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Abstract

We establish a one-to-one "group-like" correspondence between congruences on a free monoid
X* and so-called positively self-conjugate inverse submonoids of the polycyclic monoid P{X).
This enables us to translate many concepts in semigroup theory into the language of inverse
semigroups.

1991 Mathematics subject classification (Amer. Math. Soc): 20 M 8, 20 M 10.

1. Introduction

For basic background on semigroups we refer the reader to Clifford and Pre-
ston [2] or Lyapin [3]: standard information about inverse semigroups may
be found in Petrich [8]. Of particular concern to us in the present paper is the
polycyclic monoid P(X) on a set X , introduced into the literature by Nivat
and Perrot [7]. The monoid P{X) may be defined as the inverse hull of the
free monoid X* on the non-empty set X: it arises naturally as the syntactic
monoid of the restricted Dyck language on a set of cardinality | X | and also
in connection with the operation of a push-down automaton, which may be
realized by a rational transducer with values in P(X). We refer the reader
to the papers [6, 7, 9], for further details and applications of the polycyclic
monoid in formal language theory. For the reader's convenience, we briefly
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[2] Congruences on free monoids 237

indicate below a few elementary facts about the polycyclic monoid which we
shall use in the present paper.

If X is a non-empty set and X"1 a disjoint set in one-one correspondence
with X (by means of the mapping x —> x~l, x e X) then P(X) may
be viewed as the monoid presented by the set X u X " 1 of generators and
relations of the form xx~l = 1, xy~l = 0 , x^y, x,y e X . If | X | = 1,
then P(X) is just the bicyclic monoid (Clifford and Preston [2]). As usual,
with every word w = xx...xn e (XUX"1)* we associate a word w~x =
x~l... Jt,"1. From the presentation of P(X) it follows that each element of
P(X) may be written uniquely in the form u~lv for some words u, v e X*.
The multiplication in P(X) is described as follows:

{ u\xwv2 if vl—wu2, some w e X*

u~iw~iv2 if M2 = wvx, some w € X*

0 otherwise

Idempotents of P{X) are of the form u~lu (u e X*) and the semilattice
of idempotents of P(X) is just the usual partially ordered set of X* (with a
0 adjoined if | X | > 1).

Of course P(X) is an inverse monoid: we show in this paper that ev-
ery monoid is coded by an inverse submonoid of an appropriate polycyclic
monoid.

2. The semigroups Px, Qx, / x

Let X be a finite non-empty set and let Xz be the set of doubly infinite
words (sequences) over X. An element x_ of X will usually be denoted by
x_ = ( . . . , x_2, JC_, ,xo,xl,x2,...) or x_ = (xn)n€Z: here xn denotes the
entry in position n («eZ) of the doubly infinite word x_ and Z denotes the
set of integers. It may be convenient for the reader to view the word x_ as
being printed on a doubly infinite tape and to consider position 0 of the tape
as being located by means of a fixed reading head that scans x0. Let Y = X
if | X | > 1 and Y = Xu{*} where t $ X if | X | = 1. We define | X | + 1
(partial) mappings from Yz to Y z .

The first mapping is the shift T that shifts each sequence one space to
the right. More precisely, if x_ = (xn)nez, then T maps x_ to y_ = (yn)n€Z

where yn = xn_{ (for n e Z). Note that if we view x_ as being printed on a
doubly infinite tape with fixed reading head then T has the effect of shifting
the tape one space to the right, so that the symbol scanned by the reading
head becomes x_1 , instead of x0. Clearly T is a permutation of Yz (with
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238 J. Meakin and M. Sapir [3]

domain all of Yz and inverse T"1 , the map that shifts each sequence one
space to the left).

For each letter x e X w e denote by ax the mapping that deletes x, from
(xn)nez if JCj — x. Thus ax is a partial mapping from Yz to Yz with
domain being set of all sequences (xn)nez for which xl = x: the mapping
ax maps (xn)n€Z to {yn)n& where

" U n + 1 i f » > l .
It is clear that ax(x e X) is a partial one-one mapping of Yz to Yz with
inverse map a~l, the map that inserts the letter x in {xn)n€Z between xQ

and xx, thus creating the new sequence (zn)nez with
xn for n < 0
x for n = 1

xn_1 for n > 1.

Since T and a ( x e X ) are partial one-one maps of Yz to Y z , we may
view them as elements of the symmetric inverse monoid SIM(Y ) on the
set Yz (see Clifford and Preston [2] or Petrich [8] for background on the
symmetric inverse monoid). We now define three submonoids Px , Ix and
Qx of SIM(YZ). We use the notation (U) to denote the inverse submonoid
of SIM(YZ) generated by the subset U c SIM(YZ): define

Px = {{ax:xeX}),

Ix = ({ax:x€X}U{T}),

and let Qx be the set of elements of 7X that can be written as a product of
(positive and negative) powers of T and the ax(x e X) for which the sum
of powers of T involved is zero.

