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Real Hypersurfaces in Complex Two-plane
Grassmannians with Reeb Parallel Ricci
Tensor in the GTW Connection

Juan de Dios Pérez, Hyunjin Lee, Young Jin Suh, and Changhwa Woo

Abstract. There are several kinds of classification problems for real hypersurfaces in complex two-
plane Grassmannians G2(C™*2). Among them, Suh classified Hopf hypersurfaces in G(C™*?2)
with Reeb parallel Ricci tensor in Levi-Civita connection. In this paper, we introduce the no-
tion of generalized Tanaka-Webster (GTW) Reeb parallel Ricci tensor for Hopf hypersurfaces in
G2(C™*?). Next, we give a complete classification of Hopf hypersurfaces in G2(C™*?) with GTW
Reeb parallel Ricci tensor.

Introduction

The classification of real hypersurfaces in Hermitian symmetric spaces is one of in-
teresting parts in the field of differential geometry. Among them, we introduce a
complex two-plane Grassmannian G, (C™*?) defined by the set of all complex two-
dimensional linear subspaces in C™*2. It is a kind of Hermitian symmetric space of
compact irreducible type with rank 2. Remarkably, the manifolds are equipped with
both a Kéhler structure J and a quaternionic Kahler structure J satisfying JJ, = J,J
(v =1,2,3), where {J, },-1,2,3 is an orthonormal basis of J. When m =1, G,(C?) is
isometric to the two-dimensional complex projective space CP? with constant holo-
morphic sectional curvature eight. When m = 2, we note that the isomorphism
Spin(6) ~ SU(4) yields an isometry between G,(C*) and the real Grassmann Man-
ifold G5 (R®) of oriented two-dimensional linear subspaces in R. In this paper we
assume that m is not less than 3.

Let N be a local unit normal vector field of a real hypersurface M in G,(C™*?).
Since G,(C™*?) has the Kahler structure ], we can define a Reeb vector field & = —=JN
and a 1-dimensional distribution [¢] = €, where C denotes the orthogonal comple-
ment in Ty M, x € M, of the Reeb vector field £. The Reeb vector field £ is said to be
Hopf if C (or €*') is invariant under the shape operator A of M. The 1-dimensional
foliation of M by the integral curves of £ is said to be a Hopf foliation of M. We say
that M is a Hopf hypersurface if and only if the Hopf foliation of M is totally geodesic.
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By the formulas in [11, Section 2], it can easily be seen that £ is Hopf if and only if M
is Hopf.

From the quaternionic Kahler structure J of G,(C™*?), there naturally exist al-
most contact 3-structure vector fields &, = —J,N, v =1,2,3. Let Q* = Span{{;, &,, & }.
It is a 3-dimensional distribution in the tangent space T, M of M at x € M. In addi-
tion, Q stands for the orthogonal complement of Q* in T, M. It is the quaternionic
maximal subbundle of T,, M. Thus the tangent space of M consists of the direct sum
of Q and Q* as follows: T, M = Q @ Q*.

For two distributions €* and Q* defined above, we consider two natural invariant
geometric properties under the shape operator A of M, that is, AC* c €* and AQ* c
Q*. In a paper due to Suh [17, Theorem 1.1] we introduce the following theorem.

Theorem A Let M be a real hypersurface in Go,(C™*?), m > 3. Then both [&] and
Q' are invariant under the shape operator of M if and only if either

(A) M is an open part of a tube around a totally geodesic G,(C™*') in G,(C™*?), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic
HP" in G,(C™*?).

In case (A), we say M is of Type (A). Similarly, in case (B) we say M is of Type (B).
Until now, by using Theorem A, many geometers have investigated some characteri-
zations for Hopf hypersurfaces in G,(C™*?) with geometric quantities, shape opera-
tor, normal (or structure) Jacobi operator, Ricci tensor, and so on. Actually, Lee and
Suh [11] gave a characterization for a real hypersurface of Type (B) as follows.

Theorem B Let M be a Hopf hypersurface in G,(C™*%), m > 3. Then the Reeb vector

field & belongs to the distribution Q if and only if M is locally congruent to an open part
of a tube around a totally geodesic HHP" in G,(C™*?), m = 2n. In other words, M is
locally congruent to a real hypersurface of Type (B).

