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ON EXTENSIONS OF THE RIEMANN AND 
LEBESGUE INTEGRALS BY NETS 

BY 

O. S. BELLAMY AND H. W. ELLIS1 

1. Introduction. In this note our principal interest is in using nets to give 
spaces of non-absolutely convergent integrals as extensions of the spaces of ab­
solutely convergent Riemann and Lebesgue integrals. For this purpose we develop 
a general theory of extensions, by nets, of functions defined on the open intervals 
with closures in the complement of a fixed closed set, the nets being directed by 
inclusion for finite disjoint collections of such intervals. Two cases are considered 
leading to open extension (OE-) and conditional open extension (COE-) nets, 
the latter being subnets of the former. Necessary and sufficient conditions for the 
convergence of the OE- and COE-nets are given, those for the COE-nets being 
similar to conditions that arise in the definition of the restricted Denjoy integral. 
Properties of inner continuity, weak additivity and the existence of a continuous 
integral are defined and studied. These relate to the more specialized nets that are 
suitable for the extension of integrals. 

When applied to the Riemann and Lebesgue integrals the OE-extensions do not 
lead beyond the Lebesgue integral. On the other hand the COE-extensions lead 
to scales of nonabsolutely converging Cauchy-Riemann and Cauchy-Lebesgue 
integrals. 

We use the definitions of directed set, net, subnet, etc. as given in ([2], Chapter 
2). In particular we note 

(Nl) If (S, >)=(Sn, D, > ) is a net in IR (with the usual topology) then (S, > ) 
converges to a if and only if the net is eventually in every interval (a—ô, a+Ô), 
d>0. 

(N2) If D'<=Z> and N is the identity map from D' into D then (SoN,D',>) 
is a subnet of (S, Z>, > ) if and only if for each n in D there exists ri in Dr with 
ri>n. This implies that if the net (S, D, > ) converges to a then every subnet 
(S, N, Z>\ > ) also converges to a. 

(N3) ([2], p. 77). A net (Sn, D, > ) in IR is monotone increasing (decreasing) 
if m>n implies that Sm>Sn(Sm<Sn). A monotone increasing (decreasing) net 
converges to the supremum (infimum) of its range (in R). 
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2. Open extension nets. We consider below nets directed by inclusion for open 
sets. Let 

7=(a, è), — co<a<b<co; 
F denote a closed set in R ; 
J(E n 7) the set of all finite open intervals / with closures /<= Ë C\ 1 (compact 

closure m.Ë C\T)\ 
Va a finite union of disjoint intervals in J{Ë n 7); 
F a function from J>(E C\ 7) into R, extended additively to the unions Va9 and 
V(E)=V(E, 7) the set of all collections Va directed by inclusion. Then (F, 

V(E, 7), < ) is a net in R. We call it an OE-(open extension) net or more precisely 
the OE-net associated with 7, E and F. We shall usually abbreviate the notation 
for an OE-net to (F, F , 7) below. 

We shall use the notation Ë n 1= uj° Ii9 7^=(a,-, b{) for the canonical expression 
of the open set E n 7 as a union of disjoint open intervals. (If Ë n 7 is a finite 
union, Un I{ say, then in our notation we assume that I~ 0, i>n.) 

If V*(E, I) denotes the set of Va e V(E, I) with at most one interval in each Ii9 

then (F, V*(E91), < ) is a net in R. It will be called a conditional open extension 
net (COE-net), the COE-net associated with /, E and F. This will usually be 
abbreviated to (F9 E,I)*. It is easy to verify that (F, E, / ) * is a subnet of (i% E, I) 

If (F, F"(J?, 7), < ) is an OE-net or subnet of an OE-net we write 

F(E n /) = lim(F, F'(F, / ) , < ) , 

when the limit exists in the extended reals. When (F, E, I) converges in R, and in 
particular when (F, E, I) is monotone, 

(2.1) F(E nl) = lim(F, £, /) = lim(F, £, /)*. 

We shall call a net or subnet convergent if the limit is finite. 
For I'ciË r\I we define 

coF(r) = sup{|F(J)|, J <= F, J G ̂ ( 5 n /)}. 

