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Abstract
Given a family of pairs over a smooth curve whose general fiber is a log Calabi–Yau pair in a fixed bounded family,
suppose there exists a divisor on the family whose restriction on a general fiber is ample with bounded volume.
We show that if the total space of the family has relatively trivial log canonical divisor and the special fiber has slc
singularities, then every irreducible component of the special fiber is birationally bounded.
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Throughout this paper, we work over the complex number field C.

1. Introduction

A family of projective pairs of dimension d over a smooth curve (possibly non-proper) is an object

𝑓 : (𝑋,Δ) → 𝐶,

consisting of a morphism of schemes 𝑓 : 𝑋 → 𝐶 and an effective Q-divisor Δ satisfying the following
properties,

◦ f is projective, flat, of finite type, of relative dimension d, with reduced fibers,
◦ every irreducible component 𝐷𝑖 ⊂ Supp(Δ) dominates C, and all fibers of Supp(𝐷) have pure

dimension 𝑑 − 1, and
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2 J. Jiao

◦ f is smooth at generic points of 𝑋𝑠 ∩ Supp(𝐷) for every 𝑠 ∈ 𝐶, where 𝑋𝑠 := 𝑓 −1(𝑠) denotes the fiber
over s.

Usually, fibers of a family of projective pairs behave wildly. [13, 1.43] gives several examples of
families of projective surfaces whose special fibers are canonically polarized and general fibers are even
not of general type. [13] also shows that such jumps of Kodaira dimension happen when the canonical
class of the total space is notQ-Cartier. Thus, it is natural to consider the case when 𝐾𝑋 +Δ isQ-Cartier.
And in this case, 𝐾𝑋𝑠 + Δ𝑠 = (𝐾𝑋 + Δ) |𝑋𝑠 is also Q-Cartier for all closed point 𝑠 ∈ 𝐶 according to the
adjunction formula.

In general, a family of projective pairs 𝑓 : (𝑋,Δ) → 𝐶 over a smooth curve such that 𝐾𝑋 + Δ is
Q-Cartier and (𝑋𝑠 ,Δ𝑠) is an slc pair for every closed point 𝑠 ∈ 𝐶 is called locally stable. The notion of
locally stable morphisms has been verified to be a very important definition in the moduli of varieties
and satisfies many nice properties – for example, the plurigenera are constant; see [13, Theorem 5.11]
(see Definition 2.1 for the definition of slc pairs).

For a family of projective pairs 𝑓 : (𝑋,Δ) → 𝐶 which is locally stable over 0 ∈ 𝐶, we call (𝑋0,Δ0)
an slc degeneration of {(𝑋𝑠 ,Δ𝑠), 𝑠 ≠ 0}. In this paper, we study the birational boundedness of slc
degenerations of polarized log Calabi–Yau fibrations. The boundedness of polarized log Calabi–Yau
pairs is studied in [6]. The first result shows that for a family of projective pairs over a curve, suppose the
log canonical divisor of the total space is relatively trivial, general fibers are in a fixed bounded family
of polarized log Calabi–Yau pairs and the special fiber is an slc degeneration. Then every irreducible
component of the slc degeneration is bounded up to birationally equivalence (see Definition 2.4 for the
definition of boundedness).

Theorem 1.1. Fix a natural number d and positive rational numbers 𝑐, 𝑣. Let X be a quasi-projective
normal variety, 𝑓 : (𝑋,Δ) → 𝐶 a family of projective pairs of dimension d over a smooth curve C and
0 ∈ 𝐶 a closed point. Suppose

◦ 𝐾𝑋 + Δ ∼Q,𝐶 0,
◦ (𝑋0,Δ0) is an slc pair, and
◦ there is a divisor N on X such that a general fiber (𝑋𝑔,Δ𝑔), 𝑁𝑔 is a (𝑑, 𝑐, 𝑣)-polarized log Calabi–Yau

pair (see Definition 4.1).

Then every irreducible component of 𝑋0 is birationally bounded.

Note𝐾𝑋 +Δ ∼Q,𝐶 0 implies𝐾𝑋 +Δ isQ-Cartier. Because the discrepancy is a lower semi-continuous
function (see [12, Corollary 4.10]), then (𝑋0,Δ0) is an slc pair implies (𝑋𝑠 ,Δ𝑠) is an slc pair for every s
in an open neighborhood of 0, and it means (𝑋,Δ) → 𝐶 is locally stable over an open neighborhood of 0.

Fano varieties naturally have polarized log Calabi–Yau structures. The following corollary is an
application of Theorem 1.1 to families of log Fano pairs.

Corollary 1.2. Fix a natural number d and positive rational numbers 𝑐, 𝜖 . Let X be a normal quasi-
projective variety, 𝑓 : (𝑋,Δ) → 𝐶 a family of projective pairs of dimension d over a smooth curve C
and 0 ∈ 𝐶 a closed point. Suppose

◦ −(𝐾𝑋 + Δ) is ample over C,
◦ (𝑋0,Δ0) is an slc pair,
◦ a general fiber (𝑋𝑔,Δ𝑔) is 𝜖-lc, and
◦ coeff (Δ) ⊂ 𝑐N.

Then every irreducible component of 𝑋0 is birationally bounded.

Note that in Theorem 1.1, we only assume the existence of polarization on general fibers, the slc
degeneration has no assumption on positivity, and hence, it does not have a polarized log Calabi–Yau
pair structure. Example 2.5 shows that boundedness up to birational equivalence is the best result one
can hope for. Example 2.6 shows that the number of irreducible components of the slc degeneration
cannot be bounded either.
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After the paper has been completed, Birkar informed the author that he and Santai Qu [8] obtained
Theorem 1.1 and Corollary 1.2 independently.

Sketch of the proof of Theorem 1.1. The main tools used in this paper are the moduli space of
polarized log Calabi–Yau pairs [6] and the weak semistable reduction [1]; see also [2]. With the same
notation as in Theorem 1.1, because a general fiber (𝑋𝑔,Δ𝑔), 𝑁𝑔 is a (𝑑, 𝑐, 𝑣)-polarized log Calabi–
Yau pair, there exists a moduli map 𝐶 \ 0 → S , where S is the moduli space of (𝑑, 𝑐, 𝑣)-polarized
log Calabi–Yau pairs. Because S is proper, the moduli map extends to a morphism 𝐶 → S , and after
a finite cover, it will define a new fibration (𝑋 ′,Δ ′), 𝑁 ′ → 𝐶 whose fibers are (𝑑, 𝑐, 𝑣)-polarized log
Calabi–Yau pairs. In particular, (𝑋 ′

0,Δ
′
0) is log bounded. Because (𝑋,Δ) → 𝐶 and (𝑋 ′,Δ ′) → 𝐶 are

both log Calabi–Yau fibrations over C with the same generic fiber, then they are crepant birationally
equivalent over C. Therefore, any irreducible component of 𝑋0 is an lc place of (𝑋 ′,Δ ′). Note that an lc
center of (𝑋 ′,Δ ′) contained in 𝑋 ′

0 is also an lc center of (𝑋 ′
0,Δ

′
0) by adjunction which is in a bounded

family. The main difficulty is to use the boundedness of lc centers to prove the birational boundedness
of lc places since the contraction from an exceptional divisor to its image can not be controlled. We
use weak semistable reduction to make singularities toric, and for toric cases, such contraction is well
understood according to [10].

2. Preliminary

2.1. Notations and basic definition

We will use the same notation as in [15] and [17].
A sub-log pair (𝑋,Δ) consists of a normal quasi-projective variety X and a Q-divisor Δ such

that 𝐾𝑋 + Δ is Q-Cartier. We call (𝑋,Δ) a log pair if in addition, Δ is effective. If 𝑔 : 𝑌 → 𝑋 is
a birational morphism and E is a divisor on Y, the discrepancy 𝑎(𝐸, 𝑋,Δ) is −coeff𝐸 (Δ𝑌 ), where
𝐾𝑌 + Δ𝑌 := 𝑔∗(𝐾𝑋 + Δ). A sub-log pair (𝑋,Δ) is called sub-klt (respectively sub-lc) if for every
birational morphism 𝑌 → 𝑋 as above, 𝑎(𝐸, 𝑋,Δ) > −1 (respectively ≥ −1) for every divisor E on Y.
A log pair (𝑋,Δ) is called klt (respectively lc) if (𝑋,Δ) is sub-klt (respectively sub-lc) and (𝑋,Δ) is a
log pair.