REMARK. We shall see later that no element of Qx can be written as a
product of powers of T and the ax(x G X) in such a way that the sum of
powers of T involved is non-zero.

Note that 7X is a finitely generated inverse monoid and that Qx is a
finitely generated algebra of type (-,"' , T) where T is an isomorphism
a K - T " 1 a T .

For every word u e X*, it is convenient to fix the notation au for the
mapping from Yz to Yz that deletes the word u from a sequence (xn)nez

if u — xxx2...xk . Clearly au is a partial one-one map of Yz to Yz with
domain the set of sequences (xn)n€Z for which u = xlx2---xlc; also au

is the product a,, = av cr . . . av e Pv . We establish a number of basic
* M X| Xj X^ A.

properties and facts concerning the monoids Px , Ix, and Qx .
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[4] Congruences on free monoids 239

LEMMA 2.1. The monoid Px is isomorphic to the polycyclic monoid P(X).

PROOF. Note that for every x,y e X, a~1ax = 1 (identity map of
SIM(YZ)) and a~Xay = 0 if x ^ y. It follows that every element of Px

is expressible in the form aua~l for some u, v e X*. The element OLU<X~X

of Px has as domain the set of all sequences {xn)n€Z with xl...xk = u
(some k) and has the effect of replacing the subword xx... xk = u of such
a sequence by the subword v . It follows that if u, v, s, t e X* then
aua~l — asa~l iff u — s and v = t. Hence every element of Px is
uniquely expressible in the form aua~l for some u, v, e X*. From the
description of the polycyclic monoid P(X) given in section 1 it is now clear
that the map u~lv i-» ar(u)a~A is an isomorphism from P(X) onto Px.
(Here r{u) denotes the reverse of the word w: that is, if u = xlx2...xk

then r(u) -xk...x2xv)

Denote the set of idempotents of / x , Qx and Px by EIX, EQX and
EPX respectively. Note that EIX and EPX are semilattices and EQX is
a semilattice and subalgebra of Qx (since every automorphism preserves
idempotents).

LEMMA 2.2. (a) The semilattice EPX consists of zero and all elements of
the form aua~l for some u e X*; (b) the semilattice EIX is generated by the
set {T~kaxa~l 1* : x e X, k e Z}U{1}; (c) the subalgebra EQX coincides
with EIX and is generated by the set {axa~l : x e X } U { l } .

PROOF. Part (a) is obvious from the description given in section 1 of the
semilattice of idempotents of the polycyclic monoid. To prove part (b),
suppose first that a is any element of Ix with a # 0 and a / 1. Then a
must be expressible as a finite product of elements of the form T, T~ , ax

and a j 1 for x e X. Now T, T"1 and a~l all have domain Xz and ax

has domain consisting of all sequences {xn)nez with xx = x. It follows
that there must exist integers /, < i2 < . . . < ik e Z and fixed elements
a{, a2, ... , ak eX such that {xn)n€Z is in the domain of a if and only if
jCj = at for 1 < t < k . Now if a is an idempotent of / x then a must be

the restriction of the identity map on Xz to its domain, so a = /?( fit ... /?,
where /?, is the identity map on the set of sequences {xn)nez with xt = at

(for 1 < t < k). Since fi. = T~''+1 a a~lT'-"1 the result of part (b)
follows. From part (b) it follows that EIX C EQX: since the converse is
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240 J. Meakin and M. Sapir [5]

obvious it follows immediately that EQX is generated (as an algebra) by

LEMMA 2.3. For all words u,v,s,teX*,allkeZ and all integers
I > 0 we have

(1) auT asat T = T a,a, T au

and hence

(2) (T'k aua-X T*)(T)(fc+|t"+/)a,a/-
1 T(fe+l"l+/))

In particular,

(3) auasat =T ' a s a ( T1 ' o , .

PROOF. Let a (respectively fi) denote the mapping on the left side (re-
spectively right side) of equation (1). A sequence (xn)nez is in the domain
of a if and only if xl...x^ = u and x|t t |+/+1 . . .* | u | + / + w = s: similarly
one checks that /? has this domain. The effect of a when applied to such a
sequence is to first erase the segment xl... x,. and then replace the segment
x\u\+i+i •••x\u\+i+\s\ by t, while p had the same effect, but in the opposite
order. Hence a = /?. Clearly (3) follows from (1) with / = 0. To see that
(2) also follows from (1) note first that, on replacing u by v and s by t in
(1) and taking inverses, we have

- i _-(/+M) T(/+M) T - / - i x / - i
av T asatT = T asal T av '

SO

sa^ T ^ = a . T"' as^ T< < '
.

Equation (2) follows immediately from this by premultiplying by T~ , post-
multiplying by Tfc and noting that T* T~fc = 1.