THEOREM 2.1. L^^ (F, F, I)* be a convergent COE-net. Then 

(i) (F, F, 7t-)* converges for each i; 
00 2 ^ u>F{I^)<cofor Nsufficiently large; and 

(iii) F(£ n 7)=2i°° ^ ) = l i m ( F , F, 7)*. 

Conversely if(F> E, 7)* is a COE-net for which (i) and (ii) hold then it is convergent 
and (iii) holds. 

Proof. We first note that for a COE-net and each i, F*(F, 74) is the set of finite 
open intervals with closures in 7̂ . Thus (/) is equivalent to 

(i') lima_>a.+>0_>&_F(a, /?) exists for each /. 
Assume that (F, F, 7)* converges to k but (/') fails to hold for 7Z. There then 
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exists d>0 with 

(2.2) lim sup F(a, 0) - l im inf F(a, 0) > d: 
a-+a,i_ a-*ai_ 

This implies that the net (F9 E, 7)* cannot eventually be in (k—ô, k+ô) if 6<dj2 
giving a contradiction. 

Assume next that 2 ^ C 0 ^ ( A ) = 0 0 f ° r e v e r y ^ ^ N . There is then an infinite 
subsequence {in} with 

HJJ > coF(IJI2, Jin <= 7,n, Jin e Jf(E n /) 
and 

oo 

in>N 

and/or such a subsequence with —FiJ^ )>c^(7 t . )/2 for each in. It is then easy to 
establish the existence of subnets with limits + oo and/or — oo contradicting the 
convergence of (F, E, 7)*. 

Assume that (i') and (ii) hold and let fc=2S° A^)« There then exists N0 corre­
sponding to £>0 with 

00 

No+1 

and intervals /'<=7i5 7 ' e </(£ n 7) with 

No 

2 I T O - T O I < 6/3, J'i c j , c /., j , G ./(£ n /). 
i 

Then if Va.={J':i=l9 2,... , iV0}; Va, e V*(E91) and a standard calculation 
shows that Va £ (k—s, k+s) if Va,<Va. The proof that (i') and (ii) imply (iii) 
implies the converse part of the theorem. 

DEFINITION. For F^E r\Idefine 

VF(F) = supj I |F(J,)|, J, c / ' , J. e J(E n 1)1. 

THEOREM 2.2. 7>* (7% £, 7) be a convergent QE-net. Then 

(i) (F, E, Ii) converges for each i; 
(ii) 2°° VF(Iù<cofor N sufficiently large; 
(iii) / ( £ n 7 )=2r ^ ) = l i m ( F , £, 7). 

Conversely if (F, E, I) is an QE-net in R and (i) and (ii) hold, then (F, E, I) 
converges to 2i° F{I^). 

Proof. We first note that (i) is equivalent to 

(i') for each /, lima_^ +tj8_^ _ T^a, /?) exists in R and 
(ii7) lima_a.+ VF(ai9 a)=lim^6 ._ VF(P, 6,)=0. 
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Assuming that (i) holds, (F, F , / , )* converges to F(/,)=lim(F, F , It) by (N2) 
and (i') is then a consequence of (i') in Theorem 2.1. 

The assumption that VF(a{, a) does not approach zero as <x-><z+ leads to a 
contradiction of the assumption that (F, F, I{) converges by an argument similar 
to that in the first part of Theorem 2.1. Thus (i) implies both (i') and (ii'). 

Assume that (i') holds and let fc=lim(F, F, 7^)*. Then, given £>0, we can fix 
(a', £') in Ii with 

|F(a, j8)-fc| < a/2; a, < a < a' < 0' < p < &,; 

VF(ai9^) + VF(P\ b.X e/2. 

Let Fa,=(<*',£')• Then Va.eV(E9IÙ and if Va,<Va, Va contains an interval 
(a, /?) with (a, j8)=>(a', /?'). If V* denotes Va less the interval (a, /8), 

\F(Va)-k\ = | F ( a , / 0 + F ( O - * l < £-

The proof of Theorem 2.2 is then completed by arguments similar to those used 
for Theorem 2.1. 

We note that (ii) of Theorem 2.2 implies (ii) of Theorem 2.1 but the converse 
is not true. Note that (i') and (ii') for Theorem 2.2 are independent in the present 
context. The following example shows that (ii') does not imply (i'). 