Let (𝑌,Δ𝑌 ), (𝑋,Δ) be two sub-log pairs and ℎ : 𝑌 → 𝑋 a projective birational morphism. We say
(𝑌,Δ𝑌 ) → (𝑋,Δ) is a crepant birational morphism if 𝐾𝑌 + Δ𝑌 ∼Q ℎ∗(𝐾𝑋 + Δ), two sub-log pairs
(𝑋𝑖 ,Δ 𝑖), 𝑖 = 1, 2 are crepant birationally equivalent if there is a sub-log pair (𝑌,Δ𝑌 ) and two crepant
birational morphisms (𝑌,Δ𝑌 ) → (𝑋𝑖 ,Δ 𝑖), 𝑖 = 1, 2.

Let (𝑋,Δ) be a sub-log pair. We say a divisor P over X is a log place of (𝑋,Δ) if the discrepancy
𝑎(𝑃, 𝑋,Δ) < 0. A closed subvariety 𝑊 ⊂ 𝑋 is called a log center of (𝑋,Δ) if W is the image of a log
place of (𝑋,Δ) on X. In particular, a log place P of a sub-log pair (𝑋,Δ) such that 𝑎(𝑃, 𝑋,Δ) ≤ −1 is
called a nklt place, respectively, a nklt center is the image of a nklt place. When (𝑋,Δ) is sub-lc, a nklt
place (respectively, a nklt place) is also called an lc place (respectively, an lc center).

A contraction is a projective morphism 𝑓 : 𝑋 → 𝑍 of quasi-projective varieties with 𝑓∗O𝑋 = O𝑍 .
If X is normal, then so is Z, and the fibers of f are connected. A fibration is a contraction 𝑓 : 𝑋 → 𝑍 of
normal quasi-projective varieties with dim𝑋 > dim𝑍 .

For a scheme X, a stratification of X is a disjoint union
∐
𝑖 𝑋𝑖 of finitely many locally closed

subschemes 𝑋𝑖 ↩→ 𝑋 such that the corresponding morphism
∐
𝑖 𝑋𝑖 → 𝑋 is both monomorphism and

surjective.

Definition 2.1. A semi-pair (𝑋,Δ) consists of a reduced quasi-projective scheme of pure dimension
and a Q-divisor Δ ≥ 0 on X satisfying the following conditions:

◦ X is 𝑆2 with nodal codimension one singularities,
◦ no component of Supp(Δ) is contained in the singular locus of X, and
◦ 𝐾𝑋 + Δ is Q-Cartier.
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We say that (𝑋,Δ) is semi-log canonical (slc) if, in addition, we have

◦ if 𝜋 : 𝑋𝜈 → 𝑋 is the normalization of X and Δ𝜈 is the sum of the birational transform of Δ and the
conductor divisor of 𝜋, then every irreducible component of (𝑋𝜈 ,Δ𝜈) is lc. We call (𝑋𝜈 ,Δ𝜈) the
normalization of (𝑋,Δ).

For an slc pair (𝑋,Δ) with normalization (𝑋𝜈 ,Δ𝜈), we say a divisor P over X is a log place
(respectively, an lc place) of (𝑋,Δ) if P is a log place (respectively, an lc place) of an irreducible
component of (𝑋𝜈 ,Δ𝜈), and the image of P on X is called a log center (respectively, an lc center) of
(𝑋,Δ).

The following is the definition of locally stable morphisms defined in [13, Chapter 4]. In this paper,
we only work on the case when the base is smooth, and in this case, the definition of locally stable
morphisms is much more simple; see Lemma 2.3.

Definition 2.2. Let S be a reduced scheme and n a natural number. A projective family of pairs of
dimension n over S is an object

𝑓 : (𝑋,Δ) → 𝑆,

consisting of a morphism of schemes 𝑓 : 𝑋 → 𝑆 and an effective Q-divisor Δ satisfying the following
properties:

◦ f is projective, flat, of finite type, of pure relative dimension n, with geometrically reduced fibers,
◦ every irreducible component 𝐷𝑖 ⊂ Supp(Δ) dominates an irreducible component of S, and all

nonempty fibers of Supp(Δ) → 𝑆 have pure dimension 𝑛−1. In particular, Supp(Δ) does not contain
any irreducible component of any fiber of f, and

◦ the morphism f is smooth at generic points of 𝑋𝑠 ∩ Supp(𝐷) for every 𝑠 ∈ 𝑆.

We say a projective family of pairs 𝑓 : (𝑋,Δ) → 𝑆 is well-defined if further,

◦ there exists an open subset 𝑈 ⊂ 𝑋 such that
– codimension of 𝑋𝑠 \𝑈𝑠 is ≥ 2 for every 𝑠 ∈ 𝑆, and
– Δ |𝑈 is Q-Cartier.

Let 𝑓 : (𝑋,Δ) → 𝑆 be a well-defined projective family of pairs over a reduced scheme S. We say f
is locally stable if it satisfies the following conditions:

◦ 𝐾𝑋/𝑆 + Δ is Q-Cartier, and
◦ (𝑋𝑠 ,Δ𝑠) is an slc pair for every 𝑠 ∈ 𝑆.

We say f is stable if further,

◦ 𝐾𝑋/𝑆 + Δ is ample over S.

According to [13, Theorem-Definition 4.3], when S is normal, a family of projective family of pairs
is naturally well-defined.

Lemma 2.3 [13, Corollary 4.55]. Let S be a smooth scheme and 𝑓 : (𝑋,Δ) → 𝑆 a morphism. Then f is
locally stable if and only if the pair (𝑋,Δ + 𝑓 ∗𝐷) is slc for every snc divisor 𝐷 ⊂ 𝑆.

Definition 2.4. We say that a set 𝒳 of varieties is bounded (respectively, birationally bounded) if there
is a projective morphism W → T , where T is of finite type, such that for every 𝑋 ∈ 𝒳, there is a closed
point 𝑡 ∈ T and an isomorphism W𝑡 → 𝑋 (respectively, a birational map W𝑡 � 𝑋).

Example 2.5. [11, Corollary 1.2] shows that for any (𝛼, 𝛽, 𝛾) ∈ N3 such that 𝛼2 + 𝛽2 +𝛾2 = 3𝛼𝛽𝛾, there
exists a morphism 𝑋 → 𝐶 over a smooth curve germ 0 ∈ 𝐶, such that 𝐾𝑋 ∼Q,𝑇 0, 𝑋𝑡 is isomorphic
to P2 for 𝑡 ≠ 0 and 𝑋0 is isomorphic to the weighted projective space P(𝛼, 𝛽, 𝛾). Write 𝑈 := 𝐶 \ 0
and 𝑋𝑈 := 𝑋 ×𝐶 𝑈. Because −𝐾𝑋𝑈 is very ample over U, let Δ𝑈 , 𝑁𝑈 ∈ | − 𝐾𝑋𝑈 /𝑈 | be two general
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elements. Then a general fiber of (𝑋𝑈 ,Δ𝑈 ), 𝑁𝑈 → 𝑈 is a (2, 1, 9)-polarized log Calabi–Yau pair. Since
the function 𝛼2 + 𝛽2 + 𝛾2 = 3𝛼𝛽𝛾 has infinitely many positive integer solutions, the special fiber is not
bounded, while they are all birationally equivalent to P2.

Example 2.6. Let 𝑓 : (𝑋,Δ) → 𝐶 be a family of pairs over a smooth curve satisfying the assumptions
in Theorem 1.1. Suppose 𝑋0 has more than two irreducible components. Note that every irreducible
component of 𝑋0 is an lc center of (𝑋,Δ + 𝑋0). Then (𝑋,Δ + 𝑋0) has infinitely many lc places over 0.

Fix a positive integer 𝑚 � 0. Suppose (𝑌,Δ𝑌 ) → (𝑋,Δ + 𝑋0) is a crepant birational morphism that
only extracts at least m lc places of (𝑋,Δ + 𝑋0) over c. Denote the morphism 𝑌 → 𝐶 by 𝑓𝑌 . Then Δ𝑌
is equal to the strict transform of Δ plus red( 𝑓 ∗𝑌 0). Suppose l is the least common multiple of the set
of coefficients of 𝑓 ∗𝑌 0. Let 𝜋 : 𝐶 ′ → 𝐶 be a ramified cover whose ramified index along 0′ is l, where
0′ is a closed point of 𝜋−1(0). Let 𝑌 ′ be the normalization of 𝑌 ×𝐶 𝐶

′. Then by [13, Lemma 2.53],
𝑓𝑌 ′ : 𝑌 ′ → 𝐶 ′ has reduced fibers.

