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SLIDING WITH CAVITY FORMATION 

By A.C. FOWLER 

(Mathematical Institute, University of Oxford, Oxford OXI 3LB, England) 

ABSTRACT. We present a model for the determination 
of a sliding law in the presence of subglacial cavitation. 
This law determines the basal stress at a clean ice-bedrock 
interface in terms of the velocity and effective pressure. 
The method is based on an exact solution of the 
Nye-Kamb (linearly viscous) sliding problem with cavities, 
and uses ideas of Lliboutry (1979) to construct, via re
normalization methods, an approximate law for general 
bedrock form. We show that, for a bedrock whose spectrum 
has a power-law behaviour, one obtains a sliding law which 
gives the basal shear stress proportional to a power of the 
velocity, and to a power of the effective pressure. 

The effect of subglacial cavitation on the drainage 
system is examined, using recent ideas of Kamb. For 
sufficiently high velocities, drainage through a Rothlisberger 
tunnel system is unstable, and drainage takes place through 
the linked system of cavities . This leads to a reduction of 
the effective pressure, and by taking account of this, one 
can rewrite the sliding law in terms of stress and velocity 
only. 

This sliding law can be multi-valued, and it is 
suggested that this underlies the dynamic phenomenon of 
surges. 

SYMBOLS USED 

The following are the main symbols used in the paper: 

D dimensional quantity 

ex exponent in power law (3.30) 
(3 flow parameter (2.7) 
)'(A) amplitude spectrum (3.1) 
S jump-down ratio between effective pressures (4.39) 
E surface slope, after (2.6) 
fI flow parameter (4.28) 
flc critical value of fI (4.35) 
A, Ar dimensionless wavelength 
AC critical value of A (3.36) 
ILl roughness parameter (2.15) 
1L2 roughness parameter (2.8), (2.15) 
1L3 roughness parameter (6.2) 
v slope (roughness) (2.4), (3.3) 
Pr fraction of Ar bumps unsubmerged by larger cavities 
a "coarseness" (2.16), (3.3) 
L = 2 - a/2, after (3.33) 
T stress (1.1) 
[T] stress scale (2.4) 
T r stress due to Ar bumps only (3.12) 
<p sliding-law function (6.1), (6.3), (6.4) 
X mean bedrock slope (4.1)3 

A* 
br 

~~ 
d 
e 
/ 
g 
m 

cavity cross-section area (4.31) 
flow parameter (3 .1 9) 
critical value of b at onset of cavitation 
fixed point of b under mapping (3.24), see (3.26) 
depth scale 
second strain-rate invariant (2.10) 
sliding- law function (2.3), (3.17) 
used in sliding law (3.20) 
rate of melting (4.1) 

m(A) 

ilK 
N 
N* 
N 
NR,NK 
q(A) 

qc 
QR,QK 
S 

S 
SR,SK 
T 

slope spectrum (3.4) 
number of cavities span-wise (4.11) 
effective pressure (2.2) 
dimensionless effective pressure (2.6) 
friction coefficient (4.1) 
effective pressures (4.5), (4.16) 
= m(A)/ A, (3.23) 
critical value of qc' = q(>.c) (3.32) 
conduit fluxes (4.1), (4.13) 
"shadowing function" (2 .9) 
auxiliary "shadowing function" (2 .9) 
conduit cross-sections (4.1), (4.12), (4.32) 
inverse flow parameter (3.41), (3.43) 
velocity (1.1) 
velocity scale (2.4) 
cavity volume per unit length (4.19) 
bedrock-length scale (2.1) 
bedrock-amplitude scale (2. 1) 

I. INTRODUCTION 

The formulation of a basal sliding law which realistic
ally describes the physical processes at the base of glaciers 
and ice sheets has long been of interest. Weertman (1957) 
was the first to model the basic physical processes involved 
which include the enhancement of flow round protuberance~ 
by stress-dependent viscosity, and lubrication of the bed by 
a very thin water film (the mechanism of regelation). 
Vaflous authors have since tackled different aspects of this 
problem. Notably, Nye (1969, 1970) and Kamb (1970) 
considered the problem of slow flow of a constant-viscosity 
fluid over a bedrock of small slope, and were thus able to 
linearize the problem, and establish a sliding law for very 
general bed shapes. Kamb extended his solut ion to non
linear viscosity (Glen's law) in an ad hoc manner. Morland 
(1976[a], [b]) solved the same problem using the methods of 
complex variable theory, and included, in the latter paper 
the frictional effects of basal debris. ' 

Two major effects, those of a non-linear flow law and 
of subglacial cavitation, have been seriously addressed by 
Lliboutry (I968, 1975, 1978, 1979) and by Weertman 
(1964). Lliboutry (1979) reviewed his work, and Weertman 
(1979) gave an overall view of the subject at that time. The 
non-linearity of the flow law incapacitates exact solutions of 
the Nye-Kamb type, but Weertman's notion of a controlling 
obstacle length is very useful, and the general 
"Weertman-type" sliding laws 

(1.1 ) 

where T is stress, u is basal velocity, and c is constant, 
have proved very popular. Here a is an exponent which 
ranges from one for a Newtonian fluid, to 1/ 11 (the 
exponent in Glen's law) for a non-linear fluid, the latter in 
the particular case that roughness is absent at low wave
lengths. More generally, I ~ a ~ 1/11. Fowler (1981) intro
duced complementary variational principles for the 
non-linear problem. He showed that, in the absence of 
cavitation, an important dimensionless parameter was a/v l1 +1, 

where a = xo/d, v = Yo/xo' and xo' Yo represent a typical 
bedrock wavelength and bedrock amplitude, respectively. 

255 
https://doi.org/10.3189/S0022143000008820 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000008820


Journal of Glaciology 

The length scale d represents the length scale of velocity 
variations in the "outer" flow, away from the bed . It may 
be thought of as a typical glacier depth, although it can be 
defined purely in terms of the prescribed bed shape, as is 
done below, just before Equation (2.5). Thus v is the 
typical magnitude of the bedrock slope relative to the mean. 
The parameter III = a/ vll +1 can easily be either large or 
small for reasonable values of v and a, so both large or 
small sliding velocities can be understood in terms of 
variable bedrock roughness. However, Fowler neglected the 
extra functional effects of regelation, which is tantamount 
to neglecting roughness at short wavelengths « I cm). 

The importance of cavitation has been stressed by 
Lliboutry (I968, 1979). The latter paper affords the most 
complete analysis of this subject. Again, the presence of 
cavities renders analytic solutions intractable, but Lliboutry 
was able to derive functional representations for the sliding 
law by making judicious assumptions about the form of the 
flow. In particular, he introduced a shadowillg funclion s(l), 
where if 1 is the angle of declination at which a light were 
to be shone at the bedrock, then I - s(t) is the fraction of 
the bed in shadow. Thus, S(I) is purely a geomelrical 
property of the bed . Next, he identified 1 with the 
(assumed constant) slope of the cavity roofs, and assumed 
that 1 is inversely proportional to the velocity (and depends 
on other things as well), as is at least qualitatively 
reasonable. 

From this, he could determine the sliding law for 
different bedrocks, characterized by their shadowing 
function. In particular, he made the important observation 
that the sliding law over a sinusoidal bedrock, and that 
over a general (Gaussian) bedrock, are radically different. 
To quote, for a sinusoidal bedrock, "all the bumps are 
drowned simultaneously [as 1 .... 0] and the friction drops to 
zero". Thus Lliboutry found, for a sine profile, that T 

increases to a maximum and then decreases to zero as u 
tends to infinity (at fixed effective pressure N). However, 
for a "Gaussian" bedrock, he found that T/ N is essentially 
constant as u .... co, giving the "solid friction law", which has 
been used, for example, by Reynaud (1973). 

