
51

The QCD coupling αs

In this chapter, we shall outline the different determinations of the QCD coupling αs from
τ decay, e+e− → I = 1 hadrons processes and heavy quark systems. This discussion has
been already anticipated in Sections 25.5, 25.6 and Part VI and will not be repeated in detail
here This chapter will complete these discussions.

51.1 αs from e+e− → I = 1 hadrons and τ -decays data

These channels have the great advantage that the spectral functions are measured in a
region where pQCD is applicable and therefore the analysis does not suffer from any
model dependence in the parametrization of the spectral functions. The τ decays and τ -like
decays in e+e− → I = 1 hadron processes (see previous Sections 25.5 and 25.6) are another
prototype of QCD spectral sum rules like the Weinberg sum rules

� The determinations of the QCD coupling from hadronic τ -decays and e+e− → I = 1 hadrons have
been already discussed in details in Sections 25.5, 25.6 and are based on the approach proposed by
BNP [325] for τ -like decay processes. It relies on the fact that the non-perturbative contributions
based on the ‘standard SVZ expansion’ give a tiny correction at the τ mass. In addition, recent
analysis [161] including the new D = 2 dimension tachyonic gluon mass term not considered in
the analysis of [325] shows that this effect is small and does not affect in a significant way the
determination carried out without this term. It tends to reduce slightly (about 10%) the central value
of αs improving the agreement between the τ -decay prediction and the world average at the Z 0

mass. However, this change is marginal as it is of similar size to the theoretical error in the αs

determination from τ -decay.
� The previous original BNP approach [325] has been generalized to higher moments [333] that have

been exploited by the different experimental groups [328,33] for extracting αs . The mean value
coming from the different structure of pQCD series of the ALEPH/OPAL [33] measurements is:

αs(Mτ ) = 0.323 ± 0.005(exp) ± 0.030(th) . (51.1)

This rather modest accuracy runned until the Z 0 mass leads to the precise determinations:

αs(MZ0 ) = 0.1181 ± 0.0007 (exp) ± 0.0030(th) , (51.2)

which is in excellent agreement with the different determinations summarized in Part VI.
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534 X QCD spectral sum rules

� In [346,338,391] and [329] (reprinted in Section 52.10) e+e− → I = 1 hadrons below 2 GeV and
the sum of exclusive �S = 0 τ -decay data have been also used to extract the value of αs as a
cross-check of the value obtained from inclusive τ -decay data. This result has been given in Section
25.6. The most recent analysis in [329] gives:

αs(Mτ ) = 0.33 ± 0.03 , (51.3)

which is in excellent agreement with the τ -decay data result.
� Stability of the previous determinations using lower τ -mass values has been tested using e+e− →

I = 1 hadrons below 2 GeV [346] and the inclusive distributions of τ -decay [345,33]. This test is
reassuring as it indicates that for reasonable values of Mτ larger than 1 GeV, pQCD still applies,
while the OPE parametrized by the few lowest dimension condensates describes the data quite well.
It also indicates that the contribution near the real axis where QCD does not apply is negligible
due to the phase space double suppression factor (1 − s/M2

τ )2. It also indicates that quark-hadron
duality which is the main idea behind this dispersion relation approach and then behind the QCD
spectral sum rule approach is fulfilled by QCD.

51.2 αs from heavy quarkonia mass-splittings

Examining the pioneering SVZ charmonium sum rule [1] (as one can also see in details
in [3] and in the next chapter) the QCD side of this sum rule contains three relevant QCD
parameters, namely the charm quark mass, the perturbative radiative correction αs and the
gluon condensate 〈αs G2〉. In order to extract more reliably one of these parameters, one has
to find appropriate sum rules or their combinations which can disentangle these parameters.

� In [313] (Section 51.3), it is observed that a double ratio RP1
1
/RP3

1
of Laplace sum rules for the P

charmonium states can be used for extracting the value of αs :

RP1
1

RP3
1

�
M2

P1
1

M2
P3

1

� 1 + αs

[
�13

α (exact) = 0.014−0.004
+0.008

]
, (51.4)

where the gluon condensate effect vanishes to leading order. Using the experimental mass, one can
deduce at the optimization point σ � (0.6 ± 0.1) GeV−2:

αs(σ−1 = 1.3 GeV) = 0.64+0.36
−0.18 ± 0.02 =⇒ αs(MZ ) = 0.127 ± 0.009 ± 0.002 . (51.5)

� The non-relativistic q2 = 0 moments sum rules for the ϒ have also been used in [155] in order to
extract αs . Recent improvements [156] of the previous analysis including the new α2

s corrections
of the two-point correlator [447] leads to the value:

αs(Mb) = 0.233+0.045
−0.030 , (51.6)

which runned until MZ gives:

αs(MZ ) = 0.120+0.010
−0.008 . (51.7)

These results are less accurate than the determination from τ -decay, e+e− and LEP data
but are still interesting for an independent determination of αs .
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51.3 Reprinted paper

Heavy quarkonia mass-splittings in QCD: gluon condensate,
αs and 1/m-expansion

S. Narison
Reprinted from Physics Letters B, Volume 387, pp. 162–172, copyright (1996) with permission from Elsevier
Science.