LEMMA 2.4. For all words u,v,w e X* with \w\ > 1 and for every
positive integer k < \w\ we have

(4) T~k auavl Tk°<w= aw(k)uaZ(k)vaw '

(5) aw T auav T = aw aw(k)uaw(k)v '

where w(k) is the prefix of w of length k.
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PROOF. Write w in the form w = w(k)s for some j g X * . By Lemma
2.3, (3) we have

T-k -1 Tfc _ -1
1 auav l aw(k) ~ aw(k)auav

_ -1

Hence
— k —\ Ir —IT —1 IT

_ -1 -1
— aw{k)uav aw(k)aw(k)as
_ - 1
~ aw(k)uaw{k)vaw '

so equality (4) is established. Of course equality (5) follows from equality (4)
by interchanging u and v and taking inverses of both sides of the resulting
equality.

If p = aMa~! G Px for some words u, v e X*, it is convenient to denote
\v\ by \p\ and | M | - | V | by d(p). We also use the notation A + B to denote
the join of A and B in the lattice of inverse submonoids of / x . If w -
...x_lxoxl... is an infinite word and k, I are integers, k <l, then w[k, I]
will denote the word xk...xl.

LEMMA 2.5. (a) Every element q £ Qx may be uniquely represented in the
form

(6) q = T-kiplT
k>T-k>p2T

k*...T-k»pnT
k»

for some integers kx,k2,... ,kn and elements px,... ,pn e ^X\{1} w^tn

k2 > ^ + Lp,|, k3 > k2 + \p2\ ,...,kn>kn_{ + |/>n_,|;
(b) if an element q is represented in the form (6) then the domain of q

consists of all infinite words w such that

ty[fcj + /n, , kl+ml + \ul\] = ul, w[k2 + m2, k2 + m2 + \u2\] - u2, ... ,

w[kn + mn, kn + mn + \un\] = un,

where mn may be defined inductively by:

(7) mx = 1, . . . , mi = mi_l +d(pi_l), I > 1 ,

and the effect of applying q to such a word is to replace each segment
w[kt + mi, k{ + m( + |«.|] by vt for i = 1, . . . , n.
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(c) if Pi = a
u
av1 for some words ut, vt (i — \,...,k), then

({Pi: i = 1, 2,... , k) + (T)) n Qx consists of elements of the type

(8) T"*' qx T*' T"*2 q2 T*>... T"*- qn TK

where each q{ is a product of elements of the form OLWUOWV or a O T a T O for
some words u, v, w e X* with (w, v) e {(Uj, v.): j = I, ... , k} and some
integers kt with ki+x > kt + \qt\ for i= 1 , . . . , n- 1.

PROOF. Using the definition of Qx and the fact that TT"1 = T"1 T = 1,
it is easy to see that every element q e Qx may be written in the form
q = T~k>p{ T

kl T~klp2T
ki...T~k"pnT

k" for some integers ki and elements
pi of Px . Successive application of equalities (2) of Lemma 2.3 and (4) of
Lemma 2.4 then enables us to rewrite the product for q above in such a way
that we may assume that kx < k2 < • • • < kn . Now write pi = aua~l for
some words M, , vf € X* and let /, = ki+x - kt (so that each lt > 0). Thus

— lr _ t / _ 1 _ / —1 _ / _ 1 ir

q = T >auaViT a ^ T ' a ^ . , . 7 - ' auaVm T .

If l\ <\vx\ = \px| we may rewrite this as

and we may apply equality (5) (Lemma 2.4) to obtain

« = T l auaVi avA)uavMvJ auav% ... a ^ T" .

Similar reductions occur if /, < |uf.| — \pt\ (for 1 < / < n). Then by
induction on n we obtain (6). Equality (8) also follows from the above
proof.

Condition (b) is an immediate consequence of the definition of the semi-
group 7X. Notice that the replacements that are described in condition (b)
are independent. Indeed by (6) we have

(ki+l + mM) - {kt + m. + |M.|) = ki+l - kt + mi+i - mt - |«.|

This means that each replacement does not change the segment we obtain
as a result of any other replacement. This gives us the uniqueness of the
representation (6).

The preceding results enable us to give a presentation for the semigroup
7X . We denote by Inv(X : R) the inverse monoid presented by a set X of
generators and a set R of relations. Thus we may think of R as a subset
of (XuX"1)* x (XuX"1)* where X"1 is a set in one-one correspondence
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[8] Congruences on free monoids 243

with X (and disjoint from X) and Inv(X : R) = ( X U X " ' ) * / T , where
T is the congruence on (XuX"1)* generated by p U R. (Here p is the
Vagner congruence on (X U X~' )* - see Petrich [8].) Presentations of inverse
monoids have received considerable recent attention in the literature - see for
example the papers of Stephen [10] and Margolis and Meakin [4].

