
Canad. Math. Bull. Vol. 59 (4), 2016 pp. 721–733
http://dx.doi.org/10.4153/CMB-2016-035-x
©Canadian Mathematical Society 2016

Real Hypersurfaces in Complex Two-plane
Grassmannians with Reeb Parallel Ricci
Tensor in the GTW Connection

Juan de Dios Pérez,Hyunjin Lee, Young Jin Suh, and ChanghwaWoo

Abstract. _ere are several kinds of classiûcation problems for real hypersurfaces in complex two-
plane Grassmannians G2(Cm+2

). Among them, Suh classiûed Hopf hypersurfaces in G2(Cm+2
)

with Reeb parallel Ricci tensor in Levi–Civita connection. In this paper, we introduce the no-
tion of generalized Tanaka–Webster (GTW) Reeb parallel Ricci tensor for Hopf hypersurfaces in
G2(Cm+2

). Next, we give a complete classiûcation of Hopf hypersurfaces in G2(Cm+2
) with GTW

Reeb parallel Ricci tensor.

Introduction

_e classiûcation of real hypersurfaces in Hermitian symmetric spaces is one of in-
teresting parts in the ûeld of diòerential geometry. Among them, we introduce a
complex two-plane Grassmannian G2(Cm+2) deûned by the set of all complex two-
dimensional linear subspaces in Cm+2 . It is a kind of Hermitian symmetric space of
compact irreducible type with rank 2. Remarkably, the manifolds are equipped with
both a Kähler structure J and a quaternionic Kähler structure J satisfying J Jν = Jν J
(ν = 1, 2, 3), where {Jν}ν=1,2,3 is an orthonormal basis of J. When m = 1, G2(C3) is
isometric to the two-dimensional complex projective space CP2 with constant holo-
morphic sectional curvature eight. When m = 2, we note that the isomorphism
Spin(6) ≃ SU(4) yields an isometry between G2(C4) and the real Grassmann Man-
ifold G+

2 (R6) of oriented two-dimensional linear subspaces in R6. In this paper we
assume that m is not less than 3.

Let N be a local unit normal vector ûeld of a real hypersurface M in G2(Cm+2).
Since G2(Cm+2) has the Kähler structure J, we can deûne a Reeb vector ûeld ξ = −JN
and a 1-dimensional distribution [ξ] = C�, where C denotes the orthogonal comple-
ment in TxM, x ∈ M, of the Reeb vector ûeld ξ. _e Reeb vector ûeld ξ is said to be
Hopf if C (or C�) is invariant under the shape operator A of M. _e 1-dimensional
foliation of M by the integral curves of ξ is said to be a Hopf foliation of M. We say
that M is aHopf hypersurface if and only if theHopf foliation ofM is totally geodesic.
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By the formulas in [11, Section 2], it can easily be seen that ξ is Hopf if and only if M
is Hopf.
From the quaternionic Kähler structure J of G2(Cm+2), there naturally exist al-

most contact 3-structure vector ûelds ξν = −JνN , ν = 1, 2, 3. Let Q� = Span{ξ1 , ξ2 , ξ3}.
It is a 3-dimensional distribution in the tangent space TxM of M at x ∈ M. In addi-
tion, Q stands for the orthogonal complement of Q� in TxM. It is the quaternionic
maximal subbundle of TxM. _us the tangent space of M consists of the direct sum
of Q and Q� as follows: TxM = Q⊕Q�.
For two distributions C� and Q� deûned above, we consider two natural invariant

geometric properties under the shape operator A of M, that is, AC� ⊂ C� and AQ� ⊂
Q�. In a paper due to Suh [17,_eorem 1.1] we introduce the following theorem.

_eorem A Let M be a real hypersurface in G2(Cm+2), m ≥ 3. _en both [ξ] and
Q� are invariant under the shape operator ofM if and only if either
(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic

HPn in G2(Cm+2).

In case (A),we sayM is ofType (A). Similarly, in case (B)we sayM is ofType (B).
Until now, by using _eorem A,many geometers have investigated some characteri-
zations for Hopf hypersurfaces in G2(Cm+2) with geometric quantities, shape opera-
tor, normal (or structure) Jacobi operator, Ricci tensor, and so on. Actually, Lee and
Suh [11] gave a characterization for a real hypersurface of Type (B) as follows.

