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THE DUNFORD-PETTIS PROPERTY ON
VECTOR-VALUED CONTINUOUS AND BOUNDED FUNCTIONS

JOSE AGUAYO AND JOSE SANCHEZ

Let X be a completely regular space, E a Banach space, Cs(X, E) the space of all
continuous, bounded and E-valued functions defined on X, M (X, L(E, F)) the
space of all L(E, F)-valued measures defined on the algebra generated by zero sub-
sets of X. Weakly compact and Bo-continuous operators defined from Ci(X, E)
into a Banach space F are represented by integrals with respect to £(E, F)-valued
measures. The strict Dunford-Pettis and the Dunford-Pettis properties are estab-
lished on (Cp(X, E), B:), where B, denotes one of the strict topologies Bo, B or B,
when E is a Schur space; the same properties are established on (Cs(X, E), Bo),
when E is an AM-space or an AL-space.

1. NOTATIONS AND DEFINITIONS

Let X be a completely regular space, E a Banach space, and Cy(X, E) the space
of all continuous, bounded and FE-valued functions defined on X (if E = R, then
Co(X, R) = Cy(X)). Weuse B(X) (Ba(X)) to denote the smallest algebra ( o-algebra)
containing the zero-sets, the so-called Baire algebra (Baire o-algebra), and M(X) to
denote the space of all zero-set regular measures defined on B(X). We define M(X, E')
to be the space of all finitely additive vector measures p: B(X) — E' such that

(1) for each z € E, p,, defined by p.(B) = {u(B),z), is in M(X)
(2) |p|(X) < oo, where |u|(B) = sup {|Z{u(B;), s:)| : {B;} is afinite B(X)-
partition of B and {s,} is a finite collection from the unit ball of E}.
It is known that Cy(X, E) = M(X, E').

For B € B(X), p € M(X, E') and a p-measurablefunction f, we define fB fdp =
lim Xp(B;)f(zi), where the limit is taken over the directed set of all finite B(X)-
partitions of B and z; € B;.

Let F be another Banach space. We define M(X, L(E, F)) to be the space of all
finitely additive vector measures p: Ba(X) — L(E, F) such that

(1) for each z' € F', z'u, defined by z'u(B) = 2'(u(B)), is in M(X, E'),
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(2) el (X) < oo, where for B € B(X), ||ull(B) = sup{|z’'u|(B): ||='|| <
1}.
Let p € M(X, L(E, F)) and let f be a p-measurable function from X into E.
We say that f is p-integrable in B € B(X) if
(i) for each z' € F', the integral fB fd(z'p) exists
(1) there exists a vector in F, denoted by [ fdu, such that for all z' € F'
we have z'([ fdp) = [ fd('n).
If f is p-integrable over all B in B(X), we say that f is p-integrable.

We shall pay careful attention [8] to three classes of Baire measures described as
follows:

Let p be a Baire measure. p is called a o-additive measure if p(E,) — 0 for
every sequence {E,} in B(X) such that E,, | 0. p is called r-additive if u(Eq) — 0
for every net {E,} in B(X) such that E, | 0. p is called tight if, given & > 0, there
exists a compact subset K of X such that |u|(X \ K) < e. It is known that each of
these measures can be extended to Ba(X) [11].

We shall denote by M,(X), M,(X) and M(X) the space of all o-additive, 7-
additive and tight measures respectively. We shall understand for M, (X, E') the
space of all vector measures p € M(X, E') such that y, € M,(X), forall z € E.
Similar meanings for M,(X, E') and My(X, E'). Finally, we shall understand by
M,(X, L(E, F)) the space of all vector measures y € M(X, L(E, F)) such that
y'u: B(X) — E' belongs to M,(X, E'), for all y € F'. Similar meanings for
M. (X, L(E, F)) and M(X, L(E, F)). Clearly, we have that My (X, L(E, F)) C
M. (X, L(E, F)) c M,(X, L(E, F)).

We shall define three locally convex topologies on Cy(X, E), denoted by B, B
and By, as follows:

Let 2 and 9 be, respectively, the class of all compact and all zero setsin X\ X,
where SX denotes the Stone-Céch compactification of X . Let @ € (). We define
Bo as the locally convex topology generated by the family of semi-norms f — | fg,
where g € Bg = {h € Cy(X): h = 0 on Q} (h denotes its extension to BX). B(4)
is the inductive limit of the topologies Bg as @ ranges over Q(;). Fo is defined as
the finest locally convex topology which coincides on the norm bounded sets with the
compact-open topology.

