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Abstract

Non-completely simple bisimple semigroups S which are generated by a finite number of idempotents
are studied by means of Rees matrix semigroups over local submonoids eSe, e = e? € S. If under the
natural partial order on the set £, of idempotents of such a semigroup S the sets w(e) = {f € Es: f
< ¢} for each e € E are well-ordered, then S is shown to contain a subsemigroup isomorphic to Sp,,
the fundamental four-spiral semigroup. A non-completely simple bisimple semigroup is constructed
which is gencrated by 5 idempotents but which does not contain a subsemigroup isomorphic to Sp,.

1980 Marhematics subject classification ( Amer. Math. Soc): 20 M 10.

1. Introduction

The generalization by D. Allen, Jr. [1] of the Rees theorem to a class of regular
semigroups, and its improvement by D. B. McAlister [7] can be refined to obtain
detailed information about the structure of bisimple semigroups which are
generated by a finite number of idempotents. We use this approach to investigate
an embedding question first raised in [3]: which non-completely simple bisimple
idempotent-generated semigroups contain a subsemigroup isomorphic to Sp,?
The fundamental four-spiral semigroup Sp, is presented by (a, b, ¢, d| a = ba,
ab = b = bc, cb = ¢ = dc, cd = d = da) {3] and may be represented as the Rees
matrix semigroup M (C( p, 9)); 2,2; (1 9), over the bicyclic semigroup C( p, q) [2].
It is an example of a non-completely simple bisimple idempotent generated
semigroup which is the smallest such in the following sense: any E-chain linking
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distinct comparable idempotents of a bisimple idempotent-generated semigroup
has even length of at least 4, whereas the E-chain a R b€ ¢R d ad, which links the
distinct comparable idempotents a and ad of Sp,, has length exactly 4.

The embedding question asks for an analogue of the result that any non-com-
pletely simple bisimple regular semigroup contains a subsemigroup isomorphic to
C(p, q). In [3] it was shown that any bisimple idempotent-generated semigroup S
in which w(e) = {f € Es: f<e} is an w-chain for each e € E; contains a
subsemigroup isomorphic to Sp,. In [4] constructions of pseudosemilattices were
used to provide examples of non-completely simple bisimple semigroups gener-
ated by infinitely many idempotents which fail to contain subsemigroups isomor-
phic to Sp,.

For each non-completely simple bisimple semigroup S which is generated by a
finite number of idempotents we shall construct in Section 2 a Rees matrix
semigroup N (eSe; m, m; P), also generated by a finite number of idempotents.
which has § as a homomorphic image. This Rees matrix cover will be used in
Section 3 to show that if the sets w(e) for e € Eg are well-ordered in such a
semigroup S, then S contains a subsemigroup isomorphic to Sp,. In Section 4 a
Rees matrix semigroup over an inverse semigroup is constructed which is non-
completely simple, bisimple, is generated by S idempotents, but fails to contain a
subsemigroup isomorphic to Sp,. The main results of this paper were announced
at the Nebraska Conference on Semigroups, Lincoln, Nebraska in September
1980.

2. A Rees matrix cover

We first establish some results which will enable us to deduce properties of the
Rees matrix cover. The submonoids eSe, e € E, of a semigroup S will be called
local submonoids of S.

PROPOSITION 2.1. Ler S be a regular semigroup, e € E¢. If SeS is finitely
generated, then the local submonoid eSe is finitely generated.

PROOF. Suppose we can prove the result in the special case S = SeS. Then the
general result follows, for S regular implies SeS regular, and since SeS = SeS - e

SeS is finitely generated, we conclude that e - SeS - ¢ = eSe is finitely gener-
ated.

So suppose § = SeS. Let x|, x,,...,x, be generators for S. For each x; choose
idempotents u,, v, such that v,£xRu, and elements r, r/, s, s/ such that

! 14 1

rrl =u,rir<e, ss/ =v,s/s;<e Lety=e(lL, x,)e be an arbitrary element
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of eSewhere | <i,<n,/=1,2,...,w. Then

( H uz, 1, ) ( H rl,rl,xl,s sl )
w—1
_ [ I ()()]()

=1
Thus the elements er,, r/x;s;, s,rj, sle, i, j=1,2,...,n, of eSe generate eSe, so

eSe is generated by at most n? + 3n generators.

Let L denote the 2-element lattice L = {0, 1} in which we write meet as -, join
as +,s0that0+0=0,0+1=1+0=1+1=1,0-0=1-0=0-1=0,
1 - 1 = 1. Thus under multiplication L is the trivial group with 0 adjoined. The
semigroup L, of all m X m matrices over L, m a positive integer, may be
interpreted as the semigroup of binary relations of an m-element set.