EXAMPLE 2.1. Let F = ( - o o , oo), F = 0 ; f(x)=e~x2; g(x)=ex; F(a, |8)=g(j8)— 
g(a) if 0 G (a, i8);=/GS)-/(a) if 0 £(a, 0). Then K F ( -oo , a)=<ra2->0 as a ->-oo , 
VF(p, oo)=e-/?2->0 as /?->oo but F(oc, j8)->oo as a->— oo, jg-*oo. 

REMARK 2.1. Assume that for every pair of adjacent intervals (ax, a2), (a2, a3) 
oîJ(Ë n J), contained in It with (a1? a3) e J(E n J), 

(2.3) F(a1? a3) = F(a1? a2)+F(a2 , a3) 

Then it can be shown that, if \\m{VF{ai9 a); a^-af)=0=lim(FF( i8, èz); (3->bi), 
then lim(F(oc, /?) : a->af, /5—>Z?7) exists. 

The convergence of (F, F , 7) or (F, F, / ) * implies the convergence of (F, F, I{) 
((F, F, /;)*) for every i. However if V is an arbitrary open interval in Ë C\ / , 
(F, F,F)((F, F,F)*) may fail to converge even when I'eJ(E C\I) and, for 
F eJ(Ë n / ) , may converge but to a value different from F(F). 

EXAMPLE 2.2. / = ( - l , 1), F = 0 , / ( x ) = l / x , x^O, / (0 )=0 ; F(a, /?)=/(/?)-
/ (a ) , (a, j8) e / ( i ) . Then (F,E,I) and (F,E,I)* converge to 2 whereas 
(F, F, F) and (F, F, / ' ) * do not converge i f / ' = ( - a , 0) or (0, a), 0 < a < 1. 

EXAMPLE 2.3. / = ( - l , 1), F = 0 , / ( x ) = 0 , x < 0 , = 1 , x > 0 ; F(a, /?) = / ( / ? ) -
/ (a) . Then (F, F, / ) and(F, F, / ) * converge to 1 and converge for every / ' G . / ( £ n 
/) but F(-a, 0)=0?±F(-a, 0 )=1 , 0<a<l. 
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DEFINITION. We call F inner continuous on J{Ë O /) if, for every / = (a', b') e 
J(E n I), 

(2.4) F(J) = lim F(oc, /S) 
cc-*a'_ 

Noting that / e J(E n / ) implies that £ n / = / , (ii) in Theorem 2.1 is trivially 
satisfied and (F,E,J)* converges if and only if (i') holds. Thus in order that 
(F, E,J)* converge to F(J) for every JeJr(E n 7) it is necessary and sufficient 
that F be inner continuous. 

If F is an arbitrary function on J(Ë n 7), F is trivially finitely additive on 
J(Ë n 7) since no open interval can be expressed as a union of two or more 
disjoint open intervals. 

EXAMPLE 2.4. Let \i be an arbitrary finitely additive measure on the Borel sub­
sets of R. For arbitrary E and / define F(J)=/i(J), J e J{Ë n / ) . I f / = (a', b') and 
a'<c<b' then for every a, /?, a '<a<c</?<Z/ , 

F(a, p) = //(a, /?) = j*(a, c)+[x{c, p)+/u{c}. 

This motivates the following 

DEFINITION We say that F is weakly additive on J>(Ë n /) if there exists a function 
k on E n / such that for each c e E n / = U^° It and each /, 

(2.5) F(a, P) = F(a, c)+F(c, (3)+k(c) 

for every (a, /?) with ^ < a < c < i 8 < 6 i . 

PROPOSITION 2.1. Assume that F is inner continuous and weakly additive on 
J(E r\I)=JP(l), I=(a,b). Then if (F,E,I)* converges, (F,E,(a,c))* and 
(F, E, (c, A))* converge for every c, a<c<b, and (2.5) holds for # < a < c < / ? < è . 