_eorem B Let M be aHopf hypersurface in G2(Cm+2),m ≥ 3. _en the Reeb vector
ûeld ξ belongs to the distribution Q if and only ifM is locally congruent to an open part
of a tube around a totally geodesic HPn in G2(Cm+2), m = 2n. In other words, M is
locally congruent to a real hypersurface of Type (B).

In particular, there are variouswell-known resultswith respect to theRicci tensor S
onHopf hypersurfaces inG2(Cm+2). From such a point of view, Suh [16] gave a char-
acterization of amodel space ofType (A) inG2(Cm+2) under the condition Sϕ = ϕS,
where ϕ denotes the structure tensor ûeld of M. In [17] and [18], he also considered
the parallelism of Ricci tensor with respect to the Levi–Civita connection and gave
the following theorem.

_eorem C ([18]) Let M be a real hypersurface in G2(Cm+2), m ≥ 3 with non-
vanishing geodesic Reeb �ow. If the Ricci tensor is Reeb parallel, ∇ξS = 0. _en M is
locally congruent to one of the following:
(i) a tube over a totally geodesic G2(Cm+1) in G2(Cm+2) with radius r /= π

4
√

2
,

(ii) a tube over a totally geodesicHPn , m = 2n, in G2(Cm+2) with radius r such that

cot2(2r) = 1
2m − 1

and ξ-parallel eigenspaces Tcot r and Ttan r .
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Now we introduce another connection diòerent from the Levi–Civita one, called
the generalized Tanaka–Webster (GTW) connection ∇̂(k) on M given by

∇̂(k)X Y = ∇XY + F̂(k)X Y ,

where k is a non-zero real number (see [1,2, 5]) and

F̂(k)X Y = g(ϕAX ,Y)ξ − η(Y)ϕAX − kη(X)ϕY .

_e operator F̂(k) is a skew-symmetric (1,1) type tensor, that is,

g(F̂(k)X Y , Z) = −g(Y , F̂(k)X Z)
for all tangent vector ûelds X ,Y , and Z on M and is said to be a Tanaka–Webster (or
k-th-Cho) operator with respect to X. Recently, in [5] Jeong, Kimura, Lee, and Suh
deûned the notion of Reeb parallel shape operatorwithGTW connection, ∇̂(k)ξ A = 0,
for Hopf hypersurfaces in G2(Cm+2) and gave the following theorem.

_eorem D LetM be a connected orientableHopfhypersurface, α /= 2k, inG2(Cm+2),
m ≥ 3. If the shape operator A is generalized Tanaka–Webster Reeb parallel, then M
is locally congruent to an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2).

Motivated by theseworks, in this paperwe consider the notion of Reeb parallelism
for theRicci tensor S with respect to theGTW connection on a real hypersurfaceM in
G2(Cm+2). _e Ricci tensor S is said to be generalized Tanaka–Webster Reeb parallel
(GTW Reeb parallel) if the covariant derivative in GTW connection ∇̂(k) of S along
the Reeb direction vanishes, that is, (∇̂(k)ξ S)Y = 0. In terms of this condition, we
assert the following theorem.

_eorem 1 Let M be a Hopf hypersurface in complex two-plane Grassmannians
G2(Cm+2), m ≥ 3, with α /= 2k. _e Ricci tensor S on M is GTW Reeb parallel if
and only ifM is locally congruent to one of the following:
(i) a tube over a totally geodesic G2(Cm+1) in G2(Cm+2) with radius r such that

r /= 1
2
√

2
cot−1( k√

2
) ,

or
(ii) a tube over a totally geodesicHPn , m = 2n, in G2(Cm+2) with radius r such that

r = 1
2
cot−1( −k

4(2n − 1)) .

When we consider the notion of GTW parallel Ricci tensor, that is, (∇̂(k)X S) = 0
for arbitrary tangent vector ûeld X on M, by _eorem 1 we can assert the following
theorem.

_eorem 2 _ere does not exist any Hopf hypersurface in complex two-plane Grass-
mannians G2(Cm+2), m ≥ 3 with α /= 2k, satisfying (∇̂(k)X S)Y = 0 for any tangent
vector ûelds X and Y on M.
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On the other hand, in [6] Jeong, Lee, and Suh gave a characterization of Hopf
hypersurfaces in G2(Cm+2) with ∇A = ∇̂(k)A. So naturally we consider that ∇S =
∇̂(k)S, that is, the covariant derivative of the Ricci tensor S coincideswith the deriva-
tive of S in the GTW connection. _is is equivalent to the fact that the Ricci tensor S
commuteswith the Tanaka–Webster operator F̂(k)X , that is, S ⋅ F̂(k)X = F̂(k)X ⋅S. Itmeans
that any eigenspace of the Ricci tensor S is invariant under the Tanaka–Webster oper-
ator F̂(k)X . In terms of this condition, we assert the following theorem.