PrOPOSITION 2.2. Let P be an m X m matrix over the lattice L having diagonal
entries all 1 and let M denote the Rees matrix semigroup N°(1; m, m; P) over the
trivial group with 0. Then ON° {0} is generated by the m idempotents (i, 1, i),
i = 1,2,---,mif and only if all entries of P equal 1 for some r.

PRrOOF. The symbols * and T denote products in JIL°. All other products are in
L,. Thus, for example (i, 1, j)x(k, 1,1y = (i,1, j)P(k,1,!), where as usual
(i, 1, j) denotes the matrix with a 1 in the (7, j) position, all other entries 0.
Suppose 4 € L, has precisely one non-zero row, say row i, and that B € L has
precisely one non-zero column, say column j. Then 4B has at most one non-zero
entry, the (i, j) entry. In view of the operations in L there exists some k such that
(1) AB = A(k, 1, k)B. On the other hand, if, for some k, A(k,1, k)B # 0, then
(2) A(k,1, k)B = AB = (i, 1, j).

Suppose now that M °\ {0} is generated by the m idempotents (i, 1, /). Then
given (i, 1, j) € I °\ (0} we can write

(1) =TT G i) = (i 1 )PGig, i) P PG L)
=1

which by repeated use of (2) equals (i}, 1, i )P* 7 '(i,, 1, i,). Therefore entry (i, j)
of P*~'is non-zero, so there exists r such that all entries of P equal 1.

Conversely, suppose that all entries of P” equal 1 for some r, and let (i, 1, j) €
M\ {0}. Then (i, 1, z)P’(j 1, j) = (i, 1, j), so by repeated use of (1) there exist
I =iy iy,... i, =j such that (i, 1,i)P(>iy L i))P---P(i,,1,i.) = (i1, )).
Thus (i, 1, j) = )2 (i), 1,4)), so M2\ {0} is generated by the m idempotents
(i, 1, ).
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If P = (p,,)is an m X m matrix over a semigroup S' we define P = (p,;) tobe
the m X m matrix over the lattice L = {0, 1} such that

(1 ifp, =1,
Pi= 10 ifp, #1.

PROPOSITION 2.3. Let P be an m X m matrix over a semigroup S " with diagonal
entries all 1 such that the entries of P are all 1 for some r. Then N(S'; m, m; P)
is generated by the m idempotents (i, 1, i) if and only if the entries of P generate S".

PrOOF. Suppose I is generated by the m idempotents (i,1,i) and let s € S'.
Then (1,5, 1) =11} (ip, L i) = Gy, 112 p, ), o 0) for some 1 <i<m, [=
1,2,...,w, so s is a product of entries of P.

Conversely, suppose that the entries of P generate S'. Let (i, s, j) € 9. Then
there exists i), j, / = 1,2,...,wsuch thats = II;~, p, . Thus

w—1

(i,S, ]) = (i719il) H (i/’l’i/)(jl’la jl)(jl’l’il+l) (iw*l’iw)(ju'Lj)'
=1

The partial function 8: M°(1; m, m; P) > M(S"; m, m; P) defined by (i, 1, 13
- (1, 7) i, j=12,...,m, is a partial homomorphism in the sense that if
X, y, xy € MO\ {0}, then (x8) y8) = (xy)8. Thus by Proposition 2.2 each of
the factors in the product above is a product of the idempotents (i, 1, /),
i=1,2,...,m. We conclude that IN(S"'; m, m; P) is generated by these idempo-
tents.

We observe that any matrix P over a semigroup S' whose first row, first
column, and diagonal entries are all 1 satisfies the hypothesis of Proposition 2.3,
as does any matrix whose tridiagonal entries (those on the main diagonal and the
two adjacent diagonals) are all 1.

The following result is a refinement of McAlister’s Local Isomorphism Theo-
rem [7], which in turn draws heavily on the ideas of D. Allen [1]. We denote the
identity element e of the local submonoid eSe by 1.

THEOREM 2.4. Let S be a bisimple semigroup which is generated by a finite
number of idempotents and let e € E;. Then S is a homomorphic image by
rectangular bands of a Rees matrix semigroup W (eSe; m, m; P) over the finitely
generated bisimple monoid eSe where

(1) W is generated by m idempotents, m a positive integer;

(2) the entries of P generate eSe and the tridiagonal entries of P are all 1,

(3) the homomorphism is an isomorphism when restricted to any subsemigroup
{i} X eSe X {}.
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PROOF. Let S be a bisimple semigroup which is generated by a finite number of
idempotents x;, x,,...,x, and let e € E. It is easy to check that the monoid eSe
is bisimple. By Proposition 2.1 eSe is finitely generated.