THEOREM 2.6. (a) The semigroup Px admits a presentation of the form
Px = Inv(X : R{) where X = {ax : x e X} and R, consists of the relations
axiax = l> aj1a,, = 0 /o r x,y € X , x^y.

(b) The semigroup Ix is a semidirect product of Qx and Z (the group of
integers).

(c) The semigroup Ix admits a presentation of the form Ix = Inv(XU{T} :
R2) where R2 = R^R^R, . , Rj = {(TT~\ 1), (TlT, 1)} and Rc

consists of all relations listed in equation (1), (Lemma 2.3).

PROOF. Part (a) was already established in Lemma 2.1. To prove part
(b) note first that application of the relations TT" 1 = T - 1 T = 1 easily
enables us to represent every element ^ g / x in the form y - q Tk for some
q &QX, k G Z . If qx T

fc' = q2 T*2 for some qx, q2 e Qx and ki , k2 e Z
then tfjT*1""*2 = q2. We prove that qx = q2 and kx = k2. This will in
particular provide a justification for the remark made immediately after the
definition of Qx , namely that an element y of Ix is in Qx only if the sum
of powers of T involved in the expression for y, as a product of powers of
T and the ax(x e X), is zero. Represent qx and q2 in the forms

and
q2 = T"'1 a. a."1

 T'1 ... T~L a, a."1 T7"
Z Sl 'l Sm 'm

as in equation (6). Then qx, q2 and qx -\
k\~ki au have the same domains, so

m = n , kf — lt and M, = st for all i. The effect of applying qx (respectively
q2) to a sequence x_ — (xn)neZ in this domain is to replace various segments
of x. as specified in Lemma 2.5(b), while T*1"*2 translates x_qt by (/c, —k2)
spaces to the right. Since qx T * 1 " ^ = q2 , this forces kx - k2 = 0, so k{ = k2,
whence q{ — q2 and the representation of y e / x in the form q T is unique.
It is now easy to see that / x is isomorphic to the semidirect product of Qx

and (T) S Z defined by the action Tk q = Tk q Tk of (T) on Qx .
To prove part (c), let Y = X U {T} and let rx be the congruence on

(YUY"1)* generated by p U R2. Then Inv(X U {T} : R2) = ( Y U Y " Y / T , ,
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and since 7X satisfies all the relations in R2 we may write 7X = ( Y U Y " ' ) 7 T 2

for some congruence T2 on (YUY"1)* with T, C T 2 . If q is a word
in (YUY"1)" for which the sum of powers of T occurring in q is zero,
then the proofs of Lemmas 2.3, 2.4 and 2.5 show that application of the
relations R2 alone reduces q to a form as represented in the right-hand
side of equation (6). Thus every element y e (YUY"1)' is z,-related to a
word of the form q i where q is represented as in the right-hand side of
equation (6). If ( ^ T ^ T ^ T * 2 ) , then (qlT

kl)x2(q2T
kl) so by the proof

of part (b) of the present theorem and part (a) of Lemma 2.5 we see that
k{ = k2 and qx = q2, so each T, -class has a unique representative of the
form q T* (with q represented as in the right-hand side of (6)). Since each
T2-class has a unique representative of the same form it easily follows that
T, = T2 . Hence 7X s Inv(X U {T} : R2>.

We close this section by recording another structural property of the semi-
groups Px, Ix and Qx . We define an inverse semigroup S with zero 0 to
be O-E-unitary if E(S) - {0} is a unitary subset of S: that is if e2 = e,
ex ^0 and (ex)2 = ex for some e, x e S, then x2 - x. (Here, as usual,
E(S) denotes the semilattice of idempotents of S).

PROPOSITION 2.7. The semigroups Px, Ix and Qx are O-E-unitary in-
verse monoids.

PROOF. This result is well-known (and easy to prove) for the polycyclic
monoid, and hence for 7>x. Let a = a2 e 7X and y € 7X. From (the proofs
of) Lemmas 2.2 and 2.6 we may write

(where the A:,, satisfy the constraints of equality (6)) and a = fi{ fi. ... fit

where /?( is the identity map on the set of sequences (xn)n€Z with xi — at

(a fixed element of X) for each t. Now ay is the restriction of y to the
intersection of the domain of a with the domain of y, so by Lemma 2.5(b),
its domain consists of all those sequences w with tu^ .+ /«,., ki+mi + \ui\] =
M, , x{ = at (for / = I,... , m and t = I, ..., k). If ay is a non-zero
idempotent of 7X then ay must be the identity map on its domain so vt = ut

for i= \, ... , m and so y is also an idempotent of 7X . Hence 7X is 0-E-
unitary. From this and the fact that EIX = EQX it follows that Qx is
0-2s-unitary.
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[10] Congruences on free monoids 245

3. Correspondence between semigroups and inverse semigroups

For every relation Z = {(«(, vt) : i £ 1} c X* x X* on the free monoid
X* define

Thus /(Z), P(L) and Q(L) are all inverse submonoids of / x . (Here, as
before, + denotes join in the lattice of inverse submonoids of / x ) . In the
present section we show that the map Z —» P(L) sets up an isomorphism
from the lattice of congruences on X* onto a certain sublattice of the lattice
of inverse submonoids of Px. We first need one preliminary concept.