_eorem 3 _ere does not exist any Hopf hypersurface in complex two-plane Grass-
mannians G2(Cm+2), m ≥ 3, satisfying (∇̂(k)X S)Y = (∇XS)Y for any tangent vector
ûelds X and Y on M.

In order to get our results, in Section 1 we will give the fundamental formulas re-
lated to the Reeb parallel Ricci tensor. In Section 2, we want to give a complete proof
of_eorem 1 for α = g(Aξ, ξ) /= 2k. In Sections 3 and 4 we give complete proofs of
_eorem 2 and 3, respectively.

1 Basic Formulas for Ricci Tensor in G2(Cm+2)
In this paper, we refer the reader to [3,4,7–9, 12, 13, 15, 16, 19–22] for Riemannian geo-
metric structures ofHermitian symmetric spaces and its geometric quantities. Here-
a�er, let us denote by M a real hypersurface inG2(Cm+2),m ≥ 3, and let S denote the
Ricci tensor ofM. From [14], theRicci tensor S of a real hypersurfaceM inG2(Cm+2),
m ≥ 3, is given by

SX = (4m + 7)X − 3η(X)ξ + hAX − A2X

+
3

∑
ν=1

{−3ην(X)ξν + ην(ξ)ϕνϕX − ην(ϕX)ϕν ξ − η(X)ην(ξ)ξν} ,

(1.1)

where h denotes the trace of the shape operatorA, that is, h = TrA. _en the derivative
of the Ricci tensor S becomes

(∇XS)Y = −3g(ϕAX ,Y)ξ − 3η(Y)ϕAX
+ (Xh)AY + h(∇XA)Y − (∇XA)AY − A(∇XA)Y

− 3
3

∑
ν=1

{ g(ϕνAX ,Y)ξν + ην(Y)ϕνAX}

+
3

∑
ν=1

{2ην(ϕAX)ϕνϕY + g(AX , ϕνϕY)ϕν ξ − η(Y)ην(AX)ϕν ξ

+ ην(ϕY)η(AX)ξν − ην(ϕY)ϕνϕAX − 2η(Y)ην(ϕAX)ξν} ,

(1.2)

for any tangent vector ûelds X and Y on M.
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In particular, substituting X = ξ into (1.2) and using the condition that M is Hopf,
that is, Aξ = αξ, we get

(∇ξS)Y = 4α
3

∑
ν=1

{ην(ϕY)ξν − ην(Y)ϕν ξ} + (ξh)AY

+ h(∇ξA)Y − (∇ξA)AY − A(∇ξA)Y .

Moreover, by the deûnition of GTW connection ∇̂(k) the covariant derivative of S
with respect to the GTW connection becomes

(∇̂(k)X S)Y = ∇̂(k)X (SY) − S(∇̂(k)X Y)
= ∇X(SY) + g(ϕAX , SY)ξ − η(SY)ϕAX − kη(X)ϕSY
− S∇XY − g(ϕAX ,Y)Sξ + η(Y)SϕAX + kη(X)SϕY .

(1.3)

It yields

(∇̂(k)X S)Y = −3g(ϕAX ,Y)ξ − 3η(Y)ϕAX
+ (Xh)AY + h(∇XA)Y − (∇XA)AY − A(∇XA)Y
+ g(ϕAX , SY)ξ − η(SY)ϕAX − kη(X)ϕSY
− g(ϕAX ,Y)Sξ + η(Y)SϕAX + kη(X)SϕY

− 3
3

∑
ν=1

{ g(ϕνAX ,Y)ξν + ην(Y)ϕνAX}

+
3

∑
ν=1

{2ην(ϕAX)ϕνϕY + g(AX , ϕνϕY)ϕν ξ − η(Y)ην(AX)ϕν ξ

+ ην(ϕY)η(AX)ξν − ην(ϕY)ϕνϕAX − 2η(Y)ην(ϕAX)ξν} .