It is known that (Cy(X, E), 8:)' = Mi(X, E'), where f; is any one of the above
topologies.

The following characterisation of fp-equicontinuous will be used [3].
LEMMA 1. A subset H of Mi(X, E') is ffy-equicontinuous if and only if

(a) H is norm-bounded, and
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(b) forevery € > 0 there exists a compact set K C X suchthat |u|(X\ K)<e¢
forall pe H.

Recall that a linear operator T from a topological vector space A into another
B is weakly compact if it maps bounded subsets of A into relatively weakly compact
subsets of B.

Katsara and Liu [7] showed the following theorem:

THEOREM 2. Let F be another Banach space. If T is a continuous weakly
compact operator from C{°(X, E) = {f € Co(X, E): f(X) is relatively compact in
E} into F, then there exists a unique m € M(X, L(E, F)) such that

(1) every f € Ci°(X, E) is m-integrable and T(f) = [ fdm;

(2) ITH = lIml (X);

(3) for every z' € F, we have T'z' = z'm;

(4) for every bounded set S in E, the set Vp,s = {3 m(Gi)si: {G;} is a

finite B-partition of X, s; € S} is relatively weakly compact.

Conversely, if m € M(X, L(E, F)) is such that (4) holds, then every f in CJ°(X, E) is
m-integrable and the operator T(f) = [ fdm is norm-continuous and weakly compact.

The following theorem is a characterisation of a fp-continuous and weakly compact
operator T defined from Cj¢(X, E) into F. It is known that C7°(X, E) is Bo-dense
in (Cb(Xa E)a :BO)

THEOREM 3. Let T be a weakly compact operator defined from Cj¢(X, E) into
F. The following statements are equivalent:
(1) T is Bo-continuous.
(2) Ty is compact-open-continuous, where B is the unit ball of C;*(X, E).
(3) (Ve>0)(3K C X, K compact) (|z'm|(X \ K) < € uniformly for ||z'|
< 1), where m is the associated vector measure given in the above theo-

rem.

PRrOOF: Since By is the finest locally convex topology agreeing with the compact-
open topology on bounded subsets of Cy(X, E), we have (1) & (2).

(3) = (1). Let {fa} be a compact-open null convergent net. Hence, for a
given € > 0, there exists a compact subset K of X such that ||m||(X\K) =
sup{|z'm|(X \ K): ||z'|]| £ 1,2’ € F'} < e, which implies that |z'm|(X \ K) < ¢
uniformly for z' € F', ||z'| < 1. Therefore, {z'm: z' € F',|z'|| € 1} 1s a B-
equicontinuous subset of M,(X, E'). Since z'm = T'z' and (CJ*(X, E), fo) =
M(X, E'), we have {T'z': z' € F', ||z'|| € 1} is also By-equicontinuous.

Finally, since ||[T'fl| = sup{|T"z'(f)|: 2' € F',|z'| € 1}, we conclude that
Tfo — 0 in norm.
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= . olnce T € s el 18 [g-equicontinuous 1s equivalent to
1 3). Si T'z': &' € F', ||2'|| <1} is Bo-equiconti is equivalent t

{z'm: z' € F', ||2'|| < 1} is Bo-equicontinuous, the arguments are similar to these given
above. a

THEOREM 4. Let T be a fBy-continuous and weakly compact linear operator
defined on Cy(X, E). Then there exists a unique m € M(X, L(E, F)) such that
(1) every f € Cy(X, E) is m-integrable and T(f) = [ fdm;
(2) ITI = lbmll (X);
(3) for every z' € F, we have T'z = z'm;
(4) for every bounded set S in E, the set Vius = {d.m(Gi)s;i: {G;} is a
finite B-partition of X, s; € S} is relatively weakly compact.

PROOF: Since C]°(X, E) is Py-dense in (Cy(X, E), Bo), T is the unique fo-
continuous extension of TIC,';C(X,E) to Cy(X, E). By Theorem 3, Tlc;f—(x.s) has a
unique vector measure m associated to it which satisfies (1), (2), (3) and (4).

