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A REGULAR SPACE ON WHICH EVERY REAL-VALUED 
FUNCTION WITH A CLOSED GRAPH IS CONSTANT 

BY 

IVAN BAGGS 

ABSTRACT. An example is given of a regular space on which every 
real-valued function with a closed graph is constant. It was previously 
known that there are regular spaces on which every continuous function 
is constant. It is also shown here that there are regular spaces that support 
only constant real-valued continuous functions, but support non-constant 
real-valued functions with a closed graph. 

1. Introduction. Let X and Y be topological spaces. A function/ : X —• Y has a 
closed graph if {(JC, f(x))\x G X} is closed in X x Y. It is known that there are regular 
spaces on which every real-valued continuous function is constant. The purpose of 
this note is to construct a regular space on which every real-valued function with a 
closed graph is constant. In addition, it will be shown that there are regular spaces 
that support only constant real-valued continuous functions, but support non-constant 
real-valued with a closed graph. Throughout, R will be used to denote the real line 
with the usual topology. 

The first example of a regular space on which every continuous real-valued function 
is constant was published by Hewitt in 1946 (see [9]). An example by Novak appeared 
in 1948 (see [13]). Since then other examples have appeared. See for example [1], 
[5], [8] and [10]. In particular, van Douwen [5] gives a clear and systematic method 
for constructing a regular space on which every real-valued continuous function is 
constant. In an interesting paper [10] which appeared in 1986, Iliadis and Tzannes 
investigate spaces on which every continuous function into a given range space, not 
necessarily the real line, is constant or locally constant. 

Several papers have appeared on the points of discontinuity of functions with a 
closed graph. See for example [2], [4], [6], [11], [12] and [16]. The monograph by 
Hamlett and Harrington [5] is an excellent reference source on properties of functions 
with a closed graph and it also contains an extensive bibliography. In 1985, Dobos [4] 
showed that for a perfectly normal space X, a subset F C X is closed and of the first 
category (in X) if and only if there exists a function / :X —• /? with a closed graph 
such that the points of discontinuity of / coincide with F. The results which follow 
are part of an investigation into properties of real-valued function with a closed graph 
on spaces which are not perfectly normal. Further results are given in [3]. 
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2. Preliminaries. We state the following known results for later use. 

THEOREM 2.1. Let X be a normal topological space and let f : X —• R be a 
function with a closed graph. Then there exists a sequence of continuous functions 
fn\X —> J?, n = 1, 2, 3 , . . . , such that \fn(x)\ ^ n and lim^oo fn(x) = f(x)for each 
x GX. (See [11] Theorem 6). 

LEMMA 2.2. Lef f :X —>Y be a function with a closed graph. IfK C Y is compact, 
then f~~l(K) is closed in X. (See [7] page 6). 

LEMMA 2.3. Let f : X —> Z be continuous. If h : Z —>Y has a closed graph, then 
hof has a closed graph (see [16]). 

Let J be the set of all real-valued functions with some property P on a topological 
space X. 

NOTE 2.4. In what follows we will restrict our consideration to those properties P 
such that; (i) if h is a continuous function and / is any function with property P, then 
the composition, / o h , has property P, and (ii) if / has property F on a space X, then 
the restriction of / to any subspace of X also has property P. 

Examples of classes of functions with a property P on a given space X are, the 
set of all continuous functions on X, the set of functions with closed graphs on X (by 
Lemma 2.3) and the set of all functions on X of Baire class a, a < £2, where Q is 
the first uncountable ordinal. 

Following van Douwen, two points a and b in X will be called twins for the family 
<? of all real-valued functions with property F on X if f(a) = f(b) for all / G J. 
Starting with an arbitrary regular space X with twins for the family f of all continuous 
real-valued functions on X, van Douwen in [5] gives a nice method for constructing 
a regular space on which every real-valued continuous function is constant. We now 
sketch van Douwen's method to show, how, starting with a regular space X with twins 
for the family J of all real-valued functions with property P on X, one can construct 
a regular space Y on which every real valued function with property P is constant. 