(1.4)

From now on, we assume that M is aHopf hypersurface in G2(Cm+2) with GTW
Reeb parallel Ricci tensor, that is, S satisûes:

(C-1) (∇̂(k)ξ S)X = 0.

By (1.3), it becomes

(∇̂(k)ξ S)X = ∇̂(k)ξ (SX) − S(∇̂(k)ξ X)
= ∇ξ(SX) + g(ϕAξ, SX)ξ − η(SX)ϕAξ − kη(ξ)ϕSX

− S(∇ξX) − g(ϕAξ, X)Sξ + η(X)SϕAξ + kη(ξ)SϕX
= (∇ξS)X − kϕSX + kSϕX .

(1.5)

_us, condition (C-1) is equivalent to (∇ξS)X = kϕSX − kSϕX , which yields

4(k − α)
3

∑
ν=1

{ην(ϕX)ξν − ην(X)ϕν ξ}

= (ξh)AX + h(∇ξA)X − (∇ξA)AX − A(∇ξA)X − khϕAX

+ kϕA2X + khAϕX − kA2ϕX

(1.6)

from (1.1), (1.2), and [10, Section 2].
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Using these equations, we prove that ξ belongs to either Q or Q�, as follows.

Lemma 1.1 Let M be a Hopf hypersurface in G2(Cm+2), m ≥ 3. If M has a GTW
Reeb parallel Ricci tensor, then ξ belongs to either the distribution Q or the distribution
Q�.

Proof In order to prove this lemma, we put

(1.7) ξ = η(X0)X0 + η(ξ1)ξ1
for some unit vectors X0 ∈ Q and ξ1 ∈ Q�. Putting X = ξ in (1.6), by (1.7) and basic
formulas in [10, Section 2], it follows that

(1.8) 4(α − k)η1(ξ)ϕ1ξ = α(ξh)ξ − h(ξα)ξ − 2α(ξα)ξ,
where we have used (∇ξA)ξ = (ξα)ξ and (∇ξA)Aξ = α(ξα)ξ.

Taking the inner product of (1.8) with ϕ1ξ, we have

4(α − k)η1(ξ)η2(X0) = 0,

because of η2(X0) + η2(ξ1) = 1. From this, we have the following three cases.

Case 1 : α = k. From the deûnition of GTW connection we see that α must be a
non-zero real number. By virtue of Yα = (ξα)η(Y) − 4∑3

ν=1 ην(ξ)ην(ϕY) in [10,
Lemma A], the Reeb vector ûeld ξ belongs to either Q or Q�.

Case 2 : η(ξ1) = 0. By the notation (1.7), we see that ξ belongs to Q.

Case 3 : η(X0) = 0. _is case implies that ξ belongs to Q� from (1.7).
Accordingly, summing up these cases, the proof of our Lemma is completed.

2 Proof of Theorem 1

Herea�er, let M be aHopf hypersurface, α /= 2k, inG2(Cm+2)with GTW Reeb paral-
lel Ricci tensor. _en by Lemma 1.1we divide our consideration in two cases depend-
ing on whether ξ belongs to Q� or Q.
First of all, ifwe assume ξ ∈ Q, then aHopf hypersurface inG2(Cm+2),m ≥ 3,with

GTW Reeb parallel Ricci tensor, and α = g(Aξ, ξ) /= 2k is locally congruent to a real
hypersurface of Type (B) by virtue of_eorem B given in the introduction.

Next let us consider the case, ξ ∈ Q�. Accordingly, we can put ξ = ξ1. Since M is a
Hopf hypersurface with GTW Reeb parallel Ricci tensor, equation (1.6) becomes

(2.1) (ξh)AX + h(∇ξA)X − (∇ξA)AX − A(∇ξA)X =
k(hϕAX − ϕA2X − hAϕX + A2ϕX).

From the Codazzi equation [10, Section 2] and diòerentiating Aξ = αξ, we obtain
(∇ξA)X = (∇XA)ξ + ϕX + ϕ1X + 2η3(X)ξ2 − 2η2(X)ξ3

= (Xα)ξ + αϕAX − AϕAX + ϕX + ϕ1X + 2η3(X)ξ2 − 2η2(X)ξ3 .
Using the equation from [10, Lemma 2.1] and the previous one, we get

(∇ξA)X = α
2
ϕAX − α

2
AϕX + (ξα)η(X)ξ.
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_erefore, (2.1) can be written as

(2.2) (ξh)AX + κ̃hϕAX − κ̃hAϕX + (h − 2α)(ξα)η(X)ξ − κ̃ϕA2X + κ̃A2ϕX = 0,

where κ̃ = ( α2 − k).
Since κ̃ /= 0 is equivalent to the given condition α /= 2k, (2.2) yields

(2.3)
(ξh)
κ̃
AX + hϕAX − hAϕX + (h − 2α)

κ̃
(ξα)η(X)ξ − ϕA2X + A2ϕX = 0.