Denote the morphism 𝑌 ′ → 𝑌 by 𝜋𝑌 . By the Hurwitz’s formula, there is a Q-divisor Δ ′
𝑌 on 𝑌 ′ such

that 𝐾𝑌 ′ + Δ ′
𝑌 ∼Q 𝜋∗𝑌 (𝐾𝑌 + Δ𝑌 ). Because Δ𝑌 ≥ red( 𝑓 ∗𝑌 0), by [12, 2.42], Δ ′

𝑌 ≥ red( 𝑓 ∗𝑌 ′0′) = 𝑓 ∗𝑌 ′0′.
Then by the definition, (𝑌 ′,Δ ′

𝑌 − 𝑓 ∗𝑌 ′0′) → 𝐶 ′ is a locally stable morphism satisfying the assumptions
in Theorem 1.1, and 𝑌 ′

0 has at least m irreducible components.

3. Almost semistable reduction and toroidal embedding

3.1. Toric varieties

Let 𝑁 ′, 𝑁 � Z𝑛 be lattices, Σ′,Σ be fans in 𝑁 ′, N respectively. A map between fans, in notation
𝜓 : Σ′ → Σ, is a homomorphism 𝜓 : 𝑁 ′ → 𝑁 of lattices that satisfies the condition: For each 𝜎′ ∈ Σ′,
there exists a 𝜎 ∈ Σ such that 𝜓(𝜎′) ⊂ 𝜎. Such 𝜓 determines a morphism 𝜓̃ : 𝑋Σ′ → 𝑋Σ. A morphism
between toric varieties that arises in this way is called a toric morphism.

Let Σ′
𝜎 be the set of cones in Σ′ whose interior is mapped to the interior of 𝜎 ∈ Σ. Pick 𝜎′ ∈ Σ′

𝜎 .
The image 𝜓(𝑁 ′/𝑁 ′

𝜎′ ) in 𝑁/𝑁𝜎 is independent of the choice of 𝜎′ in Σ′
𝜎 . We define the index

[𝑁/𝑁𝜎 : 𝜓(𝑁 ′/𝑁 ′
𝜎)] to be the index of 𝜓̃ over 𝑂𝜎 , and denote it by 𝐼𝑛𝑑 (𝜎).

Let 𝜏′ ∈ Σ′
𝜎 and {𝜎′

1, 𝜎
′
2, ...} be the set of cones in Σ′

𝜎 that contains 𝜏′ as a face. Then each 𝜎′
𝑖

determines a cone 𝜎̄′
𝑖 in 𝜓−1 ((𝑁𝜎)R)/(𝑁

′
𝜏′ )R, defined by

𝜎̄′
𝑖 = (𝜎′

𝑖 + (𝑁 ′
𝜏′ )R)/(𝑁

′
𝜏′ )R.

Note that 𝜎′
𝑖 + (𝑁 ′

𝜏′ )R is contained in 𝜓−1 (𝑁𝜎)R since 𝜏′, 𝜎′
𝑖 ∈ Σ′

𝜎 . Thus, {𝜎̄′
1, 𝜎̄

′
2, ...} defines a fan in

𝜓−1 ((𝑁𝜎)R)/(𝑁
′
𝜏′ )R. The fan in 𝜓−1 ((𝑁𝜎)R)/(𝑁

′
𝜏′ )R constructed above will be called the relative star

of 𝜏′ over 𝜎 and will be denoted by 𝑆𝑡𝑎𝑟𝜎 (𝜏′)
A cone 𝜏′ ∈ Σ′

𝜎 is called primitive with respect to 𝜓 if none of the faces of 𝜏′ are in Σ′
𝜎 .

Let 𝑋Σ be a toric variety. We call the divisor 𝐷Σ := 𝑋Σ \ 𝑇 the toric boundary of 𝑋Σ, where T is the
big torus.

Theorem 3.1. [10, Proposition 2.1.4] Let 𝜓̃ : 𝑋Σ′ → 𝑋Σ be a toric morphism induced by a map of fans
𝜓 : Σ′ → Σ. Then,

◦ The image 𝜓̃(𝑋Σ′ ) of 𝜓̃ is a subvariety of 𝑋Σ. It is realized as the toric variety corresponding to the
fan Σ𝜓 := Σ ∩ 𝜓(𝑁 ′

R
).

◦ The fiber of 𝜓̃ over a point 𝑦 ∈ 𝑋Σ𝜓 depends only on the orbit 𝑂𝜎 , 𝜎 ∈ Σ𝜓, that contains y. Denote
this fiber by 𝐹𝜎 . Then it can be described as follows.

Define Σ′
𝜎 to be the set of cones 𝜎′ in Σ′, whose interior is mapped to the interior of 𝜎. Let

𝐼𝑛𝑑 (𝜎) be the index of 𝜓̃ over 𝑂𝜎 . Then 𝜓−1 (𝑦) = 𝐹𝜎 is a disjoint union of 𝐼𝑛𝑑 (𝜎) identical copies
of connected reducible toric variety 𝐹𝑐𝜎 , whose irreducible components 𝐹𝜏′𝜎 are the toric variety
associated to the relative star 𝑆𝑡𝑎𝑟𝜎 (𝜏′) of the primitive elements 𝜏′ in Σ′

𝜎 .
◦ For 𝜎 ∈ Σ𝜓, 𝜓̃−1(𝑂𝜎) = 𝑂̃𝜎 ×𝐹𝑐𝜎 , where 𝑂̃𝜎 is a connected covering space of𝑂𝜎 of order 𝐼𝑛𝑑 (𝜎).
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Remark 3.2. Here, the term reducible toric variety means a reducible variety obtained by gluing a
collection of toric varieties along some isomorphic toric orbits.

Theorem 3.3. [10, Remark 2.1.12] If 𝜓 is surjective, then 𝐼𝑛𝑑 (𝜎) = 1 for all 𝜎 ∈ Σ.

For any toric variety 𝑋Σ, it is well-known that there is a refinement 𝜓 : Σ′ → Σ, that is, each cone
of Σ is a union of cones in Σ′, such that 𝜓̃ : 𝑋Σ′ → 𝑋Σ is a resolution of singularities.

Theorem 3.4. Let 𝜓̃ : 𝑋Σ′ → 𝑋Σ be the resolution defined by a refinement 𝜓 : Σ′ → Σ. Suppose V is a
prime divisor of 𝑋Σ′ \𝑇𝑁 . Then P is birationally equivalent to P𝑟 × 𝜓̃(𝑃), where 𝑟 = dim𝑉 − dim𝜓̃(𝑃).

Proof. Because 𝜓̃ is a toric morphism, every prime divisor of 𝑋Σ′ \ 𝑇𝑁 corresponds to a 1-dimension
cone of Σ′. Fix a cone 𝜎 ∈ Σ of dimension ≥ 2, and suppose 𝜎′

1, 𝜎
′
2, ... ∈ Σ′

𝜎 are the 1-dimensional
cones that map to the interior of 𝜎, which are clearly primitive. Let 𝜎′′

1 , 𝜎
′′
2 , ... ∈ Σ′

𝜎 be other primitive
cones. By Theorem 3.3 and Theorem 3.1, 𝜓̃−1 (𝑂𝜎) = 𝑂𝜎 × 𝐹𝑐𝜎 , and the irreducible components of 𝐹𝑐𝜎
correspond to the cones {𝜎′

1, 𝜎
′
2, ...} ∪ {𝜎′′

1 , 𝜎
′′
2 , ...}.

By comparing the dimension of exceptional locus, it is easy to see that the codimension 1 components
of 𝜓̃−1(𝑂𝜎) are equal to 𝑂𝜎 × 𝐹𝑐𝜎′ , where the irreducible components of 𝐹𝑐𝜎′ are the toric variety
associated to the relative stars {𝑆𝑡𝑎𝑟𝜎 (𝜎

′
1), 𝑆𝑡𝑎𝑟𝜎 (𝜎

′
2), ...}. Suppose P is the divisor defined by 𝜎′

1.
Then 𝑃 ⊂ 𝜓̃−1 (𝑂𝜎) is a codimension 1 component and birational equivalent to 𝑂𝜎 × 𝐹𝑐

𝜎′
1
, where 𝐹𝑐

𝜎′
1

is the toric variety associated to the relative star 𝑆𝑡𝑎𝑟𝜎 (𝜎′
1). Because every irreducible toric variety is

birationally equivalent to P𝑟 for some 𝑟 ∈ N, the result follows. �

3.2. Toroidal embeddings

Given a normal variety X and an open subset 𝑈𝑋 ⊂ 𝑋 , the embedding 𝑈𝑋 ⊂ 𝑋 is called toroidal if
for every closed point 𝑥 ∈ 𝑋 , there exist a toric variety 𝑋𝜎 , a point 𝑠 ∈ 𝑋𝜎 , and an isomorphism of
complete local k-algebras

Ô𝑋,𝑥 � Ô𝑋𝜎 ,𝑠 ,

such that the ideal of 𝑋 \𝑈𝑋 maps isomorphically to the ideal of 𝑋𝜎 \ 𝑇𝜎 , where 𝑇𝜎 is the big torus.
Given a normal variety X and a reduced divisor D on X, we call (𝑋, 𝐷) a toroidal pair if

𝑈𝑋 := 𝑋 \ 𝐷 ⊂ 𝐷 is a toroidal embedding.
In this paper, we will assume that every irreducible component of 𝑋 \𝑈𝑋 is normal – that is,𝑈𝑋 ⊂ 𝑋

a strict toroidal embedding.