VAN DOUWEN'S CONSTRUCTION. Let X be a regular space and a, b G X be twins for 
the set of all real-valued functions f with property P o n l . Let / be an index set 
with the same cardinality as X. For every s G / , let Xs be an homeomorphic copy of 
X. Let Z be the disjoint union of {Xs\s G / } . V is open (closed) in Z if and only 
if V n Xs is open (closed) in Xs for each s G / . Let as and bs denote the twins of 
X,. Put A = {as\s G / } and B = {bs\s G / } . Let g : A —> Z \ {A U B} be a one-
to-one onto function. Let Y be the decomposition of Z consisting of {B } and the pairs 
{as,g(as)} for s G / . Y may be considered as the quotient space resulting from this 
decomposition where q : Z —>Y is the decomposition map. 

Let / be any real-valued function on Y with property P. f o q is a function from 
Z into /?. Since q is continuous, / o q has property P on Z by (i) of Note 2.4. By (ii) 
of Note 2.4, the restriction of / o q to X5 has property P for each s G / . Therefore, 
asi bs G X5 are twins offoq for each s £ I. f oq is constant on B and on each pair 
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{as, g(as)} G Z for s G /. Therefore / o q is constant on Z. That is, / is constant on 
Y. 

It was shown by van Douwen [5] that Y is regular (that is, T3 and T\). Therefore 
Y has the required properties. 

3. Functions with a closed graph on ordinal spaces. The method we will use to 
construct a regular space Y on which every real-valued function with a closed graph 
is constant will be to first find a regular space X with twins for the set of all real 
valued functions with a closed graph on X. We will then construct the regular space Y 
by the condensation of twins as in Section 2. It is not difficult to see that the regular 
spaces, such as those given in [9] [14, page 109] and [17, page 134], which have 
twins for the set of continuous real valued functions, do not have twins for the set of 
real-valued functions with a closed graph. In this section we will begin the process of 
constructing a regular space X with twins for every real-valued function with a closed 
graph on X. 

Let 12 denote the first uncountable ordinal and let O = [0, £2] denote the set of 
all ordinals less than or equal to the first uncountable ordinal with the order topology. 
Let Ob = [0, Q). 

LEMMA 3.1. If f : Oo —• R is a function with a closed graph, then there exists 
xo G OO such that f is constant on C = {(3 G Oo\(3 > xo}. 

PROOF. Since / has a closed graph and Q> is normal, by Theorem 2.1, there exists 
a sequence of continuous real-valued functions fni n = 1, 2, 3 , . . . , on Oo such that 
lim^oo fn(x) = f(x) for each x G Cfo. For each integer n, there is an xn G Oo such 
that fn is constant on {(3 G Oo\/3 > xn}> Let XQ = swpxn. Then / is constant on 
C = {f3e 0)1(3 >x0}. 

COROLLARY 3.2. Let O = [0,12]. If f : O —> R is a function with a closed graph, 
then there exists xo G O, xo < Q, such that f is constant on {(3 G O \(3 > xo}. 

REMARK 3.3. Let {xn\n — 1, 2,. . .} and {yn\n = 1, 2, . . .} be two sequences in 
Oo = [0,12). If xn Û yn ^ xn+\ forn= 1, 2 , . . . , then both sequences converge to 
the same point in OQ. 

LEMMA 3.3. Let T = [0, £1] x [0, Q] and let S = T - (12,12). If f : S —• R is a 

function with a closed graph, then f can be extended to a function g : T —» R such 
that the graph of g is closed, g is continuous at (12,12) and g(x) — fix) for all x G S. 

PROOF. Let {(xa,ya)}aeD be a net of distinct points in S such that xa —+ 12 and 
ya —• 12. We will show that there exists a constant c G R such that f((xa,ya)) —• c. 
Consider the following cases. 

CASE 1. xa — ya for all a G D. Since {(x,x) G S\x < 12} is homeomorphic to 
[0,12) and since / restricted to {(x,x) G S\x < 12} has a closed graph, there exists, 
by Lemma 3.1, an element XQ G [0,12) such that if C = {(x,x) G S\XQ < x < 12}, 
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then / is identically equal to a constant, c, on C. Therefore, if xa = ya for all a G D 
and if xa —> £1 and ya —• £1, then / (x a , ya) —• c. 

