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Abstract

We construct the first examples of infinite sharply 2-transitive groups which are finitely
generated. Moreover, we construct such a group that has Kazhdan property (T), is
simple, has exactly four conjugacy classes and we show that this number is as small as
possible.

1. Introduction

An action of a group G on a set X containing at least two elements is said to be sharply
2-transitive if, for any two couples (x1, x2) and (y1, y2) of distinct elements of X, there exists
a unique element of G mapping (x1, x2) to (y1, y2). A group G is called sharply 2-transitive if
there exists a set X on which G acts sharply 2-transitively. For instance, if K is any skew field,
the natural action of the affine group K∗ � K on K is sharply 2-transitive. This generalizes to
a near-field K where only one of the two distributive rules is required (see, for instance, [DM96,
§ 7.6]). We say that G is nearly affine if G � K∗ � K for some near-field K (this notion is also
referred to as split in the literature).

Zassenhaus proved that every finite sharply 2-transitive group G is nearly affine, and classified
all finite near-fields in [Zas35a, Zas35b]. In the same direction, Tits proved in [Tit52, Tit56] that
if G is a locally compact connected group having a continuous sharply 2-transitive action on
a locally compact set, then G is nearly affine. In fact, G � K∗ � K where K is either R, C, H

or a near-field obtained by twisting the multiplication on H. More recently, Glasner and Gulko
[GG14] and Glauberman, Mann and Segev [GMS15] proved that if G is any linear group having
a sharply 2-transitive action of characteristic distinct from 2 (see § 2.1 for a definition), then
again, G is nearly affine.

Until recently, it was an open problem whether every sharply 2-transitive group G is nearly
affine. The first counterexamples were constructed in [RST17] and [RT19] by Rips, Segev and
Tent. Then, infinite simple sharply 2-transitive groups were constructed in [AT23].

However, none of the examples constructed in [RST17, RT19, AT23] is finitely generated,
so one may ask whether Zassenhaus classification extends assuming finite generation: if G is a
finitely generated sharply 2-transitive group, does G have to be nearly affine?

In fact, there is an even more basic question: does there exist an infinite, sharply 2-transitive
group G which is finitely generated? Indeed, no group of the form G = K∗ � K for a skew field K
is known to be finitely generated as the existence of an infinite skew field K whose multiplicative
group is finitely generated is a famous open problem (see, for instance, [AM-H00, AKPR19]).
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In the present paper, we answer the two questions above: we construct the first examples of
infinite sharply 2-transitive groups which are finitely generated, and our examples are not nearly
affine.

We also construct such groups having Kazhdan property (T). Recall that this property
is, in some sense, opposite to amenability: an amenable discrete group that has property (T) is
necessarily finite (see [BHV08] for background). Hence, our examples are in striking contrast with
the affine group K∗ � K on a field K, since this group is solvable, in particular amenable. There
exist skew fields K such that K∗ contains a non-abelian free group, but as mentioned above,
no skew field is known for which K∗ is finitely generated. In addition, property (T) implies
finite generation for discrete groups, so property (T) can be seen as a (strong) reinforcement
of finite generation. Property (T) also prevents the existence of non-trivial actions on trees.
On the other hand, the previously known exotic sharply 2-transitive groups are constructed as
increasing unions of amalgams and Higman–Neumann–Neumann (HNN) extensions, which is an
obstruction to having property (T).

Theorem 1.1. There exists an infinite, finitely generated, sharply 2-transitive group G.
Moreover, one can construct such a group G which has property (T), is 2-generated and simple
(and, in particular, not nearly affine).

Remark 1.2. The sharply 2-transitive groups constructed in this paper have characteristic 0,
meaning that involutions have a fixed point and that the products of distinct involutions have
infinite order (see § 2.1 for more details).

In fact, it is well known (see [Ker74, Chapter II § 6]) that every sharply 2-transitive group
is the group of affine transformations of a near-domain: this is a structure (K, +, ·) similar to a
near-field but in which (K, +) is not required to be a commutative group but only a loop with a
twisted associativity condition. In this context, the group G of affine transformations x �→ ax + b
of K acts sharply 2-transitively on K, but it is not a semi-direct product in general. Actually, G is
a semi-direct product if and only if K is a near-field, in which case G is nearly affine (see [Ker74,
Theorem 7.1]). Thus, examples of exotic sharply 2-transitive groups yield exotic near-domains,
and Theorem 1.1 can be reformulated in terms of near-domains as follows.