In particular, there are various well-known results with respect to the Ricci tensor S
on Hopf hypersurfaces in G,(C™*?). From such a point of view, Suh [16] gave a char-
acterization of a model space of Type (A) in G, (C™*?) under the condition S¢ = ¢S,
where ¢ denotes the structure tensor field of M. In [17] and [18], he also considered
the parallelism of Ricci tensor with respect to the Levi-Civita connection and gave
the following theorem.

Theorem C ([18]) Let M be a real hypersurface in G,(C™*?), m > 3 with non-
vanishing geodesic Reeb flow. If the Ricci tensor is Reeb parallel, V¢S = 0. Then M is
locally congruent to one of the following:

(i)  a tube over a totally geodesic Go(C™*') in G, (C™*?) with radius r # 4—\”/5,
(ii) a tube over a totally geodesic HIP", m = 2n, in Go(C™*?) with radius r such that
1
t2(2r) = ——
cot”(2r) 1

and &E-parallel eigenspaces Teor» and Tiap r-
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Now we introduce another connection different from the Levi-Civita one, called
the generalized Tanaka-Webster (GTW) connection V¥) on M given by

TEY = vy + Y,
where k is a non-zero real number (see [1,2,5]) and
k
FOY = g($AX, V)&~ n(Y)$AX — kn(X)¢Y.
The operator F(F) is a skew-symmetric (1,1) type tensor, that is,
k k
BV, 2) = ~g(V FP2)

for all tangent vector fields X, Y, and Z on M and is said to be a Tanaka-Webster (or
k-th-Cho) operator with respect to X. Recently, in [5] Jeong, Kimura, Lee, and Suh
defined the notion of Reeb parallel shape operator with GTW connection, ’V\gk)A =0,
for Hopf hypersurfaces in G,(C™*?) and gave the following theorem.

Theorem D Let M be a connected orientable Hopf hypersurface, a # 2k, in G, (C™*?),
m > 3. If the shape operator A is generalized Tanaka—Webster Reeb parallel, then M

is locally congruent to an open part of a tube around a totally geodesic G,(C™*') in
Gz(Cm+2).

Motivated by these works, in this paper we consider the notion of Reeb parallelism
for the Ricci tensor S with respect to the GTW connection on a real hypersurface M in
G,(C™*?). The Ricci tensor § is said to be generalized Tanaka-Webster Reeb parallel
(GTW Reeb parallel) if the covariant derivative in GTW connection T of along
the Reeb direction vanishes, that is, (ﬁg")s )Y = 0. In terms of this condition, we
assert the following theorem.

Theorem 1 Let M be a Hopf hypersurface in complex two-plane Grassmannians
G,(C™?%), m > 3, with a # 2k. The Ricci tensor S on M is GTW Reeb parallel if
and only if M is locally congruent to one of the following:

(i) a tube over a totally geodesic Go(C™*') in G, (C™*?) with radius r such that

1 af k
r%z—cot (

()
or
(ii) a tube over a totally geodesic HIP", m = 2n, in Go(C™*?) with radius r such that

1
r=—cot™!

—k
2 (4(2n—1))'

When we consider the notion of GTW parallel Ricci tensor, that is, ( /V\g(k)S) =0
for arbitrary tangent vector field X on M, by Theorem 1 we can assert the following
theorem.

Theorem 2 There does not exist any Hopf hypersurface in complex two-plane Grass-
mannians G,(C™*?), m > 3 with a # 2k, satisfying (ﬁg(k)S)Y = 0 for any tangent
vector fields X and Y on M.
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On the other hand, in [6] Jeong, Lee, and Suh gave a characterization of Hopf
hypersurfaces in G,(C"*?) with VA = V() A. So naturally we consider that VS =
Tk, that is, the covariant derivative of the Ricci tensor S coincides with the deriva-
tive of S in the GTW connection. This is equivalent to the fact that the Ricci tensor S
commutes with the Tanaka—Webster operator F\g‘) , thatis, S- P\)((k) = F\;k) -S. It means
that any eigenspace of the Ricci tensor S is invariant under the Tanaka—Webster oper-

ator I?)((k) . In terms of this condition, we assert the following theorem.

Theorem 3  There does not exist any Hopf hypersurface in complex two-plane Grass-
mannians G,(C™*%), m > 3, satisfying (’V\§k S)Y = (VxS)Y for any tangent vector

fields X and Y on M.