Proposition 3.5 [14, Page 195]. Let𝑈 ⊂ 𝑋 be a toroidal embedding of varieties and x a closed point of
X. Then there exists an affine toric variety 𝑋𝜎 and an étale morphism 𝜓 from an open neighborhood of
𝑥 ∈ 𝑋 to 𝑋𝜎 , such that locally at x (for the Zariski topology), we have 𝑈 = 𝜓−1 (𝑇), where T is the big
torus.

A dominant morphism 𝑓 : (𝑌, 𝐷𝑌 ) → (𝑋, 𝐷) of toroidal pairs is called toroidal if for every closed
point 𝑥 ∈ 𝑋 , there exist local models (𝑋𝜎 , 𝑠) at x, (𝑋𝜏 , 𝑡) at 𝑓 (𝑥) and a toric morphism 𝑔 : 𝑋𝜎 → 𝑋𝜏
so that the following diagram commutes:

Ô𝑋,𝑥 � �� Ô𝑋𝜎 ,𝑠

Ô𝐵, 𝑓 (𝑥) � ��

𝑓 #

��

Ô𝑋𝜏 ,𝑡 ,

𝑔̂#

��

where 𝑓 # and 𝑔̂# are the algebra homomorphisms induced by f and g.
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Corollary 3.6 [1, Corollary 1.6]. If 𝑓 : (𝑋, 𝐷) → (𝑌, 𝐷𝑌 ) and 𝑔 : (𝑌, 𝐷𝑌 ) → (𝑍, 𝐷𝑍 ) are toroidal
morphisms, then 𝑔 ◦ 𝑓 : (𝑋, 𝐷) → (𝑍, 𝐷𝑍 ) is a toroidal morphism.

Definition 3.7 [1, Section 8.2]. Let 𝑓 : (𝑋, 𝐷) → (𝑍, 𝐵) be a projective toroidal morphism between
toroidal pairs with connected fibers. We say f is almost semistable if

◦ the morphism f is equidimensional,
◦ all the fibers of the morphism f are reduced,
◦ Z is smooth, and
◦ X has quotient singularities.

Theorem 3.8 (Almost Semistable Reduction). Let 𝑋 → 𝑍 be a projective morphism between projective
normal varieties and 𝐷 ⊂ 𝑋 be a divisor. Then there exists a proper, surjective, generically finite
morphism of irreducible varieties 𝑏 : 𝑍 ′ → 𝑍 , a projective birational morphism of irreducible varieties
𝑎 : 𝑋 ′ → (𝑋 ×𝑍 𝑍

′)𝑚, where (𝑋 ×𝑍 𝑍
′)𝑚 is the main component of the fiber product 𝑋 ×𝑍 𝑍

′, and
divisors 𝐵′ ⊂ 𝑍 ′, 𝐷 ′ ⊂ 𝑋 ′, such that

◦ 𝑎−1 (𝐷 ×𝑍 𝑍
′) ∪ 𝑓 ′−1(𝐵′) ⊂ 𝐷 ′, and

◦ the morphism 𝑓 ′ : (𝑋 ′, 𝐷 ′) → (𝑍 ′, 𝐵′) is almost semistable.

Proof. This is a direct result of [1, Theorem 2.1], [1, Proposition 4.4], [1, Proposition 5.1] and
[1, Section 8.2]. �

Lemma 3.9 [1, Lemma 6.2]. Let 𝑓 : (𝑋, 𝐷) → (𝑍, 𝐵) be an almost semistable morphism, 𝑔 : 𝐶 → 𝑍
a morphism such that C is nonsingular and 𝑔−1(𝐵) is a normal crossing divisor. Define 𝑋𝐶 = 𝐶 ×𝑍 𝑋
and let 𝑔𝐶 : 𝑋𝐶 → 𝑋, 𝑓𝐶 : 𝑋𝐶 → 𝐶 be the two projections.

Denote 𝐵𝐶 = 𝑔−1(𝐵) and 𝐷𝐶 = 𝑔−1
𝐶 (𝐷). Then (𝐶, 𝐵𝐶 ) and (𝑋𝐶 , 𝐷𝐶 ) are toroidal pairs, and

𝑓𝐶 : (𝑋𝐶 , 𝐷𝐶 ) → (𝐶, 𝐵𝐶 ) is an equidimensional toroidal morphism with reduced fibers.

Lemma 3.10. Let X be a projective normal variety, and D a reduced divisor on X such that (𝑋, 𝐷) is a
toroidal pair. Suppose Δ ≤ 𝐷 is a Q-divisor such that (𝑋,Δ) is sub-lc.

If P is an lc place of (𝑋,Δ), then P is birational equivalent to P𝑟 ×𝑉 , where V is the image of P in X
and 𝑟 = dim𝑋 − dim𝑉 − 1.

Proof. Let P be an lc place of (𝑋,Δ), and suppose x is a general point of the image of P on X. For the
rest of the proof, we consider Zariski locally near x by replacing X with an open neighborhood of x.

Let 𝑋𝜎 be the affine toric variety defined in Proposition 3.5 and 𝜎 ⊂ 𝜎1 a subdivision such that
ℎ𝜎 : 𝑋𝜎1 → 𝑋𝜎 is a resolution. Because 𝜋 is étale, 𝑋1 := 𝑋𝜎1 ×𝑋𝜎 𝑋 is a log resolution of (𝑋, 𝐷). We
have the following diagram:

𝑋1

ℎ

��

𝜋1 �� 𝑋𝜎1

ℎ𝜎

��
𝑋 𝜋

�� 𝑋𝜎

Let 𝐷1 be the strict transform of D on 𝑋1 plus the h-exceptional divisor. Then (𝑋1, 𝐷1) is log smooth,
and ℎ : (𝑋1, 𝐷1) → (𝑋, 𝐷) is a toroidal morphism. By an easy computation of discrepancies on log
smooth pairs, it is easy to see that P can be obtained by a sequence of blow-ups along strata of (𝑋1, 𝐷1).
We will show that such morphism is étale locally equal to a toric morphism between toric varieties.

Suppose we have a sequence of blow-ups ℎ𝑖 : 𝑋𝑖+1 → 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑘 − 1 along a strata 𝑉𝑖 of (𝑋𝑖 , 𝐷𝑖),
where 𝐷𝑖+1 is the strict transform of 𝐷𝑖 plus the ℎ𝑖-exceptional divisor, so that P is a divisor on 𝑋𝑘 .
Next, we show that there is a Cartesian diagram
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𝑋 𝑗

𝑔 𝑗

��

𝜋 𝑗 �� 𝑋𝜎 𝑗

��
𝑋1

𝜋1 �� 𝑋𝜎1 ,

where

◦ the horizontal arrows are étale morphisms,
◦ 𝜎𝑗 is a refinement of 𝜎1,
◦ 𝑋𝜎 𝑗 → 𝑋𝜎1 is the corresponding toric morphism, and
◦ near any closed point of 𝑔−1

𝑗 𝑥1, we have𝑈 𝑗 := 𝑋 𝑗 \ 𝐷 𝑗 = 𝜋−1
𝑗 𝑇𝑗 , where 𝑇𝑗 is the big torus of 𝑋𝜎 𝑗 ,

for all 1 ≤ 𝑗 ≤ 𝑘 .
Suppose it is true for 𝑗 = 𝑖. Let 𝑋𝜎𝑖+1 → 𝑋𝜎𝑖 be the toric morphism determined by blowing up

𝑋𝑖 along the image of 𝑉𝑖 on 𝑋𝜎𝑖 . Because blowing up is uniquely determined by local equations and
both 𝑋𝑖+1 → 𝑋𝑖 and 𝑋𝜎𝑖+1 → 𝑋𝜎𝑖 are obtained by blowing up the same subvariety étale locally, then
there is a natural étale morphism 𝜋𝑖+1 : 𝑋𝑖+1 → 𝑋𝜎𝑖+1 such that near any closed point of 𝑔−1

𝑗 𝑥, we have
𝑈𝑖+1 = 𝜋−1

𝑖+1𝑇𝑖+1, where 𝑇𝑖+1 is the big torus of 𝑋𝜎𝑖+1 . Because the composition of 𝑋𝜎𝑖+1 → 𝑋𝜎𝑖 and
𝑋𝜎𝑖 → 𝑋𝜎1 is a toric morphism, the claim is true for 𝑗 = 𝑖 + 1.