Now we consider the case ξh = 0. _en (2.3) can be reduced to

(2.4) hϕAX − hAϕX + (h − 2α)
κ̃

(ξα)η(X)ξ − ϕA2X + A2ϕX = 0.

Taking the inner product of (2.4) with ξ, we have (h−2α)
κ̃ (ξα)η(X) = 0. _us, (2.4)

becomes

(2.5) hϕAX − ϕA2X − hAϕX + A2ϕX = 0.

On the other hand, from equation (1.1) we calculate

SϕX − ϕSX = hAϕX − A2ϕX − hϕAX + ϕA2X .

_en by (2.5) it follows that SϕX = ϕSX for any tangent vector ûeld X on M. Hence,
by Suh [16] we assert that M satisfying our assumptions must be a model space of
Type (A).

We now assume ξh /= 0. Putting σ = (ξh)κ̃ (/= 0) and τ = (h−2α)
κ̃ (ξα), equation (2.3)

becomes

(2.6) σAX + hϕAX − hAϕX + τη(X)ξ − ϕA2X + A2ϕX = 0.

Applying ϕ to (2.6) and replacing X by ϕX in (2.6), respectively, we get the following
two equations:

σϕAX − hAX + hαη(X)ξ − hϕAϕX + A2X − α2η(X)ξ + ϕA2ϕX = 0

σAϕX + hϕAϕX + hAX − hαη(X)ξ − ϕA2ϕX − A2X + α2η(X)ξ = 0.

Summing up the above two equations, we obtain ϕA + Aϕ = 0. _us, equation (2.6)
implies

σAX + 2hϕAX + τη(X)ξ = 0.
Let the orthogonal projection of X onto the distribution C = {X ∈ TM ∣ X�ξ} be

denoted XC. Inserting this into the previous equation yields σAXC+2hϕAXC = 0. In
addition, applying ϕ to this equation, it follows that σϕAXC − 2hAXC = 0. _us, we
obtain

( σ 2h
−2h σ )( AXC

ϕAXC
) = (00) .

_e determinant of the square matrix of order 2, that is, σ 2 + 4h2 ≥ σ 2 /= 0, so we
get AXC = 0 for any XC ∈ C. Substituting XC as ξ2 and ξ3 implies that Aξ2 = 0 and
Aξ3 = 0, respectively. Hence, we can assert that the distribution Q� is invariant under
the shape operator, that is, M is a Q�-invariant real hypersurface. _us, by virtue
of _eorem A, we conclude that with our assumptions M must be a model space of
Type (A).
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Summing up these discussions,we conclude that if aHopf hypersurfaceM in com-
plex two-plane Grassmannians G2(Cm+2), m ≥ 3, satisûes (C-1), and α /= 2k, then M
is of Type (A) or (B).

Now, let us check whether the Ricci tensor S of a model space of Type (A) (or
of Type (B)) satisûes the Reeb parallelism with respect to ∇̂(k) by using the prin-
cipal curvature vectors and their corresponding principal curvature values for each
eigenspacewith respect to the shape operator A given in [10, PropositionA] (resp. [10,
Proposition B]).

Let us denote byMA amodel space ofType (A). Fromnow on, using the equations
(1.1), (1.2), and [10, Proposition A], let us check whether or not the Ricci tensor S
satisûes (1.6), which is equivalent to our condition (C-1) for each eigenspace Tα , Tβ ,
Tλ , and Tµ on TxMA, x ∈ MA. In order to do this, we ûnd one equation related to S
from (1.6) using the property of MA, ξ = ξ1 as follows:

(∇̂(k)ξ S)X = −h(∇ξA)X + (∇ξA)AX + A(∇ξA)X + khϕAX

− kϕA2X − khAϕX + kA2ϕX ,

(2.7)

since h = α + 2β + 2(m − 2)λ is a constant.