The set Px = {au : u e X*} is a submonoid of Px isomorphic to the
free monoid X*: elements of Px will be called positive elements of Px in
this paper (although some readers may prefer to label such elements "nega-
tive" in view of the isomorphism developed in Lemma 2.1 between Px and
the polycyclic monoid). An inverse submonoid R of Px will be called a
positively self-conjugate (PSC) submonoid of Px if pRp~l C R for every
positive element p e Px .

LEMMA 3.1. Let R be a PSC submonoid of Px. Then

(a) R is a full inverse submonoid of Px (that is EPX C R);
(b) if aHa? eRandweX* then a^a'l, auwa~l € R.

PROOF. TO prove part (a) note that since 1 e R we have aua~ =
a u la~ ' G R for all u 6 X*, so the result follows from Lemma 2.2(a). To
prove part (b) note first that otwua^,lv =

 a
wotua~]'a"1 6 R by the definition

of PSC submonoid, while

auwavw = auawaw av = auawaw av avav

= <*uavlavwavw e R by part (a).

LEMMA 3.2. If R is a PSC submonoid of Px then in Ix we have R =
E l x ) n P x .

PROOF. We need only prove that (R+(T) + EIX) n Px c R. Notice first
that EPX C R by Lemma 3.1. From Lemma 2.2 it is clear that EIX C
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EPX +(T), so it suffices to prove that R = (R +(T>) n P x . By Lemma 2.5(b)
and Lemma 3.1(b), every element of (R+(T)) n Qx can be represented in
the form T""*1 ql T*1 T~*2 q2 T*2 . . . T~k" qm Tkm where kM > kt + \qt\ for
/ = \,..., m - \ and ^ e R . By the uniqueness of this representation,
such an element is in Px if and only if k{ = 0 and m — 1. Thus, if such
an element belongs to Px it also belongs to R.

PROPOSITION 3.3. If Z is a relation on the free monoid X* then />(Z) is
a PSC submonoid of Px. Conversely, if R is a PSC submonoid of Px then
there is some relation Z on X* (in fact, some congruence Z on X*) such
that R = P(Z).

PROOF. Let Z = {(«,, v^ : i e /} be a relation on X*. Note that equation
(3) (Lemma 2.3) implies that aupa~l = T~M pT1"1 aua~l for all words u e
X* and all p e Px. If p € P(Z) then p is a product of elements in EIX and
elements in /(Z), each of which is a product of powers of T and elements
of the form aua~l, i e / . It follows that T~lu]pT1"1 is of the same form

and hence a pa~l e 1(1) n ? x = P(l). So P(l) is a PSC submonoid of

Conversely, let R be a PSC submonoid of Px. Define a relation Z' on
X* by

(8) (u,v)e l' if and only if aua~l e R .

It is clear from Lemma 3.1 that Z' is a congruence on X*. Now 7(Z') =
({«„< ' : ( « , « ) € Z'}) + EIX +<T> = R+(T) , so P(t) = (R+(T»nJ»x = R,
by Lemma 3.2.

The main result of the paper is the following.

THEOREM 3.4. Let 1 be a relation on the free monoid X* and let Zc

denote the congruence on X* generated by Z. Then

(a) for all u, v eX* we have (u,v)e lc if and only if aua~l e P(l);
(b) P(1) = P(ZC);
(c) the correspondence lc —> P(l) is an isomorphism between the lattice

of congruences on X* and the lattice of PSC submonoids of Px.

PROOF. TO prove part (a), suppose first that (s, t) e 1 and w = psq,
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z = ptq for some p, q e X*. Then

awaV = a
Psq%tq = a , w ^ V l a p l

= Tlpsl aqa~l T M w * , " V (by equation (3))

= T ^ 1 aqa-q
l T|p" T"W arf T1" a , ^ 1 (by equation (3))

€ / ( I ) .