Since § = U_, x;S each R-class of S is less than one of the finite number of
maximal R-classes of §, and similarly for £-classes. Since S is bisimple and
idempotent-generated the biordered set of S is connected [3]. Thus there exists a
sequence e = ¢,, ,, €;,...,¢, of not necessarily distinct idempotents of S with
eRe,le;R ---e, such that each x; appears in the sequence. Let I =
{e}, e5,...,e,}. Then I contains an idempotent from each maximal }-class and
from each maximal £-class. Thus, given g € Eg, there exist i, j such that e;g = g,
ge; = g. To simplify notation in what follows we let e, =e =e,. For i=
1,2,....mlet

_[e€iy-e if i is odd,
O ---e, ifiiseven;
€163 1 >

. {eoe2 e, ifiisodd,
=

€ye, """ € if i is even.

The m X m matrix P = (p,;) is defined by p,; = r/r,. Since r;r/ =e,, r/r, = e,

1 L

i=12,....,m, each p,, = (r/r)r/r(r/r,) belongs to eSe. Since e = r/r,, | = r/ 1,

fori=1,2,...,m — 1, the tridiagonal entries of P are all 1. Since each generator
x, appears in I, any element of eSe can be written in the form

w w w—1
e( I1 e,l)e = e( I1 ri/ri;)e = rl’r,l( I1 ".';’,'M)’i:’r
=1 =1 =1
Thus the entries of P generate eSe.

Since eSe is bisimple and regular it is easy to check that J0 is also. By
Proposition 2.3 9M is generated by the m idempotents (i, 1, ).

The mapping ¢: M (eSe; m, m; Py > Sby (i, s, j) - r.sr/ is a homomorphism
since [(i, s, j)(k, t, )]¢ = (i, sp;it, )¢ and it maps I onto S since any s € §
can be written as

J— ’ ’ — ’ ’ ’ [— ’ r— ; ’ :
§ = ss'ss’'s = rriss’ - s - s'sr; —r,(r,srj)rj = (t,r,.srj,j)¢

for some i, j. To show that ¢ is an isomorphism into S when restricted to the
subsemigroup {i} X eSe X {j} suppose that (i, s, j)¢ = (i, ¢, j)¢. Then r.sr) =
ritr/. so rir;sr/r, = r/rir/r, and thus ese = ete so s =t. To show that ¢ is a
homomorphism by rectangular bands let g € E and suppose (i, 5, j)¢ = g. Then
risr) = g.sorsr/rsr/ = r;sr/. Multiplying by r; on the left and , on the right gives
srjr,s = s, so (i, s, j) is idempotent. If (k.t. /)¢ = g, then r.tr/ = rsr/, so
(i, s, ko, Dy s, jY = (i srjrrrs, j) = (i, s, ), so g¢' is a rectangular
band, as required.
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3. Embedding Sp, in certain bisimple idempotent-generated semigroups

The defining relations for the fundamental four-spiral semigroup Sp, imply
that a, b, ¢, d, ad are idempotents with ad < a. Although ad < a in Sp,, Sp, has a
least non-identity congruence, and this congruence identifies ad and a. Therefore
a semigroup S contains a subsemigroup isomorphic to Sp, if and only if S
contains idempotents a, b, ¢, d with aR bL ¢R.d such that da = d and ad # a.

LEmMMA 3.1. Let S and T be semigroups and let ¢: S — T be a homomorphism
from S onto T which does not identify distinct comparable idempotents of S. If S
contains a subsemigroup isomorphic to Sp,, then so does T.

PRrROOF. The restriction of ¢ to the subsemigroup of S isomorphic to Sp, must
induce the identity congruence, since distinct comparable idempotents are not
identified.

LEMMA 3.2. Let S be an inverse semigroup with natural partial order < . A Rees
matrix semigroup JN(S;2,2;(5 L)) over S contains a subsemigroup isomorphic to
Sp, if and only if there exist elements a, b, ¢, d € S such that

(1) aRbLcR d;

Qa<sLb<vlc<ul,d<t';and

(3) either (1) dsa = d, atd < a or (ii) dsa < d, atd = a.