Case A-1 : X = ξ(= ξ1) ∈ Tα . Since (∇ξA)ξ = 0, we see that (∇̂(k)ξ S)ξ = 0 from the
equation (2.7). It means that the Ricci tensor S becomes GTW Reeb parallel on Tα .

Case A-2 : X ∈ Tβ = Span{ξ2 , ξ3}. For ξµ ∈ Tβ , µ = 2, 3 we have

(∇ξA)ξµ = β(∇ξξµ) − A(∇ξξµ)
= βqµ+2(ξ)ξµ+1 − βqµ+1(ξ)ξµ+2 + αβϕµ ξ

− qµ+2(ξ)Aξµ+1 + qµ+1(ξ)Aξµ+2 − αAϕµ ξ,

which yields that (∇ξA)ξ2 = 0 and (∇ξA)ξ3 = 0. _erefore, from equation (2.7) we
obtain, respectively,

(∇̂(k)ξ S)ξ2 = khϕAξ2 − kϕA2ξ2 − khAϕξ2 + kA2ϕξ2

= (−khβ + kβ2 + khβ − kβ2)ξ3 = 0,

and (∇̂(k)ξ S)ξ3 = 0 by similar methods. So, we assert that the Ricci tensor S of MA is
Reeb parallel on Tβ .
By the structure of a tangent vector space TxMA at x ∈ MA, we see that the distri-

bution Q is composed of two eigenspaces Tλ and Tµ . On the distribution Q = Tλ⊕Tµ
we obtain

(2.8) (∇ξA)X = αϕAX − AϕAX + ϕX + ϕ1X

by virtue of the Codazzi equation [10, Section 2]. Using this equationwe consider the
following two cases.

Case A-3 : X ∈ Tλ = {X ∣ X ∈ Q, JX = J1X }. We naturally see that if X ∈ Tλ , then
ϕX = ϕ1X. Moreover, the vector ϕX also belongs to the eigenspace Tλ for any X ∈ Tλ ,
that is, ϕTλ ⊂ Tλ . From these and (2.8), we obtain

(∇ξA)X = (αλ − λ2 + 2)ϕX , for X ∈ Tλ .
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From these facts and (2.7), we obtain

(∇̂(k)ξ S)X = (αλ − λ2 + 2)(2α − h)ϕX ,

which implies that the Ricci tensor S must be Reeb parallel for ∇̂(k) on Tλ , since
αλ − λ2 + 2 = 0.

Case A-4 : X ∈ Tµ = {X ∣ X ∈ Q, JX = −J1X }. If X ∈ Tµ , then ϕX = −ϕ1X, ϕTµ ⊂ Tµ
and µ = 0. So, from (2.8), we obtain (∇ξA)X = 0, moreover (∇̂(k)ξ S)X = 0 for any
X ∈ Tµ .

Summing up all of the casesmentioned above,we can assert that the Ricci tensor S
of a real hypersurface MA in G2(Cm+2) is GTW Reeb parallel.

Now let us consider our problem for a model space of Type (B), which will be
denoted by MB . In order to do this, let us calculate the fundamental equation related
to the covariant derivative of the Ricci tensor S of MB along the direction of ξ in
GTW connection. On TxMB , x ∈ MB , since ξ ∈ Q and h = Tr(A) = α + (4n − 1)β is a
constant, equation (1.6) is reduced to

(∇̂(k)ξ S)X = 4(k − α)
3

∑
ν=1

{ην(ϕX)ξν − ην(X)ϕν ξ}

− h(∇ξA)X + (∇ξA)AX + A(∇ξA)X
+ khϕAX − kϕA2X − khAϕX + kA2ϕX .

Moreover, by the equation of Codazzi and [10, Proposition B] we obtain that for any
X ∈ TxMB ,

(∇ξA)X = αϕAX − AϕAX + ϕX −
3

∑
ν=1

{ην(X)ϕν ξ + 3g(ϕν ξ, X)ξν}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if X ∈ Tα ,
αβϕξℓ if X ∈ Tβ = Span{ξℓ ∣ ℓ = 1, 2, 3},
−4ξℓ if X ∈ Tγ = Span{ϕξℓ ∣ ℓ = 1, 2, 3},
(αλ + 2)ϕX if X ∈ Tλ ,
(αµ + 2)ϕX if X ∈ Tµ .

