 − λ3),

E3(λ3) = 3b3λ3
(
1 − λ3

λ2

)
.

Proof. As,
(∇E2 h

)
(E3, E3) = E2(λ3)JE1 + b1λ3JE2 + (3b2 − 1)λ3JE3,
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and

(∇E3 h
)
(E2, E3) = c3(λ2 − λ3)JE1 + c2λ2JE2 + c1λ3JE3,

it follows from the Codazzi equation (∇E2 h)(E3, E3) = (∇E3 h)(E2, E3) that

c1 = 3b2 − 1, (16)

λ3b1 = c2λ2, (17)

E2(λ3) = b3(λ2 − λ3). (18)

Similarly, we obtain from (∇E2 h)(E3, E2) = (∇E3 h)(E2, E2) that

b2 = 3c1 + 1, (19)

E3(λ2) = b3(λ2 − λ3). (20)

Combining (16) and (19) it then follows that c1 = − 1
4 and b2 = 1

4 . The remaining
equations follow similarly from the other Codazzi equations. �

Using the previous lemma, the differential equations given by (9) to (15) now imply
that

E2(c) = 1
2 b3

( 1
λ2

− 1
λ3

)
,

E3(c) = 1
2 c3

( 1
λ3

− 1
λ2

)
,

E1(c3) = −cc3λ2 + 1
2 b3,

E1(b3) = −b3cλ3 − 1
2 c3,

E3(c3) = 3b3c3 − 1
2 c λ2λ3

λ2−λ3
,

E2(b3) = −3b3c3 + 1
2 c λ2λ3

λ2−λ3
.

We now compute some integrability conditions. As ∇ is torsion free, we know that
for any function f , the following equations are satisfied:

0 = E1(E2( f )) − E2(E1( f )) − (∇E1 E2
)
( f ) + (∇E2 E1

)
( f ),

0 = E1(E3( f )) − E3(E1( f )) − (∇E1 E3
)
( f ) + (∇E3 E1

)
( f ),

0 = E2(E3( f )) − E3(E2( f )) − (∇E2 E3
)
( f ) + (∇E3 E2

)
( f ).

It is straightforward to check that applying the above principle for the functions λ2

and λ3 does not yield any new equations. However, applying the first principle for the
function b3 yields the following differential equation:

λ2λ3(λ2 −λ3)(E3(b3)+E2(c3))+λ2
2λ

2
3E1(c)= (λ2 −λ3)

(
c2

3λ2(λ2 −4λ3
)+b2

3λ3(4λ2 −λ3)).
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Combining this equation, together with the remaining Gauss equations, we then obtain
that

E3(b3) =
(−5 − 32b2

3 + 16c2
3

)
λ3 + 2λ2

(
5 + 16b2

3 − 8c2
3 − 8λ2

3 − 8c2λ2
3

)
16(λ2 − λ3)

,

E2(c3) =
(−5 − 32c2

3 + 16b2
3

)
λ2 + 2λ3

(
5 + 16c2

3 − 8b2
3 − 8λ2

2 − 8c2λ2
2

)
16(λ2 − λ3)

,

E1(c) = −5 − 32b2
3 + 16c2

3

16λ2
+λ2

(
1 + c2 + c2

3

λ2
3

)
+ −5 − 32c2

3 + 16b2
3

16λ3
+λ3

(
1 + c2 + b2

3

λ2
2

)
.

Checking now the integrability conditions for c, c3 and b3 it immediately follows that
c = c3 = b3 = 0. Substituting these values in to the Gauss equations it follows that
λ2 = −λ3 which is a contradiction. Therefore, we have shown the following theorem:

THEOREM 2. There does not exist a Lagrangian submanifold of Type (vi) in S6(1).

4. Lagrangian submanifolds admitting a Sasakian structure. Throughout this
section, we will assume that M is a Lagrangian submanifold of S6(1) which admits
a Sasakian structure which is compatible with the induced metric 〈. , .〉 on M. This
implies, see [1], that there exists a unit-length vector field ξ on M, a 1-form η and an
endomorphism � satisfying:

η(X) = 〈X, ξ 〉,
�2 = −I + η ⊗ ξ,

�(ξ ) = 0,

η ◦ � = 0,

〈�X,�Y〉 = 〈X, Y〉 − η(X)η(Y ),

(∇Xφ)Y = η(Y )X − 〈X, Y〉ξ.