CASE 2. Let xa < ya < O, for every a G D, and for every /? G [0, Q) let there 
be an at most countable subset Kp of D such that xa = (3 for each a G Kp. Without 
loss of generality we may assume that jto ^ xa for all a G D, where / is identically 
equal to c on {(x,x) G S|jto < * < £1}. Suppose {/(jca, ya)}aeD does not converge 
to c. Then there exists a subnet P of {(xa,ya)}aG/) and a closed interval J\ CR such 
that c G int/i and f(P)C\J\ = 0. Further, P is uncountable since no sequence in 
[0, Q] converges to £1. Also, for some closed and bounded interval J2 C /f, there 
is an uncountable subset B C P C {(*a, va)|a G D} such that f(B) C /2- [Write 
/f as a countable union of disjoint bounded intervals /„, n = 1, 2, 3 , . . . , and let 
P„ = {(;ca, va) G P| / (x a , va) G In}. Since P = U#" a nd ^ is uncountable, P„ must be 
uncountable for some ri\. Since B is uncountable and since, for each f3 G [0, £1), there 
is an at most countable subset of Kp of D such that (jca, va) = (/3, va) for each a G Kp, 
it follows that if B = {Oy,y7)|7 € £>i}, then x1 —* £1 and y7 —•» £2. Select a sequence 
{(jc7n,y7n)}^:1 from B as follows: Let (x7l,y7l) be any element of P. For each integer 
n è l , when (jc7n,y7J G P has been selected, select (xln+l,y7n+1 ) where x7n+1 is the 
smallest ordinal such that (xln+x,yln+x) G P for some y7n+1 and xln < yln ^ x7n+1. Then, 
by Remark 3.3, {{xln^yln)}

(^l —-> (x,;c), where xo < x. Also { /O^ ,}^} C J2, while 
/"(JC,JC) = c G / 1 . /2 is compact and (x,x) is a limit point of /_ 1(^2), which is not 
in f~l(J2)- Therefore f~l{J2) is not closed. By Lemma 2.2, this would contradict the 
fact that the graph of/ is closed. Therefore {f(xa,ya)}aeD converges to c. 

CASE 3. Let xa < ya = £1 for all a G D. Since {(/3, ft)|/3 < £2} is homeomorphic 
too [0,Q) by Lemma 3.1, there exists JCI G [0,0) such that if A = {(/3,Q)|JC,- ^ /? < 
Q}, then/ restricted to {(/J, Q)|/3 < £1} is equal to a constant, ci, on A. Without loss 
of generality we may assume xo ^ x\ and x\ ^ jca for all a G £>. Also, for each 
/?, where JCI ^ /3 < £2, / is identically equal to a constant, cp, on some tail, Ap, of 
{(/3, 7)|7 ^ £1}. Since A^HA = (/3, Q), and since /(/3, Q) = cu it follows that cp = c\, 
for each /3 è JC. For each /? G [JCI,Q), select (xp,yp) G A^ such that xp <yp < £1. It 
follows that f(xp,yp) = c\, for each /3 and that {(xp,yp)}p^Xl is a net in S such that 
JC0 —• Q, and y^ —» £2. Now, by case 2, we see that f(xp,yp) = c, for all /3. Therefore 
c\ = c, and in this case f(xa,ya) = c for all a G D. 

CASE 4. If {(x a ,y a)} a e D is any net in S such that xa ?H ya ^ £1, xa —> £1 and 
y« —• £1, then {(xa,ya)}ae/) can be broken into at most three disjoint nets each of 
which would satisfy the conditions of either Case 1, 2 or 3 and the image of each net 
under / would therefore converge to c. 

CASE 5. If {(xa,ya)|a G D} is any net in S such that ya ^ xa = £1, then since 
{(jc,y) G S\x ^ y ^ £1} is homeomorphic to {(jc,y) G 5|y ^ x ^ 12}, it follows, as 
above, that {f(xa,ya)}a(zD converges to c. 