The present paper is inspired by the above results of 
Lliboutry (I979). We wish to examine the sliding law for a 
fairly general bed form, but without using the arbitrary 
ass umption that cavity roofs all have (the same) constant 
slope, which will not in general be true. Rather, we base 
our method on another suggestion in the same paper, which 
is to consider a bed consisting of superimposed bumps of 
different scales. As Lliboutry pointed out for the case of no 
cavitation, this is strictly an asymptotic procedure, which 
assumes that the success ive length scales 'n of the different 
undulations form an asymptotic sequence. However, we can 
hope that some useful results can still be obtained even if 
'n+l/ 'n is not too small. As such, this proced~re is akin to 
methods of re-normalization group theory, which have been 
recently exploited in understanding a wide variety of 
physical phenomena. For example, see Smalley and others 
(1985). 

The basic building block for this model is that of flow 
over a periodic "humped" bedrock. Results for the 
Nye-Kamb version of this problem (small slopes, constant 
viscosity) have recently been given (Fowler, 1986), and they 
corroborate Lliboutry's results for a sinusoidal bedrock. The 
model of the present paper essentially corroborates 
Lliboutry's results for a general bedrock, although different 
cases present themselves. 

One important purpose of analysing sliding with 
cavitation is to examine whether a multiple-valued sliding 
law can realistically occur. If it could, then one could 
explain surges almost immediately (Hutter, 1982). Lliboutry's 
(1979) "Gaussian" law is marginal in this respect. However, 
another point arises , in that the effecti ve pressure N 
appears in the cavitational sliding law. One can then 
enquire as to whether N itself depends on u. The answer 
has been persuasively shown to be yes (Kamb and others, 
1985), using both detailed field measurements and theoretical 
analysis. In this paper we will take the simplest model, both 
of R6thlisberger's (1972) tunnel drainage, and Kamb's 
"linked cavity" drainage, to show that N drops catastrophic
ally at the onset of cavity drainage. As a result, we show 
that a multi-valued sliding law is a realistic possibility, and 
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we offer some comments on the ramifications of this for 
surges, seasonal waves, hydraulic pressure fluctuations, and 
also to slid ing of ice sheets. 

2. SOLUTIONS OF THE NYE-KAMB PROBLEM WITH 
CAVITATION, PERIODIC "HUMPED" BED FORMS 

Fowler (I986) has presented the solution of the follow
ing version of the Nye-Kamb sliding problem. Given a 
rough bed of amplitude Yo and wavelength Xo written in 
the form 

(2.1) 

(so h, h' - 0(1 », find the relation between shear stress T 

and velocity u far from the bed, when ice, considered to 
be of constant viscosity, flows over it. The boundary con
ditions at the bed are that there is no shear stress, and that 
the normal velocity is zero. This latter condition, in 
particular, is equivalent to neglecting the drag due to rege
lation (see Fowler, 1981, p. 672, for discussion), which can 
be shown to be a good approximation unless significant 
roughness is present at vertical scales of less (perhaps a 
good deal less) than I cm (Fowler, 1981). Even in that case, 
the regelative drag can then be added separately (Lliboutry, 
1979); it is not germane to the problem of cavitation, which 
involves larger length scales. 

By the nature of the analysis, it was convenient to 
restrict the results to periodic bedrocks with one cavity per 
period. Roughly, this means one hump per period. A typical 
result is shown in Figure I. Sliding laws for other bed 
forms also exhibit a single maximum of stress, followed by 
a decrease to zero as u .... co. 

D.5 

D. 2 

D. 1 

DD~--~--~17D--~'5~--~20~--~2~5--~l7D--~'~5--~' D 

Fig. J. Basal stress versus basal velocity for the skewed. 
periodic bed. showll ill Ihe inset. 

Figure I shows a curve of stress versus velocity, which 
also involves the effective pressure N, defined by 

N = Pi - Pw (2.2) 

where p ' is the ice-overburden pressure and Pw is the local 
hydrauli~ drainage pressure in the water. Precisely, Figure I 
depicts the relation between stress, velocity, and effective 
pressure in the following dimensionless way: 

T/ PC = f(u / pc )' (2 .3) 

where T, u, Pc are dimensionless stress, velocity, and 
effective pressure, respectively. To convert Equation (2.3) to 
dimensional units, we use the definitions of Fowler (1986): 

T D = [T]T, uD = Uu, N = [T]pc/ V, V = Yo / xo (2.4) 
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where a suffix n denotes a dimensional unit. The scales [T] 
and U represent typical values of these quantities, e.g. [T] = S 
1 bar, U = 100 m year-l; these may vary according to the 
context. Introducing the depth scale d via [T] = T/U Id, 
where T/ is the viscosity (assumed constant in the calcula-
tion), and using the definition a = xo/d = v2 to deline d 
(Fowler, 1986), we finally rewrite Equation (2.3) in the 
dimensional form 

(2.5) 

The relation (2.5) is independent of a particular glacial con
text and could be compared with (for example) the 
experiments of Budd and others (1979). Equation (2.3) is 
more useful to see how sliding velocities are likely to com
pare with surface velocities in a particular glacier or ice 
sheet. Notice 1(13) (where 13 is the argument of I in 
Equation (2.5)) is a dimensionless function, having a maxi
mum of I '" 0.4 at a value 13 '" 4. Other bedrocks (sine 
wave, symmetric humps) betray similar features (Fowler, 
1986). The variation of the point of maximum T is some
what lessened if v is defined in terms of up-stream slopes. 

The point of onset of cavitation is not marked in this 
figure. For small 13 (no cavitation), 1(13) is linear (for this 
Newtonian viscosity), and then T <X u. Cavitation sets in for 
13 > 13c' where in Figure I, 13c '" 0.09. For other more 
symmetric bedrocks, the values are a little higher. To gain 
an idea of the size of 13, we write 

N = [T]N* / E (2.6) 

where E would be the surface slope of a glacier. If [T] is a 
(typical) shear stress, then N* '" I if Pw is atmospheric (or 
zero) (free drainage or no water at the bed), whereas 
N* « I for high water pressure. Then 

(2.7) 

where 

(2.8) 

measures the bedrock-slope variations relative to mean sur
face slope. For glaciers, we might have v ;;: 0.1, E - 0.1 , 
so that 1L2 ;;: I is typical. Then cavitation occurs if 
u > 13cIL2N* - 0(1) for a low water-pressure case. As is 
well known, cavitation does often occur in glaciers. For 
large ice sheets, v tends to be larger (corresponding to 
much larger irregularities), whereas E is smaller, typically 
10-3 . Then 1L2 - 103, and cavitation would occur if u;;: 
0(103 ), whereas u - I for T - I. Cavitation in this sense is 
ruled out for large ice sheets, though some lubrication is 
afforded by basal lakes, for example, in Antarctica. 
However, "temperate" sliding theories, such as developed 
here, are likely to be irrelevant for cold ice masses which 
only reach melting temperature at their beds. 

"Shadowing" lunction 
For later purposes, we need to define a function which 

measures how much of the bedrock is overlain by cavities. 
Such a function was introduced by Lliboutry (1968), and is 
called the shadowing function, and is denoted by s(13), since 
it will be a function of the (dimensionless) velocity. 
Specifically, s(13) is the fraction of the bedrock which is 
free of cavities. For the constant-velocity Nye-Kamb 
problem solved by Fowler (1986), we can calculate s(13) as 
part of the solution . We find that for 13 < 13c , s = I , and 
for 13 > 13c ' it decreases mono tonically to an asymptotic 
limit of zero, as 13 ~ <D. We portray this in Figure 2, where 
we have defined an auxiliary function 

S(13) = In(l / s). (2.9) 

It may be pointed out that Lliboutry's (1968, 1979) 
estimation of the shadowing function appropriate to the Ilow 
is heuristic, whereas the function in Figure 2 is derived 
from the solution of the flow problem. Nevertheless, 
Lliboutry's estimation of the form of this function is 
essentially correct. 

(3 

10 15 20 25 30 35 40 

Fig. 2. The lunction S( 13 ) lor the same cases as in Figure 
1. 