Proof. Since (F,E,I)* converges, F(a, b)=lima_+a+p_+b-F(OL, /?) e IR. For c 
fixed, (2.5) holds for a < a < c < / ? < è and, since a and /? can be varied independ­
ently, it follows that F(&, c) and F(c, /?) converge as oc-^+, (3->b-~. Thus 

F(a, fe) = limF(a, c)+ lim_F(c, /?)+Â:(c) = K^Kz+kic), 

defining Kx and T̂2-
Fix c', a<c'<c. By the argument of the preceding paragraph F(<x, cr) and 

F(c', jff) converge as oc->a+, /?->c~. Thus 

F(a, c) = lim F(a, /?) = lim F(a, c')+ lim_F(c', /?)+fc(c'), 
a->a a-»a /J-*c 

showing that (F, •£(#, c))* converges. Similarly i^c, i)=lim(Jf7, is, (c, b))* exists. 
Inner continuity can then be used to show that Kx=F{a, c) and K2=F(c, b). 
Let J*(E n J) denote the set of a// open intervals contained in E C\ I. 
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COROLLARY 3.1. Let F be inner continuous and weakly additive on ^{E n 7). 
Then if (F, E, 7)* converges, (i) F is defined on J*{E n 7) and extends F from 
J{Ë C\T) to J*{E HT), (ii) where k is the function in the definition of weak ad-
ditivity, (2.5) holds for every (a, /?) eJ*(Ë n 7) and (iii) (F, E, 7')* converges for 
every open interval I'<=-1. 

To prove (iii) we note that J(E n Î)<^J*(Ë C\ 7) and conditions (i) and (ii) of 
Theorem 2.1 follow from (i) above and Theorem 2.1 (ii) for (F, E, 7)*. 

I f / i s an arbitrary real valued function on E n 7, F(<x, j8) =/(/?)—/(a) defines a 
function on J{E n 7). Conversely, given F on J(E C\ 7) we can ask when there 
exists an / f o r which such a relation holds. We ask also t h a t / b e continuous. 

DEFINITION. We say that F, defined on {E n / ) has a continuous integral on 
E n J if there exists a continuous function F :E n 7->IR with 

F ( a , / ? ) = F ( / ? ) - F ( a ) 
for every (a, 0) 6 . / ( £ n 7). 

If both F x and F 2 are continuous integrals for F it is easy to verify that 

F ! - F a = 2 ^ i . 

If F has a continuous integral on £ C\ I then it is easily verified that F is inner 
continuous on J(E n 7) and weakly additive with £(x)=0. 

With each weakly additive F on «/(i? C\ I) we associate functions & as follows. 
In Ii=(ai9 bt) let (ocw, « G N) be any sequence of points in I{ decreasing to â  as 
limit. Define, in (aw, b{), 

J(x) = F(a1? x), 
n w—1 

= ^(an , x ) - 2 JF(a„ a ^ ) - 2 £(«<), n > 1. 
2 1 

Note that if x e (ocw_l5 Z )̂, then using (2.5), it can be shown that 

(2.6) &(x) = F(an_1? x ) - p ( a , a ,_ x ) - i V a , ) 
2 1 

so that $> is defined inductively on all of It. A different choice of ax would change 
JF on Ii by a constant function. 

Given x,y e Iiy with x < j , there exists a w <x and 

(2.7) ^ ( y ) - ^ ( x ) = F(an, JO-F(OC», x) = F(x, j ) + k(x). 

If there exists a continuous integral for F on /*, &(x)=0 on It and ^ is a contin­
uous integral for F o n ^ . 

If we assume that F is weakly additive and inner continuous on J(E C\ I) then, 
using Proposition 2.1 and keeping y fixed in (2.7), limaî_>î/-7

7(an, x)=F(a n , j ) 
showing that 3F is left continuous on It. On the other hand, keeping x fixed and 
fixing a, x < j < a < Z > 0 
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Since F(y, oi)-+F(x, a) as y->x+, \\my_+x+tF(y)==&r{x) if and only if k is right 
continuous at x. We have shown 

PROPOSITION 2.2. If F is weakly additive and inner continuous on J(E C\ I) 
then IF is a continuous integral onE n I if and only ifk is right continuous onE n I. 

EXAMPLE 2.5. Le t / and g be real valued functions on Ë n L For each (a, /?) e 
J{E n I) define F(a, j8)=/(a)+#(/?). Then £ ( * ) = - / ( * ) - £ ( * ) and F is weakly 
additive but cannot have a continuous integral unless f(x)+g(x)=Q in E n /. 
Furthermore .Fis inner continuous if and only i f / i s right continuous, g left con­
tinuous. 

Let g be continuous,/right continuous but not continuous on E n 7. Then i7 

is inner continuous and weakly additive and 3F is continuous on E r\ I but F 
does not have a continuous integral on E n 7. 