1. The double ratio of moments

QCD spectral sum rule (QSSR) after SVZ [1] (for a recent review, see, e.g. [2]) has shown
since 15 years, its impressive ability for describing the complex phenomena of hadronic
physics with the few universal “fundamental” parameters of the QCD Lagrangian (QCD
coupling αs , quark masses and vacuum condensates built from the quarks and/or gluon
fields), without waiting for a complete understanding of the confinement problem. In the
example of the two-point correlator:

�Q(q2) ≡ i
∫

d4 x eiqx〈0|T JQ(x) (JQ(o))†|0〉 , (1)

associated to the generic hadronic current: JQ(x) ≡ Q̄�Q(x) of the heavy Q-quark (� is a
Dirac matrix which specifies the hadron quantum numbers), the SVZ-expansion reads:

�Q(q2) �
∑

D=0,2,...

∑
dim 0=D

C (J )
(
q2, M2

Q, µ
)〈O(µ)〉(

M2
Q − q2

)D/2 , (2)

where µ is an arbitrary scale that separates the long- and short-distance dynamics; C (J ) are
the Wilson co-efficients calculable in perturbative QCD by means of Feynman diagrams
techniques; 〈O〉 are the non-perturbative condensates of dimension D built from the quarks
or/and gluon fields (D = 0 corresponds to the case of the naı̈ve perturbative contribution).
Owing to gauge invariance, the lowest dimension condensates that can be formed are the
D = 4 light quark mq〈ψ̄ψ〉 and gluon 〈αs G2〉 ones, where the former is fixed by the pion
PCAC relation, whilst the latter is known to be (0.07 ± 0.01) GeV4 from more recent analy-
sis of the light [3] quark systems [2]. The validity of the SVZ-expansion has been understood
formally, using renormalon techniques (absorption of the IR renormalon ambiguity into the
definitions of the condensates and absence of some extra 1/q2-terms not included in the
OPE) [4,5] and/or by building renormalization-invariant combinations of the condensates
(Appendix of [6] and references therein). The SVZ expansion is phenomenologically con-
firmed from the unexpected accurate determination of the QCD coupling αs and from a
measurement of the condensates from semi-inclusive τ -decays [6–8].

The previous QCD information is transmitted to the data through the spectral function
Im �Q(t) via the Källen–Lehmann dispersion relation (global duality) obeyed by the
hadronic correlators, which can be improved from the uses of different versions of the
sum rules [1,9–11]. In this paper, we shall use the simple duality ansatz parametrization:
“one narrow resonance”+“QCD continuum”, from a threshold tc, which gives a good
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536 X QCD spectral sum rules

description of the spectral integral in the sum rule analysis, as has been tested successfully
in the light-quark channel from the e+e− → I = 1 hadron data and in the heavy-quark ones
from the e+e− → ψ or ϒ data. We shall work with the relativistic version of the Laplace
or exponential sum rules where the QCD expression known to order αs is given in terms of
the pole mass m(p2 = m2) [11–14]:1

L(σ, m2) ≡
∞∫

4m2

dt exp(−tσ )
1

π
Im �Q(t)

= 4m2 AH (ω)

[
1 + αsaH (ω) + π

36

〈αs G2〉
m4

bH (ω)

]
,

RH (σ ) ≡ − d

dσ
logLH (σ, m2) = 4m2 FH (ω)

×
[

1 + αs PH (ω) + π

36

〈αs G2〉
m4

Q H (ω)

]
, (3)

where

ω ≡ 1/x = 4m2σ (4)

is a dimensionless variable, while σ ≡ τ (notation used in the literature) is the exponen-
tial Laplace sum rule variable; FH , PH and Q H are complete QCD Whittaker functions
compiled in [12–14]; H specifies the hadronic channel studied. In principle, the pair (σ, tc)
are free external parameters in the analysis, so that the optimal result should be insensitive
to their variations. Stability criteria, which are equivalent to the variational method, state
that the best results should be obtained at the minimas or at the inflexion points in n or
σ , while stability in tc is useful to control the sensitivity of the result in the changes of
tc-values. These stability criteria are satisfied in the heavy quark channels studied here, as
the continuum effect is negligible and does not exceed 1% of the ground state contribution
[2,12], such that at the minimum in σ , one expects to a good approximation:

minσ R(σ ) � M2
H . (5)