Corollary 1.3. There exists an infinite near-domain K which is not a near-field and whose
associated group of affine transformations is finitely generated.

We also consider the problem of minimizing the number of conjugacy classes. First, any
sharply 2-transitive group has to have at least three conjugacy classes (except for Z/2Z), and at
least four conjugacy classes in characteristic distinct from 2 (except for the affine group on the
field F3); see Proposition 2.3. Actually, except for the affine groups on F2, F3 and F4, all finite
sharply 2-transitive groups have at least five conjugacy classes.

On the other hand, Cameron [Cam00] mentions that Cohn’s construction [Coh71,
Theorem 6.3] can be used to construct an infinite skew field K of characteristic p such that K∗

has exactly p conjugacy classes. For p = 2, the corresponding affine group K∗ � K would have
exactly three conjugacy classes. In characteristic 0, all the previously known sharply 2-transitive
groups have infinitely many conjugacy classes.

Also note that in the realm of abstract groups, the first infinite, finitely generated groups
with only finitely many conjugacy classes were constructed by Ivanov, and a construction can
be found in [Ols91] (see Theorem 41.2). This construction yields for each sufficiently large prime
number p a group of exponent p with exactly p conjugacy classes. Then, Osin constructed in
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[Osi10] the first infinite finitely generated groups with exactly n conjugacy classes for any natural
number n ≥ 2.

Our construction, relying on Osin’s small cancellation techniques [Osi10], provides examples
of groups which are sharply 2-transitive in characteristic 0, are finitely generated, and have the
smallest possible number of conjugacy classes.

Theorem 1.4. There exists an infinite simple sharply 2-transitive group which is finitely
generated, has property (T) and has exactly four conjugacy classes.

The proof of our results combines the strategy used in [RT19] and [AT23] with small can-
cellation theory over relatively hyperbolic groups, as developed notably by Osin in [Osi10] to
construct infinite finitely generated groups with exactly two conjugacy classes.

2. Conjugacy classes in a sharply 2-transitive group

2.1 Characteristic of a sharply 2-transitive group
If G acts sharply 2-transitively on a set X (with |X| ≥ 2), then G has involutions (take any
element exchanging two points x, y ∈ X), and all involutions are conjugate (any involution swaps
a pair of points, and two involutions can be conjugate to swap the same pair of points).

By analogy with the affine group K∗ � K, one says that G � X is of characteristic 2 if
involutions have no fixed point.

When the action is not of characteristic 2, every involution has a unique fixed point, and
distinct involutions have distinct fixed points (see, for instance, [Ten16, Corollary 3.2]). It follows
that there is a natural equivariant bijection between X and the set IG of involutions of G,
on which G acts by conjugation. In particular, a group has a sharply 2-transitive action of
characteristic distinct from 2 on a set X if and only if it acts sharply 2-transitively on its set of
involutions. It also follows that all pairs of distinct involutions are conjugate. By analogy with
the affine group in characteristic �= 2, we say that an element of G is a translation if it is the
product of two distinct involutions. Thus, in characteristic �= 2, all translations are conjugate,
and one says that G � X has characteristic 0 if translations have infinite order (i.e. if two
distinct involutions generate an infinite dihedral group) and characteristic p if translations have
order p (i.e. any two distinct involutions generate a dihedral group of order 2p), and p has to
be some prime number (otherwise the subgroup generated by a translation t of order p would
contain a translation t′ of order p′ < p, thus not conjugate to t). Note that if K is a field, then
the characteristic of K in the usual sense coincides with the characteristic of K∗ � K as defined
above. The sharply 2-transitive groups we will construct in this paper will have characteristic 0.

2.2 A lower bound on the number of conjugacy classes
A sharply 2-transitive group with exactly two conjugacy classes is necessarily abelian since all
its non-trivial elements have order 2. However, the only abelian sharply 2-transitive group is
Z/2Z (because the stabilizer of a point in such a group is malnormal), and hence every sharply
2-transitive group of order > 2 has at least three conjugacy classes.