In order to get our results, in Section 1 we will give the fundamental formulas re-
lated to the Reeb parallel Ricci tensor. In Section 2, we want to give a complete proof
of Theorem 1 for a = g(A¢E, &) # 2k. In Sections 3 and 4 we give complete proofs of
Theorem 2 and 3, respectively.

1 Basic Formulas for Ricci Tensor in G,(C™+2)

In this paper, we refer the reader to [3,4,7-9,12,13,15,16,19-22] for Riemannian geo-
metric structures of Hermitian symmetric spaces and its geometric quantities. Here-
after, let us denote by M a real hypersurface in G, (C™*?), m > 3, and let S denote the
Ricci tensor of M. From [14], the Ricci tensor S of a real hypersurface M in G,(C™*?),
m > 3, is given by

(L1)  SX=(4m+7)X -3n(X)E+ hAX — A%X

+ Z_;{ =31y (X) & + 1y (E) Py X — 1, (¢ X) $1 € - W(X)ﬂV(f)fv},

where / denotes the trace of the shape operator A, thatis, h = TrA. Then the derivative
of the Ricci tensor S becomes

(1.2)
(Vx$)Y = -3g(¢AX, V) - 3n(Y)pAX
+ (Xh)AY + h(VXA)Y - (VxA)AY - A(VxA)Y

3
-3 {6 AX 8 (1) 404X]

3
# 2 {21($A08,97 + g(AX, $,907)90E = ()1 (AX),8

F 1 ($Y)N(AX)E, = 1, ($Y) 9y $AX - 2(Y )11, (9AX)E, },

for any tangent vector fields X and Y on M.
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In particular, substituting X = £ into (1.2) and using the condition that M is Hopf,
that is, A& = a&, we get

(VeS)Y =4a 32 {n($Y)& = (V)18 } + (Eh)AY
+h(VA)Y - (VeA)AY — A(VEA)Y.

Moreover, by the definition of GTW connection ¥V(¥) the covariant derivative of S
with respect to the GTW connection becomes

13) @)Y =9F(sy)-s@PY)
= Vx(SY) + g(pAX, SY)E - n(SY)pAX — kn(X)$SY
—SVxY — g($AX, Y)SE+ (Y)SPAX + kn(X)S¢Y.
It yields
(14) (FE8)Y = -3g(pAX, Y)E - 3n(Y)pAX
+(Xh)AY + h(VxA)Y — (VxA)AY - A(VxA)Y
+g($AX, SY)& ~ n(SY)pAX — kn(X)¢SY
- 8($AX, Y)SE+n(Y)SPAX + kn(X)S¢Y
-39 { (4 A, VIE, 1, (¥),AX)

v=1

= {20 (PAXIDBY ¢ g(AX 99Y)9uE = 1(V)1.(AX) 91

F (@Y IN(AX)E, = 1y ($Y) 9o pAX = 27(Y )1, ($AX)E, }.

From now on, we assume that M is a Hopf hypersurface in G,(C™*?) with GTW
Reeb parallel Ricci tensor, that is, S satisfies:

(C-1) (TPs)x =o.
By (1.3), it becomes
W) (FP9x =9V (sx)- 8T x)
= Ve(SX) + g(PAE, SX)E - n(SX)PAE - kn(§)¢SX

= S(VeX) - g($AE, X)SE+ n(X)SPAL + kn(&)S¢X
= (VeS)X — k$pSX + kS X.

Thus, condition (C-1) is equivalent to (V¢S)X = k¢SX — kS¢X, which yields
3
1e) k=) X {m @08 - m(09]
= (§h)AX + h(VA)X — (V:A)AX — A(VeA)X — kh¢ AX
+ kpA*X + khApX — kA*¢X
from (1.1), (1.2), and [10, Section 2].
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Using these equations, we prove that & belongs to either Q or Q*, as follows.

Lemma 11 Let M be a Hopf hypersurface in Go(C™*%), m > 3. If M has a GTW
Reeb parallel Ricci tensor, then & belongs to either the distribution Q or the distribution
Qt.