Moreover, it is well known, see [1], that the above equations imply that

∇Xξ = −�X, (21)

R(X, Y )ξ = 〈ξ, Y〉X − 〈X, ξ 〉Y. (22)

From [1], we recall the following theorem that the previous equation together with the
fact that ξ is a unit-length Killing vector field are the principal criteria for determining
whether an odd-dimensional manifold admits a Sasakian structure compatible with a
given metric.

LEMMA 3. Let M3 be a Riemannian manifold admitting a unit length Killing vector
field ξ such that

R(X, Y )ξ = 〈ξ, Y〉X − 〈ξ, X〉Y.

Then M admits a Sasakian structure which is compatible with the given metric.
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Taking now an orthonormal basis {e1, e2, e3} at a point p of M3 such that e3 = ξ ,
it immediately follows from (22) that

Ric(e1, e1) = 1
2 (〈R(e1, e2)e2, e1〉 + 1), Ric(e1, e2) = 0, Ric(e3, e1) = 0,

Ric(e2, e2) = 1
2 (〈R(e1, e2)e2, e1〉 + 1), Ric(e2, e3) = 0, Ric(e3, e3) = 1.

This implies that all sectional curvatures at the point p equal 1 or the associated
endomorphism P has two eigenvalues: one with multiplicity 1 and one with multiplicity
2. Moreover, in the second case, the eigenvalue with multiplicity 1 equals 1 and the
vector field ξ spans the corresponding 1-dimensional eigenspace. We now recall the
following lemma from [9] about quasi-Einstein submanifolds.

LEMMA 4. Let M3 be a 3-dimensional Lagrangian submanifold of S6 with the second
fundamental form h. Then the Ricci endomorphism P, associated with the Ricci tensor
Ric, satisfies:

(i) 1 is an eigenvalue of P,
(ii) P has an eigenvalue with multiplicity at least 2,

if and only if p is a totally geodesic point or there exist a orthonormal basis {e1, e2, e3} of
TpM such that either

h(e1, e1) = λJe1, h(e2, e2) = −λJe1,

h(e1, e2) = −λJe2, h(e2, e3) = 0,

h(e1, e3) = 0, h(e3, e3) = 0,

where λ is a non-zero number. Moreover, in the second case, the 1-dimensional eigenspace
is determined by e3.

It follows immediately from the above lemma that a Lagrangian submanifold
which admits a Sasakian structure satisfies Chen’s equality. Moreover, if necessary by
restricting to an open dense subset, we may assume that either M is totally geodesic or
in a neighborhood of any point p of M3 there exist an orthonormal basis {E1, E2, E3}
such that

h(E1, E1) = λJE1, h(E2, E2) = −λJE1, h(E1, E2) = −λJE2,

h(E2, E3) = 0, h(E1, E3) = 0, h(E3, E3) = 0,

where E3 = ξ . Now, we proceed as follows. We take the frame constructed in the
previous lemma. As G(E3, E1) is a normal vector which is orthogonal to both JE3

and JE1 it follows that G(E3, E1) = ±E2. Therefore, if necessary by changing the sign
of E2, we may assume that G(E3, E1) = JE2. It then follows that G(E1, E2) = JE3

and G(E2, E3) = JE1. Moreover, we also have that �E1 = εE2, where ε = ±1. It then
follows from (21) that

∇E1 E3 = −εE2,

∇E2 E3 = εE1,

∇E3 E3 = 0.
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Introducing now functions a, b and c, it follows that we can express the other
components of the connection ∇ respectively by

∇E1 E1 = cE2, ∇E1 E2 = −cE1 + εE3,

∇E2 E1 = dE2 − εE3, ∇E2 E2 = −dE1,

∇E3 E1 = f E2, ∇E3 E2 = −f E1.

