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Abstract

Non-completely simple bisimple semigroups 5 which are generated by a finite number of idempotents
are studied by means of Rees matrix semigroups over local submonoids eSe, e = e2 G S. If under the
natural partial order on the set £ ( of idempotents of such a semigroup S the sets u(e) = {/ G Es: f
=s e) for each e G Es are well-ordered, then S is shown to contain a subsemigroup isomorphic to Sp4,
the fundamental four-spiral semigroup. A non-completely simple bisimple semigroup is constructed
which is generated by 5 idempotents but which does not contain a subsemigroup isomorphic to S/)4.

1980 Mathematics .subject classification (Amer. Math. Soc): 20 M 10.

1. Introduction

The generalization by D. Allen, Jr. [1] of the Rees theorem to a class of regular
semigroups, and its improvement by D. B. McAlister [7] can be refined to obtain
detailed information about the structure of bisimple semigroups which are
generated by a finite number of idempotents. We use this approach to investigate
an embedding question first raised in [3]: which non-completely simple bisimple
idempotent-generated semigroups contain a subsemigroup isomorphic to S/?4?

The fundamental four-spiral semigroup Sp4 is presented by (a, b,c, d\a — ba,
ab = b = be, cb = c — dc, cd = d = da) [3] and may be represented as the Rees
matrix semigroup ^ ( e 1 (p, q)); 2,2; (Jf), over the bicyclic semigroup Q(p,q) [2].
It is an example of a non-completely simple bisimple idempotent generated
semigroup which is the smallest such in the following sense: any £-chain linking
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Ul Bisimple semigroups 93

distinct comparable idempotents of a bisimple idempotent-generated semigroup
has even length of at least 4, whereas the is-chain a ^kb^c^dtad, which links the
distinct comparable idempotents a and ad of Sp4, has length exactly 4.

The embedding question asks for an analogue of the result that any non-com-
pletely simple bisimple regular semigroup contains a subsemigroup isomorphic to
6(p, q). In [3] it was shown that any bisimple idempotent-generated semigroup S
in which u(e) — {f £ Es: f*s e) is an co-chain for each e G Es contains a
subsemigroup isomorphic to Sp4. In [4] constructions of pseudosemilattices were
used to provide examples of non-completely simple bisimple semigroups gener-
ated by infinitely many idempotents which fail to contain subsemigroups isomor-
phic to Sp4.

For each non-completely simple bisimple semigroup S which is generated by a
finite number of idempotents we shall construct in Section 2 a Rees matrix
semigroup 91L(e5e; m, m; P), also generated by a finite number of idempotents.
which has S as a homomorphic image. This Rees matrix cover will be used in
Section 3 to show that if the sets w(e) for e G Es are well-ordered in such a
semigroup S, then 5 contains a subsemigroup isomorphic to Sp4. In Section 4 a
Rees matrix semigroup over an inverse semigroup is constructed which is non-
completely simple, bisimple, is generated by 5 idempotents, but fails to contain a
subsemigroup isomorphic to Sp4. The main results of this paper were announced
at the Nebraska Conference on Semigroups, Lincoln, Nebraska in September
1980.

2. A Rees matrix cover

We first establish some results which will enable us to deduce properties of the
Rees matrix cover. The submonoids eSe, e G Es, of a semigroup 5 will be called
local submonoids of S.

PROPOSITION 2.1. Let S be a regular semigroup, e G Es. If SeS is finitely
generated, then the local submonoid eSe is finitely generated.

PROOF. Suppose we can prove the result in the special case S = SeS. Then the
general result follows, for S regular implies SeS regular, and since SeS = SeS • e

SeS is finitely generated, we conclude that e • SeS • e = eSe is finitely gener-
ated.