Moreover, one can a posteriori check that, at the stability point, where we have an equi-
librium between the continuum and the non-perturbative contributions, which are both
small, the OPE is still convergent such that the SVZ-expansion makes sense. The previous
approximation can be improved by working with the double ratio of moments2:

RHH
′ (x) ≡ RH

RH ′
� M2

H

M2
H ′

= �HH
′

0

[
1 + αs�

HH
′

αs
+ 4π

9
〈αs G2〉σ 2x2�HH

′

G

]
, (6)

1For consistency, we shall work with the two-loop order αs expression of the pole mass [15].
2This method has also been used in [16] for studying the mass splittings of the heavy-light quark systems.
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provided that each ratio of moments stabilizes at about the same value of σ , as in this case,
there is a cancellation of the different leading terms such as the heavy quark mass (and its
ambiguous definition used in some previous literatures), the negligible continuum effect
(which is already small in the ratio of moments), and each leading QCD corrections. We
shall limit ourselves here to the αs-correction for the perturbative contribution and to the
leading order one in αs for the gluon condensate effects. To the order we are working, the
gluon condensate is well-defined as the ambiguity only comes from higher order terms
in αs , which have, however, a smaller numerical effect than the one from the error of the
phenomenological estimate of the condensate.

2. Test of the 1/m-expansion

For this purpose, we use the complete horrible results expressed in terms of the pole
mass to order αs given by [12] and checked by various authors [2], which we expand with
the help of the Mathematica program. We obtain for different channels the expressions
given in Table 1. By comparing the complete and truncated series in 1/m, one can notice
that, at the c and b mass scales, the convergence of the 1/m-expansion is quite bad due to
the increases of the numerical coefficients with the power of 1/m and to the alternate signs
of the 1/m series.

3. Balmer-mass formula from the ratio of moments

The Balmer formula derived from a non-relativistic approach (m → ∞) of the
Schrödinger levels reads [17] (see also [18–20]). for the S3

1 vector meson:

MS3
1

� 2m

[
1 − 2

9
α2

s + 0.23
π

(mαs)4
〈αs G2〉

]
. (7)

It is instructive to compare this result with the mass formula obtained from the ratio of
moments within the 1/m-expansion. Using the different QCD corrections in Table 1, one
obtains the mass formula at the minimum in σ of R:

MS3
1

�
√
R(σmin) � 2m

(
1 + 3

16m2σ

)

×
[

1 −
√

π

6m

αs(σ )√
σ

+ π

12
σ 2〈αs G2〉

]
. (8)

In the case of the b-quark, where we expect the static approximation to be more reliable,
the minimum of this quantity is obtained to leading order at:

√
σcoul � 9

4mαs
√

π
� 0.85 GeV−1 , (9)
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Table 1. Expanded expressions of different QCD corrections in the case
of the pole mass m(p2 = m2) known to order αs

Vector S3
1

π AV
3

16
√

π
x3/2

(
1 − 3

4 x + 45
32 x2 − 525

128 x3 + · · ·)
aV

4
3
√

π

(
π√

x + 0.040 + 1.952
√

x − 1.539x − · · ·
)

.

bV − 1
2x3 + 3

2x2 + 27
8x − 21

8 + · · ·
FV 1 + 3

2 x − 5
4 x2 + 5x3 − · · ·

PV − 2
3

√
πx + 2.704x3/2 − 10.093x5/2 + 52.93x7/2 − · · ·

QV
3

2x2 − 1
4x + 13

8 − 41
4 x + · · ·

S-waves splitting

�VP
0 1 − x2

2 + 7
2 x3 − · · ·

�VP
α

√
π

9 x3/2 + 1.539x2 − 3.0258x5/2 − 7.719x3 + 26.307x7/2 + · · ·
�VP

G
5
x

(
1 − 4

5 x + 11
10 x2 + 17

10 x3 − · · ·)

P-waves splittings

�01
0 1

�01
α −3.18x2(1 − 10.17x + 102.1x2 + · · ·)