The details of S(13) near 13 = 0 are obscured by 
carrying out a reasonable number (e.g. 20) of computations 
for different values of 13 (this is why Figure 2 has 
kinks - it is not smoothed as Figure 1 is), the approach of 
S to zero as 13 tends to 13c '" 0.09 has been omitted. In 
fact, S approaches zero with infinite derivative as 13 ~ 13c ' 
and it is zero for 13 < 13c' Also, S tends to infinity as 13 
tends to infinity. Thus, the important feature is that S 
= 0 for 13 < 13c (no cavitation), and increases rapidly, and 
monotonically, for 13 > 13c ' 

Non-linear viscosity 
We are not able to legitimately generalize Equation 

(2.5) for a non-linear flow law . Nevertheless, it is tempting 
to do so in an ad hoc manner, and we shall follow this 
temptation here. If we consider Glen's law 

(2.10) 

then the viscosity T/ is 

(2.11) 

Thus the far-field viscosity in the sliding problem is 1)"" = 

1/ AT nn-I; however , stresses are higher by O(I /v) near the 
bedrock, since the drag in the far field is balanced by the 
integral of the normal stress along the bedrock; this must 
be higher by O(l/v), since the bedrock amplitude is only 
O(v). We will assume that deviatoric stresses are also O(l/v) 
near the bedrock. (This is true when n = I, and can be 
deduced when 11 > I from the scaling of the problem 
(Fowler, 1981). Thus we choose 

(2.12) 

to generalize Equation (2.5). There follows 

(2.13) 

which is in fact consistent with Lliboutry's (1979) non
linear result. The d imensionless version of Equation (2.13) 
is, using Equations (2.4) and (2.6), 

(2.14) 

where 

(2.15) 

and 

(2.16) 
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where d is the depth scale, and the velocity scale U now 
satisfies 

(2.1 7) 

Equation (2.14) generalizes Equation (2.3), both for 11 = 

and for d defined independently of Xo and Yo' as might be 
appropriate for glaciers and ice sheets, where d is 
determined by the large-scale flow. 

For small /3 < /3c' we assume 

[(/3) = c/3 (2 .18) 

where c - O( I) is a roughness coefficient. This holds for 
11 = I, and extends to 13 - /3c ' Adopting Equation (2.18), 
Equation (2.14) reduces to 

(2 .19) 

This is, in fact, exactly the law found by Fowler (1981) for 
non-linear sliding without cavitation, and therefore gives 
some confidence in its applicability. Cavitation sets in if 
1L11L2I3cN*TIl-1 - 1L11L2 (if N* - I). For glaciers, one can 
have 1L1ILh - I, but for ice sheets, 1L2 - 103 as before, and 
ILl - a/ v +1 - 1/20 for d - 2km, [x]- lOOm, v - I. 
Again 1L11L2 » I, and cavitation is unlikely. (Both cavitation 
conditions, for 11 = I and 11 > I, can be written as T > 
/3CIL2N* , which also shows the difficulty for ice sheets.) 

In summary, sliding with cavitation over single-humped 
bedroc~s is controlled by two dimension less groups, ILl and 
1L2, whIch may be thought of as between them controlling 
the extent of cavitation, and the relative size of the result
ant velocity. An important point which emerges from 
inspection of the S(I3) graphs, and more dramatically from 
the plots of the cavities themselves (Fowler, 1986), is that 
the stress only starts to decrease when the cavity from one 
bump reaches the stoss face of the next bump. The drag 
starts to decrease, since it is all being contributed by the 
high pressure on the SIOSS face, and the extent of influence 
of the high pressure wanes due to the invasion of the stoss 
face by the up-stream cavity. As Liiboutry put it, the 
bumps get drowned. It is because of the simultaneous 
drowning that the stress decreases' but in reality when 
bumps of one amplitude and waveiength become d~owned, 
larger bumps of longer wavelength, with a correspondingly 
smaller /3 value, will not be drowned, and thus will take up 
the excess stress from the smaller bumps. Consequently, we 
can realistically expect stress to continue to increase, so long 
as the entire bed is not almost drowned, as indicated by 
Liiboutry. In the following section, we use a 
re-normalization approach, based on the above discussion, to 
get some idea of how a sliding law for a more realistic 
bedrock will behave . 

3. RE-NORMALIZATION APPROACH FOR A GENERAL 

BED: THE SLIDING LAW T = kNa1u a2 

Let us now consider a more general bedrock, which we 
consider to be a superimposition of similar bedrocks of 
different scales - for example, sine waves, corresponding to 
Fourier decomposition. In order to be able to superimpose 
results for the beds of the preceding section, it is necessary 
that the length and height scales of the different compon
ents be asymptotically distinct. In that case, the flow over a 
bump of a certain scale is independent of the flow over 
larger-scale bumps. The smaller-scale bumps exert a traction 
on the flow, which, however, can be combined additively 
(cf. Fowler, 1981). In this sense, the different components 
respond independently to the flow. 

To scale the bed, we suppose there is some preferred 
wavelength Xo and associated amplitude Yo; for example, Xo 
might be the scale at which some measure of roughness 
(e.g. the spectral power density of the slopes) was 
maximum. Then each component is of the form 

(3.1 ) 

where the dimensionless wavelength A ranges from 0 to "', 
and )'().) is a prescribed roughness spectrum. Following 
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Equation (2.13), the dimensional drag offered to the far
field flow is 

(3.2) 

where we have defined 

a (3.3) 

and 

(3.4) 

As before, we non-dimensionalize T D' uD' and N using 

and 

U/ d (3.6) 

then 

N ~1l-11 A ). 
(3.7) 

is the dimensionless drag offered by the component of 
wavelength ). . 

The above is for the case that all the bumps are in 
contact with ice, and that bumps of smaller scales are 
absent. In reality, for a decreasing sequence ().r) (such that 
Ar » ).r+1)' some of the bumps will be submerged by 
cavities, and the cavity-free parts of unsubmerged bumps 
will have smaller bumps superimposed on them. Let Pr be 
the fraction of Ar bumps which are unsubmerged by larger 
cavities, and let sr = s(l3r) be the fraction of uncavitated 
bedrock for flow over ).r bumps, where Br is the argument 
of [ in Equation (3 .7 ), that is 

u 
(3.8) 

where N r (= NA ) is the effective pressure experienced by 
r 

the Ar bumps. Further, let Tr be the overall stress actually 
e xpenenced by the 'r bumps (inclu~ing the additional stress 
due to smaller bumps), and let T r be the actual stress 
experienced by one of the unsubmerged bumps. Then we 
have 

(3.9) 

In order to calculate Tr , the problem studied by Fowler 
(1986) must be amended to allow for a non-zero stress at 
the attached parts of the ice flow. For the case of a 
Newtonian rheology, this can be done by subtracting off a 
linear shear flow, and the result is simply that the extra 
stress at the interface must be added to that computed from 
Equation (3.7). For the case of a non-Newtonian rheology, 
Fowler (1981, p. 668) derived the same result assuming small 
slopes and no cavities. Allowing for cavities, the result is 
then 

(3.10) 

Now, those 'f+1 bumps which are unsubmerged exist 
on the uncavitated parts of unsubmerged ).r bumps. It 
follows that 

(3.11) 

Combining Equations (3.9) to (3.11), we have 

(3.12) 

which may be considered to represent the overall stress 
contributed by the Ar bumps alone. (This means, below, 
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that we compute the total stress by summing the 
"individual" contributions.) 

Let Pr be the mean ice pressure on the uncavitated 
parts of the unsubmerged >-r bumps, and let P be the 
cavity pressure (assumed the same in all cavities). Then, as 
pointed out by Lliboutry (1979), we must have, by an 
approximate averaging, 

(3.13) 

that is 

(3.14) 

This follows because far from the >-Hl bumps, the pressure 
(on unsubmerged >-r bumps) is Pp whereas this same 
pressure is transmitted to the bed by a pressure PHI over 
the uncavitated part, and p on the cavitated part, of >-r+l 
bumps. Then the total stress is obtained by summing T r 
over r. As r ~ - 0> (>- ~ 0», we expect m ~ 0, and 
N ~ N*, the (dimensionless) effective pressure, sr ~ I, and 
p r ~ I (no cavitation, since 1\ ~ 0). 

r Notice immediately that Equations (3.14) and (3.11) 
imply that 

(3.15) 

is constant, and thus T is defined by 

T (3.16) 

it remains to solve for 13 as a function of >-, and then sum 
Equation (3.16). 