It can be shown that if F is weakly additive on J (J) and VF(I)<oo then 
2* e / IM*)I=supŒJ=i M**)' xi e ^ X °°- This implies that, if F is continuous on 
Enl and every J' eJ{Ë n 7) contains a subinterval / with FF ( / )<oo then 
k(x)=0 and Ĵ * is a continuous integral on E n I [1]. 

PROPOSITION 2.3. Lef F have a continuous integral on E C\ I. Then if (F, E, / ) * 
converges, œF{I^<co for every i and Theorem 2.1 (ii) can be replaced by 

(ii)' f MJ,) < co. 
1 

If G is a continuous integral for F and x0 eli9 tf2<a<x0</?<e^ then G(a)= 
G(x0)—jF(a, x0). It follows as in Proposition 2.1 that F(OL, x0) and thus also G(oc) 
converge as o c - ^ + . Similarly lim^a _ G(/J) exists. Thus G is bounded and œF{Q 
is finite for each It and (ii') follows. 

Let A and £ be closed sets with B^A. Let S n 1= KJi Ii9 A n 7= U,- u,. 4-
where A C\ I C\ It= U,- 7#. 

THEOREM 2.3. Z,^ i7 Z>£ //wer continuous and weakly additive on J (A C\ I) and 
assume that (F, A, 7)* converges. Let GA:Jr(B C\ 7)->IR and define 

(2.8) H(J) = GA(J)+F(A nJ),Je J(B n / ) . 

Then (i) if (GA, B, 7)* converges, (H, B, 7)* converges and 

(2.9) H(B nl) = GA(B n I)+F(Â n / ) ; 

(ii) / / G^ w /#«er continuous, then H is inner continuous; 
(iii) if GA is weakly additive, then H is weakly additive; and 
(iv) if F has a continuous integral on A n I and GA has a continuous integral on 

B n I, then H has a continuous integral on B C\ L 

Proof. If JeJ(B n 7), then / c / and (F, A, J)* converges by Corollary 2.1 
of Proposition 2.1. By definition F(A nJ)=\im(F, A, J)*. It follows that 
H\J(B n / ) -*[R. 
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If /= (a , (I) eJ(B n 7), then using Theorem 2.1 (iii), (2.8) becomes 

(2.10) H(J) = GA{J)+ I Fil^+Fin+Fin 

where / ' , I" are partial intervals of intervals I{j arising when a and/or /? are in 
A nl. 

We verify that (i') holds for each It. First assume that a* and bi are not limit 
points of A n It. Then for all a, /? near ^ and Ẑ  respectively, ^I.^-J F(Ii2) is 
constant and if 7'=(oc, 6a), J"=(tfin,, #), 

Fin-^F^b^Fin-^Fia^bi) as a - f l+0-*6r> 

using Proposition 2.1. Since G (̂oc, ($)-*GA{Q by Theorem 2.1, (i') holds for 7/ 
and 

#(/,) = lim H(J) = G^(/,)+ 2 F(/,,.) = G^(/,) + f ( l n /,). 
a-+ai,p-+l)i 3 

Next suppose that a{ and/or Z>z- is a limit point of A n 1^ Then as a->a+, /?->£", 
2/. i C : j ^(^3) does not remain constant but Theorem 2.1 (ii) implies that it differs 
from 2 J F{Iij) by less than ^ ^F(^H) f° r some k where £->oo as oc-><zf, (}->b~. It 
then follows that (2.9) holds. 

Now 

a^(J,)= sup |i7(J)| = sup I G ^ ^ + I ^ n / ^ K c o ^ / J + ^ M ^ . ) ; 
JeS(Ii) JeJ(Ii) 3 3 

N N i=N j 

and (ii) of Theorem 2.1 for F and GA implies that this is finite for N sufficiently 
large giving (ii) for (77, B, /)*. Theorem 2.1 then implies that (77, B, 7)* converges 
and (2.9) holds. 

(ii) Let J={a\b')eJ{B n 7). Then /<=/* for some i and, using arguments 
similar to those in (i) above, F(Â n (a, P))->F(Â n / ) as a->a'+, p-+b'~. The 
assumption that GA is inner continuous and (2.8) above imply that 77(a, (})->H(J) 
as a->a"[", fi-+b~. 