So suppose S — SeS. Let JC,, x2,... ,xn be generators for 5. For each JC, choose
idempotents «,, t>, such that U,.£JC,-<3!.«,-, and elements r;, r/, st, s,' such that
r/l = «,-, /•//•,• ^ e, s,s- = t>j, s-Si =£ e. Let y = e(U.J=l xt )e be an arbitrary element
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of eSe where 1 < /, < n, I = 1,2,..., w. Then
I w \ / w \

v = e\ T\ u,• X:v, \e ~ e\ TT ri r',xt *,• •*.'
w = i / \ / = i /

= er,

w-\

II (r/x,̂ .. )(s,'r..

Thus the elements e/-,, r-xtst, s/r,, 5,'e, /, _/' = 1 ,2 , . . . ,« , of eSe generate eSe, so

<?Se is generated by at most n2 + 3« generators.

Let L denote the 2-element lattice L = {0,1} in which we write meet as •, join

as + , so that 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1 , 0 0 = 1 0 = 0 - 1 = 0 ,

1 1 = 1. Thus under multiplication L is the trivial group with 0 adjoined. The

semigroup Lm of all m X m matrices over L, m a positive integer, may be

interpreted as the semigroup of binary relations of an w-element set.

PROPOSITION 2.2. Let P be an m X m matrix over the lattice L having diagonal
entries all 1 and let M denote the Rees matrix semigroup 91t°(l; m, m\ P) over the
trivial group with 0. Then GJ\l° \ {0} is generated by the m idempotents ((', 1, /'),
/ = 1,2, • • •, m if and only if all entries of Pr equal 1 for some r.

PROOF. The symbols * and 2 denote products in 3tt°. All other products are in
Lm. Thus, for example (/, 1, j) * (k, 1, /) = (/', 1, j)P(k, 1, /), where as usual
(/, 1, _/') denotes the matrix with a 1 in the (/, j) position, all other entries 0.
Suppose A €E Lm has precisely one non-zero row, say row /, and that B G Lm has
precisely one non-zero column, say column j . Then AB has at most one non-zero
entry, the (/, j) entry. In view of the operations in L there exists some k such that
(1) AB = A(k, 1, k)B. On the other hand, if, for some k, A(k,l,k)B ¥^ 0, then
(2)A(k,l,k)B = AB = (i,l,j).

Suppose now that 9 H 0 \ {0} is generated by the m idempoten ts (/, 1, / ) . Then

given (/, 1, j) G 9 t l ° \ {0} we can write
M'

( / , 1, j) = n ( ' / , ! , ' / ) = ( / „ 1, « , ) P ( i 2 , 1 , i2)P • • • P0*,hiw)

which by repeated use of (2) equals (; , , 1, ix)P
w~ \iw, 1, iK). Therefore entry (/, j)

of Pw~' is non-zero , so there exists r such that all entries of Pr equal 1.

Conversely, suppose that all entr ies of Pr equal 1 for some r, and let (/, 1, j) £

^11° \ {0}. Then (/, 1, i)P\j, 1, j) = (/, 1, j), so by repeated use of (1) there exist

/ = i, , / 2 , . . . , / K . =j such that ( / „ 1, it)P(i2,1, i2)P • • • P(iw, 1, /K.) = (/, 1, j).

T h u s (/, 1, j) = !!"=,(/ , , 1, / , ) , so 911° \ {0} is generated by the m idempotents

( ( , 1 , / ) .
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[41 Bisimple semigroups 95

If P = (Pij) is an m X m matrix over a semigroup 5 ' we define P = (p,j) to be

the AM X AM matrix over the lattice L = {0,1} such that

( 1 if/',, = 1,
.

PROPOSITION 2.3. Let P be an m X m matrix over a semigroup 5 ' with diagonal
entries all 1 such that the entries of Pr are all 1 for some r. Then 911(5'; m, m; P)
is generated by the m idempotents (i, 1, /) if and only if the entries of P generate 5 ' .

PROOF. Suppose 911 is generated by the AM idempotents (/, 1, /') and let s G 5 ' .

Then (1, s, 1) = !!"=,(/,, 1, /,) = (^,11*=, pl{ , /+i, iw) for some 1 < /, < AM, / =

1,2, . . . , w, so s is a product of entries of P.