PrROOF. Suppose that I contains a subsemigroup isomorphic to Sp,.
Since any R-class or £-class of O contains at most one idempotent which
belongs to a subsemigroup {i} X § X {j}, there exist idempotents
(1, a, DR, b,2)2(2, ¢, 2R (2, d,1) such that either (1) (2,d, 1)1, 4a,1) =
2,d, D, (1,a, DR, d, 1) <(1,a, 1)or (i) (2,d, 1)1, a,1)<(2,d,1),
(1, a,1)2, d,1) =(1, a, 1). These conditions on idempotents of M imply condi-
tions (1), (2), (3) on the elements a, b, ¢, d of S.

Conversely, suppose a, b, ¢, d are elements of S such that (1),(2) and (3) hold.
Then (1, a, 1), (1, b,2), (2, ¢,2), (2, d, 1) are idempotents of I which generate a
subsemigroup isomorphic to Sp,.

We follow the usual convention of calling the semilattice E of idempotents of
an inverse semigroup well-ordered if the reverse of the natural partial order on £
is a well-ordering of E. Below < denotes the usual order on the ordinals.

THEOREM 3.3. Let S be a non-completely simple bisimple semigroup which is

generated by a finite number of idempotents. If E ¢, is well-ordered for each e € Ej,
then S contains a subsemigroup isomorphic to Sp,.

https://doi.org/10.1017/51446788700017651 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700017651

98 Karl Byleen 71

PROOF. Suppose S is a non-completely simple bisimple semigroup which is
generated by a finite number of idempotents in which E ¢, is well-ordered for
each e € Eg. Let 9(eSe; m, m; P) be a Rees matrix cover for S, as guaranteed
by Theorem 2.4. To show that S contains a subsemigroup isomorphic to Sp, it
suffices by Lemma 3.1 to show that 9 does. The maximum idempotent-separat-
ing congruence p on eSe induces an idempotent-separating homomorphism from
M (eSe; m, m; P) into M(eSe/u; m, m; Pu*) where for P = (p;;) we denote by
Pu" the matrix ( p, j,u*‘). Let E = E,¢,. The bisimple semigroup eSe/p is isomor-
phic to a full inverse subsemigroup of T}, which since Ty is combinatorial (E is
well-ordered) implies that eSe /p is isomorphic to Ty. Thus I (eSe/p; m, m; Pp*)
is isomorphic to a Rees matrix semigroup ON(Tg; m, m; P’) over Tg. Since
OM(Tg; m, m; P') is an idempotent-separating homomorphic image of
M (eSe; m, m; P), to prove the theorem it suffices to show that M (Ty; m, m; P’)
contains a subsemigroup isomorphic to Sp,.

Since E is uniform, E is isomorphic to an ordinal power of w[5], [10] say
E = ', and since S is non-completely simple, r = 1. Given ordinals a, b < «’, Ea
will denote the principal ideal {x: a < x < "} of E generated by a, and the unique
principal ideal isomorphism from Ea to Eb is given by a + x - b + x for
0 < x < " (usual addition of ordinals). Below we will use the fact, which follows
from the normal form for ordinals [9], that for ordinals x and ¢, x = &* + x = x
> ot ().

We claim that some entry of P’ has no fixed point. Suppose to the contrary
that each of the finitely many entries of P’ has a fixed point, and let x be their
supremum. Then each entry of P’ is the identity on X = {x: ¥ < x < w"}. Thus,
since the entries of P’ generate T}, each element of T} is the identity on X. But
this is impossible, since if r is not a limit ordinal then the principal ideal
isomorphism E0 — Ew" ™! has no fixed point by (+), while if  is a limit ordinal,
then EO0 — Ew*, where k is chosen so that x < w*, does not fix w* (again by ()).
This establishes the claim.

Of those entries of P’ without fixed points let n be one which is closest to the
main diagonal of P’. If 5 appears above the diagonal it belongs to a 2 X 2
submatrix of P’ of the form

i i+ 1
J| « n
Jt1| B Y

where a, 8, y have fixed points (the case where n lies below the diagonal is
entirely similar). Thus there exist elements u, v € E which are fixed by a, 8,y
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such that un = v. Since the principal ideal isomorphisms Ev —» Ev, Ev — Ev,
Ev — Ev, Ev —» Eu satisfy the conditions (1),(2),(3) on a, b, ¢, d of Lemma 3.2,
M(Tg; m, m; P’) contains a subsemigroup isomorphic to Sp,, as required.