�01
G − 2

x + 5
2 − 55

4 x + · · ·
�13

α 1.06x2(1 − 9.5x + 81.1x2 − · · ·)
�AT

0 1 + x2 − 23
2 x3 + · · ·

�AT
α −0.1576x3/2 − 2.545x2 + 3.95x5/2 − · · ·

�AT
G − 6

x + 31
4 − 89

8 x − 1715
8 x2 + · · ·

P-versus S-waves splittings

�VS
0 1 − x + 5x2 − 30x3 + · · ·

�VS
α − 2

9

√
πx − 0.336x3/2 + 4.244x2 + 7.458x5/2 − 42.017x3 − · · ·

�VS
G − 3

x2 − 2
x − 41

4 + 389
4 x − · · ·

�VA
0 �VS

0

�VA
α − 2

9

√
πx − 0.336x3/2 + 1.06x2 + 7.458x5/2 − 9.655x3 · · ·

�VA
G − 3

x2 − 4
x − 31

4 + 167
2 x − · · ·

�VT
0 1 − x + 6x2 − 85

2 x3 + · · ·
�VT

α − 2
9

√
πx − 0.493x3/2 − 1.484x2 + 11.409x5/2 + 18.248x3 − · · ·

�VT
G − 3

x2 − 10
x + 579

8 x − 16719
16 x2 + · · ·

where we have used for 5 flavours3: αs(σ ) � 0.32 ± 0.06 after evolving the value
αs(Mz) = 0.118 ± 0.006 from LEP [21] and τ -decay data [6–8]. The inclusion of the gluon

3In the approximation we are working, the effect of the number of flavours enters only through the β-function
and therefore is not significant.
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condensate correction shifts the value of σmin to:
√

σmin � 0.74
√

σcoul . (10)

These previous values of σ confirm the more involved numerical analysis in [12] and indicate
the relevance of the gluon condensate in the analysis of the spectrum. By introducing the
previous leading order expression of σcoul into the sum rule, one obtains:

Mϒ � 2mb

(
1 + π

27
α2

s

) [
1 − 2

9

(
π

3

)
α2

s +
(

27

128

)(
3

π

)2
π

(mbαs)4
〈αs G2〉

]
, (11)

where one can deduce by identification in the static limit (mb → ∞) that the Coulombic
effect is exactly the same in the two approaches. The apparent factor π/3 is due to the
fact that we use here the approximate Schwinger interpolating formula for the two-point
correlator. The gluon condensate coefficient is also about the same in the two approaches.
This agreement indicates the consistency of the potential model and sum rule approach in
the static limit, though a new extra α2

s correction due to the ν2 (finite mass) terms in the
free part appears here (for some derivations of the relativistic correction in the potential
approach see [22,23]), and tends to reduce the Coulombic interactions. On the other hand, at
the b-quark mass scale, the dominance of the gluon condensate contribution indicates that the
b-quark is not enough heavy for this system to be Coulombic rendering the non-relativistic
potential approach to be a crude approximation at this scale.

4. S3
1 – S1

0 hyperfine and P – S-wave splittings

In the non-relativistic approach used in [20], the hyperfine and S–P wave splittings are
given to leading order by:

M
(
S3

1

) − M
(
S1

0

) � 2m
(CFαs)4

6

[
1 + 3.255

π

2m4α6
s

〈αs G2〉
]

,

M
(
P3

1

) − M
(
S1

3

) � 2m

[
3(CFαs)2

32
+ 25π

(CF mαs)4
〈αs G2〉

]
, (12)

where CF = 4/3. Using the double ratio of moments and the QCD corrections given in
Table 1, one obtains at σcoul:

M
(
S3

1

) − M
(
S1

0

)
M

(
S3

1

) ≈ −4π2

(
αs

9

)4

+ 8

9

(√
παs

9

)3

αs + 45

32m4α2
s

〈αs G2〉 + · · · ,

M
(
P3

1

) − M
(
S3

1

)
M

(
S3

1

) ≈ 4π

81
α2

s + 2π

81
α2

s + 27

8m4α2
s

〈αs G2〉 + · · · , (13)

where the corrections are, respectively, relativistic, Coulombic and non-perturbative. By
comparing the sum rules in Eqs. (8) and (13), one can realize that the leading x or 1/σ -
terms cancel in the hyperfine splitting, while the x-expansion is slowly convergent for the
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αs-term at the b-mass. Comparing now this result with the one from the non-relativistic ap-
proach, it is interesting to notice that both approaches lead to the same αs-behaviour of the
Coulombic and gluon condensate contributions. A one to one correspondence of each QCD
corrections is not very conclusive, and needs an evaluation of the correlator at the next-next-
to-leading order for a better control of the α2

s x terms. However, as the Coulombic potential
is a fundamental aspect of QCD, we shall, however, expect that, after the resummation of
the higher order terms in αs , the coefficient of the α4

s -term in the hyperfine splitting will
be the same in the two alternative approaches. In the case of the S – P wave splitting, the
sum of the α2

s corrections agrees from the two methods, though one can also notice that the
relativistic correction is larger than the Coulombic one. The discrepancy for the coefficients
of the gluon condensate in the two approaches is more subtle and may reflect the difficulty of
Bell-Bertlmann [19] to find a bridge between the field theory after SVZ (flavour-dependent
confining potential) and the potential models (flavour-independence). Resolving the differ-
ent puzzles encountered during this comparison is outside the scope of the present paper.