Now we have the following Cartesian diagram

𝑋𝑘

𝑓

��

𝜋𝑘 �� 𝑋𝜎𝑘

𝑓𝜎

��
𝑋 𝜋

�� 𝑋𝜎 .

By assumption, P is a divisor on 𝑋𝑘 and 𝜋𝑘 is étale near a general point of P. Then P is equal to the pull-
back of a divisor 𝑃𝜎𝑘 on 𝑋𝜎𝑘 . Because 𝜎𝑘 → 𝜎 is a refinement, by Theorem 3.4, 𝑓𝜎 |𝑃𝜎𝑘

is birationally
equivalent to a P𝑟 -bundle. Because the diagram is Cartesian, 𝑓 |𝑃 is also birationally equivalent to a
P𝑟 -bundle. Then P is birationally equivalent to 𝑉 × P𝑟 . �

4. Moduli of polarized log Calabi–Yau pairs

In this section, we recall some definitions and results on the moduli of stable pairs and polarized log
Calabi–Yau pairs, see [13], [16], [5] and [6]. We fix a natural number d and positive rational numbers 𝑐, 𝑣.

Definition 4.1. A log Calabi–Yau pair is an slc pair (𝑋,Δ) such that 𝐾𝑋 + Δ ∼Q 0.
A polarized log Calabi–Yau pair consists of a log Calabi–Yau pair (𝑋,Δ) and an effective ample

integral divisor 𝑁 ≥ 0 such that (𝑋,Δ +𝑢𝑁) is slc for any sufficiently small positive real number 𝑢 � 1.
A (𝑑, 𝑐, 𝑣)-polarized log Calabi–Yau pair is a polarized log Calabi–Yau pair (𝑋,Δ), 𝑁 such that

dim𝑋 = 𝑑,Δ = 𝑐𝐷 for some integral divisor D, and vol(𝑁) = 𝑣.

Let 𝑓 : 𝑋 → 𝑆 be a flat morphism of schemes with 𝑆2 fibers of pure dimension. A closed subscheme
𝐷 ⊂ 𝑋 is a relative Mumford divisor over S if there is an open subset𝑈 ⊂ 𝑋 such that

◦ codimension of 𝑋𝑠 \𝑈𝑠 is ≥ 2 for every 𝑠 ∈ 𝑆,
◦ 𝐷 |𝑈 is a Cartier divisor,
◦ Supp(𝐷 |𝑈 ) does not contain any irreducible component of any fiber𝑈𝑠 ,
◦ D is the closure of 𝐷 |𝑈 , and
◦ 𝑋 → 𝑆 is smooth at the generic points of 𝑋𝑠 ∩ 𝐷 for every 𝑠 ∈ 𝑆.

Definition 4.2. Let S be a reduced scheme. A (𝑑, 𝑐, 𝑣)-polarized log Calabi–Yau family over S consists
of a projective morphism 𝑓 : 𝑋 → 𝑆 of schemes, a Q-divisor Δ and an integral divisor N on X such that
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◦ (𝑋,Δ + 𝑢𝑁) → 𝑆 is a stable family for some rational number 𝑢 > 0 with fibers of pure dimension d,
◦ Δ = 𝑐𝐷, where 𝐷 ≥ 0 is a relative Mumford divisor,
◦ 𝑁 ≥ 0 is a relative Mumford divisor,
◦ 𝐾𝑋/𝑆 + Δ ∼Q,𝑆 0, and
◦ for any fiber 𝑋𝑠 of f, vol(𝑁 |𝑋𝑠 ) = 𝑣.

Lemma 4.3. There exist a positive rational number t and a natural number r both depending only
on 𝑑, 𝑐, 𝑣 such that 𝑟𝑐, 𝑟𝑡 ∈ N satisfying the following. Assume (𝑋,Δ), 𝑁 is a (𝑑, 𝑐, 𝑣)-polarized log
Calabi–Yau pair. Then

◦ (𝑋,Δ + 𝑡𝑁) is an slc pair,
◦ Δ + 𝑡𝑁 uniquely determines Δ , 𝑁 and
◦ 𝑟 (𝐾𝑋 + Δ + 𝑡𝑁) is very ample with

ℎ 𝑗 (𝑚𝑟 (𝐾𝑋 + Δ + 𝑡𝑁)) = 0

for 𝑚, 𝑗 > 0.

Proof. This is Lemma 7.7 in the first arXiv version of [6]. �

The following definition comes from Chapter 7 in the first arXiv version of [6].

Definition 4.4. Let 𝑡, 𝑟 be as in Lemma 4.3. To simplify notation, let Θ = (𝑑, 𝑐, 𝑣, 𝑡, 𝑟). A strongly
embedded Θ-polarized log Calabi–Yau family over a reduced scheme S is a (𝑑, 𝑐, 𝑣)-polarized log
Calabi–Yau family 𝑓 : (𝑋,Δ), 𝑁 → 𝑆 together with a closed embedding 𝑔 : 𝑋 → P𝑛𝑆 such that

◦ 𝑛 = ℎ0 (𝑟 (𝐾𝑋𝑠 + Δ𝑠 + 𝑡𝑁𝑠)) for a closed point 𝑠 ∈ 𝑆,
◦ (𝑋,Δ + 𝑡𝑁) → 𝑆 is a stable family,
◦ 𝑓 = 𝜋𝑔, where 𝜋 denotes the projection P𝑛𝑆 → 𝑆,
◦ letting L := 𝑔∗OP𝑛

𝑆
(1), we have 𝑅𝑞 𝑓∗L � 𝑅𝑞𝜋∗OP𝑛

𝑆
(1) for all q, and

◦ for every 𝑠 ∈ 𝑆, we have

L𝑠 � O𝑋𝑠 (𝑟 (𝐾𝑋𝑠 + Δ𝑠 + 𝑡𝑁𝑠)).

We denote the family by 𝑓 : (𝑋 ⊂ P𝑛𝑆 ,Δ), 𝑁 → 𝑆.
Define the functor E 𝑠PCYΘ on the category of reduced schemes by setting

E 𝑠PCYΘ(𝑆) = {strongly embedded Θ-polarized log Calabi–Yau families over 𝑆}.

Proposition 4.5. The functor E 𝑠PCYΘ is represented by a reduced separated scheme S := 𝐸 𝑠𝑃𝐶𝑌Θ
together with a universal family (X ⊂ P𝑛S ,D),N → S .

Proof. This is Proposition 7.8 in the first arXiv version of [6]. �

5. Boundedness of log places

The main result in this section is the following.

Theorem 5.1. Fix a natural number d and positive rational numbers 𝑐, 𝑣. Then there exist a natural
number l and a bounded family of projective varieties W → T both depending only on 𝑑, 𝑐, 𝑣, such that:

Suppose X is a normal quasi-projective variety, (𝑋,Δ) is an lc pair, and 𝑓 : 𝑋 → 𝐶 is a projective
morphism of relative dimension d over a smooth curve C (possibly non-proper), such that

◦ 𝐾𝑋 + Δ ∼Q,𝐶 0, and
◦ there is a divisor N on X such that a general fiber (𝑋𝑔,Δ𝑔), 𝑁𝑔 is a (𝑑, 𝑐, 𝑣)-polarized log Calabi–Yau

pair.
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Let 0 ∈ 𝐶 be a closed point and P an lc place of (𝑋,Δ + lct(𝑋,Δ; 𝑓 ∗0) 𝑓 ∗0). Then there is a closed
point 𝑡 ∈ T and a rational map W𝑡 � 𝑃 which is a finite cover over the generic point of P with degree
less or equal to min{𝑙,mult𝑃 𝑓 ∗0}.

Lemma 5.2. Let (X ,D′) → S be a locally stable morphism over a smooth variety S , and D be a
Q-divisor such that D ≤ D′ and 𝐾X +D is Q-Cartier. Then the set

{𝑉 | 𝑉 is a log center of (X𝑠 ,D𝑠) for some closed point 𝑠 ∈ S}

is bounded.