From these two equations, it follows that

(2.9) (∇̂(k)ξ S)X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if X = ξ ∈ Tα ,
(α − k)(4 − hβ + β2)ϕξℓ if X = ξℓ ∈ Tβ ,
(4(α − k) + (h − β)(4 + kβ))ξℓ if X = ϕξℓ ∈ Tγ ,
(h − β)(kλ − kµ − αλ − 2)ϕX if X ∈ Tλ ,
(h − β)(kµ − kλ − αµ − 2)ϕX if X ∈ Tµ .

So, we see that MB has Reeb parallel GTW Ricci tensor, when α and h satisfy the
conditions α = k and h − β = 0, which means r = 1/2 cot−1(−k/4(2n − 1)). Moreover,
this radius r satisûes our condition α /= 2k.

Hence summing up these considerations, we give a complete proof of _eorem 1
in the introduction.
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For the case α = 2k, the Reeb vector ûeld ξ of a Hopf hypersurface M with GTW
Reeb parallel Ricci tensor belongs to either Q or Q�. So, for the case ξ ∈ Q�, equation
(2.2) becomes ξh = 0; that is, the trace h of the shape operator A is constant along ξ.
For the case ξ ∈ Q, it is a well-known fact that a Hopf hypersurface in G2(Cm+2),

m ≥ 3must be amodel spaceMB ofType (B) (see [11]). On the other hand, from (2.9)
and α = 2k, the GTW covariant derivative of the Ricci tensor S of MB along the
direction of ξ is given by

(∇̂(k)ξ S)X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if X = ξ ∈ Tα ,
k(4 − hβ + β2)ϕξℓ if X = ξℓ ∈ Tβ ,
(4k + (h − β)(4 + kβ))ξℓ if X = ϕξℓ ∈ Tγ ,
−(h − β)(kβ + 2)ϕX if X ∈ Tλ ,
−(h − β)(kβ + 2)ϕX if X ∈ Tµ .

Actually, since α = 2k, we naturally have kβ + 2 = 0. It follows that the Ricci
tensor S is GTW Reeb parallel on Tλ and Tµ . In order to be the GTW Reeb parallel
Ricci tensor on the other eigenspaces Tβ and Tγ , we should have the following two
equations:

4 − hβ + β2 = 0 and 4k + (h − β)(4 + kβ) = 0.

Combining these two equations, we have 2k + h − β = 0. Since

h = α + 3β + (4n − 4)(λ + µ) = α + (4n − 1)β and α = 2k,

it follows that α = −(2n − 1)β. By virtue of [10, Proposition B], α = −2 tan(2r) and
β = 2 cot(2r),where r ∈ (0, π/4),we obtain tan(2r) =

√
2n − 1. From such assertions,

we conclude that amodel space of Type (B) has GTW Reeb parallel Ricci tensor for
special radius r such that r = 1

2 tan−1(
√

2n − 1).
From the above, we have the following. Let M be a real hypersurface in complex

two-plane Grassmannians G2(Cm+2), m ≥ 3, with GTW Reeb parallel Ricci tensor
for α = 2k. If the Reeb vector ûeld ξ belongs to the distribution Q, then M is lo-
cally congruent to an open part of a tube around a totally geodesic HPn , m = 2n, in
G2(Cm+2) with radius r such that r = 1

2 tan−1 √2n − 1.

3 Proof of Theorem 2

Bear inmind that the notion ofGTW parallelRicci tensor is stronger thanGTWReeb
parallel Ricci tensor, and in the previous section, we got that a Hopf hypersurface M
in complex two-plane Grassmannians G2(Cm+2), m ≥ 3, (α /= 2k) satisfying GTW
Reeb parallel Ricci tensor, then M is locally congruent to of Type MA or Type MB .

Herea�er, let us check whether the Ricci tensor S of a model space MA (or MB)
satisûes the parallelism with respect to ∇̂(k) by using the principal curvature vectors
and their corresponding principal curvature values for each eigenspacewith respect to
the shape operatorAgiven in [10,PropositionA] (or [10,PropositionB], respectively).
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Suppose that M is of Type (A). Remember that Aξ = αξ, Aξ2 = βξ2, Aξ3 = βξ3,
with α =

√
8 cot(

√
8r) and β =

√
2 cot(

√
2r). Take Y = ξ, X = ξ2 in (1.4). We have

4βξ3 + h∇ξ2αξ − hAϕAξ2 −∇ξ2α
2ξ + A2ϕAξ2 =

β{g(ξ3 , Sξ)ξ − η(Sξ)ξ3 + Sξ3}.
Since the Reeb function α is constant, Sξ = (4m + hα − α2)ξ, and

Sξ3 = (4m + 6 + hβ − β2)ξ3 ,
from (1.4) we arrive at βξ3 = 0, which is impossible. _us, MA does not have GTW
parallel Ricci tensor.