5. Leptonic width and quarkonia wave function

Using the sum rule LH and saturating it by the vector S3
1 state, we obtain, to a good

approximation, the sum rule:

MV �V → e+e− � (αeQ)2 e2δm MV σ

72
√

π

σ−3/2

m
×

[
1 + 8

3

√
πσmαs − 4π

9
〈αs G2〉mσ 5/2

]
,

(14)

where eQ is the quark charge in units of e; δm ≡ MV − 2m is the meson-quark mass gap. In
the case of the b-quark, we use [15] δm � 0.26 GeV, and the value of σmin given in Eq. (10).
Then:

�ϒ(S3
1 )→ e+e− � 1.2 keV , (15)

in agreement with the value found from the data, 1.3 keV. However, one should remark from
Eq. (14) that the αs correction is huge and needs an evaluation of the higher order terms
(the gluon condensate effect is negligible), while the exponential factor effect is large, such
that one can reciprocally use the data on the width to fix either αs or/and the quark mass.
Larger value of the heavy quark mass at the two-loop level (see, e.g. [26]) corresponding to
a negative value of δm, would imply a smaller value of the leptonic width in disagreement
with the data.

In the non-relativistic approach, one can express the quarkonia leptonic width in terms
of its wave function �(0)Q :

�V → e+e− = 16πα2

M2
V

e2
Q |�(0)|2Q

(
1 − 4CF

αs

π

)
, (16)

where (see, e.g. [20]):

16π |�(0)|2Q
(

1 − 4CF
αs

π

)
� 2(mCFαs)3 ≈ 15 GeV3 . (17)
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In our approach, one can deduce:

16π |�(0)|2Q
(

1 − 4CF
αs

π

)
� 1

72
√

π
e2δm MV σ σ−3/2 MV

m

×
[

1 + 8

3

√
πσmαs − 4π

9
〈αs G2〉mσ 5/2

]
� 18.3 GeV3 .

(18)

Using the expression of σcoul, one can find that, to leading order, the two approaches give
a similar behaviour for �(0)Q in αs and in m and about the same value of this quantity,
though, one should notice that in the present approach, the QCD coupling αs is evaluated at
the scale σ as dictated by the renormalization group equation obeyed by the Laplace sum
rule [27] but not at the resonance mass!

6. Gluon condensate from Mψ(S3
1 ) – Mηc(S1

0 )

The value of σ , at which, the S-wave charmonium ratio of sum rules stabilize is [12]:

σ � (0.9 ± 0.1) GeV−2 . (19)

Using the range of the charm quark pole mass to order αs accuracy [15]4: mc � 1.2–1.5 GeV
one can deduce the conservative value of x:

ω ≡ 1/x � 6.6 ± 1.8 . (20)

The ratio of the mass squared of the vector V (S3
1 ) and the pseudoscalar P(S1

0 ) is controlled
by the double ratio of moments given generically in Eq. (6), where the exact expressions of
the corrections read:

�VP
0 � 0.995+0.001

−0.004 , �VP
α � 0.0233−0.009

+0.011 ,

�VP
G � 29.77+8.86

−10.23 , (21)

where each terms lead to be about 0.5, 2 and 7% of the leading order one. One can understand
from the approximate expressions in Table 1 that the leading x-corrections appearing in the
ratio of moments cancel in the double ratio, while the remaining corrections are relatively
small. However, the x-expansion is not convergent for the αs-term at the charm mass, which
invalidates the use of the 1/m-expansion done in [28] in this channel. Using for 4 flavours
[15]: αs(σ ) � 0.48+0.17

−0.10, and the experimental data [25]: Rexp
VP = 1.082, one can deduce the

value of the gluon condensate:

〈αs G2〉 � (0.10 ± 0.04) GeV4 . (22)

We have estimated the error due to higher order effects by replacing the coefficient of αs

with the one obtained from the effective Coulombic potential, which tends to reduce the

4For a recent review on the heavy quark masses, see e.g. [24,25].
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estimate to 0.07 GeV4. We have tested the convergence of the QCD series in σ , by using the
numerical estimate of the dimension-six gluon condensate g〈 fabcGaGbGc〉 contributions
given in [14]. This effect is about 0.1% of the zeroth order term and does not influence
the previous estimate in Eq. (22), which also indicates the good convergence of the ratio of
exponential moments already at the charm mass scale in contrast with the q2 = 0 moments
studied in [1,29]. We also expect that in the double ratio of moments used here, the radiative
corrections to the gluon condensate effects (their expression for the two-point correlator is
however available in the literature [30]) are much smaller than in the individual moments,
such that they will give a negligible effect in the estimate of the gluon condensate. This
value obtained at the same level of αs-accuracy as previous sum rule results, confirm the
ones of Bell-Bertlmann [11,12,14,30,2] from the ratio of exponential moments and from
FESR-like sum rule for quarkonia [31,2] claiming that the SVZ value [1] has been under-
estimated by about a factor 2 (see also [29,32]). Our value is also in agreement with the
more recent estimate (0.07 ± 0.01) GeV4 from the τ -like sum rules [3], and FESR [34] in
e+e− → I = 1 hadrons. A more complete comparison of different determinations is done in
Table 2.