By the fact that if norm T and its restriction are the same and their respective
transposes coincide, we only have to prove that each f € Cy(X, E) is m-integrable and
T(f) = | fdm.

Let f € Cy(X, E); hence, by the definition of the topology B¢ and the density of
Cre(X, E), there exists a net {fo} € C;°(X, E) inside the ball of radius [|f|| such that
fa — f uniformly on compact subsets of X. Take any G € Ba(X); since the dual of
(Ce(X, E), Bo) is M(X, E'), we have that, for any z' € F', [, fdz'm is defined. At
the same time, it is not difficult to see that {fG fdm} is a norm-Cauchy net in F' and
then it is convergent to some vg € F'.

We claim that fG fadz'm — fG fdz'm. Infact, given € > 0, there exists a compact
subset K of X, such that |z'm|(G \ K) < |z'm|(X \ K) < ¢ uniformly for ||z']| < 1.
Also, there exists ay such that, for a > aq,

sup{lfa(z) - f(2)]| : = € K} <.

The claim follows from
| Ga= nyastm| < [ 15 = siatetmi
G G
<[ a-fldlml+ [ o fldleml.
GNK G\K
Since z' ([, fadm) = [, fadz'm — 2'(vg) and [, fadz'm — [ fdz'm, we con-
clude that fG fdz'm = a:’(vg).l'Deﬁning vg = fG fdm, we have, for each G € Ba(X),

fG fadm — fG fdm; in partitular, T(fs) = fx fadm — fx fdm. Therefore, by the
continuity of T', we have fx fdm =T(f). a
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We shall adopt the following definitions:

A locally convex space E is said to have the Dunford-Pettis (respectively strict
Dunford-Pettis) property if for any Banach space F', any weakly compact and contin-
uous operator T' from E into F transforms absolutely convex weakly compact subsets
(respectively weakly Cauchy sequences) of E into relatively compact subsets (respec-
tively convergent ones) of F' [6]. It is known that both definitions are equivalent in
Banach spaces.

The next theorem was proved in [9] and it establishes some relation between the
Dunford-Pettis (D-P) and the strict Dunford- Pettis (strict D-P) properties.

THEOREM 5. If E', the topological dual of E, has a o-compact dense subset in
the o(E', E)-topology and E has the strict D-P property then E has the D-P property.

2. THE STRICT DUNFORD-PETTIS AND THE DUNFORD-PETTIS PROPERTIES

In this section, we shall discuss, first, the strict D-P and the D-P properties on
(Co(X, E), B;) with E a Schur space. After that, we shall discuss the same properties
on (Cy(X, E), fo) with some special space E.

It is known that in Cy(X, F), B;-bounded subsets coincide with normed-bounded
subsets.

Let T be an F-valued, weakly compact and (;-continuous operator defined on
Cu(X, E). Since the strict topologies are coarser than the norm topology and have
the same bounded subsets, we have that T is also ||.||-continuous and weakly compact.
Therefore by Theorem 2, T|c§°(x,a) has an associated measure m of M(X, L(E, F)).

LEMMA 6. Let T be an operator as above. Then there exists a nonnegative finite
real-valued, o-additive measure pu such that, for any € > 0, there exists § > 0, so that
for each A € Ba(X) with p(A) < §, we have |z'm|(A) < e, uniformly for ||2'|| < 1.

PROOF: It is easy to see that each z'm in M;(X, E'} can be extended to Ba(X)
and that M;(X, E') is |.||-closed in M(X, E').

Since T is weakly compact, we have that T': F' — Cy(X, E)' = M(X, E') is
weakly compact. Also, by the f;-continuity of T, we have that T'z' € M;(X, E').
Therefore, if Bp: denotes the unit ball of F', then m"'" is convex and weakly
closed contained in M;(X, E'). Now, since o‘(Mi(X, EN, Mi(X, E’)l) coincides with
the induced a(M(X, E"), M(X, E')') on M;i(X, E'), we have that T'(Bp:) is rela-
tively weakly compact in M;(X, E').

Thus, {|z'm|: ||2'|| £ 1} is uniformly o-additive and then there exists a nonnega-
tive finite real-valued o-additive measure p such that for any € > o, there exists § > 0,
so that for each A € Ba(X) with p(A4) < §, we have |z'm|(A) < €, uniformly for
'l <1 [4].
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The measure u, given in the above theorem, is called a control measure of
{lz'm|: ||l=']| < 1}. 0

A Banach space E is a Schur space if weakly convergent sequences of E are norm
convergent on it.