Conversely, suppose that the entries of P generate 5 ' . Let (/, s, j) G 9H. Then

there exists /„ j h I — 1 ,2 , . . . , w such that s = Ii?=] ph jr Thus

' vi- 1

(i,s,j) = ( / , i , / , ) n ('/> ^*/)(7/ ' !> y/)(y/>i,'/+i

The partial function 0: 91t°(l; AM, AM; P) -> 911(5'; AM, AM; P) defined by (/, 1, j)
-» (/, 1, y), /, y = 1,2,. . . ,AM, is a partial homomorphism in the sense that if
x, y, xy G 911° \ {0}, then (xB)(yB) - (xy)6. Thus by Proposition 2.2 each of
the factors in the product above is a product of the idempotents (/', 1, /),
/ = 1,2,... ,AAJ. We conclude that 911(5'; m, m; P) is generated by these idempo-
tents.

We observe that any matrix P over a semigroup 5 ' whose first row, first
column, and diagonal entries are all 1 satisfies the hypothesis of Proposition 2.3,
as does any matrix whose tridiagonal entries (those on the main diagonal and the
two adjacent diagonals) are all 1.

The following result is a refinement of McAlister's Local Isomorphism Theo-
rem [7], which in turn draws heavily on the ideas of D. Allen [1]. We denote the
identity element e of the local submonoid eSe by 1.

THEOREM 2.4. Let S be a bisimple semigroup which is generated by a finite
number of idempotents and let e G Es. Then 5 is a homomorphic image by
rectangular bands of a Rees matrix semigroup 9H(e5e; AM, m; P) over the finitely-
generated bisimple monoid eSe where

(1) 911 is generated by m idempotents, m a positive integer;
(2) the entries of P generate eSe and the tridiagonal entries of P are all 1;
(3) the homomorphism is an isomorphism when restricted to any subsemigroup

{/} X eSe X {j}.
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PROOF. Let S be a bisimple semigroup which is generated by a finite number of

idempotents JC,, x2,. •. ,xn and let e £ Es. It is easy to check that the monoid eSe

is bisimple. By Proposition 2.1 eSe is finitely generated.

Since S = U " = , x(S each ^ c l a s s of S is less than one of the finite number of

maximal ^R-classes of 5, and similarly for £-classes. Since 5 is bisimple and

idempotent-generated the biordered set of 5 is connected [3]. Thus there exists a

sequence e = e,, e2, e3,... ,em of not necessarily distinct idempotents of 5 with

e ,"$ e2£ e3<;R • • • em such that each x, appears in the sequence. Let / =

(e , , e2,. • • ,em). Then / contains an idempotent from each maximal <5l-class and

from each maximal £-class. Thus, given g G Es, there exist i, j such that etg — g,

gej = g. To simplify notation in what follows we let e0 = e = ev For /' =

I ,2 , . . . ,w7le t

\eiei-2 ' ' ' e \ ^ ' ,

' l e ;- i e /-3 ' ' ' e\ if ' is even;

eoe2 • • • e,_! if ( is odd,

' \eoe2'''ei i f / i s even.

The m X m matrix P = (p,j) is defined by ptJ = r[rj. Since /•,/•/ = e,, r[rl — e,

i = 1,2,. . . ,m, each ptJ = (r//-,)/-,Vy(ryV7) belongs to eSe. Since e = r[ri+l - /•/+,/•,

for / = 1,2,. . . ,m — 1, the tridiagonal entries of P are all 1. Since each generator

Xj appears in / , any element of eSe can be written in the form

l=\ I \ l=\ I \ l=\

Thus the entries of P generate eSe.

Since eSe is bisimple and regular it is easy to check that 51L is also. By

Proposition 2.3 51t is generated by the m idempotents (i, 1, / ) .