The only finite sharply 2-transitive group with exactly three conjugacy classes is the sym-
metric group S3, but there are infinite examples: Cameron [Cam00] mentions that Cohn’s
construction can be used to construct an infinite skew field K of characteristic 2 such that K∗

has exactly 2 conjugacy classes (see Corollary 2 of Theorem 6.3 in [Coh71]); the corresponding
affine group K∗ � K has exactly three conjugacy classes.
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The goal of this section is Proposition 2.3 below showing that any sharply 2-transitive group
G � X of characteristic �= 2 with |X| ≥ 4 has at least 4 conjugacy classes. Moreover, in char-
acteristic 2, the only possibility to have at most 3 conjugacy classes comes from near-fields of
characteristic 2. In § 4, we will construct infinite sharply 2-transitive groups of characteristic
0 with exactly 4 conjugacy classes.

Lemma 2.1 [Ten16, Corollary 3.2]. Let G be a group acting sharply 2-transitively on a set X,
with |X| ≥ 2. Then two distinct involutions cannot have a common fixed point in X.

Proof. The lemma is obvious if the characteristic is 2, i.e. if involutions do not have fixed points.
Otherwise, this is [Ten16, Corollary 3.2]. �
Lemma 2.2. Let G be a group acting sharply 2-transitively on a set X, with |X| ≥ 2. The
product of two distinct involutions cannot fix a point.

Proof. Assume towards a contradiction that a product uv of two distinct involutions fixes a
point x ∈ X. If v fixes x, so does u, which contradicts the previous lemma. Thus, the involution
v exchanges the point x and the point y = v · x �= x. Since uv · x = x, u exchanges x and y.
By 2-sharpness, u = v. �
Proposition 2.3. Let G � X be a sharply 2-transitive group with |X| ≥ 4.

• If G � X is not of characteristic 2, then G has at least 4 conjugacy classes.
• If G � X is of characteristic 2, then G has at least 3 conjugacy classes, and at least 4 conjugacy

classes unless G � K∗ � K for some near-field K such that all non-trivial elements of K∗ are
conjugate.

Proof. We already saw at the beginning of this section that if |X| ≥ 3, G has at least 3 conjugacy
classes.

Fix a point x ∈ X. By Lemmas 2.1 and 2.2, Gx contains at most one involution and no
translation (i.e. a product of two distinct involutions). Moreover, |X \ {x}| ≥ 3 and Gx acts
transitively on X \ {x}. Thus, Gx contains a non-trivial element gx which is neither an involution
nor a translation.

Assume G � X has characteristic p �= 2, and consider two distinct involutions u, v. Then the
translation uv is an element of order p (or infinite order if p = 0), hence is not an involution.
This shows that the elements 1, u, uv, gx are in four distinct conjugacy classes.

In characteristic 2, the argument above says that if some translation uv is not an involution,
then G has at least four conjugacy classes. We may thus assume that the product of any two
distinct involutions is an involution, i.e. that the set IG ∪ {1} is a (normal) subgroup of G. By
[Ker74, Theorem 7.1], G = K∗ � K for some near-field K (where K = IG ∪ {1} as an additive
group). If G has at most 3 conjugacy classes, then K∗ has at most 2 conjugacy classes. �

3. The classes of groups C and C′

In this section that closely follows [AT23, RT19], we introduce two classes of groups C and C′

that are stable under various types of HNN extensions, amalgams and increasing union. Any
sharply 2-transitive group of characteristic 0 is in the class C, but the class C′ is more restrictive.

3.1 The class C
In [AT23] (building on [RT19]), a class of groups C is introduced that contains all sharply
2-transitive groups of characteristic 0 and which is preserved under various HNN extensions
and amalgamated products. We reformulate this definition below (see Definition 3.3).
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We denote by DZ = Z/2Z � Z the infinite dihedral group and by DQ = Z/2Z � Q the group
of isometries of Q.

A subgroup H ⊂ G is called malnormal if the intersection H ∩ gHg−1 is trivial for every
g ∈ G \ H, and quasi-malnormal if H ∩ gHg−1 has order at most 2 for g ∈ G \ H.

Recall that we denote by IG the set of involutions of G, and we denote by I(2)
G = {(u, v) ∈

I2
G | u �= v} the set of ordered pairs of involutions, on which G acts by conjugation.

Definition 3.1. Let G be a group, and (u, v) ∈ I(2)
G be a pair of distinct involutions.