First, we note that Equation (3 .7) may be rewritten as 

[~]n-ll · 
T>- (3.17) 

If we put 

(3 .18) 

and define 

u 

N~ , 
(3 .19) 

then Equation (3.17) takes the form 

which serves as an 
Equation (3.18) gives 
Further, differentiation 
yields, using the chain 

(3.20) 

implicit definition of g(brl. Then 
T). as an explicit function of b r . 

of Equation (3.20) with respect to br 
rule, 

(note 13 r = brl gll-I). Thus g' If' is positive providi~g 
(11 - I )13rl' + 1 > 0, and g has the same shap~ as 1 III 

Figure I. This condition on 1 states that (If 11 ~ I) 
13 1/(11-1) 1 is increasing, which is certainly true for small 
enough 13. If this condition is not satisfied, then g(br) will 
increase for large enough br' as was found by Lliboutry 
(1968, fig. 12), giving a multi-valued sliding law. Below, 
we suggest that such subtleties are irrelevant in reality, as 
the values of br are restricted to values for which f' > o. 
We now write Equation (3.16) in the form 

(3.22) 

We define 

q ml >-; (3.23) 

Fowler: Sliding with cavity lormation 

then Equations (3.19) and (3.14) imply that br satisfies the 
difference relation 

(3.24) 

where 

(3.25) 

and we consider S as a function of br+1; it will be of the 
same general form as in Figure 2. Then the graph of br+1 
versus br is shown schematically in Figure 3, for qHllqr 
less than or greater than one. In this figure bc is the value 
of b at the onset of cavitation. Thus S = 0 for b < bc' 
and increases rapidly thereafter. 

b ----
C 

Fig. 3. Schematic graph 01 br+l versus b,. 

Now the behaviour of maps such as Equation (3.24) is 
well known (e.g. Collet and Eckmann, 1980) and is 
illustrated on Figure 3. For lixed qr+/qr' br ~ 0 when 
r ~ 0> (smaller wavelength) if qHl < qp whereas if qr+l > 
q b will tend towards b*, the intersection of Equation 
(f24{ with the line br+1 = br' which is the non-zero fixed 
point of Equation (3.24), viz. 

(3.26) 

Thus, it is reasonable to consider these two states as 
approximate alternatives. As qr+llqr increases through one, 
there will be a transition of br from 0 towards b*. 

The picture which then emerges of the degrees of 
cavitation is that if q decreases with r, there is essentially 
no sliding. For q increasing, b increases from 0 to bc: these 
bumps are not cavitated and contribute the usual viscous 
drag . For b > bc' the bumps are cavitated, but as further 
wavelengths are considered (larger r), the degree of 
cavitation (as measured by b r ) rapidly tends towards a 
(relatively) fixed value. Drowning does not occur, even of 
the smallest bumps. For S increasing quite rapidly, and 
particularly for n > I, the value of b* is quite close to bc. 

Our approximation to the sliding law now follows from 
Equation (3.22), using the fact that s = I for b < bc: 

(3.27) 
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where b* is given by Equation (3.26), and s* = s(b*). F 
or the uncavitated bumps, b < bc' we suppose, following 
Equations (2.18) and (2.19), that /(13) = cS, and hence, from 
Equation (3.20) 

(3.28) 

where R = cl/no For a sine wave, R = I for n = I. R '" 
1.46 for IZ = 3 (Meysonnier, 1983). Noting that Nr = N* 
for b < bc' we finally have 

T '" Rul /Il L m(m/~jJ.l)l/1l + jJ.2 g*N* L m (3.29) 
b<bc b>bc 

where g* = g(b*)/s*, and can be approximately evaluated 
using Equation (3.28). 

There remains the task of evaluating (3.29) for various 
m(~) . Before doing so, notice that (3.29) is quite similar to 
the form of Lliboutry's (1979) result. The first term in 
(3.29) is a viscous drag over non-cavitating bumps, the 
second due to cavitation. Lliboutry has the first term split 
in two, one for large wavelengths (T '" u l / Il ), the other for 
very small wavelengths which do not cavitate, for which the 
Weertman law T '" u2/(n+l) includes the effects of 
regelation. Whether we find this lack of cavitation at small 
wavelengths depends on our choice of q(~). 

Let us now consider power-law bedrocks. These are 
bedrocks for which the amplitude function 

(3.30) 

Typically, one considers superimposed sine waves but we 
have the advantage that we are not restricted to particular 
wave forms of this type, providing we adjust /(13) 
accordingly. The case a = 3 corresponds to the so-called 
"white roughness", because it contributes equally to the 
viscous drag at all wavelengths. Measured values are 
typically in the range 2-4 (Melosh and Kamb, unpublished) , 
with (perhaps) preference towards the lower end, a '" 2.4 
(Benoist, 1979; Hallet , 1979). Self-similar profiles obeying 
(3.30) have 

m _ ). -l+a /2, q _ ). -2+a/2. (3.31 ) 

Since we suppose ). d ecreases as r increases, this implies q 
increases for all r if a < 4, and thus that cavitation extends 
to all (small) wavelengths. These profiles also have m 
tending to zero at low wavelength (cf. Budd and others, 
1979) if a > 2. 

If q increases with r for all r, there is a unique 
critical). such that b = bc, given by (from Equation 3.19) 

(3.32) 

Cavities exist over bumps of wavelength ). ~ ~c' 
To estimate the sums in (3.29), we suppose 

~ _ exp(-r/r), and then approximate the sums by integrals, 
using -dr = or od ~/).. The reason for choosing a logarithmic 
dependence was given by Nye (1970); see also Weertman 
(1979). Nye recommended a value of r 0 slightly less than 
one depending on the method used to extract the rough 
bed' from its smooth average. In view of other approxima
tions involved, we will put r 0 = I below. Thus in (3.29), 
summation 

L becomes J d). / )., 
b<bc ~>).c 

and we have m = ~q. Then (3.29) can be approximated 
as 

T '" R(U/ jJ.l)l / 1l r ql+l/Il d~ 
~c 

(3.33) 

The sums converge or diverge with the integrals, and for 
convergence we require, if q - ).-I:(I: = 2 - a /2), I: < I , 
and (\ + 1/ 11) 1: > I, that is 

[
'Z + 2] 2<a<2--
11 + 1 

(3.34) 
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For 11 = I, this is 2 < a < 3, for 11 
Assuming (3.34), (3.33) is 

3, it is 2 < a < 2.5. 

* + ~N*)' I-I: 
(\ _ I:) c 

where from Equations (3.32) and (3.31) (q 
efficient 1 by choice of Xo and )10) 

(3.35) 

(3.36) 

After simplification using Equation (3.36), (3.35) can be 
written in the form 

(3.37) 

where 

a - n(l - I:)/ I: , 0 < a < I , 

[
a - 2] -11--- , 
4 - a 

(3.38) 
2 - a /2, 

and 

is an 0(1) constant. Equation (3.37) is a very simple 
generalization of the functional form of Weer tman's law , 
T '" u l / m , m ~ 1. Notice some important features. 

(i) T increases with u (at fixed N*) for all 11 , and 
levelling off does not occur (in contrast to Lliboutry's 
(1979) reSUlt). This assumes that q .... 0 and ). .... "', so that 
b in Equation (3.17) tends to zero (no cavitation). This 
seems very reasonable. 

(ii) We have neglected regelation in deriving an expon
ent different to l/I! for u in Equation (3.37). Regelation will 
be important at low wavelengths, if the ice is otherwise 
blocked. In the classical theory without cavitation (Nye, 
1969, 1970; Kamb , 1970), regelation is important for length 
scales less than perhaps 50 cm. Non-linear ice rheology 
seems to lower this value (Fowler, 1981). The importance of 
regelation is registered by how fast the bedrock amplitude 
spectrum )'(~) decreases to zero as ~ .... O. If it decreases 
rapidly enough, then the Nye-Kamb drag wilhoul regelation 
converges as ~ .... 0, which is to say that the effect of 
regelation in this case will be small and may be neglected . 
The condition that this should apply (when there is no 
cavitation) is that)' « 0(~2) as ~ .... O. Alternatively, this 
requires q .... 0 as ~ .... 0, which is only sati sfied by 
(3.31) if a > 4. 