Put g(x) — /(JC) if x G S and put g((Q,Q)) = c, where/ is identically equal to c 
on C — {(x,x) G S\XQ < x < £1}. g(x) has the required properties. 
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4. The space Y. First we will construct a regular space X with two points a, b EX 
such that a and b are twins for every real valued function on X with a closed graph. X 
will be a modification of the example in [17, problem 186] which is based on Hewitt's 
example [9]. 

EXAMPLE 4.1. Let T = [0, Q] x [0, Q] and let S = T- (Q, Q). Let Z denote the set of 
positive and negative integers and form the product S xZ. Form the quotient space K 
by identifying points in S xZ as follows: if n is odd, identify the corresponding points 
in the right edges of S x {n} and S x {«+1} and if n is even identify the corresponding 
points in the top edges of S x {n} and S x {n + 1}. Add to K two points a and b at 
'infinity' and put X = # U {a, /?}. The image of S„ = 5 x {«} in X is homeomorphic 
to S for each /i. Let Un(a) = {a} U U«=„S« and I/B(fc) = {£} U U«=„S-m be 
neighbourhoods of « and Z?, respectively, for w = 1, 2, 3 , . . . . It follows as in [14] 
and [17] that X is a regular space which is not completely regular. 

Let / : X —> R be any function with a closed graph. Show fia) = fib). It follows 
from Lemma 3.1, Lemma 3.3 and the construction of X, that for every positive integer 
n, f is identically equal to some constant c, on both the right edge and top edge of 
Sn, except for at most a countable number of points. Now select an, a member of the 
top edge of Sn, for each positive integer n, such that f(an) = c. Then an —• a. If 
a £ f~l(c), then f~l(c) is not closed in X. This, by Lemma 2.2, contradicts the fact 
that the graph of / is closed. Therefore f(a) = c. Similarly f(b) = c and f(a) = f(b). 

EXAMPLE 4.2. We now show there exists a regular space Y on which every real-
valued function with a closed graph is constant. It follows from Lemma 2.3 that if 
h : Z —> Y is a function with a closed graph, then condition (i) of Note 2.4 is satisfied 
for any continuous function / : X —• Z. It is easily seem that a function with a 
closed graph also satisfies condition (ii) of Note 2.4. Now let J be the family of all 
real-valued function on the space X of Example 4.1 with the property that, for each 
/ € 7', / has a closed graph. Then, by van Douwen's Construction as in Section 
2, we can construct a space Y, starting with X, such that every real-valued function 
f :Y —+R with a closed graph is constant. 

EXAMPLE 4.3. Let X, a and b be as in Example 4.1. We will show there exists a 
function / : X -» R of Baire class I such that f(a) ^ f(b). Define / : X —• R by 
f(a) = —1, f{b) = 1 and fix) = 0, if JC G X and x ^ a, x ^ b. Let F be a closed 
set in /?, clearly f~liF) is a Ĝ  subset of X and / is of Baire class I. 

5. In this section a regular space Y will be constructed with the property that Y 
supports only constant real-valued continuous functions, but it will be shown that Y 
supports non-constant real-valued functions with a closed graph. Y will be constructed 
using the method of van Douwen from Section 2 and will be based on an example 
of a regular space X, which is not completely regular, by Thomas [15]. An outline of 
Thomas' example follows. See [15] for further details and a geometric interpretation. 

EXAMPLE 5.1. (Thomas). If n = 0, ±1 , ±2, ± 3 , . . . , put L(2/i) = {i2n,y) G 
R2\0^y< 1/2}. If/i = 0, ±1 , ±2, ± 3 , . . . , and/: = 2, 3 4 , . . . , putpiln- l,ifc) = 
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(2n - 1 , 1 - l/k) G R2
9 and put T(2n - 1, *) = {(2n - \ ± t , \ - t - l/k) G rt2|f € 

(0,1 — l/k]}. Let a, b be two points 'at infinity'. Put 

I +oo \ ( oo oo "J 

( J L(2«) U ( J (J{r(2n - 1, *) U/7(2n - 1, *)} U {a, ft}. 
n=—oo J [ n=-oo k=2 ) 

Topologize X as follows. If x G T(2n - 1, jfe) for « = 0, ± 1 , ±2, ± 3 , . . . , and 
k = 2, 3 , . . . , then x is open. If x = p(2n — 1, £), then every neighbourhood of x 
contains all but finitely many points of T(2n — 1, &). If x = (2/z, j ) G L(2«), then a 
neighbourhood of x consists of all but finitely many of the points of X with the same 
y-coordinate and with ;t-coordinate that differs from n by less than 1. If x = a and 
c is a real number, then a subset of X which consists of all points with y -coordinate 
> c is an open set containing a. If x = b and c is a real number, then a subset of X 
which consists of all points with v-coordinate < c is an open set containing b. It was 
shown in [15] that X is regular and if / : X —• R is continuous, then f(a) = f(b). 