Proof In order to prove this lemma, we put

(L7) &=n(Xo)Xo +n(&)&

for some unit vectors Xo € Q and & € Q*. Putting X = & in (1.6), by (1.7) and basic
formulas in [10, Section 2], it follows that

(1.8) 4(a = k)m(§)¢i§ = a(Eh)§ - h(8a)é - 2a(§a)d,
where we have used (V;A)& = (¢éa)&and (V:A)AE = a(éa)é.
Taking the inner product of (1.8) with ¢, £, we have
4(a - k)m(&)n*(Xo) =0,
because of 7%(Xy) + #*(&;) = 1. From this, we have the following three cases.

Casel: a = k. From the definition of GTW connection we see that « must be a
non-zero real number. By virtue of Yo = (éa)n(Y) — 4 Y. #,(&) 7, (4Y) in [10,
Lemma A], the Reeb vector field £ belongs to either Q or Q*.

Case 2: 7(&) = 0. By the notation (1.7), we see that & belongs to Q.

Case 3: 77(Xy) = 0. This case implies that & belongs to Q* from (1.7).
Accordingly, summing up these cases, the proof of our Lemma is completed. H

2 Proof of Theorem 1

Hereafter, let M be a Hopf hypersurface, a # 2k, in G,(C™*?) with GTW Reeb paral-
lel Ricci tensor. Then by Lemma 1.1 we divide our consideration in two cases depend-
ing on whether & belongs to Q* or Q.

First of all, if we assume £ € Q, then a Hopf hypersurface in G,(C™*?), m > 3, with
GTW Reeb parallel Ricci tensor, and a = g(AE, &) # 2k is locally congruent to a real
hypersurface of Type (B) by virtue of Theorem B given in the introduction.

Next let us consider the case, & € Q. Accordingly, we can put & = ;. Since M is a
Hopf hypersurface with GTW Reeb parallel Ricci tensor, equation (1.6) becomes

(21) (Eh)AX +h(V:A)X — (VA)AX - A(VA)X =
k(hpAX — pA*X — hAX + A*¢X).
From the Codazzi equation [10, Section 2] and differentiating A& = a£, we obtain

(VeA)X = (VxA)E+ ¢X + 01 X +2n3(X) & - 212(X) &5
= (Xa)é+ apAX - APAX + ¢X + 01 X +2113(X) & — 2172(X) &;.

Using the equation from [10, Lemma 2.1] and the previous one, we get

(VeA)X = Z9AX - ZAPX + (Ea)n(X)é.
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Therefore, (2.1) can be written as
(22) (Eh)AX + KhpAX - KhAPX + (h —2a)(Ea)n(X)E - KPA*X + RA*PX =0,
where ¥ = (5 - k).

Since ¥ # 0 is equivalent to the given condition « # 2k, (2.2) yields

(&h)

K

(2.3) AX + h¢AX — hAGX + L,};O‘)(fa)q(x)s—¢A2X+A2¢x - 0.

Now we consider the case € = 0. Then (2.3) can be reduced to

(2.4) hpAX — hA$X + w(&x)n(X)f—¢A2X+A2¢X: 0.
K
Taking the inner product of (2.4) with &, we have @(fﬁ)n(X) = 0. Thus, (2.4)
becomes
(255) hpAX — A*X — hAPX + A*¢X = 0.

On the other hand, from equation (1.1) we calculate
SPX — ¢SX = hApX — A>pX — hp AX + pA*X.

Then by (2.5) it follows that S$X = ¢SX for any tangent vector field X on M. Hence,
by Suh [16] we assert that M satisfying our assumptions must be a model space of

Type (A).

We now assume &k # 0. Putting o = (E;) (#0)and 7 = @(&x), equation (2.3)
becomes
(2.6) 0AX + hpAX — hAPX + (X)) E - pA*X + A*¢$X = 0.

Applying ¢ to (2.6) and replacing X by ¢X in (2.6), respectively, we get the following
two equations:

0PAX — hAX + han(X)E - hpApX + A’X — a*n(X)E+ pA*$X = 0
0APX + hpApX + hAX — han(X)E - pA* X — A*X + a’*n(X)E=0.
Summing up the above two equations, we obtain ¢pA + A¢ = 0. Thus, equation (2.6)
implies
0AX +2hpAX + (X)E=0.
Let the orthogonal projection of X onto the distribution € = {X € TM | X1&} be

denoted Xe. Inserting this into the previous equation yields 6 AXe +2h¢pAXe = 0. In
addition, applying ¢ to this equation, it follows that ¢ AXe — 2hAXe = 0. Thus, we

obtain
o 2h\[AXe\ (0
-2h o |\¢AXe) \0O)°

The determinant of the square matrix of order 2, that is, 0% + 4h* > ¢ # 0, so we
get AXe = 0 for any Xe € C. Substituting Xe as &, and &; implies that A&, = 0 and
A&; = 0, respectively. Hence, we can assert that the distribution Q* is invariant under
the shape operator, that is, M is a Q*-invariant real hypersurface. Thus, by virtue
of Theorem A, we conclude that with our assumptions M must be a model space of

Type (A).
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Summing up these discussions, we conclude that if a Hopf hypersurface M in com-
plex two-plane Grassmannians G,(C™*?), m > 3, satisfies (C-1), and « # 2k, then M
is of Type (A) or (B).

Now, let us check whether the Ricci tensor S of a model space of Type (A) (or
of Type (B)) satisfies the Reeb parallelism with respect to V(%) by using the prin-
cipal curvature vectors and their corresponding principal curvature values for each
eigenspace with respect to the shape operator A given in [10, Proposition A] (resp. [10,
Proposition B]).

Let us denote by M4 a model space of Type (A). From now on, using the equations
(1.1), (1.2), and [10, Proposition A], let us check whether or not the Ricci tensor S
satisfies (1.6), which is equivalent to our condition (C-1) for each eigenspace Ty, Tp,
Ty, and T, on TxMy, x € My. In order to do this, we find one equation related to S
from (1.6) using the property of My, & = &; as follows:

2.7) (VM) X = ~h(VeA)X + (Vi A)AX + A(V¢A)X + kh¢AX
-~ k@pA*X — khA$X + kA*$X,
since h = a + 23 + 2(m — 2)A is a constant.
Case A-1: X = &(= &) € Ty. Since (V¢A)& = 0, we see that (/V\gk)S)E = 0 from the
equation (2.7). It means that the Ricci tensor S becomes GTW Reeb parallel on T,,.
Case A-2: X € Tg = Span{ &, &3}. For &, € Tp, u = 2,3 we have
(VEA)EM = /S(foy) - A(vffy)
= ﬁq‘u+2(£)£‘u+l - ﬁq‘u+l({)£y+2 + “ﬁ‘/)‘uf

- q,u+2(£)A£y+l + q#+1(£)A£y+2 - OCA(M g,
which yields that (VzA)&, = 0 and (V¢A)&; = 0. Therefore, from equation (2.7) we
obtain, respectively,

(VN8)E, = kho AL, — k§A*E, - khAGE, + kA ¢,

= (=khB + kB + khB - kB*)& = 0,
and (@gk) §)&; = 0 by similar methods. So, we assert that the Ricci tensor S of My is
Reeb parallel on Tj.

By the structure of a tangent vector space T, M4 at x € My, we see that the distri-

bution Q is composed of two eigenspaces T and T,. On the distribution Q = T, ® T},
we obtain

(2.8) (VeA)X = apAX — AQAX + ¢X + ¢, X

by virtue of the Codazzi equation [10, Section 2]. Using this equation we consider the
following two cases.

Case A-3: X eT) ={X|XeQ, JX=],X}. Wenaturally see that if X € Ty, then
¢X = ¢, X. Moreover, the vector ¢.X also belongs to the eigenspace T), for any X € T,
thatis, ¢ T) c T). From these and (2.8), we obtain

(VeA)X = (ad = 1> +2)¢X, for X € Ty.
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From these facts and (2.7), we obtain
(VM) X = (ah - 12 +2)(2a - h)¢X,

which implies that the Ricci tensor S must be Reeb parallel for ¥¥) on Tj, since
adl—A*+2=0.

Case A-4:X €T, = {X|X€Q, JX=-1X}. IfX € T, then ¢X = —¢, X, ¢T, c T,
and y = 0. So, from (2.8), we obtain (V;A)X = 0, moreover (’V‘ék)s)x = 0 for any
XeT,.

Summing up all of the cases mentioned above, we can assert that the Ricci tensor §
of a real hypersurface M, in G,(C™*?) is GTW Reeb parallel.