Conversely, if a < 4 in (3.31), then the small-scale 
roughness is enough to stop effectively viscous deformation, 
and it is only because of regelation that there can be any 
flow at all. Thus, if a < 4, the classical theory cannot 
neglect regelation, and the drag converges for (3.31), 
providing now (when I! = I) a > 2. 

Now, if we suppose a < 4, and consider in addition 
cavitation, then we find that q increases as ). decreases, so 
that cavitation occurs at a length scale much larger than the 
regelation length scale. As the length scale decreases, 
cavitation facilitates sliding, and the drag converges at small 
wavelengths for a > 2. Therefore, it seems that when 
cavitation is added to the classical sliding problem, we can 
consistently ignore the effect of regelation as a small one 
on the sliding law, providing now a > 2. Whether re gelation 
as well as cavitation will extend this range of convergence 
downwards is unknown, but we have at least shown that 
for a > 2 regelation may be neglected. 
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(iii) Even for the general bedrock considered here, the 
role of the two parameters ILl and 1L2 is crucial. ILl governs 
the actual magnitude of the velocity, whereas 1L2 measures 
the role of the effective pressure. The O( 1) parameter k can 
only be estimated in practice by fitting experimental data; 
in fact, the best one could do would be to fit the constants 
a1 , a2 , a3 in a law of the form 

T - a u
a2

N
a3 

- 1 

to the data. This has been done to some extent (Budd and 
others, 1979; Bindschadler, 1983). 

(iv) It is obvious that more general beds will produce 
sliding laws which, computed from (3.33), can be much 
more complex. For example, a more general bed will have a 
distribution p(m, >-) of wave forms of "slope" m and 
wavelength >-; it is not then entirely obvious how to 
generalize (3.33), in particular, how to transform sums over 
m to integrals over m; and it may be that the model is too 
coarse to allow useful indulgence in such generalizations. 

Finally, notice that (3 .33) can be written in the form 

(3.40) 

where, using Equation (3.32), 

(3.41 ) 

and c1'c2 are 0(1) constants, F(T) decreases monotonically to o as T increases to .. , G(T) increases monotonically in the 
opposite manner. The sliding law in Equation (3.37) follows 
from the approximations 

F(T) '" r(l-a) / Il, G(T) '" Ta/ Il (3.42) 

which may usefully serve except (perhaps) at the extreme 
ranges of T. 

Finally, it may be useful to rewrite Equation (3.40) in 
dimensional terms, using Equations (3.5) and (3.6). We find 

(3.43) 

and then 

(3.44) 

which may be compared with Lliboutry's (1979) equations 
(93), (l03), and (108), or (110). The expression of the 
coefficient of U

D
1

/ 1l seems to be new. 

4. A SIMPLIFIED THEORY OF BASAL DRAINAGE: THE 
MULTI-VALUED RELATION N(u) 

Since the sliding law depends on the effective pressure 
N, it is necessary to have some idea as to how N will 
change in response to a change in the hydraulic regime. 
That is the aim of the present section. First, we consider 
the drainage through a central conduit (R6thlisberger, 1972), 
as appropriate to non-surging glaciers. We first assume that 
the conduit is flooded. Let SR denote the cross-sectional 
area of the channel, m the mass of ice melted per unit 
length per unit time, Pi the ice-overburden pressure, P the 
water pressure, M the influx of water from the glacier to 
the channel per unit length per unit time, and QR the 
volume flux of water. The equations governing the variables 
have been given by Nye (1976), following R6thlisberger 
(1972): 

m / Pi = KSR(Pi - p)n + asR/ at, 

M + m/pw = aQR/ax + asR/at, 

PwgX - ap/ ax = NQR2/ SRB/3, 

QR[PWgX - ap/ax] = mL, 

(4.1 ) 

in which X is the mean bedrock slope, K is a constant 
related to the viscosity of ice, Pw is the density of water, 

Fowler: Sliding with cavity formation 

Ifs is the component of gravity down the bedrock slope, iii 
IS an empirical constant related to turbulent channel flow, 
and L is the latent heat. These equations represent a simpli
fied version of the more complete model given by Spring 
and Hutter (1981, 1982), and in particular they neglect 
terms representing thermal inertia, cf. Clarke (1982). The 
"momentum" Equation (4.1)3 assumes the Manning formula; 
other choices of friction factor are possible, leading to 
slightly different exponents, cf. Spring and Hutter (1981, 
1982). 

If d is a typical glacier depth and R is a typical 
length, and X is the mean bedrock slope, then Pi - Pigd, 
so that p ~ Pi - Pigd, and hence ap/ ax - Pigd/ R; con
sequently, (ap/ ax)/pwgX - d/ RX. For typical values d-
100 m, R - 10 km, X - 0.1, d/RX is small and so we can 
neglect ap/ ax in Equations (4.1). This is a singular 
approximation which will cause a boundary layer to form at 
the glacier snout, where p is prescribed. Away from this 
layer, and neglecting ap/ ax, Equations (4.1) imply 
successively 

(4.2) 

(4.3) 

(assuming a steady state), 

SR '" [NQR2/ PwgX]3/8, (4.4) 

and finally 

(4.5) 

gives the effective pressure. Thus, if M is known, we solve 
(4.3) to find QR as a function of x, the distance down
stream of the head with a boundary condition, e.g. QR = 0 
at x = O. Notice that if QR is constant, NR is also, as 
noted by R6thlisberger (1972). However, in general, QR will 
vary with x. We observe that the length L/gX, with L '" 
3.3 x 105 J kg- 1, and gX '" 1 m S-2 (X '" 0.1), is 330 km, so 
that QR will not vary much due to frictional melting, and 
most of the variation of QR is due to external 
sources - surface melt water, for example. To determine M 
in any reasonable manner would be prohibitive, but luckily 
we see that NR is proportional to QR1/ 41l , which for n = 3 
is very insensitive. This suggests that we simply treat QR as constant, and equal to its outlet value, in (4.4) and 
Equation (4.5). Then NR is essentially constant. 

With Pi '" 900 kg m-3
, Pw '" 1000 kg m- 3

, gx '" 1 m S-2, 
K - 0.02 bar-3 year- 1 (R6thlisberger, 1972), L as above, we 
find 

Thus, if QR/SR = 17 m S-l, then, with 11 = 3, 

Pi - P - [0.5 x 104 17]1/3 bar. 

Further, with N = 700 m-B/ 3 kg (Nye, 1976), we have 

Pwgx/ N '" 14m2
/

3 s- 2
, 

so that, if QR Q m 3 S-l, (4.4) implies 

SR '" [Q2/14]3/8 m2 , 

and thus 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Thus, 
would 
imply 

with these parameter values if Q 10 m3 S-l, we 
h 2 ' R ave SR - 2 m u - 4.8 m S-l; then (4.7) would 
NR '" 30 bar. By comparison, a glacier of depth 
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lOO m has Pi = Pigd = 9 bar. It should be said that 
indeterminacy of some of the above parameters (notably N 
and K) will cause different precise values, but it is clear 
that it is plausible that many glaciers should have NR > Pi' 
i.e . Pw < O! The resolution of this paradox is that if 
Equation (4.5) implies NR > Pi' then the appropriate con
dition is that P = P A' the atmospheric pressure, the channel 
is not filled as previously assumed, and consequently (4.4) 
must be discarded. Additionally, the form of the channel 
will be modified, and the Equations (4.1)14 will have to be 
changed. The momentum Equation (4.1)3' will involve the 
water depth, which will be determined in place of p . We 
need not pursue this, as these details do not concern us. 
The fact that we can commonly expect un flooded conduits 
has been pointed out by Hooke (1984) and by Lliboutry 
(1983). The latter paper suggests that determination of N is 
inherently a time-dependent (seasonal) problem. It remains 
to be seen whether an annual average can satisfactorily 
describe long-term processes such as surges. 