4. The counterexample

Motivated by the Rees matrix cover described in Theorem 2.4 we construct a
semigroup which yields a negative answer to the following question, posed as
problem B2 in [8]: does every non-completely simple bisimple semigroup which is
generated by a finite number of idempotents contain a subsemigroup isomorphic
to Sp,, the fundamental four-spiral semigroup?

EXAMPLE 4.1. Let S denote the P-semigroup P(G, X, %) [6] where G = Z X Z
is the direct product of two copies of the group of integers under addition,
X = Z X Z is the direct product of two copies of the semilattice of integers under
the usual order, and % = Z~XZ" is the subsemilattice and ideal of %X consisting
of all elements of X whose components are both < 0. Let G act on X by order
automorphisms as follows: if g = (e, f), 4 = (m, n), then g4 = (e + m, f + n).
Under the multiplication (4, g) - (B, h) = (A NgB, gh), S = {(4,g) €% X
G: g7'4 € ¥U) becomes an E-unitary inverse semigroup with semilattice ¥ and
maximum group homomorphic image S /o = G. The natural partial order on S is
given by (A4, g) < (B, h) if and only if 4 < B and g = h. We will denote the
element (A, g)in S, where 4 = (m, n), g = (e, f)by(m, n; e, [).

Let p = (0,0;1,0), r =(-1,0;-1,1). Then p~' =(0,0;-1,0), r! =(0,-1; 1,
—1) and S is generated as a semigroup by p, r, p~!, r =}, Let M(S;5,5; P) be the
Rees matrix semigroup over S with matrix

e T |
—_— - N N Ry

As usual, 1 denotes the identity element of S, so 1 = (0,0;0,0). By Proposition
2.3 9N is generated by the 5 idempotents (i, 1,i), i = 1,2,3,4,5. Since S is
bisimple but not completely simple, the same is true of 9.

We claim that 91 does not contain a subsemigroup isomorphic to Sp,. Suppose
to the contrary that 9N does. Then there exist i, j, k, / such that the subsemigroup
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{i, j} X S X {k, I} of I contains a subsemigroup isomorphic to Sp,. Thus there
exists a submatrix P’ = (§, ) of P and elementsa = (A4, g),b = (B, h),c = (C, k),
d = (D, 1) of S satisfying (1), (2), (3) of Lemma 3.2.

The R and £ relations of (1) imply that 4 = B, h"'B = k~'C, and C = D, hence
A = hk™'D. If (3)(i) holds, then dsa = d so da~'a = d and thus d "'d < a 'a. But
since also atd < a, and thus ad ~'d < a, we conclude d"'d < a’'a,so I"'D < g4
and thus D < Ig~'hk~'D. If (3)(ii) holds, then similarly we obtain Ig~'hk~'D < D.
Let a = Ig~'hk~'. Then in either case D and aD are distinct and comparable. By
(2), a = (¢ 'sv'u)o".

Let 50" = (w), wy), 16" = (x,, X,), uo® = (y,, y,), v6* = (z,, z). Then

prot = [S0° 10" ) _ ((Wl xl) (Wz xz))
Doh uah zl yl ’ 22 y2
and a = (w, — x; +y, — z;,w, — X, + ¥, — z,). Since D and aD are distinct
and comparable, the components of « are not both zero and either both are = 0

or both are < 0. We will be helpful to call the quantity w — x + y — z associated
with the 2 X 2 matrix W = (} ;) of integers the increment of W. Let

0 0 -1 -1 1| 0 0 1 1 0
0 0 0 -1 -1 0 0 0 1 1
p=| 10 0 o0 -1| and ,={-1 0 0 0 1
11 0 0 0 -1 -1 0 0 O
11 1 0 0 0 -1 -1 0 0

be the matrices of first and second components, respectively, of the elements of
Po®. To obtain the contradiction it suffices to show that if a 2 X 2 submatrix of
P, has positive (negative) increment, then the corresponding 2 X 2 submatrix of
P, has negative (positive) increment. This is clear for any pair of corresponding
2 X 2 submatrices which do not contain the (1, 5) or (5, 1) positions, for then the
increments are negatives of each other. It is true by default for the pair of 2 X 2
submatrices consisting of the corner entries (increments both 0) and is easily
checked for the 2 X 2 submatrices in the upper right and lower left corners. Any
other pair of corresponding 2 X 2 submatrices must contain exactly one of the
positions (1, 5), (5, 1), we may assume (1, 5) by symmetry, so has the form

(¥ 5) (= 5

where w < 0, y < 0, z = 0. The increment of the first is < 0, that of the second
1s = 0. This contradicts the existence of «, and forces us to conclude that O
contains no subsemigroup isomorphic to Sp,.
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