Proof. After passing to a stratification of S , we may assume that (X ,D) → S has a fiberwise log
resolution 𝜉 : Y → X and S is smooth. Define DY by 𝐾Y +DY ∼Q 𝜉

∗(𝐾X +D). Then we have

𝐾Y𝑠 +DY𝑠 ∼Q 𝜉
∗(𝐾X𝑠 +D𝑠)

for any closed point 𝑠 ∈ S . It is easy to see that every log center of (X𝑠 ,D𝑠) is dominated by a log center
of (Y𝑠 ,DY𝑠 ).

By the construction, (Y , Supp(DY )) is log smooth over S , and we denote its strata by V𝑖 , 𝑖 ∈ 𝐼. Then
V𝑖 → S is smooth for all 𝑖 ∈ 𝐼 . Because (Y𝑠 , Supp(DY𝑠 )) is log smooth for all 𝑠 ∈ S , then any log
center of (Y𝑠 ,DY𝑠 ) is 𝑉𝑖 |Y𝑠 for some 𝑖 ∈ 𝐼. Then any log center of (X𝑠 ,D𝑠) is isomorphic to 𝜉 (𝑉𝑖) |X𝑠

for some 𝑖 ∈ 𝐼, and the set of families 𝜉 (𝑉𝑖) → S , 𝑖 ∈ 𝐼 parametrizes all log center of (X𝑠 ,D𝑠). The
result follows. �

Lemma 5.3. Let 𝑓 : 𝑋 → 𝑇 be a flat morphism from a normal variety to a smooth curve T. Let
𝜋 : 𝑆 → 𝑇 be a ramified cover and 𝑌 → 𝑋 ×𝑇 𝑆 the normalization of the main component, and denote
the projection 𝑌 → 𝑆 by 𝑓𝑌 .

Fix a closed point 𝑡 ∈ 𝑇 , and let 𝑠 ∈ 𝜋−1𝑡 be a closed point. Suppose P is an irreducible component
of 𝑓 ∗𝑡 and Q is an irreducible component of the preimage of P in Y such that 𝑓𝑌 (𝑄) = 𝑠. Denote the
ramified index of 𝜋 along s by 𝑟𝑆 , the multiplicity of 𝑓 ∗𝑡 along P by 𝑚𝑃 . Then the degree of the finite
morphism 𝜋𝑄 : 𝑄 → 𝑃 is less or equal to min{𝑟𝑆 , 𝑚𝑃}.

Proof. By assumption, we have the following diagram:

𝑄� �

��

𝜋𝑄 �� 𝑃� �

��
𝑌

𝑓𝑌
��

𝜋𝑌 �� 𝑋

𝑓

��
𝑆 𝜋

�� 𝑇.

Denote the ramified index of 𝜋𝑌 along the generic point of 𝑄 by 𝑟𝑄 and mult𝑄 𝑓 ∗𝑌 𝑠 by 𝑚𝑄.
Next, we calculate the multiplicity of 𝜋∗𝑌 𝑓

∗𝑡 along Q. By the definition of the ramified index, we have

mult𝑄𝜋∗𝑌 𝑓
∗𝑡 = 𝑚𝑃mult𝑄𝜋∗𝑌 𝑃 = 𝑚𝑃𝑟𝑄 .

However, since 𝜋𝑌 𝑓 = 𝑓𝑌 𝜋, we have

mult𝑄 𝑓 ∗𝑌 𝜋
∗𝑡 = 𝑟𝑆mult𝑄 𝑓 ∗𝑌 𝑠 = 𝑟𝑆𝑚𝑄 .

Then we have 𝑚𝑃𝑟𝑄 = 𝑟𝑆𝑚𝑄.
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Choose a general point 𝑥 ∈ 𝑃. The degree of 𝜋𝑄 is equal to the number of points in 𝜋−1
𝑄 (𝑥). By

comparing the preimages of x in Y (with multiplicity), we have

deg(𝜋𝑄)𝑟𝑄 ≤ 𝑟𝑆 .

After multiplying both sides by 𝑚𝑄, we have

deg(𝜋𝑄)𝑟𝑄𝑚𝑄 ≤ 𝑟𝑆𝑚𝑄 = 𝑟𝑄𝑚𝑃 .

Then we have deg(𝜋𝑄)𝑚𝑄 ≤ 𝑚𝑃 . Since 𝑟𝑄, 𝑚𝑄 are positive integers, deg(𝜋𝑄) is less or equal to
min{𝑟𝑆 , 𝑚𝑃}. �

Proof of Theorem 5.1. Suppose (𝑋,Δ) → 𝐶 is a fibration, and N is a divisor on X such that

◦ 𝐾𝑋 + Δ ∼Q,𝐶 0, and
◦ a general fiber (𝑋𝑔,Δ𝑔), 𝑁𝑔 is a (𝑑, 𝑐, 𝑣)-polarized log Calabi–Yau pair.

By Lemma 4.3, there exist a positive rational number t and a natural number r such that (𝑋𝑔,Δ𝑔 + 𝑡𝑁𝑔)
is an slc pair and 𝑟 (𝐾𝑋𝑔 + Δ𝑔 + 𝑡𝑁𝑔) is very ample without higher cohomology. By [9, §3, Theorem
12.11], 𝑟 (𝐾𝑋𝑈 +Δ𝑈 + 𝑡𝑁𝑈 ) is very ample over an open subset𝑈 ⊂ 𝐶, and it defines a closed embedding
𝑔 : 𝑋𝑈 ↩→ P𝑛𝑈 , where 𝑛 = ℎ0 (𝑟 (𝐾𝑋𝑔 +Δ𝑔+𝑡𝑁𝑔)). Also because (𝑋𝑈 ,Δ𝑈 +𝑡𝑁𝑈 ) → 𝑈 is a stable family,
then 𝑓𝑈 : (𝑋𝑈 ⊂ P𝑛𝑈 ,Δ𝑈 ), 𝑁𝑈 → 𝑈 is a strongly embedded polarized log Calabi–Yau family over U.
Since E 𝑠PCYΘ has a fine moduli space S with the universal family (X ⊂ P𝑛S ,D),N → S according to
Proposition 4.5, we have (𝑋𝑈 ,Δ𝑈 ) � (X ,D) ×S 𝑈, where 𝑈 → S is the moduli map defined by 𝑓𝑈 .
We denote this moduli map by 𝜙𝑈 . Note (X ,D) → S is a (𝑑, 𝑐, 𝑣)-polarized log Calabi–Yau family
over S . In particular, 𝐾X /S +D ∼0,S 0 is Q-Cartier.

After replacing S by a dense open subset, we may assume that S is smooth and there is a fiberwise
log resolution 𝜉 : (Y ,DY ) → (X ,D) over S , where DY is the Q-divisor such that 𝐾Y/S + DY ∼Q
𝜉∗(𝐾X /S +D). Then Y is smooth. Let S ′ be a smooth compactification of S such that S ′ \S is a divisor
and (S ′,S ′\S) is log smooth,Y ′ a smooth compactification ofY such thatY → S extends to a projective
morphism Y ′ → S ′ and Y ′ \Y is pure of codimension 1. Let R′ be the reduced divisor whose support is
equal to the sum of Y ′ \Y and the closure of Supp(DY ) in Y ′. Then (Y ′,R′) ×S′ S � (Y , Supp(DY )).
Because (Y , Supp(DY )) is log smooth over S , then (Y ′,R′) → S ′ is almost semistable over S .

By Theorem 3.8, there is a generically finite cover 𝜏 : S̄ → S ′ and a birational morphism 𝜓 : Ȳ →

Y ′ ×S′ S̄ such that

𝜒 : (Ȳ , R̄) → (S̄ , B̄)

is an almost semistable morphism, where B̄ ⊃ S̄ \ 𝜏−1S and R̄ ⊃ 𝜒−1B̄ ∪ 𝜓−1(D′ ×S′ S̄) are reduced
divisors. Perhaps after replacing S by a dense open subset, we may assume there is a Q-divisor D̄′

Ȳ on
Ȳ such that

◦ 𝜏 is a finite cover over S ,
◦ every component of Supp(D̄′

Ȳ ) is horizontal over S̄ ,
◦ (𝐾Ȳ + D̄′

Ȳ ) |ȲS̄𝑜 ∼Q,S̄𝑜 0, where S̄𝑜 := 𝜏−1S , ȲS̄𝑜 := Ȳ ×S̄ S̄𝑜, and
◦ for every point 𝑝 ∈ S̄0 (not necessarily closed), the fiber of (Ȳ , D̄′

Ȳ ) → S̄ over 𝑝 is crepant birationally
equivalent to the base change of the fiber of (X ,D) → S over 𝜏(𝑝).