Now let us consider our problem for a model space of Type (B), which will be
denoted by Mp. In order to do this, let us calculate the fundamental equation related
to the covariant derivative of the Ricci tensor S of Mp along the direction of £ in
GTW connection. On T, M3, x € Mg, since € Qand h = Tr(A) = a + (4n-1)fisa
constant, equation (1.6) is reduced to

3
(VX =4k =) 3 { (9208 - m (¢}
~h(VeA)X + (V:A)AX + A(VA) X
+ khpAX — kpA*X — khA$X + kA*$X.

Moreover, by the equation of Codazzi and [10, Proposition B] we obtain that for any
Xe TxM B>

3
(VeA)X = agAX ~ APAX + ¢X = 3 {1y (X)py& + 3g($, 8, X) &, }
v=1

0 if X eT,,
afé, if X € Tg = Span{&, | £=1,2,3},
= —455 ifXe Ty = Span{(/)fg | £=1, 2,3},

(ad +2)¢X ifX e Ty,
(apu+2)pX fXeT,.

From these two equations, it follows that

0 ifX=¢eT,,
(a—k)(4-hB+B*)p& if X =& €T,

29 (V)X ={@(a-k)+(h-p)(4+kp))E ifX=¢EeT,
(h=B)(kA—ku-ad-2)¢X ifXeT,
(h=B)(ku—kA—au-2)¢X ifXeT,.

So, we see that Mp has Reeb parallel GTW Ricci tensor, when « and h satisfy the

conditions « = k and i — 8 = 0, which means r = 1/2 cot™(~k/4(2n — 1)). Moreover,

this radius r satisfies our condition « # 2k.

Hence summing up these considerations, we give a complete proof of Theorem 1
in the introduction.
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For the case a = 2k, the Reeb vector field ¢ of a Hopf hypersurface M with GTW
Reeb parallel Ricci tensor belongs to either Q or Q*. So, for the case & € Q*, equation
(2.2) becomes &h = 0; that is, the trace h of the shape operator A is constant along &.

For the case £ € Q, it is a well-known fact that a Hopf hypersurface in G,(C™*?),
m > 3 must be a model space Mg of Type (B) (see [11]). On the other hand, from (2.9)
and a = 2k, the GTW covariant derivative of the Ricci tensor S of Mg along the
direction of £ is given by

0 ifX=E8€T,,
k(4-hp+p*)p&, if X =& €Ty,
(FL$)X = { (ak+ (h-B)(4+ kB)Ee X =gk e T,
—(h-B)(kB+2)pX ifXeTy,
—(h=B)(kB+2)¢X ifXeT,.

Actually, since « = 2k, we naturally have k8 + 2 = 0. It follows that the Ricci
tensor S is GTW Reeb parallel on T) and T,. In order to be the GTW Reeb parallel
Ricci tensor on the other eigenspaces Ty and T,, we should have the following two
equations:

4-hB+p*=0 and 4k+ (h-p)(4+kp)=0.
Combining these two equations, we have 2k + h — 8 = 0. Since
h=a+38+4n-4)(A+p)=a+(4n-1)f and « =2k,

it follows that « = —(2n — 1) 8. By virtue of [10, Proposition B], « = —2tan(2r) and
B =2cot(2r), wherer € (0, /4), we obtain tan(2r) = \/2n — 1. From such assertions,
we conclude that a model space of Type (B) has GTW Reeb parallel Ricci tensor for
special radius r such that r = 1 tan™"(v/2n - 1).

From the above, we have the following. Let M be a real hypersurface in complex
two-plane Grassmannians G,(C™*?), m > 3, with GTW Reeb parallel Ricci tensor
for a = 2k. If the Reeb vector field & belongs to the distribution Q, then M is lo-
cally congruent to an open part of a tube around a totally geodesic HP”, m = 2n, in
G»(C™*?) with radius r such that r = J tan™" \/2n - 1.