THEOREM 7. If E is a Schur space, then (Cy(X, E), B;) has the strict D-P
property.

PROOF: Let T be a weakly compact and f;-continuous operator defined from
Ciy(X, E) into a Banach space F. We shall denote by m its associated vector measure.

Since T is weakly compact and, in particular, B;-continuous, we have that
{lz'm| : ||='}| € 1} has a control measure p ([Lemma 6]). Let {fn} be a weakly
Cauchy sequence in (Co(X, E), Bi); hence {f.} is uniformly bounded and, for each
z € X, {fa(z)} is a weakly Cauchy sequence in E (this follows from the fact that
§: @€ € Mi(X, E'), where §,®¢'(f) = €'(f(z)) and &' € E). Using the fact that E is
a Schur space, for each ¢ € X, {f.(z)} is norm-Cauchy. By Egoroff’s Theorem, given
e > 0, there exists a compact subset K of X, such that p(X \ K) < ¢ and {||fali}
converges uniformly on K. Now, since

NT(fa = F)ll = sup{le'T(fn — fu)l: lle]l < 1} = suP{, / fd:c'ml el < 1}

and | / fdw‘m‘ < /K 171l dfa'm] + ]X Ml < lsml () + 21

uniformly for ||z'|} < 1, where M is the uniform bound of {f.}, we have that {T(f,)}
is convergent in F'. This proves the theorem.

THEOREM 8. If E is a Schur space and X is o-compact, then (Cy(X, E), B;)
has the Dunford-Pettis property.

PrROOF: The proof is exactly the same as in Theorem 3.2 [1]. 0

LEMMA 9. IfY is a compact space, then (Cy(X, C(Y)), Bo) is Bo-homeomorphic
to (Co(X x YY), Bo). Consequently, (Co(X, C(Y)), Bo) has both properties, the strict
and the Dunford-Pettis properties [9].

PRoOOF: The function ¥: Cyo(X, C(Y)) — Cu(X xY), define by ¥(f)(z,y) =
f(z)(y), is one-one and onto with inverse function ¥: Cy(X xY) — Cy(X, C(Y))
defined by ¥(g): X — C(Y) where ¥(g)(z)(y) = g9(z, ¥).

Note that |¥(f)(=, ¥)| = |f(z)(y)| < [[f(z)|| which implies ¥ is continuous in the
Bo-topology.

On the other hand, if {f.} is a netin Cy(X x Y'), converging to 0 in the fo-
topology, and K is a compact subset of X, then, by the compactness of ¥, f, — 0
uniformly on K x Y; therefore ®(f,) — 0 uniformly on K. 0
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An AM-space is a Banach lattice which satisfies the axiom |sup{z, y}| =
sup{{lz||, ||lyl|}. It is known that every AM-space E with unit is isomorphic to C(K),
where K is some compact space [10].

THEOREM 10. If E is a AM-space, then (Cy(X, E), Bo) has both properties,
the strict and the Dunford-Pettis properties.

Proor: It follows from Lemma 9 and the fact that every AM-space is isomorphic
toa C(Y), for some compact space Y . 0

An AL-space is a Banach lattice which satisfies ||z + y|| = ||z|| + ||y}} for = > 0,
y > 0. It is known that every AL-space is isomorphic to L!(u), where u is a Radon
measure defined on a locally compact space.

THEOREM 11. If E is an AL-space, then (Cy(X, E), B¢) has the strict Dunford-
Pettis Property.

PROOF: By the above remark, it is enough to prove that Cp (X, Ll) has the strict
Dunford-Pettis Property. Let T be a weakly compact and f-continuous linear operator
from Cb(X, Ll) into a Banach space F and let m be its associated vector measure.
Take an arbitrary weakly Cauchy sequence {f.} in Cb»(X, L') and denote by M its
uniform bound.

By Theorem 3, given ¢ > 0, there exists a compact subset K of X such that
j2'm| (X \ K) < ¢/4M , uniformly for z' € F', ||z'|| € 1.