In the case of MB , if we take X = ξ1, Y = ξ in (1.4) and bear in mind that Sξ =
(4m+4+hα−α2)ξ and Sϕ1ξ = (4m+8)ϕ1ξ,we obtain αh = 0,where α = −2 tan(2r).
As α /= 0 we must have h = 0. With similar computations, we obtain 6βξ3 = 0, for
β = 2 cot(2r), when X = ξ1, Y = ξ2 in (1.4). As this is impossible,MB does not have a
GTW parallel Ricci tensor, and this completes the proof of_eorem 2.

4 Proof of Theorem 3

Recently, in [6] Jeong, Lee, and Suh gave a characterization ofHopf hypersurfaces in
G2(Cm+2) with ∇̂(k)A = ∇A. So naturally we consider that (∇̂(k)X S)Y = (∇XS)Y ;
that is, the parallel Ricci tensor in GTW connection coincides with the parallel Ricci
tensor in Levi–Civita connection. As a special case, we restrict X = ξ as follows:

(C-2) (∇̂(k)ξ S)X = (∇ξS)X
for any tangent vector ûeld X on M.
By virtue of equation (1.5) and being Hopf, condition (C-2) is equivalent to Sϕ =

ϕS; thus, we have the following remark [16].

Remark 4.1 Let M be a Hopf hypersurface in complex two-plane Grassmannians
G2(Cm+2),m ≥ 3. _en ∇̂(k)ξ S = ∇ξS if and only ifM is locally congruent to an open
part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).

By Remark 4.1, if a real hypersurface M in G2(Cm+2) satisûes ∇̂(k)S = ∇S, then
naturally (C-2) holds on M. So M is of Type (A), that is, MA. Now let us check
whether amodel space MA satisûes our condition

(C-3) (∇̂(k)X S)Y = (∇XS)Y
for any tangent vector ûelds X, Y ∈ TxMA, x ∈ MA. In order to do this, we assume
that the Ricci tensor S of MA satisûes (C-3). _at is, we have

0 = (∇̂(k)X S)Y − (∇XS)Y
= g(ϕAX , SY)ξ − η(SY)ϕAX − kη(X)ϕSY

− g(ϕAX ,Y)Sξ + η(Y)SϕAX + kη(X)SϕY

(4.1)

for any X ,Y ∈ TxMA.
Since TxMA = Tα ⊕ Tβ ⊕ Tλ ⊕ Tγ , equation (4.1) holds for X ∈ Tβ and Y ∈ Tα .

For the sake of convenience we put X = ξ2 ∈ Tβ and Y = ξ ∈ Tα . Since Sξ = δξ and
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Sξ3 = σ ξ3 where δ = (4m + hα − α2) and σ = (4m + 6 + hβ − β2), equation (4.1)
reduces to β(δ − σ)ξ3 = 0. By [10, Proposition A], since the principal curvature
β =

√
2 cot(

√
2r) for r ∈ (0, π/

√
8) is non-zero, it follows that δ − σ = 0. In other

words, by [10, Proposition B] we obtain

−(δ − σ) = 6 − αβ + β2 + (2m − 2)βλ − (2m − 2)αλ
= 8 − 4(m − 1) tan2(

√
2r),

which gives us

(4.2) tan2(
√

2r) = 2
m − 1

.

In addition, since (4.1) holds for X ∈ Tλ and Y = ξ, we obtain

0 = (∇̂(k)X S)ξ − (∇XS)ξ = λ(τ − δ)ϕX ,
where in the second equalitywehaveused ϕX ∈ Tλ and SX = (4m+6+hλ−λ2)X = τX
for any X ∈ Tλ . As λ = −

√
2 tan(

√
2r) where r ∈ (0, π/

√
8) is non-zero, we have also

τ − δ = 0. By a straightforward calculation, it is

τ − δ = 6 + hλ − λ2 − hα + α2 = 4m − 4 cot2(
√

2r) = 0.

From (4.2), it becomes 2m + 2 = 0, which gives us a contradiction. Accordingly, it
completes the proof of_eorem 3 given in the introduction.
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