7. Charmonium P-wave splittings

The analysis of the different ratios of moments for the P-wave charmonium shows [11–
14] that they are optimized for:

σ � (0.6 ± 0.1) GeV−2 , =⇒ αs(σ ) � 0.41+0.11
−0.07 , 1/x = 4.5 ± 1.5 . (23)

In the case of the Scalar P3
0 -axial P3

1 mass splitting, the different exact QCD coefficient
corrections of the corresponding double ratio of moments read:

�01
0 = 1 , �01

α � −(
0.045−0.014

+0.028

)
, �01

G � −(
7.75+2.84

−2.77

)
. (24)

Using the correlated values of the different parameters, one obtains the mass-splitting
�M3

10 ≡ MP3
1

− MP3
0

� (60−16
+35) MeV, where we have used the experimental value MP3

1
=

3.51 GeV. Adding the 〈gG3〉 dimension-six condensate effect, which is about −1.6% of the
leading term in R01, one can finally deduce the prediction in Table 2, which is in excellent
agreement with the data. One should remark that the previous predictions indicate that, for
the method to reproduce correctly the mass-splittings of the S and P-wave charmonium
states, one needs both larger values of αs and 〈αs G2〉 than the ones favoured in the early
days of the sum rules.

In the case of the Tensor P3
2 -axial P3

1 mass splitting, the different exact QCD corrections
for the double ratio of the tensor over the axial meson moments read:

�TA
0 = (

0.989+0.003
−0.006

)
, �TA

α = (
0.029−0.004

+0.013

)
, �TA

G = (
22.1+8.5

−8.2

)
, (25)

from which, one can deduce the prediction in Table 2, which is slightly higher than the
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Table 2. Predictions for the gluon condensate, for the different mass-splittings (in units of
MeV) and for the leptonic widths (in units of keV). We use αs(MZ ) = 0.118 ± 0.006 from

LEP and τ -decay

Observables Input Predictions Data/comments

〈αs G2〉[GeV]4 × 102 M� − Mηc = 108 10 ± 4 This work
Mc.o.m.

χb − Mγ = 440 6.5 ± 2.5 –
Average 7.5 ± 2.5 Mass splittings
Charmonium masses ≈ 4 SVZ-value [1]

q2 = 0-mom.
– 5.3 ± 1.2 q2-mom. [9]
– 10 ± 2 exp. mom. [11,12]
– 9.2 ± 3.4 mom. [31]
e+e− → I = 1 hadrons 4 ± 1 ratio of mom. [33]
– 13+5

−7 FESR [34]
– 7 ± 1 τ -like decay [3]
τ -decay (axial) 6.9 ± 2.6 [35]
τ -decay data
ALEPH 7.5 ± 3.1 [8]
CLEO 2.0 ± 3.8 [8]

αs(1.3 GeV) Mχc(P1
1 ) − Mχc(P3

1 ) 0.64+0.36
−0.18 ± 0.02 αs(MZ ) � 0.127 ± 0.011

Mχc(P1
1 ) − Mχc(P3

1 ) αs from LEP/τ -decay 10.1−4.1
+9.9 11.1 (c.o.m.)

15.6 (data)
Mχc(P3

1 ) − Mχc(P3
0 ) 〈αs G2〉average 89−16

+35 95

Mχc(P3
2 ) − Mχc(P3

1 ) – 77+26
−11 50

Mγ − Mηb 〈αs G2〉average 13−7
+10 order αs

63−29
+51 coeff.αs : Coul. pot.