• We say that (u, v) is of type DZ if 〈u, v〉 is contained in a (necessarily unique) group Du,v

isomorphic to DZ with Du,v quasi-malnormal in G. If 〈u, v〉 = Du,v we say that the pair (u, v)
is maximal.

• We say that (u, v) is of type DQ if 〈u, v〉 is contained in a (maybe non-unique, maybe not
quasi-malnormal) group isomorphic to DQ.

Remark 3.2.

(1) If (u, v) is of one of the two types, then 〈u, v〉 is infinite dihedral.
(2) If (u, v) is of type DZ and (u′, v′) is of type DQ, then 〈u, v〉 ∩ 〈u′, v′〉 has cardinality at

most 2. In particular, the two types are mutually exclusive.
(3) Recall that the commensurator CommG(H) of a subgroup H ⊂ G is the subgroup consisting

of elements g ∈ G such that the intersection of H and gHg−1 has finite index in both of
them. The pair (u, v) is of type DZ if and only if the commensurator CommG(〈u, v〉) is an
infinite dihedral group. In this case, Du,v = CommG(〈u, v〉) is the unique maximal infinite
dihedral group containing 〈u, v〉.

Definition 3.3. Let G be a group. We say that G belongs to the class C if:

(1) G acts transitively on IG, and freely on I(2)
G ;

(2) any pair (u, v) ∈ I(2)
G of distinct involutions is of type DZ or DQ;

(3) the set of pairs (u, v) ∈ I(2)
G of type DQ is non-empty and G acts transitively on it.

Remark 3.4. If a group G belongs to C, and if all pairs of involutions of G are of type DQ, then
G acts sharply 2-transitively on IG.

Conversely, any sharply 2-transitive group G of characteristic 0 belongs to the class C, with
all pairs of involutions of type DQ. Indeed, G acts sharply 2-transitively on its set of involutions
(as recalled in § 2.1). It then suffices to show that any pair of involutions (u, v) ∈ I(2)

G is of
type DQ. Indeed, given k ≥ 1, (u, v) is thus conjugate to (u, (vu)k−1v), so consider an inner au-
tomorphism σk = adak

sending (u, v) to (u, (vu)k−1v). Note that σk(〈u, v〉) is the unique subgroup
of index k of 〈u, v〉. Moreover, for all k, l ∈ N \ {0}, σk ◦ σl agrees with σkl in restriction to 〈u, v〉.
Since the pair (u, v) has trivial centralizer, it follows that akal = akl so σk and σl commute.
Define D1 = 〈u, v〉 and Dn = σ−1

n! (D1) = σ−1
n (Dn−1). Since 〈u, v〉 contains σn(〈u, v〉) with

index n, Dn = σ−1
n! (〈u, v〉) contains Dn−1 = σ−1

n! σn(〈u, v〉) with index n. Thus, D1 ⊂ D2 ⊂ · · · ⊂
Dn with [Dn : Dn−1] = n. It easily follows that

⋃
n∈N Dn is an increasing union of infinite dihedral

groups, each one having index n in the next one, and whose union is isomorphic to DQ.

Remark 3.5. Assertion (1) implies that the centralizer of each involution is malnormal. Indeed,
if g /∈ CentG(i), any element a ∈ CentG(i)g ∩ CentG(i) fixes two distinct involutions, hence is
trivial. Assertion (2) implies that any two distinct involutions generate an infinite dihedral group,
and thus do not commute.
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S. André and V. Guirardel

Remark 3.6. Definition 3.3 is equivalent to the definition of the class C that appears in [AT23].
Since we do not use the equivalence of the two definitions in this paper, we leave the verification
of the equivalence to the interested reader.

3.2 Three types of elements
The following terminology will be convenient.

Definition 3.7. Consider a group G and an element h ∈ G of infinite order. We say that:

(1) h is a translation if it is the product of two distinct involutions,
• it is a translation of type DQ if it is the product of two distinct involutions h = uv, with

〈u, v〉 of type DQ,
• it is a translation of type DZ if it is the product of two distinct involutions h = uv, with

(u, v) of type DZ;
(2) h is a homothety if h centralizes some involution;
(3) h is isolated if h is contained in a malnormal cyclic group 〈ĥ〉. We say that h is maximal

isolated if 〈h〉 is malnormal.