EXAMPLE 5.2. We now will give an example of a regular space Y on which every 
continuous function g : Y —• R is constant and an example of a non-constant function 
f :Y —+R with a closed graph. Let X be the space of Example 5.1. <?, £ G X are twins 
for every real-valued continuous function on X. Starting with this space, construct a 
regular space Y, as in Section 2, on which every continuous real-valued function is 
constant. In this construction, we may consider Xs for each s G / , as 

I +oo \ ( +oo +oo \ 

\J L(2n, s)\ul ( J \J{T(2n-l, k, s)Up(2n-l, k, s)}\U{as, bs). 
n=—oo ) \n=-ook=2 ) 

For each s G / , we may consider Xs as consisting of the countable family of lines 
L(2ft, s), for n = 0, ± 1 , ± 2 , . . . , together with the countable family of lines {T(2n — 
1, k, s) Up(2n — 1, k, s)}, for n = 0, ± 1 , ±2, ± 3 , . . . , /: = 2, 3 , . . . , and the points 
05 and 65. Let ô G / be fixed. Define a function /i : XSo—> R such that /i is a one-to-
one correspondence between the positive integers and the countable family of lines 
whose union, together with aSo and bSo equals XSo. Recall, Z is the disjoint union of 
{Xs\s G / } . Define / : Z —» R as follows; for each fixed n, define / on L(2«, s) such 
that f(L(2n, s)) = h(L(2n, SQ)) for each 5 G /; for each fixed « and &, define / on 
{r (2r t - l , it, s)U/?(2rc-l, it, s)} such t h a t / ( { r ( 2 « - l , k, s)Up(2n-\, k, s)}) == 
/ i ({r(2n-1, it, JO) U p ( 2 n - 1 , k, s0)}), for each 5 G /; put f(bs) = 0 for each s G /; 
and for each s G 7, put /(a5) = f(g(as)), where g is the one-to-one function from A 
onto Z \ {AUB} defined in Section 2. Since f(B) = 0 and f(as) = f(g(as)) for every 
{<25, g(tf5)} in the decomposition space 7, / may be considered as a mapping from 
Y into /?. It will follow from the next three lemmas that the graph of / is closed. 

Note that an open subset V of Z is said to be saturated relative to the decomposition 
space Y of Z if and only if V can be written as the union of elements of Y. That is, 
if and only if q(V) is open in Y, where q : Z —• Y is the decomposition mapping. 
The space Y in the next three lemmas will be the space constructed in Example 5.2. 
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LEMMA 5.3. Let J be a subset of the index set I (used in the construction ofY) and 
let {aa,g(aa)}aej be a net in Y such that {g(aa)}aeJ C {T(2n0- 1, k0l s) Up(2n0-
1, &o, s)} for n0 and k0 fixed and s el. / / K , g(aa)}aeJ —>x, then x = {ap,g(ap)}> 
where g(ap) G {T(2n0 - 1, k0, s) U p(2n0 - 1, /c0, s)} for s el. 

PROOF. Let no and ko be fixed. Suppose x ^ {apig(ap)} for g(ap) € {T(2n0 — 
1, ko, s) U p{2no — 1, £o, s)} and s G / . There are then two cases to be considered: 
(i) x = {ap, g(ap)}, where g(ap) g {T(2n0 - 1, *o, J ) U /?(2AZ0 - 1, *o, s)} for 5 6 / ; 
(ii) JC = {«}. 