Mχb(P3
0 ) − MY – 475+75

−64 400

Mχb(P3
1 ) − MY – 485+25

−68 432

Mχb(P3
2 ) − MY – 500 ± 71 453

Mχb(P1
1 ) − MY c.o.m. 492+56

−69 440

MT − 2mt 〈αs G2〉average −906 two-loop pole mass
MT − Mηt – 1.8 order αs

93 coeff.αs : Coul. pot.
Mχt − MT – 1800 –
�γ→e+e− – 1.2 1.32
�T →e+e− – 0.16 –

data of 50 MeV. This small discrepancy may be attributed to the unaccounted effects
of the dimension-six condensate or/and to the (usual) increasing role of the contin-
uum for state with higher spins. However, the prediction is quite satisfactory within our
approximation.
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8. αs from the P1
1 -P3

1 axial mass splitting

The corresponding double ratio of moments has the nice feature to be independent of
the gluon condensate to leading order in αs and reads:

M2
P1

1

M2
P3

1

� 1 + αs
(
�13

α (exact) = 0.014−0.004
+0.008

)
. (26)

The recent experimental value MP1
1

= 3526.1 MeV of the P1
1 state denoted by hc(1P) in

PDG [25] almost coincides with the one of the center of mass energy:

Mc.o.m
P = 1

9

[
5MP3

2
+ 3MP3

1
+ MP3

0

] � 3521.6 MeV (27)

as expected from the short range nature of the spin-spin force [36]. Using this experimental
value, one can deduce:

αs(σ−1 � 1.3 GeV) � 0.64+0.36
−0.18 ± 0.02 =⇒ αs(MZ ) � 0.127 ± 0.009 ± 0.002 .

(28)

The error is twice bigger than the one from LEP and τ decay data, but its value is perfectly
consistent with the latter. The theoretical error is mainly due to the uncertainty in �α , while
a naı̈ve exponential resummation of the higher order αs terms leads to the second error much
smaller than the previous ones. This value of αs can be useful for an alternative derivation
of this fundamental quantity at low energies and for testing its q2-evolution. Reciprocally,
using the value of αs from LEP and τ -decay data as input, one can deduce the prediction
of the center of mass (c.o.m) of the P3

J states given in Table 2.

9. Υ − ηb mass splitting

For the bottomium, the analysis of the ratios of moments for the S and P waves shows
that they are optimized at the same value of σ , namely [12]:

σ = (0.35 ± 0.05) GeV−2 , (29)

which implies for 5 flavours: αs(σ ) � 0.32 ± 0.06. Using the conservative values of the
two-loop b-quark pole mass: mb � 4.2−4.7 GeV, one can deduce:

1/x � 28 ± 7 , (30)

where one might (a priori) expect a good convergence of the 1/m expansion.
The splitting between the vector ϒ(S3

1 ) and the pseudoscalar ηb(S1
0 ) can be done in a

similar way than the charmonium one. The double ratio of moments reads numerically:

RVP � M2
V

M2
P

� (
0.9995+0.0002

−0.0003

) × [
1+ αs

(
2.4−0.7

+1.4

) × 10−3

+ (0.03 ± 0.01) GeV−4〈αs G2〉] , (31)
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where we have used the exact expressions of the QCD corrections. This leads to the mass
splitting in Table 2. To this order of perturbation theory, this result is in the range of the
potential model estimates [36,37,20], with the exception of the one in [17,22], where in the
latter it has been shown that the square of the quark velocity v2 correction can cause a large
value of about 100 MeV for the splitting. One should also notice that, to this approximation,
the gluon condensate gives still the dominant effect at the b-mass scale (0.2% of the leading
order) compared to the one 0.08% from the αs-term. However, the 1/m series of the QCD αs

correction is badly convergent, showing that the static limit approximation is quantitatively
inaccurate in the b-channel. Therefore, one expects that the corresponding prediction of
(13−7

+10) MeV is a very crude estimate. In order to control the effect of the unknown higher
order terms, it is legitimate to introduce into the sum rule, the coefficient of the Coulombic
effect from the QCD potential as given by the α2

s -term in Eq. (12)5. Therefore, we deduce
the “improved” final estimate in Table 2:

Mϒ − Mηb ≈ (
63−29

+51

)
MeV , (32)

implying the possible observation of the ηb from the γ radiative decay.

10. ϒ − χb mass splittings and new estimate of the gluon condensate

As the S and P wave ratios of moments are optimized at the same value of σ , we can
compare directly, with a good accuracy, the different P states with the ϒ(S3

1 ) one. As the
coefficient of the α2

s corrections, after inserting the expression of σmin, are comparable with
the one from the Coulombic potential, we expect that the prediction of this splitting is more
accurate than in the case of the hyperfine. The different double ratios of moments read
numerically for the values in Eqs. (28)–(29):

RVS � M2
V

M2
S

� (
0.9696+0.0054

−0.0083

) × [
1 − αs

(
0.071−0.006

+0.011

) − (
0.50+0.18

−0.11

)
GeV−4〈αs G2〉] ,

RVA � M2
V

M2
A

� (
0.9696+0.0054

−0.0083

) × [
1 − αs

(
0.074−0.007

+0.012

) − (
0.54+0.18

−0.12

)
GeV−4〈αs G2〉] ,

RVT � M2
V

M2
T

� (
0.9704+0.0051

−0.0084

) × [
1 − αs

(
0.077−0.008

+0.006

) − (
0.57+0.16

−0.13

)
GeV−4〈αs G2〉] ,

(33)

where V , S, A, T refer respectively to the γ and to the different χb states P3
0 , P3