Remark 3.8. In any group G, the two types of translations are mutually exclusive (by the second
point of Remark 3.2). Moreover, it is clear that an isolated element cannot be a translation or a
homothety.

Remark 3.9. The set of translations together with the trivial element does not form a subgroup
of G in general. This is the case for G = K∗ � K when K is a skew field, and in fact, if and
only if G = K∗ � K for some near-field K, where K = I2

G as an additive group (see [Ker74,
Theorem 7.1]).

Lemma 3.10. In a group belonging to C, the three possibilities for h (translation, homothety,
isolated) are mutually exclusive.

Proof. In view of the previous remark, we just have to prove that a homothety h cannot be
a translation. Let i be an involution centralized by h. Arguing by contradiction, assume that
h = uv for two involutions u �= v. We will use several times that two distinct involutions cannot
commute in a group of class C. We note that u, v �= i: indeed, if u = i, for instance, then v has
to commute with i so v = i and h = 1 a contradiction. The involution j = uiu−1 is therefore
distinct from i. The conjugation by u exchanges i and j and so does v since uv commutes with i.
By 2-sharpness, u = v a contradiction. �
Remark 3.11. If G is in the class C, then all involutions are conjugate, and all translations of
type DQ are also conjugate (because G acts transitively on pairs of involutions of type DQ).

Definition 3.12. We say that a group G satisfies the 3-type condition if its elements are of
order 1, 2 or ∞, and each element h ∈ G of infinite order is a translation, a homothety or is
isolated.

3.3 The class C′

We will use the following subclass C′ of C.

Definition 3.13 The class C′
. We say that a group G belongs to the class C′ if it lies in the

class C and satisfies the 3-type condition.

For example, the affine group Q∗ � Q belongs to C′ with no isolated element and no
DZ-translation. More generally, if K is a field of characteristic 0, then K∗ � K belongs to C′ if
and only if K∗ contains no primitive nth root of unity with n > 2.
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The following lemmas give some restrictions for groups in C′ that will be useful.

Lemma 3.14. If G is a group in which every finite subgroup of G has order at most 2, then
every infinite virtually cyclic subgroup of G is isomorphic to Z, Z × (Z/2Z) or DZ.

Proof. If E ⊂ G is virtually cyclic, it can be written as an extension of a finite normal group
N ⊂ E, with E/N isomorphic to Z or DZ. If N is trivial, we are done. Otherwise, N � Z/2Z

and since finite subgroups of G have order ≤ 2, E/N has to be torsion-free, so E/N � Z and
E � Z × (Z/2Z). �
Lemma 3.15. If G belongs to C′, then every non-trivial finite subgroup of G has order 2, and
every infinite virtually cyclic subgroup of G is isomorphic to Z, Z × (Z/2Z) or DZ.

Proof. If G belongs to C′, the order of elements of finite order in G is at most 2, so any finite
subgroup F ⊂ G is commutative. Since distinct involutions of G never commute, F is trivial or
isomorphic to Z/2Z. The second part of the lemma then follows from Lemma 3.14. �
Lemma 3.16. Any group G belonging to C′ contains a subgroup isomorphic to Z × (Z/2Z).

Moreover, if P ⊂ G is almost malnormal (i.e. for every g ∈ G such that gPg−1 ∩ P is infinite,
then g ∈ P ) and contains a pair of involutions of type DQ, then P contains a subgroup isomorphic
to Z × (Z/2Z).

Proof. The second assertion with P = G implies the first so we prove the second one.
Let (u, v) be a pair of involutions in P of type DQ. Note that there are infinitely many such

pairs (u, v′): take for v′ any involution in 〈u, v〉 \ {u}. By Definition 3.3 defining class C, all such
pairs are in the same G-orbit, so there exists h ∈ G that conjugates (u, v) to (u, v′). By almost
malnormality of P , h ∈ P . This implies, in particular, that CentP (u) is infinite. Since u is the
only involution in CentG(u), CentP (u) contains an element of infinite order which proves the
lemma. �

3.4 Increasing unions
Recall from Definition 3.1 that a pair of involutions (u, v) of type DZ is maximal if 〈u, v〉 is
quasi-malnormal in G.

Definition 3.17. Consider an embedding of groups G ⊂ G′, with G, G′ in C.