We claim that {fy, } is weakly Cauchy in (C(K, L), ||.||). In fact, let X be a
continuous linear functional on C(K, Ll) and let us define A;: Cy (X, Ll) — R by
M(f) = Mfix). Clearly, A; is || and Bo-continuous and then, A(faj,c — fmix) =
M(fn— fm) = 0 as n, m — co.

Now, we define L: C(K, Ll) — F by L(f) = fK fdm. L is weakly compact
and ||.||-continuous. Therefore, since C(K, L') has the strict Dunford-Pettis or simply
the Dunford-Pettis property [2], we have that, for the € > 0 given above, there exists
N € Nsuch that for n,m 2 N,

ML — )l = “ [ - fm)dm“ <e/2
and then

‘/ (fn— fm)dz'm‘ < €/2 uniformly for ||| <1
K
Now, let n, m > N . Since
NT(fn — fm)ll = sup{le’(T(fn — fm))l : ' € F, ||2'|| < 1}
= sup{ /(fn — fm)d;c’m

' e Fy|2']| € 1},
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we have
[/(fn - fm)dzm[ < ‘/K(fn —fm)dzm( + /X\K 1o = full dlam]
<ef2+2M(e/4M) =¢

uniformly for ||z'|| < 1. Therefore,

IT(fn = fou)ll = sup{] [ n = tmie'm] s o' € B 1t < 1} <e

forn,m> N.

This proves the theorem. 0
THEOREM 12. If E is an AL-space, then (Cy(X, E), Bo) has the Dunford-Pettis
property.

PROOF: By the isomorphism between E and L!, it is enough to assume that
E=1".

We shall first suppose that X has a g-compact dense subset X. Then, developing
the same argument given in [9, Theorem 3, p.363], we prove that (Mg (X, Ll), w‘)
contains a o-compact dense. Therefore, by Theorem 5 and Theorem 11 we conclude
that (Cs(X, L'), Bo) has the Dunford-Pettis property.

Suppose now that X is not necessarily as above and let T be a weakly compact,
Bo-continuous operator defined from C, (X, Ll) into F with associated vector measure
m.

By Theorem 3, given € = 1/n, there exists a compact subset K, of X such that
lz'm|(X \ Kn) < 1/n, uniformly for ' € F', ||lz'|| € 1. Defining Xy as the closure of
U Kn, we have that X, is a o-compact subset of X and |z'm|(X \ Xo) = 0, uniformly
for z' € F', ||='|l € 1.

We define L: Co(Xo, L') — F by L(f) = on fdm. We claim that L is weakly
compact and ||.|-continuous. By Katsara [7], it is enough to prove that, for all bounded
S in E, the sets Vs and Vo, = {Em(G;)si: {G;} is a finite B-partition of X, s; € S}
are equal. In fact, we note first that, for any s € E, ||s|| < 1, |2'm(X \ Xo)s| £
|z'm| (X \ Xo) = 0 and then ||m(X \ X,)s|| = 0, which implies that m(X \ X,) = 0.
By the same argument, we show that, for any G € B(X), m(GN X \ Xy) =0. Thus,

m(G)s =m((GNX \ Xo)U(GNXp))s=m(GNX\ Xo)s+m(GN Xg)s =m(GNXyp)s

and then Vs C Vp,. On the other hand, let ¥m(G;)s; € Vo, where Xy = |JG; and
s; € §. Hence, taking the B{X)-partition G, ..., G, X\ Xo of X and any s € S,
we have that ¥m(Gi)s; = Em(Gi)si + m(X \ Xo)s € Vs.
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Now, since Vs is relatively weakly compact in F, sois Vp,. Then L is weakly
compact and ||.||-continuous [Theorem 4).

The operator ¢: Co(X, L') — Cy(Xo, L') defined by ¢(f) = fix, is clearly f-
continuous, since X, is closed. Therefore, ¢ is weak-weak continuous. Also, T' = Ly¢,
since m(X \ Xo) = 0. Therefore, if B is an absolutely convex, weakly compact subset
of Cb(X, Ll), then ¢(B) is an absolutely convex and relatively weakly compact subset
of Cy(Xo, L'). Since (Cy(X, L'), fo) has the D-P property, L(¢(B)) is relatively
compact in F, and since T(B) = L(¢(B)), we have that T transforms absolutely
convex and weakly compact subsets of C (X , Ll) into compact subsets of F'. This

proves the theorem. a0
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