Using now the Codazzi equation, see also Lemma 5.3 of [8], it follows that f =
− 1

3 (1 + ε). We now consider two different cases. First, we assume that ε = −1. In
that case, we have that

∇̃E1 JE3 = G(E1, E3) + J∇̃E1 E3

= −JE2 + JE2 + h(E1, E3) = 0,

∇̃E2 JE3 = G(E2, E3) + J∇̃E2 E3

= JE1 − JE1 + h(E2, E3) = 0,

∇̃E3 JE3 = J∇̃E3 E3 = 0.

Hence, JE3 is a constant vector along M which is tangent to S6(1). Consequently M
lies in the totally geodesic S5(1) which is obtained as the intersection of S6(1) with
the linear hyperplane orthogonal to JE3. Using now the classification of Lagrangian
submanifolds contained in a totally geodesic subspace, see Theorems 1 and 4 of [11],
we obtain that M is locally congruent to the Hopf lift of a complex curve in �P2(4)
to S5(1) and S5(1) is immersed in S6(1) as described in Section 2. As the Hopf lift of a
complex curve is a Sasakian manifold, the converse is obvious.

Finally, we consider the case that ε = 1. In this case, we denote the immersion by F
and proceed as in [11] to show that the map JE3 = F × E3 defines an almost complex
curve. Specializing the formulas there, to our case, i.e. using that the functions a and b
defined in [11] are respectively given by a = 0 and b = 1, we get that:

DE1 (F × E3) = 2E1 × E3,

DE2 (F × E3) = 2E2 × E3,

DE3 (F × E3) = 0,

DE1 (E1 × E3) = (cE2 + λF × E1 − F) × E3 − E1 × E2 = cE2 × E3 − λE2 − 2F × E3,

DE2 (E1 × E3) = (dE2 − λF × E2) × E3 = dE2 × E3 − λE1,

DE1 (E2 × E3) = (−cE1 − λF × E2) × E3 = −cE1 × E3 − λE1,

DE2 (E2 × E3) = (−dE1 − λF × E1 − F) × E3 + E2 × E1 =−dE1 × E3 + λE2 − 2F × E3,

DE1 E1 = cE2 + λF × E1 − F = cE2 + λE2 × E3 − F,

DE1 E2 = −cE1 − λF × E2 + E3 = −cE1 + λE1 × E3 + E3,

DE2 E1 = dE2 − λF × E2 − E3 = dE2 + λE1 × E3 − E3,

DE2 E2 = −dE1 − λF × E1 − F = −dE1 − λE2 × E3 − F.

The above formulas now imply immediately that the complex curve defined by JE3 is
superminimal. A representation of superminimal complex curves was obtained in [4].
It now follows from [11] that M is obtained as in Theorem 2 of [11], starting from a
superminimal complex curve in S6(1).
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In order to show that we can start with an arbitrary superminimal complex curve
it is sufficient to check that the vector field ∂

∂t , defined in the proof of Theorem 2 of [11],
is a Killing vector field satisfying the conditions of Lemma 3, which can be verified by
a straightforward computation. Therefore, we have shown the following theorem:

THEOREM 3. Let ψ : M3 → S6(1) be a Lagrangian immersion. Then M admits a
Sasakian structure compatible with the induced metric if and only if locally M is congruent
with

(i) a totally geodesic immersion,
(ii) the immersion F : PN1 → S6(1), where φ : N1 −→ �P2(4) is a holomorphic

curve in �P2(4), PN1 is the circle bundle over N1 induced by the Hopf fibration p :
S5(1) → �P2(4), S5(1) is embedded in S6 as described in Section 2 and F is the isometric
immersion such that the following diagram commutes:

PN1
F−−−−→ S5(1)� �p

N1
φ−−−−→ �P2(4).

(iii) the immersion

G : UN2 → S6(1) : v �→ φ̄�(v) × α(v,v)
‖α(v,v)‖ ,

where φ̄ : N2 −→ S6(1) is a superminimal almost complex curve (with second
fundamental form α) without totally geodesic points and UN2 is the unit tangent bundle
over N2.
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