(iii) The assumption that G^ is weakly additive on *f(B n I) implies that there 
exists kA on B n /for which (2.5) holds with the present notation. The assumption 
that F is weakly additive on J (A C\ I) implies the existence of k on A C\ I for 
which (2.5) holds for F. We extend k to B n I by defining k(x)=0, xeA C\B C\I. 
Using (2.10) it is then easy to verify that 77 is weakly additive on J{B C\ I) with 
kH(x)=kA(x)+k(x), xeB n I. 

(iv) If GA has a continuous integral it is weakly additive and inner continuous. 
Thus 77 is weakly additive and inner continuous by (ii) and (iii) above. Since the 
existence of continuous integrals for F and GA imply that kA(x)=k(x)=0, x e Bn 
7, kH(x)=0 in B n 7 and the point function ffi associated with H on B C\ I is 
continuous on B n 7 by Proposition 2.2. It follows from (2.8) that 3C is a con­
tinuous integral for H on B r\ I. 
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3. Applications. Let I=(a, b), — co<a<b<co. Let L(A) denote the set of 
Lebesgue integrable functions on A. A function/will be called locally Lebesgue 
integrable at x if there is a neighborhood of x over which/ is Lebesgue integrable. 
Denote by EL—EL(f) the points of [a, b] at which/is not locally Lebesgue in­
tegrable. If x e EL there exists Iô=(x—ô, x+ô) mthfeL(Iô). Since Iâ^ËL9 EL 

is closed. Corresponding definitions will be assumed for other types of integrals. 
Let/:/->-R be arbitrary and define F(G)=$jfdp onJ>(EL n /) , where p denotes 

Lebesgue measure and the integral is the Lebesgue integral. Then (F, EL, I) 
is an OE-net. Noting that VF(I')=$r \f\ dp ifI'c:EL n J, Theorem 2.2 implies 
that (F, EL, I) converges if and only if/G IJ(EL n /) and that convergence implies 
that F(£L n 7)=J^ n J / r f | i . 

The classical Riemann integral is defined only for bounded functions on finite 
intervals. If R(7), Cae(J) and B(J) denote respectively the spaces of Riemann in­
tegrable, continuous almost everywhere and bounded functions on the interval J 
then, for /finite, 

(3.1) R(/) = C J / ) n B ( I ) . 

For/G B(7) with /finite continuity almost everywhere plays a role for Riemann 
integration analogous to measurability for Lebesgue integration. If fe CaJJ) n 
B(7) the Riemann integral of/ ((R)Sifdx) exists and can be approximated arbi­
trarily closely from above and below by Riemann integrals of step functions (con­
stant on intervals) whereas if/ is measurable its Lebesgue integral exists and can 
be approximated arbitrarily closely from above and below by integrals of simple 
functions (constant on measurable sets of finite Lebesgue measure). 

We next use OE-nets to extend the classical Riemann integral into CaJJ) where 
/ is finite or infinite and the functions need not be bounded. 

If/G Cae the set ER of points at which / i s not locally Riemann integrable is 
closed and p(ER)=0 since ER is contained in the set of points of discontinuity 
of/ Define F(J)=(R)Sjfdx for JeJ(ER CM). Then (F, ERyT) is an OE-net. 
Call / generalized Riemann integrable on / ( / G (R(/)) if (F, ER, I) converges and 
write (R)ijfdx=F(ER n I)=\im(F, ER, i). We show that 

(3.2) R(/) = C J / ) n L ( J ) . 

Note first that for each JeJ(ER n /), F(J)=$jfdp and for each Ï'^ER n /, 
FF ( / , )=J r l/l dp. Thus if (F, ER, I) converges, (i') and (ii') of Theorem 2.2 
imply that F(Q=^jjdp for each /. It then follows from (ii) that 2 i F{I^ converges 
and/6L(J?B n /) and, since fi(ER)=0, that/eL(7). Thus R(/)c:Cae(/) n L(/). 
By (iii) of Theorem 2.2 

(R) ffdx = lim(F, ER, I) = 2 F(Et) = [f dp. 

2 
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Assume now t h a t / e Cae(J) n L(7). Then for each i, (F, ER, It)=(F9 ELJZ) 
which converges. Furthermore ]?VF(Ii)=§I\f\ dfi<co. The convergence of 
(F, 7? ,̂ 7) then follows from Theorem 2.2. 