3 Proof of Theorem 2

Bear in mind that the notion of GTW parallel Ricci tensor is stronger than GTW Reeb
parallel Ricci tensor, and in the previous section, we got that a Hopf hypersurface M
in complex two-plane Grassmannians G,(C™*?), m > 3, (a # 2k) satisfying GTW
Reeb parallel Ricci tensor, then M is locally congruent to of Type M, or Type Mp.
Hereafter, let us check whether the Ricci tensor S of a model space M, (or Mp)
satisfies the parallelism with respect to V(¥) by using the principal curvature vectors
and their corresponding principal curvature values for each eigenspace with respect to
the shape operator A given in [10, Proposition A] (or [10, Proposition B], respectively).
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Suppose that M is of Type (A). Remember that A = aé, AL, = &, A5 = BEs,
with a = \/§cot(\/§r) and f3 = \/Ecot(\/ir). Take Y = &, X = &, in (1.4). We have

ABEs + hV g, af — hAAE, — Vi, a2+ A2PAE, =
B{g(&,88) & -n(SE)& + S& ).
Since the Reeb function « is constant, S = (4m + ha — a?)¢&, and

S& = (4m+6+hp - B2)Es,
from (1.4) we arrive at $&; = 0, which is impossible. Thus, M4 does not have GTW
parallel Ricci tensor.

In the case of M3, if we take X = &, Y = & in (1.4) and bear in mind that S¢ =
(4m+4+ha—a?)and S¢ & = (4m+8) 1 &, we obtain ah = 0, where a = —2tan(2r).
As a # 0 we must have h = 0. With similar computations, we obtain 63¢; = 0, for
B =2cot(2r), when X = &, Y = & in (1.4). As this is impossible, Mp does not have a
GTW parallel Ricci tensor, and this completes the proof of Theorem 2. ]

4 Proof of Theorem 3

Recently, in [6] Jeong, Lee, and Suh gave a characterization of Ho(pf hypersurfaces in
G2(C™*?) with VM)A = VA. So naturally we consider that (V' )S)Y = (Vx9)Y;
that is, the parallel Ricci tensor in GTW connection coincides with the parallel Ricci
tensor in Levi-Civita connection. As a special case, we restrict X = £ as follows:
(C-2) (TM8)X = (v8)X

for any tangent vector field X on M.
By virtue of equation (1.5) and being Hopf, condition (C-2) is equivalent to S¢ =
¢S; thus, we have the following remark [16].

Remark 4.1 Let Mbea Hopf hypersurface in complex two-plane Grassmannians
G2(C™*?), m > 3. Then V( s = V¢S if and only if M is locally congruent to an open
part of a tube around a totally geodesic G,(C™*) in G,(C™*?).

By Remark 4.1, if a real hypersurface M in G,(C"*?) satisfies V(K)§ = VS, then
naturally (C-2) holds on M. So M is of Type (A), that is, M4. Now let us check
whether a model space M4 satisfies our condition
(C-3) TES)y = (vxS)Y

for any tangent vector fields X, Y € Ty M4, x € My4. In order to do this, we assume
that the Ricci tensor S of M4 satisfies (C-3). That is, we have

(4.1) 0=(TEs)Y - (vxS)Y
= g($AX, SY)E - n(SY)PAX — kn(X)¢SY
— g($AX, Y)SE+ y(Y)SPAX + kn(X)S$Y

forany X,Y € T, Mu.
Since TyMy = T, ® Tg ® T) ® T,, equation (4.1) holds for X € Tgand Y € Tj,.
For the sake of convenience we put X = &, € Tgand Y = & € T,. Since S¢ = §¢ and
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S& = 0&3 where 8§ = (4m + ha — a*) and 0 = (4m + 6 + hB — p*), equation (4.1)
reduces to (8 — 0)& = 0. By [10, Proposition A], since the principal curvature
B = V2 cot(\/2r) for r € (0, ﬂ/\/g) is non-zero, it follows that § — o = 0. In other
words, by [10, Proposition B] we obtain

~(8-0)=6-af+p*+(2m-2)fA - (2m-2)ad
= 8—4(m—-1)tan®(/2r),
which gives us

(42) tan?(V2r) = ——

m-1
In addition, since (4.1) holds for X € T and Y = &, we obtain
0= (TP8)E- (Vx$)E = A(r - 8)X,
where in the second equality we have used ¢ X € Ty and SX = (4m+6+hA-1?)X = 1X

forany X € Ty. As A = —\/itan(\/zr) where r € (0, ﬂ/\/g) is non-zero, we have also
7 - 6 = 0. By a straightforward calculation, it is

T-8=6+hA-A2—ha+a®=4m-4cot?(v/2r) = 0.

From (4.2), it becomes 2m + 2 = 0, which gives us a contradiction. Accordingly, it
completes the proof of Theorem 3 given in the introduction. ]
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