Let us now turn to the situation as it pertains during 
a surge (Kamb and others, 1985). Observations of Kamb 
and others suggest that. when cavities are widely present, 
most of the drainage occurs through the cavities, which are 
linked by small conduits, or by thin water sheets 
(Weertman, 1972). One difference this generates is that flow 
is much slower, since U, the mean velocity, is much lower 
than in the R6thlisberger case. Drainage now occurs 
between cavities and one can in a simplistic manner apply 
the R6thlisberger theory with a suitable change of the 
important variables. It is important to realize that the actual 
situation will be highly time-dependent, and again we hope 
that our steady-state model reasonably represents the average 
state of the system. Suppose there are nK cavities of largest 
dimension across the glacier width. We can approximately 
identify this largest dimension with the critical wavelength 
Acxo' As an approximation 

(4.11 ) 

in the notation of section 3, and where W is the glacier 
width. We again assume a steady state (thereby excluding 
discussion of transient effects due to rainfall, for example), 
so that the volume flux QK of water is prescribed; we take 
it as constant. If the largest cavities have one main drainage 
conduit linking them to each other, then the flux through 
each conduit is '" QK/ nK' and the Reynolds number is 
'" QK/ S//2vWnK' where Vw is the kinematic viscosity of 
water '" 2 x 10-6 m2 S-I, and SK is the cross-section of 
each inter-cavity conduit. Let us assume that the Reynolds 
number > I 03 , so the flow is turbulent. For example, if the 
"Kamb orifices" have cross-section SK - 10-2 m 2, QK ~ 
2 m3 S-I, ilK - 103, then Re _ 104 . 

The determination of the effective pressure NK is much 
as before. However, it is no longer obvious that the average 
water-pressure gradient is the slow drift due to gravitation, 
since the ice pressure now varies on the cavity-length scale. 
Nevertheless, we take pwgX - Bp/ Bx as being approximately 
pwgX, since if I Bp/ Bx I » PwgX, then -Bp/ Bx is positive, 
but also we can suppose P equal at the end of orifices . 
This is inconsistent unless P actually varies little. Neverthe
less, it must be said that a more thorough description of 
orifice dynamics in a three-dimensional cavity field would 
be welcome. A recent paper by Walder (1986) contains 
further discussion. 

As before, 

where mK is the melting rate, and 

(4 .12) 

(4.13) 

(4 .14) 

where P is the local ice pressure, which is given by 
(Lliboutry, 1979, compare Equation (3.13) and subsequent 
discussion above) 

sP + (I - s)p Pi (4.15) 
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where s is the same "shadowing" function as in Equation 
(2.9); thus 

(4.16) 

replaces Equation (4.5). From Equations (4.16), (4.5), (4 .12) , 
and (4.4) , we find 

(4 .17) 

where we write s(NK) to emphasize the dependence of s on 
the effective pressure, and where we have taken QK '" QR' 
A ty pical value of nK is perhaps 103 (width I km, bedrock 
wavelength I m), and then NK is reduced at the onset of 
cavitational drainage by a factor (for n = 3) of at least 
two. Strictly speaking, ilK varies with Ac' but such variation 
is largely irrelevant compared to its magnitude, and a 
reasonable guess is that NK is approximately constant given 
by Equation (4.16), with ilK '" W/ xo' Notice that NR is the 
value given by Equation (4.5), which may be greater than 
the overburden pressure. Consequently, in spite of the 
reduction, NK may also be greater than overburden. In that 
case, presumably Pw = P A' the atmospheric pressure. 

Stability 
The above estimates give approximations for the 

effective pressure in the cases where either R6thlisberger's 
channels or Kamb's linked cavities provide the basic 
drainage system. However, one must also examine the 
stability of the system when both cavities and a channel are 
present. Our analysis follows that of R6thlisberger and 
Kamb, who showed that a drainage system which has P' (Q) 
negative (channels) will form a single drainage conduit. On 
the other hand (Kamb and others, 1985), cavities have 
p' (Q) positive, and so can exist stably with many different 
cavities interlinked. This follows from (4.17) providing 
aNK/ BNR < O. By considering the graph of In(l/s) in Figure 
2, it is not difficult to see that this will typically be true, 
since near the critical value of u/ N n for which cavitation is 
initiated, s decreases very rapidly as u/ Nn increases, that is 
Bs/ aN is large and positive. Therefore, also B[N/ s] / aN will 
typically be negative. Nevertheless, this stability 
characteristic is rather different from that of Walder (1986) 
and Kamb and others (1985), which is based on a 
R6thlisberger-type balance of flow within the cavities 
themselves. This involves the assumption that melting at 
cavity walls can be significant. To estimate its significance 
here , we do a R6thlisberger-type calculation for a cavity. 
The melting rate m - pwgXq/ L. where q is the flux 
through the cavity. The normal velocity corresponding to 
this is vn - m/ pi R. The ratio of vn to vU, where v is the 
bump-aspect ratio and U is the sliding velocity, measures 
the importance of melting. Thus, v;; = vn/ vU -
PwgXq/ PiRvUL, where R is cavity length. With values 
q = 0.02 m3 ,-I, R = I m, v = 0 .2, U = lOO m year-I, we 
get v;; - 10- 1. On this basis, melting is small, and we thus 
visualize the break-down of channel flow as being due to 
the enlargement of Kamb orifices rather than of the cavities 
themselves (on this latter topic, a paper by B. Kamb is in 
preparation). There remains the analysis of the situation 
when both systems are present. 

In this case, let PK be the cavity/ conduit water 
pressure in the cavity system, and let PR be the pressure in 
the R6thlisberger channel. If these are not equal, we 
suppose flow occurs from one to the other at a rate pro
portional to PR - PK' Let the cross flow per unit length 
down-glacier towards the R6thlisberger channel be k(PK
PR)' Then, conservation of water volume yields the 
following equations: 

(4.18) 

(4.19) 
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where R is the mean cavity spacing, and V K is the total 
cavity volume per length R. We take 

V K '" I: R2ryo(l - s). 
A<AC 

(4.20) 

(4.21 ) 

The latter relation reflects the fact that cavities (of 
>'-bumps) are of height ryo' length (1 - s)R, and of 
typical lateral dimension R. We revert to summation over A, 
as in section 3, as the total volume is important. We did 
not really need this for calculating N K' since nK really 
measures the number of main inter-cavity channels, without 
reference to individual cavities. Except for very, very small 
cavities, we may take V K »RsSK , and then Equations 
(4.18) and (4.19) simplify to 

(4.22) 

(4.23) 

where we have put k = I without loss of generality (it just 
measures the time unit), and 

( 4.24) 

As in section 3, we approximate the sum (4.21) by an 
integral over A. Following section 3, we suppose b '" b* for 
A < AC' so that s '" s(b*) = s*, and then 

V/xo '" WYoAc(l - s*) (cmd >.. (4.25) 
o 

For a ~ower-Iaw bedrock, AC is given by (3.36); with 
m = >.1- (cf. (3.31 », we have 

(4.26) 

where 

(4.27) 

and A is given by 

(4.28) 

(here N NK ). Then 

and, using Equations (4.27) and (4.28), we find that (4.23) 
can be written as 

(4.30) 

where 

n(3 -I:) b -(2- "J/" A* = Wyo(1 - s*) L. L. (4.31) 
1:(2 -!:) c ' 

A* is essentially of the order of the total cavity cross
sectional area . 

By eliminating QR from (4.4) and (4.5), we find 

(4.32) 

where 

(4.33) 

and thus Equation (4.22) becomes 

3n rNR
3n

-
1 NR = NR - NK · (4.34 ) 

Fowler: Sliding with cavity formation 

The stability of the co-existing state NR = NK = N is 
easily examined (see Appendix). It is stable (i.e. tunnel 
drainage is stable) if 

u "c' (4.35) A 

For illustrative purposes, note that 

(4.36) 

For typical values n = 3, I: = I, SR '" 5 m 2, A* '" 200 m 2, 
we have "c '" 1/ 4, and this value can thus be realistically 
exceeded. For values of A less than Ac' cavities and a 
tunnel can co-exist stably. It should be emphasized that 
cavities continue to exist when tunnel drainage is operative. 