REMARK. The space R(7) has most of the properties of R(i). In particular it is 
linear since Cae(7) and L(7) are linear. 

We next consider extensions using COE-nets and Theorems 2.1 and 2.3. 
Define F(J)=jjfdpi for J eJ{EL n 7) and call / Cauchy-Lebesgue on Ë n 7 

if (i% £ i ? 7)* converges ( / G C L ( ^ n /)). Write 

(CL) f /d/i = lim(F, ££, /)* = F(EL n /) = 2 (CL) f / ^ . 

If (F, EL,I)* converges and feJj(EL) we say that/ is Cauchy-Lebesgue inte­
grate over I(fe CL(7)). We then write 

(CL) \fdfjL = f fdfi+F(ËL n /) = f fdp+2(CL) {fd/i. 
JI JEL J EL i Jli 

In Theorem 2.3 set A=EL, B=0 , 

G(J) = GA(J) = J / f c ^ J e ./(J), 

fl(J) = G ( J ) + % n J ) , 

then (<7, 0 , i)* converges and thus (if, 0 , /)* converges and 

(3.3) 5(7) = lim(77, <£, /)* = (CL)jfdp. 

Since J7 and G are inner continuous, weakly additive (with k(x)=0) and have 
continuous integrals (on J^(EL n 7) andJ^(i) respectively), if has these properties 
on y (7). 

Consequences of the general theory include: 

(i) If/G CL(7), then/e CL(7') for every 7 ' c i (Corollary 2.1 (hi)), 
(ii) If ĉ f is a continuous integral and 7'=(#', Z/), a<a'<.b'<b, then 

)J /^ = (CL) / d ^ = ^f (6 ' ) - ^ 0 ' ) , 

i.e. a continuous integral for/corresponds to a primitive or indefinite integral. 
(iii) L(7)<=CL(7) and if/G CL(7) then/e L(7) if and only if | / | G CL(7). (Note 

that EL(f)=EL(\f\).) 
(iv) CL(7) is homogeneous but not additive and therefore not a vector space. 
As an example of the lack of additivity first observe that the function f0(x)= 

d/dx(x2 sin xr2) G CL(0, TT)/L(0, TT]. Furthermore if 7=(0, oo), and 

n=0 Z 
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then EL(f)={mr;n=Q9l,...} and if F(J)=$jfdp, JeJ(ELC\I), then (i') 
and (ii) of Theorem 2.1 hold so that (F, EL(f), / ) * converges. Since/e L(EL n / ) , 

/ eCL(7 ) . 
Let g(x)=smx/x, xel. Then g eCL(I)\L(I), EL(g)=0, EL(g+h)=EL(h) 

and it is easy to verify that (ii) of Theorem 2.1 does not hold fo r /+g showing that 
f+giCL(l). 

Let EL n / = U, Ii9 write E=EL and let £ ' denote the points of [a, b] for which 
there exists no 7(5=(x—ô, x+ô) with: ( i ) / G L ( l n i ) and (ii) ^{o)F(Ii):Ii O 
^? é0}<oo. Then E' is a closed subset of E=EL. 

Assuming: (hi) (F, E, 7J* converges for every i, we show that H=H as in (3.3) 
extends F from J(Ë C\ I) to J (JE' n / ) . Let / G y ( ^ n / ) . Then Jc£' r\ I and 
to every point x of/corresponds an open interval Iô{x) for which (i) and (ii) hold. 
By compactness / is covered by a finite subcollection which implies that (i), (ii) 
and (hi) hold for J. It then follows as above tha t /G CL(/). A less general approach 
would have been obtained by assuming that (F, E,I)* converged which would 
have implied both (ii) and (iii). 

The set E'=ECL is the set at which/is not locally Cauchy-Lebesgue integrable. 
We can now define a second order or CL2-integral for functions / for which 
(H, E',I)* converges a n d / G L ( £ ' ni) by analogy with the CL-definition. This 
process can be continued by finite and transfinite induction and gives a scale of 
integrals that can be related to the restricted Denjoy integral [1]. 

Similar Cauchy type extensions can be based on the Riemann and generalized 
Riemann integrals rather than the Lebesgue integral. 
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