1 , P3
2 . Using

the value of the gluon condensate obtained previously, these sum rules lead to the mass
splittings in Table 2, which is in good agreement with the corresponding data, but definitely
higher than the previous predictions of [39], where, among other effects, the values of αs

and of the gluon condensate used there are too low. Reciprocally, one can use the data for
re-extracting independently the value of the gluon condensate. As usually observed in the

5In this case, the gluon condensate contribution is smaller than the Coulombic one as has been observed in [38].
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literature, the prediction is more accurate for the c.o.m., than for the individual mass. The
corresponding numerical sum rule is:

Mc.o.m.
χb

− Mϒ

Mϒ

� (
1.53+0.26

−0.42

) × 10−2 + (
1.20+0.1

−0.2

) × 10−2 + (
0.28+0.08

−0.06

)
GeV−4〈αs G2〉 ,

(34)

which leads to:

〈αs G2〉 � (6.9 ± 2.5) × 10−2 GeV4 . (35)

We expect that this result is more reliable than the one obtained from the Mψ − Mηc as the
latter can be more affected by the noncalculated next-next-to-leading perturbative radiative
corrections than the former. An average of the two results from the ψ − ηc and ϒ − χb

mass splittings leads to:

〈αs G2〉 � (7.5 ± 2.5) × 10−2 GeV4 , (36)

where we have retained the most precise error.

11. Update average value of 〈αs G2〉

The previous result can be compared with different fits of the heavy and light quark
channels given in Table 2, and which range from 4 (SVZ) to 14 in units of 10−2 GeV4.
The most recent estimate from e+e− → I = 1 hadrons data using τ -like decay is (7 ±
1) × 10−2 GeV4, where one should also notice that the different post-SVZ estimates favour
higher values of the gluon condensate. If one considers this latter as the update of the light
quark channel estimates and the former as an update of the heavy quark one, one can deduce
the update average from the sum rule:

〈αs G2〉 � (7.1 ± 0.9) × 10−2 GeV4 . (37)

More accurate measurements of this quantity than the already available results from τ -decay
data [8] are needed for testing the previous phenomenological estimates.

12. Toponium: illustration of the infinite mass limit

Since only in the case of the toponium, the 1/m-expansion is ideal, we have extended the
previous analysis in this channel, though, we are aware that this application can be purely
academic because of the eventual non-existence of the corresponding bound states. We
use the top mass: mt � (173 ± 14) GeV, obtained from the average of the CDF candidates
(174 ± 16) GeV and of the electroweak data (169 ± 26) GeV as compiled by PDG [25].
We shall work with the ratio of moments in the vector channel for determining the mass of
the S3

1 state, and use with a good confidence the leading terms of the expressions given in
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Table 1. Using the sum rules in Eqs. (8) and (11) and the value of the minimum σ−1/2 �
20 GeV from Eq. (9), we deduce the result for the meson-quark mass gap given in Table 2.
For the splittings, we use the sum rules in Eqs. (12) and (13), while, for the leptonic width,
we use the sum rule in Eq. (14). Our results are summarized in Table 2.

13. Conclusions

We have used new double ratios of exponential sum rules for directly extracting the mass-
splittings of different heavy quarkonia states. Therefore, we have obtained from Mψ − Mηc

and Mχb − Mϒ a more precise estimate of the value of the gluon condensate given in Eq.
(36), which combined with the one from τ -like decay in e+e− → I = 1 hadrons data leads
to the update average in Eq. (37) from the sum rule. We have also used Mχc(P1

1 ) − Mχc(P3
1 )

for an alternative extraction of αs at low energy (see Eq. (28)), with a value consistent with
the one from LEP and τ -decay. Our numerical results are summarized in Table 2, where a
comparison with different estimates and experimental data is done.

We have also attempted to connect the sum rules and the potential model approaches,
using a 1/m-expansion. We found, that the Coulombic corrections, which are quite well
understood in QCD, agree, in general, in the two approaches, except in the radiative cor-
rections of the hyperfine splitting which requires the knowledge of the next-next-to-leading
αs-corrections. Relativistic corrections due to finite value of the quark mass have been in-
cluded in our analysis. However, the coefficients of the gluon condensate disagree in the
two approaches, which may be related to the difficulty encountered by Bell-Bertlmann in
finding a bridge between a field theory after SVZ and potential models.
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