Thus, our conclusion concerning the effective pressure 
is that 

(4.37) 

where NR is given by (4.4) and (4.5) if NR < Pi and 
N = Pi if NR > Pi' When cavitational drainage occurs, we 
have 

with a value 

for example, if s '" 1/ 2, IV = 1000 m, Xo = I m. 
that s in (4.39) is really a function of A. The effect 
abrupt transition on the sliding law is examined 
following section. 

(4.38) 

(4.39) 

Notice 
of this 
in the 

5. A MUL TI- VALUED SLIDING LAW INCORPORATING 
DRAINAGE CHARACTERISTICS 

Assuming the ad hoc generalization of the Newtonian 
result, (2. I 3), is appropriate, the sliding law for a general 
bed can be written in the (dimensional) form 

(5.1 ) 

and we can assume <p is realistically monotone increasing, 
e.g. <p - Ar, r > 0, as in section 3. The simple theory of 
section 4 suggests that a qualitively reasonable approximation 
to the effective pressure N is given by Equations (4.34) and 
(4.35). Thus N '" NR for " < "c' N ~ 6NR for " >" as 
shown in Figure 4, which shows that N versus u lies gn a 
z-shaped curve. For values of u < up N '" N R, for u > u 2 ' 

N '" 6NR , but for u1 < U < u2' N can take any of three 
values, of which we can expect the middle one to be un
stable. However, in this range, two different values of N 
are possible. 

N 

I' ,I 
, I 

I I 
I 

N=N 
R 

I 

N=N 
I K 

u 

Fig. 4. Typical representation of effective pressure N versus 
velocity u when a sudden increase in N occurs at a critical 
value of A = U/ NII. 
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T 

u 

Fig. 5. A multi-valued sliding law for T versus u, when the 
effect of the hydraulic switch portrayed in Figure 4 is 
taken into account. 

The effect of Figure 4 on the sliding law is shown in 
Figure 5. For simplicity, we use the generalized Weertman's 
law 

(5.2) 

given in (3.37). For u < u2 ' stable tunnel drainage is 
possible, and the stress follows the upper curve. For u > up 
stable cavity drainage is possible, and the stress follows the 
lower curve. Between ul and u2' an unstable region is 
possible on which A = Ac' and consequently, the variation 
of N with u implies that the stress T varies 
non-monotonically with u. Assuming the derivation of 
Equation (5.2) is reasonable, this is a general conclusion, 
provided only that the cavity-drainage pressure NK '" 6NR 
is less than the overburden pressure. With the estimates in 
section 4, we might have NK '" 10 bar, which would imply 
multi-valuedness is only possible for sufficiently deep 
glaciers ~ I 00 m deep. This estimate is of course not precise, 
and will vary with drainage characteristics, etc. Whether 
surging behaviour can actually occur or not will depend on 
whether the stress can reach high enough levels to trigger 
the transition to cavity drainage. This again depends 
importantly on the depth and is studied more closely in the 
following section. 

6. DISCUSSION 

Much of the preceding mathematical development will 
be hard to follow, so let us attempt to summarize the main 
points of the argument. 

First, the Nye-Kamb sliding problem with cavities can 
be solved for periodic bedrocks with isolated bumps. For 
this case, one finds TIN = g(ul Nn), where T is shear 
stress, u is velocity, and N is effective pressure. The 
function g(b) has a single maximum, and tends to zero as 
b ~ "", when all the bumps become simultaneously drowned. 
As Lliboutry (1979) emphasized, such a result is not realis
tic for bedrocks with many different obstacle sizes. Then, 
when small obstacles become drowned, larger obstacles take 
up the extra stress, and thus basal stress continues to 
increase with velocity. A general way of deriving a sliding 
law for a non-uniformly bumpy bed is the re-normalization 
principle enunciated by Lliboutry (1979). Application of 
this yields a sliding law which may be generally written in 
the form 

(6.1 ) 

where T, N*, u are dimension less variables, 

(6.2) 

and v = Yo 1 Xo is a typical bedrock roughness slope, E is 
the (typical) ice-surface slope, a is a measure of the 
coarseness of the bed, a = xol d, and d is the depth. Using 
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Equations (2.4), (2.6), and (2.17), Equations (6.1) can be 
written in the dimensional form 

vN'fJ (6.3) 

but it is actually more useful to stay with Equations (6.1). 
For a power-law bed of spectral exponent a (2 < a < 4), 
one has 

kA(a- 2l/(4- a l, k - 0(1), (6.4) 

so that 

T (6.5) 

where 

a = I - n(a - 2)/(4 - ex). (6 .6) 

Generalized power laws of the form in Equation (6.4) have 
in fact been examined experimentally by Budd and others 
(1979), and in field work by Bindschadler (1983). Budd and 
others' experiments were fitted by them to the form of 
Equations (6.1), with n = 2, and 'fJ - A1/ 3 , corresponding to 
a = 2.5 (with n = 2). For lower effective pressures, they 
found T <X Nu, which is not really compatible with 
Equations (6.1). Bindschadler (J 983) found field data to be 
reasonably consistent with the same power law, 'fJ - A1/ 3. It 
must be said, however, that these results are hardly 
corroborations of Equation (6.5). Budd and others' experi
mental results are so far removed in scale from glacier 
sliding that it may be doubted if even the same physics is 
responsible. Bindschadler (1983) did not actually present his 
data, and it may be that a power law is not the best-fit 
law. 

For beds which have a cut-off in "power" at high and 
low wavelengths, a more general form 'fJ(A) may be obtained 
from Equation (3.40), 'fJ(J\) = c l F(I / A) + c

2
Al / nC(I / A). 

Typically, this is a monotone increasing function from 
'fJ(0) = 0 to 'fJ( "") = F < "". The behaviour is thus broadly 
similar to the power law in Equation (6.4), except that 'fJ 
saturates as u ~ "", leading to the solid friction law 
(Reynaud, 1973) 

(6.7) 

However, Equation (6.7) is not sufficient on its own for a 
complete analysis, since T = 0 as u ~ O. For constant N, 
this sliding law is typically as shown in Figure 6. For many 
applications, where the drainage pressure is atmospheric, 
then N* '" H, the (dimensionless) depth, and also T '" H 
(neglecting variations of surface slope due to bedrock 
topography), so that Equations (6.1) become 

(6.8) 

T 

u 

Fig. 6. A possible sliding law with constant N, leading to 
"solid" friction at high velocities. 
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In the particular case that <p saturates, <p(0)) = F, then (6.8) 
indicates that no finite sliding velocity exists if 

(6 .9) 

i.e. the bed is too smooth . This is a conceptual draw-back 
to a solid friction law, and would lead to unlimited acceler
ation. In reality, corrective terms involving surface-slope 
variation and longitudinal stress would yield a meaningful 
law, but then the velocity would increase rapidly with dis
tance down-stream, and it seems unlikely that such a situation could occur in a steady state. Since the approach 
to a saturation limit as 11 ~ 0> assumes that cavitation 
extends to all wavelengths, and floods the bed, it may be 
less realistic on the whole than the assumption of a 
continually increasing <po Notice that the condition (6.9) is 
that v ~ E, which essentially says that locally the whole bed 
slopes down-stream. Now one can imagine that this 
condition may hold locally, but not globally, due to the 
common occurrence of pinning points (controlling zones), 
where the flow is effectively resisted, e.g. bedrock rises or 
riegels . We thus reiterate the point of view of Lliboutry 
and Reynaud (1981) . Such pinning points are the large-scale 
cavity-free bumps of the theory, and it is simply a matter 
of what length scale they occur on which decides whether a 
"local" friction law such as Equation (6.5) is globally 
appropriate with the usual T '" H, or whether the large
scale flow with variable topography must be solved as well, 
to determine the basal shear stress. 