The mapping <£: ^\L{eSe\ m, m; P) -> S by (/', s, j) -> r:sr- is a homomorphism

since [(/, s, j)(k, t, l)]<j> = (/', spjkt, l)§ and it maps % onto 5 since any 5 G S

can be written as

5 = s s ' s s ' s = r / l s s ' • s • s ' s ^ r j = r ( ( r ' l s r j ) r ' = (/ ' , r / j /y , j ) ^

for some /, y. To show that <f> is an isomorphism into S when restricted to the

subsemigroup {/} X eSe X {j} suppose that (/, 5, y)<J> = (;', t, j)<f>. Then r,-jr' =

r:tr^ so r-r^sr-Tj = r-r^rj^ and thus ese = e/e so s = t. To show that <f> is a

homomorphism by rectangular bands let g G Es and suppose (/, s, y )<J> = g. Then

r(srj = g, so r^r-r^r- = ^ s^ ' . Multiplying by r- on the left and r;- on the right gives

•s/y'/",-s = 5, so (/, s, j) is idempotent. If (k, t, l)<f> = g, then / y r / = r^r', so

(/, 5, y)(/c, ?,/)(/ , J , y) = (/, srJ^trlrjS, j) = (/, 5, _/), so g<#>"' is a rectangular

band, as required.
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[61 Bisimple semigroups 97

3. Embedding Sp4 in certain bisimple idempotent-generated semigroups

The defining relations for the fundamental four-spiral semigroup Sp4 imply
that a, b, c, d, ad are idempotents with ad < a. Although ad < a in Sp4, Sp4 has a
least non-identity congruence, and this congruence identifies ad and a. Therefore
a semigroup S contains a subsemigroup isomorphic to Sp4 if and only if S
contains idempotents a, b,c, d with a91 b£c<5Ld such that da — d and ad ¥= a.

LEMMA 3.1. Let S and T be semigroups and let <j>: S -> T be a homomorphism
from S onto T which does not identify distinct comparable idempotents of S. If S
contains a subsemigroup isomorphic to Sp4, then so does T.

PROOF. The restriction of $ to the subsemigroup of S isomorphic to SpA must
induce the identity congruence, since distinct comparable idempotents are not
identified.

LEMMA 3.2. Let S be an inverse semigroup with natural partial order < . A Rees
matrix semigroup 911(5; 2,2; (s

v'u)) over S contains a subsemigroup isomorphic to
Sp4 if and only if there exist elements a, b,c, d E S such that

(1) a<3U£c<5W;
(2) a *£ s~\ b < v'\ c < H~\ d < /"'; and
(3) either (i) dsa = d, atd < a or (ii) dsa < d, atd — a.

PROOF. Suppose that 911 contains a subsemigroup isomorphic to Sp4.
Since any ^ c l a s s or £-class of 911 contains at most one idempotent which
belongs to a subsemigroup {/'} X S X {j}, there exist idempotents
(1, a, 1)<31(1, b, 2)£(2, c, 2)91(2, d, 1) such that either (i) (2, d, 1)(1, a, 1) =
(2, d, 1), (1, a, 1)(2, rf, 1) < (1, a, 1) or (ii) (2, rf, 1)(1, a, 1) < (2, d, 1),
(1, a, 1)(2, d, 1) = ( 1 , a, 1). These conditions on idempotents of 9H imply condi-
tions (1), (2), (3) on the elements a, b, c, d of S.

Conversely, suppose a, b, c, d are elements of S such that (1), (2) and (3) hold.
Then (1, a, 1), (1, b, 2), (2, c, 2), (2, d, 1) are idempotents of 91L which generate a
subsemigroup isomorphic to Sp4.

We follow the usual convention of calling the semilattice E of idempotents of
an inverse semigroup well-ordered if the reverse of the natural partial order on E
is a well-ordering of E. Below «s denotes the usual order on the ordinals.