Also, otwa~x € P x , so a ^ a j 1 G P(£) . Suppose now that u = v is a conse-
quence of the relations I (that is, (M , v) € If). Then there exists a sequence
of words u = wl, w2, ... ,wn = v such that wj = Pisiqi and wj+x = pitiqi

for some words pi, s ( , qt, tt with (s ( . , ( , . )£! and i = 1 , ... , n - 1. Then

by what was just proved, awa~l e P(L) for i = 1, . . . , n - 1. It follows
that

Suppose conversely that aua~l € P(Z). Then aua~l e Q(Z) + EQX, so
Qua~' can be written as a product of elements in Q(L) and idempotents
of 7X. Using Lemma 2.2(b) and the fact that Q(S) = (({ay*,"1 : ( s , / ) e
^}) + (T> + EIX) f l Q x , we may write aMa~' (not necessarily uniquely) as
a product of the form aua~x = <l\<li---<lm where qt = T~k'asa~l T ' for

r'some kt e Z and (5,7,) e l u r ' u { i x } . (Here / x denotes the identity
1T1map on X and 2T1 = {(s, t): {t, s) e 2} .) Now Dom(^) consists of those

~1)sequences (xn)n€Z with xk+l...xk+,s\ — st and Dom(aMa~1) consists of

those sequences within xl...x^ = M. Since aua~x — ql(q2-••<!„) a n ( i
Dom(^,...^m) c D o m ^ we must have u = als1bl for some a1,bl e
X*. The effect of applying ql to a sequence in its domain is to replace

x...x^ = a1slb1 by axtxbx. Again, since D o m ^ , ^ . . . ^ ) C

we must have altlbl = a2s2b2 for some a2, b2 e X*. Continuing in this

manner (by induction on m) and using the fact that Q^-'-Qm = auav > w e

obtain u = axsxbx, axtxbx = a2s2b2^ a2t2b2 = a ^ , . . . , am_xtm_xbm_x =
amtmbm = v, for some at, bt e X*. It follows that (u, v) G If (that is,
u — v is a consequence of the relations I). This proves part (a). Note also
that If = l!, the congruence denned by equality (8) with R = P(I). It is
clear that P(Z) C P(lf) since iclf. Conversely, if aua~x e P(lf) then
(M, v) e (If)c = If, so by part (a), aua~x e P(I). Hence P(IC) c P(I)
and part (b) is proved.

Suppose now that P(IX) = P(I>2) for some congruences Zx, I2 on X*.
Then if (w, v) e Ix we have aua~x e P(2,) = P(I2) by part (a), so (u,v) e
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Z2 , again by part (a). Hence Zj c Z2 and dually Z2 c Z , . It follows by
Proposition 3.3 that the map Z -* P(Z) is a one-one map from the lattice
of congruences on X* onto the lattice of PSC submonoids of Px . Again,
a routine argument using part (a) shows that, for all congruences Z, , Z2 on
X*, P(E, n Z2) - P(Z,) n P(Z2) and P(Z, + Z2) = P(Z,) + P(Z2), so the
map £ —• i*(Z) above is a lattice isomorphism. This proves part (c).

The following result was obtained by the authors for free monoids. Francis
Pastijn noticed that it is true for arbitrary finitely generated monoids.

COROLLARY 3.5. The congruence lattice of every finitely generated monoid
is isomorphic to a subalgebra lattice of some finitely generated algebra of finite
type.

PROOF. If M is a finitely generated monoid, then M = X* /Z , for some
finite set X and some congruence I on X ' . The congruence lattice on
M is isomorphic to the lattice of congruences on X* containing Z. By
Theorem 3.4 this lattice is isomorphic to the lattice of PSC submonoids of
Px containing /)(Z). We shall introduce the following new unary operations
on the inverse monoid P x :

(i) the unary operations ax, x € X, where ax(j>) = "*/><*J1 for all
pePx;

(ii) the unary operation a , such that a: p —> a{p) is a permutation of
Px whose only nontrivial orbit is P(Z);

(iii) the unary operation /?, such that fi: p —• /?(/?) is the inverse of a .

We observe that 1 belongs to every subalgebra of Px and that P(Z) is
the least subalgebra of Px . In fact, the subalgebras of Px are precisely the
PSC submonoids containing P(L). Thus the lattice of congruences of M is
isomorphic to the lattice of submonoids of the monoid Px with additional
unary operations.

REMARK 3.6. From an old result of Hanf (see [11] for an exposition of
this) it follows that the congruence lattice of any finitely generated algebra A
with finitely many operations is isomorphic to a subalgebra lattice of some
finitely generated Moufang loop. This result is more general than Corollary
3.5. Nevertheless we included Corollary 3.5 in our paper because in order to
construct the loop in Hanf s proof one needs the lattice of congruences of A,
whereas one needs only the defining relations of A to construct our algebra
Px. Among the new operations of P(Z) only one is not polynomial. Notice
that in the group case the lattice of congruences of every finitely generated
group A = (X) is isomorphic to the lattice of subalgebras of the group A with
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additional unary operations ax which provide conjugations by x, x e X.
This observation allows us to formulate the following.

PROBLEM 3.7. Is it possible to associate with every finitely generated
monoid A = (X) an inverse monoid B = (X) in such a way that the congru-
ence lattice of A is isomorphic to a subalgebra lattice of the monoid B with
additional unary operations a^ which provide conjugations by x, x e X ?

Theorem 3.4 presents a solution to this problem in the case of free
monoids.