There has been much interest recently in the effect of 
water pressure on the sliding velocity (lken, 1981; Iken and 
Bindschadler, 1986). The latter authors found quasi-steady 
velocities to vary with effective pressure in a way consist
ent with Equation (6.5) at fixed stress T. However, Iken 
reported, at the recent Interlaken meeting on "Hydraulic 
Effects at the Glacier Bed", that later measurements in 1984 
and 1985 seem rather different. 

In order to understand the surging process in 
Variegated Glacier, Kamb has developed a model of the 
subglacial drainage system rather similar in concept to that 
presented here (see Kamb and others, 1985). Similar work 
has been done by Raymond and Harrison, and was reported 
at the Interlaken meeting . In concept, it seems closer to the 
simple model adopted here than Kamb's detailed treatment. 
The following picture is suggested, which gives a physical 
description of the analysis of this work. Cavities are always 
present, over sufficiently small bumps, or steps. Joints in 
the bed ensure these are interconnected but at low 
velocities drainage is primarily through a central 
Rothlisberger channel. Drainage through cavIties is very 
small, because the joints, etc. are small and tortuous, and 
viscous heating in the cavity system is negligible. 

The stability of this drainage system depends on the 
flow rate, as follows (I am grateful to C. Raymond for this 
observation) . We examine the stability of the system 
considered as two reservoirs (cavities and tunnels). These are 
connected by the joints and striae (Kamb's "step cavities"). 
Let PK be the cavity-system pressure, and PR be the tunnel 
pressure. If PK and PR are different, water flows from one 
reservoir to the other. Suppose V K and V R are cavity 
volume and tunnel volume per unit length. Presuming a 
constant flux through the system, one finds dPK/ dV K > 0, 
dPR/ dV R < O. For this reason, a single tunnel on its own is 
unstable, and many linked cavities are stable. Now suppose 
a steady-state PK = PR is perturbed, say by increasing PR 
by tlPR > O. Then water flows from tunnel to cavity, 
leading to an increment of cavity volume, tlV K > 0, and 
thus an increment of cavity pressure tlPK > o. If tlPK > 
tlPR' the system is stable, and will return to its steady 
state. Specifically, stability is ensured if dPK/ dV K > 1 dPR/ dV R I. The right-hand side of this inequality is 
independent of sliding velocity, but of course V K depends 
on PK and u, in fact avK/apK > 0, avK/au > O. For 
examfle, if V K = PKu, then stability ensues if 
u < dV R/ dpR I. In this way, one finds that the stability of 
the combined tunnel / cavity system depends on sliding 
velocity . 

When the combined system breaks down, tunnel(s) 
rapidly collapse, and the drainage is forced through the 
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joints at the bed. These then must enlarge by viscous heat
ing, and eventually a system of interconnecting 
Rothlisberger-type channels will connect the cavities. The 
resultant drainage pressure can be calculated , and is much 
higher. We have implicitly assumed that the cavity system 
becomes unstable when the flow velocity is sufficiently 
reduced, though this is not obvious. A detailed examination 
of such instability has been carried out by Kamb, who 
found that cavities were unstable if the sliding velocity u is 
low enough. It seems likely that this mechanism of 
instability is not essentially the same as that considered here . 

The analysis of the Variegated Glacier surge by Kamb 
and others (1985) focuses on the detailed day-to-day 
variation of velocity and water pressure. In order to study 
surges from the point of view of long time-scale, non
linear oscillations, one needs a description of basal sliding 
which can incorporate quasi-steady fluctuations in water 
pressure. This is provided by the incorporation of the 
drainage pressure as a function of sliding velocity, and 
when this is done, one finds that the monotonic T versus u 
curve of Equation (6.5) becomes multi-valued, due to the 
drop in effective pressure when the tunnel system 
disappears. This multi-valuedness alone is sufficient to 
understand completely the large-scale properties of surges 
(Hutter, 1982), that is, why they recur periodically, why 
they have two distinct time-scales of behaviour, and so on. 
The issues of how this can be shown, and what parameters 
may control surges, will be developed in a separate paper. 

For different glaciers or ice sheets, the important 
parameters which control sliding are JL2 and 113, given by 
Equations (6.2). In addition, the subglacial drainage system 
will switch to a linked-cavity system if 11 in Equation (6.1) 
is large enough (see Equation (4.35)). For glaciers, we might 
typically expect JL2 ~ O( I), so that 11 - 0(1). Then 
u - 0(JL3 ), and if Xo - I m, d - lOO m, Yo - 0.2 m, 
E - 0.1, we have 113 - 50, so that one expects large sliding 
velocities (compared with shearing motion). For such beds, 
the bulk of the resistance may then in fact be due to 
pinning points (e.g. riegels) as mentioned earlier (personal 
communication from I. Whillans). However, when sliding velocities are predominant, it is no longer appropriate to 
choose the velocity scale U from the flow law, as in 
Equation (3.6). The correct method has been given by 
Fowler (1982, appendix A) and is tantamount (when 
113 ~ 0(1)) to putting T = (1/1l3)1/nT , N* = (I / 1l3)1 /IlN* . 
Then JL3 measures the importance of sliding to shearing, 
and the sliding law is given by Equation (6.1), with 
11 = u/ N*n, and u, N* - 0(1). Instability still occurs if 
11 > IIc given by Equation (4.36), since SR is determined 
directly by the flux QR' see Equation (4.4). We thus have 
the following picture. For temperate glaciers with smooth 
large-scale bedrock topography, we expect sliding to be 
predominant, and of 0(JL3 ) times the differential shearing 
motion. Tunnel instability leading to reduced effective 
pressure and thus surges, will occur if 11 > IIc' that is for 
small water outflux, wide glaciers, steep slopes, and smooth 
beds. In addition, surges require that the linked cavity 
water pressure oNR is less than overburden. A Quantitative 
compendium of these predictions and comparison with actual 
characteristics of surging glaciers is deferred to a separate 
paper. 

Lastly, let us comment on the assumed morphology of 
the bed. Our analysis has assumed a hard bed, without basal 
debris. This is the classical assumption, and is not generally 
realistic . Rock fragments and erosive debris may provide an 
active (deformable) sub-sole drift, or may be incorporated 
into the basal ice. In either event, effective water pressure 
will affect sliding, and it is reasonable that any sliding law 
will still have aT/au > 0, au/aN < 0 as for a hard bed. 
Thus, one does not expect soft beds per se to affect the 
qualitative shape of the sliding law. For surging sub-polar 
glaciers, e.g . Trapridge Glacier (Clarke and others, 1984), 
the important difference is in the drainage mechanism· 
which may be blocked off by a cold ice front. Thus a 
tunnel system is inappropriate, and drainage is likely to be 
through a permeable bedrock. 

In this case, explanation of surges by the kind of 
switching mechanism between drainage systems, described by 
Kamb and others (1985), requires some kind of mechanism 
for blocking the escape route. For a given water flux 
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through the glacier, Pw (the pore-water pressure) remains 
constant, determined by the subglacial bedrock permeability. 
Thus, as the glacier thickens, N increases, and therefore the 
sub-sole drift will begin to consolidate, thus decreasing its 
permeability. One may speculate that eventually the drift 
permeability becomes so low that water is unable to escape 
and so the bed is flooded, Pw increases rapidly, and a 
surge is initiated. These ideas follow those of Clarke (Clarke 
and others, 1984), as reported at the Interlaken meeting. 

In conclusion, it seems that a (relatively) unified 
mathematical treatment of sliding and surges may be 
feasible, but the detailed physics is likely to depend on the 
particular kind of bed considered. 
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APPENDIX 

Consider the system in Equations (4.30) and (4.34): 

(AI) 

(A2) 

where 

(A3) 

There is a steady-state so lution 

(A4) 

to study its stability, we put 

(A5) 

and linearize for small nl' n2 to obtain 

(A6) 
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(A7) 

Solutions proportional to exp(},t) exist, where }, is an 
eigenvalue of the matrix 

(AS) 

thus 

0, (A9) 

whence 

(AID) 

It follows that the co-existing system is unstable if ),2 > 0, 
that is if gl > gzN, i.e. 

(All) 

simplifying, we obtain Equation (4.35). 
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