CASE 1. Let x = {ap,g(ap)}, where g(ap) <£ {T(2n0 - 1, *o, J ) U /?(2AZ0 -
1, k, s)} for s G /. In this case, we will construct an open set U C F such that 
{ap,g(ap)} G [/ but {aa,g(aa)} g U for all a e J. g(ap) G X,-0 for some fixed 
/o G / . There is an open set in Z, U(g(ap)), such that g(a^) G U(g(ap)) C X/0 and 
#(#(/?)) H {r(2«0 - 1, *o, J) U /?(2AZ0 - 1, *o, J ) } = (f) for all j G / . Similarly, 
there is an open set U(ap) in Z such that ap G £/(#/?) C Xp, where a^ G Xp, and 
£/(#/?) D {r(2«0 — 1, ko, s) U p(2«o — 1, £o? s)} = 0 for all s G / . Now for each 
s G / , 5 ̂  /3, select an open set As, containing aS9 such that As C ̂  and ̂ (aa) ^ A5 

for all a G / . This is possible since for each s G / , As can be selected as a subset 
of {7X2A2O + 1, *o, J) U /?(2AZ0 - 1, *o, *)}'• Put Vi = U(g(ap)) U tfty,). Put 

Vn+l = Vn U [{A^fo ) G V„}], for /i = 1, 2, 3, 4 , . . . . Put V = \Jn Vn. It follows 
from the choice of As and Vn, n = 1, 2 , . . . , that V is a saturated open set in Z. 
Clearly ap and gOz/?) are both members of V. Put U = q(V), where (7 is the natural 
quotient map from Z onto Y. Then U is an open set in Y which contains {tf/3,g(tf/?)} 
and it does not contain {aaig(aa)} for each a eJ. Therefore ^ ^ {tf/3,g(fl/?)}, when 
g(ap) g {T(2n0 ~ 1, *o, s) U /?(2AZ0 - 1, £0, s)} for 5 G / . 

CASE (ii). Suppose x — {B}. It can be shown in a way similar to (i) that 
{aa,g(aa)}aGj does not converge to x. 

The only remaining possibility is that x = {ap,g(ap)}, where g(ap) G {T(2no — 
1, &o, 5) U p(2n0 — 1, &o, •*)} for 5 G / . 

LEMMA 2. Let {aaig(aa)}aej be a net in Y such that {g{aa)}aej C {L(2AZO, s)} 
where no is fixed and s el. If {#<*, g {da)} —• •*, ^AZ * = {ap, g (ap)} for some (3 G / 
a/M/ gfap) G {L(2/io, J ) } , 6 / . 

PROOF. Similar to Lemma 1 and is omitted. 

LEMMA 3. If f :Y —>R is the function constructed in Example 52, then the graph 
of f is closed. 

PROOF. Let {(xa, f(xa))}aer be any net in the graph of / such that (xa, f(xa)) —• 
(JC, y) G Y x R. We must show that y = f(x). Since xa —» JC and /(Jta) —» v, it follows 
from the definition of / that y = m, where AW is a positive integer or zero, and, that 
f(xa) is identically equal to m for all a ^ a(m). If AW = 0, and xa G Y such that 
/(jta) = 0, then xa = B. Hence f(xa) = f(B) = f(x) = 0 = y for all a ^ a(m). 
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If m ^ 0, then {xa}aeJ = {tf«, g(#«)}«&/ Cf~~l(m) for all a ^ a(m). In this case 
put Tm — {g(as) G Z - ( A U 6 ) | f(as,g(as)) — m}. Then for each m, there exists 
integers no and &o such that either Tm = {T(2no — 1, &o? s) U /?(2«o — 1? £o? -s)} or 
Tw = {L(2«o? 5)} where s ranges over / . In either case it follows that {g(aa)} G Tm 

for a G / and a ^ a(ra). Since {aa,g(aa)} —> x, it follows from Lemmas 1 and 2 
that x = {ap,g(ap)} where g{ap) G Tm. Therefore /(JC) = m = v and the graph of / 
is closed. 

REMARK. If the regular space Y constructed in Example 5.2 had been based on the 
regular spaces given in [14, page 109] and [17, problem 18G] which have twins, then 
it can be shown in a similar way that there exists a real valued function on Y which 
has a closed graph whose range is the set of non-negative integers. 
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