4. Connections with other problems

Theorem 3.4 enables us to translate many important decision problems
and properties of arbitrary monoids into equivalent problems and properties
of inverse submonoids of the polycyclic monoid. In this section we provide a
few remarks and observations along these lines. We first indicate how several
standard properties of monoids may be reformulated. The notation is as in
Section 3.

PROPOSITION 4.1. The monoid 1(1) (respectively G(Z)) is finitely gener-
ated if and only if all relations in Z are consequences of a finite subset of the
relations in Z (that is, Zc = Z^ for some finite set Z, CX).

PROOF. Suppose first that 7(Z) = ({aua~l :(u,v)e Z}) + (T) is finitely
generated. Then there is a finite set {ql, q2, ..., qn) of generators for 7(Z),
each of which is a product of a (finite) number of powers of T and elements
of the form asa~l for some (s, t) € Z n Z " 1 . So there is a finite set I , c l
such that 1(1) = ({asajl : (s, t) e I ,}) + EIX +(T> = / ( I , ) . It follows that
P(L) = P(L{) and hence by Theorem 3.4 that Zc = X,.

Conversely suppose that Zc = Z, for some finite set Zj c l . By Theorem
3.4 we have P(I) = P(Z,), whence / (Z)nP x = I(Zl)nPx . Thus if (u,v)e
Z then aua~l e I(I)nPx, so a^'1 € /(Z,). It follows that 1(1) = (aua~l :
(u,v)€ Z}) + EIX +(T) C / (Z, ) , whence 1(1) = / (Z, ) , and 1(1) is finitely
generated.

The statements about the semigroup Q(I) follow from those about 1(1) .
Indeed, if Q(T) is finitely generated (as an inverse monoid with additional
unary operation T) then /(Z) is finitely generated as an inverse semigroup
and so Zc = Z, for some finite subset Zt of Z. Conversely, if Zc = Zj with
finite Z, c Z, then 1(1) = /(Z,) and so Q(l) = 1(1) n Qx = 7(Z,) n Qx =
(2(2).
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REMARK 4.2. Theorem 3.4 provides us with an analogue, for arbitrary
congruences on the free monoid X*, of the classical coset decomposition of
a group relative to a subgroup. Let Z be a relation on X* and P(I.) the
associated PSC submonoid of Px . A subset of Px of the form P(L)aunPx

for some u G X* will be called a {right) coset of, P(L) in Px . From Theorem
3.4 it is clear that if u and v are any words in X* then {u, V) G Zc iff
aua~x G P(L) iff />(!)£*„ = P(Z)av and that the Ic-class [u] containing u
is given by [M] = {V e X* : av G P(Z)au}. It follows that Px decomposes
as a disjoint union of right cosets of P(E) in the usual way. The map [u] —>
P(L)aur\Px is a well-defined bijection from the set of Zc-classes of X* onto
the set of right cosets of P(L) in Px . Since P(L) is a PSC-submonoid of
Px , auP(l)a~l C P(Z) and so auP(L) C P(L)au for all u G X*. It follows
that P(X)auP(L)av C P(Z)P(S)auat) = ^(ZJa,,^ for all w, u G X* , so the
right cosets of P(L) in Px form a monoid in the obvious way and the map
[u] —> />(Z)aHnP^ is a n isomorphism of A/j. = Mon(X : I.) onto the monoid
of right cosets of P(L) in Px . The cardinality of the set of right cosets of
P(L) in P+ will be called the index of />(!) in P+. It is clear from the
above that Mx — Mon(X : Z) is finite if and only if P(£) has finite index in

PROPOSITION 4.3. Let Z be a relation on X* and My. - Mon(X : I ) .
Then

(a) JWZ isleftcancellativeifandonlyifpP{I.)p~{ c P(I) /ora// p & Px;
(b) Jl/Z w r/g/tf cancellative if and only if P(Z) - {0} w a unitary subset

ofPx.

PROOF. By Theorem 3.4 it follows that Afz is left cancellative if

auasa~la~l G P(Z) implies asa~] G P(Z)'

Since «"'«„ = 1, it is clear that this implication holds if pP(l)p~l C P(L)
for all p G Px. Suppose on the other hand that Mz is left cancellative,
asajl G P(L) and u e X ' . I n order to show that pP{Z)p~l C P(Z) for all
p G Px, it clearly suffices to show that a^ ' a^a" 1 ^ G P(L), since />(X) is a
PSC submonoid of P x . It is clear that a^ ' a^a" 1 ^ G P(L) if a^ ' a^a" 1 ^ =
0, so suppose that a^'a^a^'a^ ^ 0. There are several cases to consider. If
\v\ < \s\ and |u| < \t\, then 5 = vw and t — vu for some w, u e X*, so
OjO:"1 = ^ a ^ a " 1 ^ " 1 6 Z^E), and (vtw , vu) G Zc , and hence (w , u) G Xc