Because 𝐾Y/S + DY ∼Q 𝜉
∗(𝐾X /S + D), a general fiber of (X ,D) → S is slc, (Y , Supp(DY )) is log

smooth over S , and R̄ ⊃ 𝜒−1B̄∪𝜓−1(D′ ×S′ S̄). Then we have D̄′
Ȳ ≤ R̄. Since 𝜒 : (Ȳ , R̄) → (S̄ , B̄) is

almost semistable, Ȳ is Q-factorial according to [15, Proposition 5.15]. Also because every component
of Supp(D̄′

Ȳ ) is horizontal over S̄ , then (Ȳ , D̄′
Ȳ ,≥0) → S̄ is locally stable.
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Note we replace S by a dense open subset. Then after applying the same argument on the comple-
mentary set, we get a stratification of S . We also replace U by an open subset so that 𝜙𝑈 : 𝑈 → S is
still a morphism.

Let 𝐶̄ be the closure of 𝑈̄ := 𝑈 ×S S̄𝑜. Then there is a finite cover 𝜋 : 𝐶̄ → 𝐶. We choose 0̄ to
be a closed point of 𝜋−1 (0). Because S̄ is proper, the moduli map 𝜙𝑈 : 𝑈 → S defines a morphism
𝜙 : 𝐶̄ → S̄ . Define 𝑌 := Ȳ ×S̄ 𝐶̄ and 𝐷̄ ′ = D̄′

Ȳ ×S̄ 𝐶̄. It is easy to see that 𝑓 ′ : (𝑌, 𝐷̄ ′) → 𝐶̄

is the base change of (Ȳ , D̄′
Ȳ ) → S̄ via 𝜙 : 𝐶̄ → S̄ . Because (Ȳ , D̄′

Ȳ ,≥0) → S̄ is locally stable,
then 𝑓 ′ : (𝑌, 𝐷̄ ′

≥0) → 𝐶̄ is also locally stable. Let 𝑅̄ be the base change of R̄ on 𝑌 ; by Lemma 3.9,
(𝑌, 𝑅̄) → (𝐶̄, 0̄) is a also toroidal morphism with reduced fibers. Because D̄′

Ȳ ≤ R̄, we have 𝐷̄ ′ ≤ 𝑅̄.
Define (𝑌𝑈̄ , 𝐷̄

′
𝑈̄
) := (𝑌, 𝐷̄ ′) ×𝐶̄ 𝑈̄. Then (𝑌𝑈̄ , 𝐷̄

′
𝑈̄
) is equal to the pull-back of (Ȳ , D̄′

Ȳ ) ×S̄ S̄𝑜 via
𝜙|𝑈̄ : 𝑈̄ → S̄𝑜. Because (𝐾Ȳ + D̄′

Ȳ ) |ȲS̄𝑜 ∼Q,S̄𝑜 0, then there is a Q-divisor 𝐷̄ on 𝑌 such that

◦ 𝐷̄ |𝑌̄𝑈̄ = 𝐷̄ ′
𝑈̄

,
◦ 𝐷̄ ≤ 𝐷̄ ′,
◦ Supp(𝐷̄) does not contain the whole fiber 𝑌0̄ and
◦ 𝐾𝑌̄ + 𝐷̄ ∼Q,𝐶̄ 0.

It is easy to see that 𝐷̄ is the largest Q-divisor on 𝑌 such that 𝐷̄ ≤ 𝐷̄ ′ and 𝐾𝑌̄ + 𝐷̄ ∼Q,𝐶̄ 0.
Because 𝑓 ′ : (𝑌, 𝐷̄ ′

≥0) → 𝐶̄ is locally stable and 𝐷̄ ≤ 𝐷̄ ′, then (𝑌, 𝐷̄ + 𝑌0̄) is sub-lc and 𝐾𝑌̄ + 𝐷̄ +

𝑌0̄ ∼Q,𝐶̄ 𝐾𝑌̄ + 𝐷̄ + ( 𝑓 ′)∗0̄ ∼Q,𝐶̄ 0.
Let 𝑋̄ be the normalization of the main component of 𝑋 ×𝐶 𝐶̄, 𝜋𝑋 denote the projection 𝑋̄ → 𝑋

and 𝑓 denote the projection 𝑋̄ → 𝐶̄. We replace Δ by Δ + lct(𝑋,Δ; 𝑓 ∗0) 𝑓 ∗0. Then we may assume
lct(𝑋,Δ; 𝑓 ∗0) = 0. By the Hurwitz’s formula, there is a Q-divisor Δ̄ such that

𝐾𝑋̄ + Δ̄ ∼Q 𝜋
∗
𝑋 (𝐾𝑋 + Δ).

Note we only add a Q-divisor which is vertical over C. Then the generic fiber of (𝑋,Δ) → 𝐶 is
unchanged.

Suppose P is an lc place of (𝑋,Δ). Let 𝑋 ′ → 𝑋 be a dlt modification of (𝑋,Δ) such that P is a
divisor on 𝑋 ′, 𝑋̄ ′ the normalization of the main component of 𝑋 ′ ×𝐶 𝐶̄, and 𝑃̄ an irreducible component
of the preimage of P on 𝑋̄ ′. By [12, 2.41], 𝑃̄ is an lc place of ( 𝑋̄, Δ̄).

By Lemma 5.3, we have

deg(𝑃̄ → 𝑃) ≤ min{deg(𝜋),mult𝑃 𝑓 ∗0}.

By the definition of 𝐶̄, deg(𝜋) is equal to the degree of the finite cover S̄ → S . Let l be the degree of
the finite morphism S̄ → S . Then min{deg(𝜋),mult𝑃 𝑓 ∗0} is less or equal to min{𝑙,mult𝑃 𝑓 ∗0}. Thus,
we only need to prove that 𝑃̄ is birationally bounded.

Note (𝑌𝑈̄ , 𝐷̄
′
𝑈̄
) is equal to the pull-back of (Ȳ , D̄′

Ȳ ) ×S̄ S̄𝑜 via 𝜙|𝑈̄ : 𝑈̄ → S̄ . Because (𝑋𝑈 ,Δ𝑈 ) �

(X ,D) ×S 𝑈 and 𝑋̄ is the normalization of the main component of 𝑋 ×𝐶 𝐶̄, then ( 𝑋̄, Δ̄) ×𝐶̄ 𝑈̄
′ → 𝑈 ′

is isomorphic to the pull-back of (X ,D) ×S S̄𝑜 via 𝜙|𝑈̄ ′ : 𝑈̄ ′ → S̄ for an open subset 𝑈̄ ′ ⊂ 𝐶̄. Also
because the fiber of (Ȳ , D̄′

Ȳ ) → S̄ over 𝑝 is crepant birationally equivalent to the base change of the
fiber of (X ,D) → S over 𝜏(𝑝) for every point 𝑝 ∈ S̄0, then the generic fiber of 𝑓 : ( 𝑋̄, Δ̄) → 𝐶̄
is crepant birationally equivalent to the generic fiber of 𝑓 ′ : (𝑌, 𝐷̄ + 𝑌𝑐̄) → 𝐶̄. Since 𝐾𝑋̄ + Δ̄ ∼Q,𝐶̄
0, 𝐾𝑌̄ + 𝐷̄ + 𝑌0̄ ∼Q,𝐶̄ 0, then there is a Q-divisor F on 𝐶̄ such that ( 𝑋̄, Δ̄ + 𝑓 ∗𝐹) is crepant birationally
equivalent to (𝑌, 𝐷̄ + 𝑌0̄). Since both ( 𝑋̄, Δ̄) and (𝑌, 𝐷̄ + 𝑌0̄) have an lc place dominating 0̄, then
0̄ ∉ Supp(𝐹). After replacing 𝐶̄ by an open neighborhood of 0̄, we may assume that ( 𝑋̄, Δ̄) is crepant
birationally equivalent to (𝑌, 𝐷̄ + 𝑌0̄). In particular, a divisor 𝑃̄ is an lc place of ( 𝑋̄, Δ̄) if and only if it
is an lc place of (𝑌, 𝐷̄ + 𝑌0̄).
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Recall that (𝑌, 𝑅̄) → (𝐶̄, 0̄) is a toroidal morphism and 𝐷̄ ≤ 𝑅̄. Since (𝑌, 𝐷̄ + 𝑌0̄) is sub-lc, by
Lemma 3.10, 𝑃̄ is birationally equivalent to 𝑉 × P𝑟 , where V is the image of 𝑃̄ on 𝑌 . Because 𝑃̄ is an lc
place of (𝑌, 𝐷̄ + 𝑌0̄), then V is an lc center of (𝑌, 𝐷̄ + 𝑌0̄).