THEOREM 3.3. Let S be a non-completely simple bisimple semigroup which is
generated by a finite number of idempotents. If EeSe is well-ordered for each e G Es,
then S contains a subsemigroup isomorphic to Sp4.
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98 KarlByleen [71

PROOF. Suppose 5 is a non-completely simple bisimple semigroup which is
generated by a finite number of idempotents in which EeSe is well-ordered for
each e G Es. Let tyfL(eSe; m, m; P) be a Rees matrix cover for S, as guaranteed
by Theorem 2.4. To show that S contains a subsemigroup isomorphic to Sp4 it
suffices by Lemma 3.1 to show that 91L does. The maximum idempotent-separat-
ing congruence n on eSe induces an idempotent-separating homomorphism from
^L(eSe; m, m; P) into 91L(e5e/ju; m, m; P^) where for P = (/?,7) we denote by
Pl^ the matrix (p^fi*). Let £ = £eS<,. The bisimple semigroup eSe/n is isomor-
phic to a full inverse subsemigroup of TE, which since TE is combinatorial (E is
well-ordered) implies that eSe/p is isomorphic to TE. Thus 91t(eSe//t; m, m; Ppk)
is isomorphic to a Rees matrix semigroup 911 (r£; m, m; P') over T£. Since
911 (r £ ; m, /w; i") is an idempotent-separating homomorphic image of
911 (eSe; m, w; />), to prove the theorem it suffices to show that 91t(r£; m, m; P')
contains a subsemigroup isomorphic to Sp4.

Since E is uniform, E is isomorphic to an ordinal power of w[5], [10] say
E = wr, and since 5 is non-completely simple, r>\. Given ordinals a, b < wr, Ea
will denote the principal ideal (x: a < x < ur} of E generated by a, and the unique
principal ideal isomorphism from Ea to Eb is given by a + x -> b + x for
0 < x < oir (usual addition of ordinals). Below we will use the fact, which follows
from the normal form for ordinals [9], that for ordinals x and a, x = ua + x => x
> to"+1(*).

We claim that some entry of P' has no fixed point. Suppose to the contrary
that each of the finitely many entries of P' has a fixed point, and let x be their
supremum. Then each entry of P' is the identity o n l = {x: x *£ x < c/}. Thus,
since the entries of P' generate TE, each element of TE is the identity on X. But
this is impossible, since if r is not a limit ordinal then the principal ideal
isomorphism £0 -> Eur~' has no fixed point by (*), while if r is a limit ordinal,
then £0 -» Euk, where k is chosen so that x < uk, does not fix wk (again by (*)).
This establishes the claim.

Of those entries of P' without fixed points let TJ be one which is closest to the
main diagonal of P'. If rj appears above the diagonal it belongs to a 2 X 2
submatrix of P' of the form

/ + 1

a

P
V

y

J

7 + 1

where a, ft, y have fixed points (the case where rj lies below the diagonal is
entirely similar). Thus there exist elements u, v G E which are fixed by a, /?, y
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[81 Bisimple semigroups 99

such that M7j = v. Since the principal ideal isomorphisms Ev -> Ev, Ev -» Ev,
Ev -» Ev, Ev -» £M satisfy the conditions (1), (2), (3) on a, b, c, d of Lemma 3.2,
<Dlt(7'£; m, m; P') contains a subsemigroup isomorphic to Sp4, as required.

4. The counterexample

Motivated by the Rees matrix cover described in Theorem 2.4 we construct a
semigroup which yields a negative answer to the following question, posed as
problem B2 in [8]: does every non-completely simple bisimple semigroup which is
generated by a finite number of idempotents contain a subsemigroup isomorphic
to Sp4, the fundamental four-spiral semigroup?

EXAMPLE 4.1. Let S denote the P-semigroup P(G,%,GH) [6] where C = Z X Z
is the direct product of two copies of the group of integers under addition,
% = Z X Z is the direct product of two copies of the semilattice of integers under
the usual order, and ^ = Z"XZ" is the subsemilattice and ideal of % consisting
of all elements of 9C whose components are both < 0. Let G act on % by order
automorphisms as follows: if g = (e, / ) , A = (m, n), then gA — (e + m, f+ n).
Under the multiplication (A, g) • (B, h) = (A A gB, gh), S = {(A, g) £ ^ X
G: g~xA £ ^} becomes an ^-unitary inverse semigroup with semilattice % and
maximum group homomorphic image S/a = G. The natural partial order on 5 is
given by (A, g) < (B, h) if and only if A < B and g = h. We will denote the
element (A, g) in 5, where A = (m, n), g — (e, f) by (m, n; e, / ) .