by left cancellation, that is, awa~l G P(Z). Thus in this case, a~lasa~lav -
a a~x G P{L), as required. If |u| > \s\ and \v\ > \t\, then v = sw = tu
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for some w, u G X*, so a^a^1^ = a~'c*u / 0. Hence we must
have either u = wp or w — up for some p G X*. Suppose that u -
wp, some p G X*, so that a~ otsa~ av = a . Now v = sw = twp, so
(sw, twp) e Ic. Also, (s,t) elf, so (sw, tw) e If. Since Mx is left
cancellative this implies that (1 , p) G Ic, so a e ^(£) • The case w = up

is similar. Hence a ^ a ^ a " 1 ^ e P(Z) in this case as well. Suppose next that
|w| < |s| and \v\ > \t\, so that s = vw and v = tu for some u, w e X*.
Then a^a^'1^ = awau. Since (s, t) — Ic we have (tuw, t) € If, so
(uw, 1) e I, by left cancellativity of A/2. Thus (wuwu, wu) e Zc and so
(wu, l ) e l c , again by left cancellation. This implies that awau e P(I), so
again, a~lasa~lav e P(I) in this case. The final case (\v\ > \s\, \v\ < \t\)
is handled in a similar fashion, so a~lasa~{av € P(L) in all cases. This
establishes part (a).

To prove (b), suppose first that P(I) - {0} is unitary in Px and that
(su, tu) e Ic for some « , j , ( e X * . Then

asauau V1=a,ar!(a»aiia« V 1 ) G p(z) - {°> •

Also atua~J € P(S) - {0}, so it follows that c^a,"1 e P(I) since P(L) -
{0} is unitary. Hence MT is right cancellative. Suppose conversely that
MT is right cancellative. Suppose also that asajlaua~l G P(L) - {0} and
aua~x € P(E) for some s,t,u,v e X*. Then a^a"1 € i'CE) and so
a^a^a^a^ 'a^a"1 = asa~laua~l € P(Z) - {0}. We must have either t =
uw or u = tw for some w e X*. In the former case, as°^Xau<\X —
a^a^'a"1 G ^(2) , so (5, Mtu) G If, and (5, t) G £ c : in the latter case,
asa~laua~l = asawa~la~l G />(!), so (*«>, tw) G Xc, whence (s, t) G
Xc since Afj. is right cancellative. Hence in both cases c^a"1 G P(L), so
P(I.)-{0} is right unitary in PX. Since P(I) is an inverse submonoid of the
inverse monoid P x , P(I) — {0} is left unitary in Px if and only if it is right
unitary in Px . Hence P(I) — {0} is a unitary subset of Px, as required.

We close the paper by reformulating a few of the basic decision problems
about monoids into equivalent problems about the polycyclic monoid.

REMARK 4.4. Let Z be a relation on X*. Then the word problem for
the monoid Mz — Mon(X : Z) is equivalent to the membership problem
for the submonoid P(I) of Px (that is, the problem of deciding, for words
u, v G X*, whether aua~l G P(I.) or not.)

PROOF. This is obvious from Theorem 3.4 since (w, v) G If if and only
if aa-'
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On the one hand, this remark points out the complex nature of PSC sub-
monoids of the polycyclic monoid. For example, if Mx =
Mon(X : Z) is a finitely presented monoid with undecidable word prob-
lem, then the membership problem for the corresponding PSC submonoid
P(X) of Px is also undecidable. Note that P(L) is the PSC submonoid of
Px generated by {aMa~' : (u, v) e 2 } ; that is, P(Z) is the smallest full
inverse submonoid of Px containing {aua~l : (u,v) e S} and satisfying
the condition asa~l e P(E) implies a ^ a ^ 1 e P(Z) for all w e X * . Hence

REMARK 4.5. If X is a set with at least two elements then there exists a
finite set R of elements of Ix such that the membership problem for the
subsemigroup of / x generated by R is undecidable.

PROOF. This follows easily from the existence of a semigroup with two
generators and undecidable word problem [5] (and Theorem 3.4).

On the other hand, several classical decision problems for semigroups may
be translated into a rather appealing equivalent form by use of Remark 4.3
(that is, Theorem 3.4). For example, as far as the authors are aware, it
is not known whether the word problem for one-relation semigroups of the
form M = Mon(X : u = v) (u,v fixed words in X*) is decidable or not. (A
positive solution, due to Adian [1], is known, for example, in the case v = 1.)
The corresponding PSC-submonoid of Px is generated (as a PSC-submonoid
of Px) by the single element aua~X. Thus we have

REMARK 4.6. The word problem for one-relation semigroups is equiva-
lent to the membership problem for one-generator PSC submonoids of the
polycyclic monoid.

Other well-known problems may be reformulated along these lines. The
authors believe that progress on some of these problems may result from a
detailed examination of the PSC submonoids of the polycyclic monoid.
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