To prove 𝑃̄ is birationally bounded, we only need to show that all lc centers of (𝑌, 𝐷̄ + 𝑌0̄) are
bounded. Let W be the normalization of an irreducible component of 𝑌0̄ such that V is contained in the
image of W on 𝑌0̄.

If V has codimension 1 in 𝑌 , then 𝑃̄ is just W. Since 𝑌0̄ is in a bounded family Ȳ → S̄ and W is the
normalization of an irreducible component of 𝑌0̄, P is birationally bounded.

If V has codimension ≥ 2 in 𝑌 , by applying the adjunction on (𝑌, 𝐷̄ + 𝑌0̄), we have

(𝐾𝑌̄ + 𝐷̄ + 𝑌0̄) |𝑊 = 𝐾𝑊 + 𝐷̄𝑊 .

By the inverse of adjunction (see [12, Theorem 4.9]), an lc center of (𝑌, 𝐷̄ + 𝑌0̄) intersecting W
corresponds to an lc center of (𝑊, 𝐷̄𝑊 ), hence also an lc center of (𝑌0̄, 𝐷̄

′
𝑌̄ ,0̄). Let 𝑠 ∈ S̄ be the image

of 𝐶̄ in S̄ . By the definition of 𝑌 , we have the isomorphism

(𝑌0̄, 𝐷̄
′

𝑌̄ ,0̄) � (Ȳ𝑠 , D̄′
Ȳ𝑠
).

By Lemma 5.2, all lc centers of (Ȳ𝑠 , D̄′
Ȳ𝑠
) are in a bounded family. Then all lc centers of (𝑌, 𝐷̄ + 𝑌0̄)

are in a bounded family. �

6. Proof of main theorems

Lemma 6.1. Fix a natural number d and positive rational numbers 𝜖, 𝑐 ∈ (0, 1). Suppose (𝑋,Δ) is an
𝜖-lc pair of dimension d, −(𝐾𝑋 + Δ) is big and nef and coeff (Δ) ≥ 𝑐. Then (𝑋,Δ) is log bounded.

Proof. By the main theorem of [4], X is bounded. Then there exist a natural number n, two constants
𝑉1, 𝑉2 depending only on d and 𝜖 , and a very ample divisor H on X defining an embedding 𝑋 ⊂ P𝑛 such
that 𝐻𝑑 ≤ 𝑉1 and 𝐻𝑑−1 · 𝐾𝑋 ≥ −𝑉2. Because coeff (Δ) ≥ 𝑐, we have

𝑐𝐻𝑑−1 · Supp(Δ) ≤ 𝐻𝑑−1 · Δ

= 𝐻𝑑−1 · (𝐾𝑋 + Δ) − 𝐻𝑑−1 · 𝐾𝑋

≤ −𝐻𝑑−1 · 𝐾𝑋

≤ 𝑉2.

By the boundedness of the Chow variety, both X and Supp(Δ) are parametrized by a subscheme of the
Hilbert scheme. Then (𝑋,Δ) is log bounded. �

Proof of Theorem 1.1. Because f has reduced fibers, then 𝑋0 = 𝑓 ∗0, and we have 𝐾𝑋 + Δ + 𝑋0 ∼Q,𝐶 0.
By adjunction, we have 𝐾𝑋0 + Δ0 ∼Q (𝐾𝑋 + Δ + 𝑋0) |𝑋0 . Because (𝑋0,Δ0) is slc, then its normalization
(𝑋𝜈0 ,Δ

𝜈
0 ) is lc. Also because X is a normal variety, by inverse of adjunction, (𝑋,Δ + 𝑓 ∗0) is lc over an

open neighborhood of 0 ∈ 𝐶. It is easy to see that every irreducible component of 𝑋0 is an lc place of
(𝑋,Δ + 𝑓 ∗0). After replacing C by an open neighborhood of 0, we may assume (𝑋,Δ + 𝑓 ∗0) is lc.

Because mult𝑃 𝑓 ∗0 = 1 for every irreducible component 𝑃 ⊂ 𝑋0, by Theorem 5.1, there exists a
bounded family W → T and a finite dominant rational map W𝑡 � 𝑃 whose degree is a factor of
min{𝑙,mult𝑃 𝑓 ∗0} = 1. Then W𝑡 � 𝑃 is a birational map, which means P is birationally bounded. �

Proof of Corollary 1.2. By the proof of Theorem 1.1, (𝑋,Δ + 𝑋0) is lc over an open neighborhood of
0 ∈ 𝐶, and every irreducible component of 𝑋0 is an lc place of (𝑋,Δ + 𝑋0). After replacing C by an
open neighborhood of 0, we may assume (𝑋,Δ + 𝑋0) is lc. Also because 𝑋0 = 𝑓 ∗0 is a Cartier divisor,
then (𝑋,Δ) is lc, and its lc centers are not contained in 𝑋0. After replacing C by an open neighborhood
of 0, we may assume every lc center of (𝑋,Δ) dominates C.
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Because a general fiber (𝑋𝑔,Δ𝑔) of f is 𝜖-lc, by inverse of adjunction, (𝑋,Δ + 𝑋𝑔) is plt in a
neighborhood of 𝑋𝑔. Also because every lc center of (𝑋,Δ) dominates C, then (𝑋,Δ) is klt. Because
−(𝐾𝑋 + Δ) is ample over C, let 𝐵 ∈ | − (𝐾𝑋 + Δ) |Q/𝐶 be a general member. Then (𝑋,Δ + 𝐵) is klt and
𝐾𝑋 + Δ + 𝐵 ∼Q,𝐶 0. Thus, X is Fano type over C.

Because −(𝐾𝑋 +Δ +𝑋0) ∼Q,𝐶 −(𝐾𝑋 +Δ) is ample over C, X is Fano type over C and coeff (Δ +𝑋0) ⊂
(𝑐N ∩ [0, 1]) ∪ {1} is in a finite set, by [3, Theorem 1.8]. After replacing C by an open neighborhood
of 0, there exist a natural number l depending only on 𝑑, 𝑐 and a Q-divisor Λ on X such that

◦ Λ ≥ Δ + 𝑋0,
◦ 𝑙 (𝐾𝑋 + Λ) ∼𝐶 0 and
◦ (𝑋,Λ) is lc.

Because Λ ≥ Δ + 𝑋0, then every irreducible component of 𝑋0 is an lc place of (𝑋,Λ).
Since 𝑙 (𝐾𝑋 + Λ) ∼𝐶 0, then 𝑙 (𝐾𝑋𝑔 + Λ𝑔) ∼ 0, where (𝑋𝑔,Λ𝑔) is a general fiber of (𝑋,Λ) → 𝐶.

Because (𝑋,Δ + 𝑋0) is lc, then (𝑋𝑔,Λ𝑔) is a Calabi–Yau pair and coeffΛ𝑔 ⊂ 1
𝑙N.

Because a general fiber 𝑋𝑔 is 𝜖-lc, −(𝐾𝑋𝑔 + Δ𝑔) is ample, and coeff (Δ𝑔) ≥ 𝑐, by Lemma 6.1,
(𝑋𝑔,Δ𝑔) is log bounded. Then there exist a natural number m depending only on 𝑑, 𝜖 and an open subset
𝑈 ⊂ 𝐶 such that −𝑚(𝐾𝑋𝑢 + Δ𝑢) is very ample without higher cohomology for every 𝑢 ∈ 𝑈. Thus,
−𝑚(𝐾𝑋𝑈 + Δ𝑈 ) is relatively very ample over U. Choose a general member 𝑁 ∈ | − 𝑚(𝐾𝑋𝑈 + Δ𝑈 ) |.
Because 𝑁𝑔 is ample and (𝑋𝑔,Δ𝑔) is log bounded, then vol(𝑁𝑔) = 𝑁𝑑𝑔 is in a finite set. To prove the
result, we may assume vol(𝑁𝑔) = 𝑣 is fixed. Because 𝑁 ∈ | −𝑚(𝐾𝑋𝑈 +Δ𝑈 ) | is a general member, then
there is a sufficiently small positive rational number t such that (𝑋𝑔,Λ𝑔 + 𝑡𝑁𝑔) is lc. Thus, (𝑋𝑔,Λ𝑔), 𝑁𝑔
is a (𝑑, 1

𝑙 , 𝑣)-polarized log Calabi–Yau pair. Then apply Theorem 1.1. �
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