Let /? = (0,0; 1,0), r = (-1,0; -1,1). Then p~! = (0,0;-1,0), r~] = ( 0 , - 1 ; 1,
-1) and S is generated as a semigroup by p, r, p~\ /•"'. Let CD1L(5'; 5,5; P) be the
Rees matrix semigroup over S with matrix

P =

As usual, 1 denotes the identity element of S, so 1 = (0,0; 0,0). By Proposition
2.3 911 is generated by the 5 idempotents (/, 1,/), ; = 1,2,3,4,5. Since S is
bisimple but not completely simple, the same is true of 911.

We claim that 911 does not contain a subsemigroup isomorphic to Sp4. Suppose
to the contrary that 911 does. Then there exist /, j , k, I such that the subsemigroup

1
1
/•"'
r~l

p-1

1
1
1
/•"'

r
1
1
1
r'x

r
r
1
1
1

P
r
r
1
1
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100 Karl Byleen [91

{/, j) X S X {k, 1} of 'DTI contains a subsemigroup isomorphic to Sp4. Thus there
exists a submatrix P' - (s

v'u) of P and elements a = (A, g), b = (B, h), c = (C, k),
d = (D,l)ofS satisfying (1),(2), (3) of Lemma 3.2.

The <3l and £ relations of (1) imply that A = B, h~xB = k~xC, and C = D, hence
A = hk~xD. If (3)(i) holds, then dsa - d so da~xa = d and thus d'xd *s a"'a. But
since also atd < a, and thus ad~xd < a, we conclude d~xd < a'xa, so l'lD < g~xA
and thus D < lg'xhk~xD. If (3)(ii) holds, then similarly we obtain lg~xhk~xD < D.
Let a = lg~xhk~x. Then in either case D and aZ> are distinct and comparable. By
(2), a = (t-xsv-xu)a\

Let ia" = (w,, w2), to* = (*,, x2), wa" = (y,, y2), ua" = (z,, z2). Then

PV = to* W2

0
0
1
1

-1

0
0
0
1
1

-1
0
0
0
1

-1
-1

0
0
0

1
-1
_\

0
0

0
0

-1
-1

0

0
0
0

-1
-1

1
0
0
0
1

1
1
0
0
0

0
1
1
0
0

and a = (w, — JC, + yi — z,, w2 — x2 + y2 — z2). Since D and aD are distinct
and comparable, the components of a are not both zero and either both are > 0
or both are < 0. We will be helpful to call the quantity w - x + y — z associated
with the 2 X 2 matrix W = (* *) of integers the increment of W. Let

and P7 -

be the matrices of first and second components, respectively, of the elements of
Pa^.To obtain the contradiction it suffices to show that if a 2 X 2 submatrix of
Px has positive (negative) increment, then the corresponding 2 X 2 submatrix of
P2 has negative (positive) increment. This is clear for any pair of corresponding
2 X 2 submatrices which do not contain the (1,5) or (5,1) positions, for then the
increments are negatives of each other. It is true by default for the pair of 2 X 2
submatrices consisting of the corner entries (increments both 0) and is easily
checked for the 2 X 2 submatrices in the upper right and lower left corners. Any
other pair of corresponding 2 X 2 submatrices must contain exactly one of the
positions (1,5), (5,1), we may assume (1,5) by symmetry, so has the form

iw \\ l-w 0 \
\z yj \-z -yj

where w «s 0, y =s 0, z ^ 0. The increment of the first is < 0, that of the second
is > 0. This contradicts the existence of a, and forces us to conclude that %
contains no subsemigroup isomorphic to Sp4.
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