• We say that the embedding preserves maximal pairs if for each maximal pair (u, v) ∈ I(2)
G of

type DZ, either the pair (u, v) is still a maximal pair of type DZ in G′, or (u, v) is of type DQ

in G′.
• We say that the embedding preserves maximal isolated elements if for each malnormal cyclic

group 〈h〉, either 〈h〉 is still malnormal in G′, or h is a translation or a homothety in G′.

We say that the embedding preserves maximality if it satisfies both conditions.

Lemma 3.18. Consider G =
⋃

n∈N Gn an increasing union of groups in C′. Assume that the
embeddings Gn ⊂ Gn+1 preserve maximality. Then G is in the class C′ and for each n ∈ N, the
embedding Gn ⊂ G preserves maximality.

Proof. First let us check that G is in the class C. Assertion (1) of Definition 3.3 is clear. If (u, v) is
of type DQ in Gn, then it is clearly of type DQ in G. If (u, v) ∈ I(2)

Gn0
is of type DZ in every Gn for

all n ≥ n0, then since embeddings preserve maximality, Du,v does not depend on the group Gn.
It follows that Du,v is quasi-malnormal in every Gn hence in G. This proves assertion (2) and
that the embedding Gn ⊂ G preserves maximal pairs. Since any pair of type DQ in G is of type
DQ in any Gn containing it, assertion (3) is clear, so G belongs to C.
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To prove that G is in C′, the only non-obvious point to check is that if h ∈ Gn0 is isolated in
Gn for every n ≥ n0, then it is still isolated in G. The argument is similar to the previous one
using that inclusions preserve maximal isolated elements. �

3.5 HNN extensions and amalgams
The following proposition unifies several constructions in [AT23] and [RT19].

Proposition 3.19. Let G be a group in the class C. Consider an HNN extension G1 = G∗C or
an amalgam G1 = G ∗C H and denote by G1 � T the corresponding Bass–Serre tree. Assume
that the following properties hold for some k ≥ 0.

(1) Almost k-acylindricity: the stabilizer of any segment of length > k in T has order ≤ 2.
(2) In the case of an amalgam, H has at most one involution (necessarily central in H), and

this involution lies in the subgroup C.

Then G1 is in the class C.
If, moreover, G and H satisfy the 3-type condition (see Definition 3.12), then G1 belongs to

C′ and the embedding G ⊂ G1 preserves maximality.

Example 3.20. The proposition implies that if G lies in C or C′, then so does G ∗ Z.

Remark 3.21. If H has a unique involution, then all elements of infinite order of H are
homotheties, and H satisfies the 3-type condition if and only if its elements are of order 1,
2 or ∞.

Proof. Before starting the proof, given two involutions u, v, we say that 〈u, v〉 is hyperbolic if
it does not fix a point in T (otherwise it is elliptic). In this case, we denote by lu,v the unique
line of T invariant under 〈u, v〉. By acylindricity, the pointwise stabilizer of lu,v has order ≤ 2,
we claim that it is trivial. Indeed, if g ∈ G is an involution fixing lu,v pointwise, it is unique and,
therefore, has to commute with 〈u, v〉. Since g has a common fixed point with u, the pair (g, u)
is conjugate in G (it cannot be conjugate in H because g �= u). Since no pair of involutions of G
commute, we get a contradiction which proves the claim.

We now check that G1 satisfies assertion (1) of Definition 3.3. The fact that G1 acts transi-
tively on the set of its involutions is clear: any involution of G1 is elliptic in T , so it is conjugate
in G or H, hence in G by assumption (2). Then, proving that the action on I(2)

G1
is free amounts

to checking that the centralizer Z of a pair (u, v) ∈ I(2)
G1

is trivial. If 〈u, v〉 is hyperbolic, then any
element g ∈ Z fixes lu,v pointwise so g = 1 by the initial claim. If 〈u, v〉 is elliptic, then the pair
(u, v) is conjugate to a pair of involutions of G (it cannot be conjugate in H by assertion (2)).
The set F ⊂ T of fixed points of 〈u, v〉 is a subtree of diameter ≤ k. In the case of an amalgam, it
is reduced to a point fixed by a conjugate of G by assumption (2). Since Z preserves the bounded
tree F , it fixes a point in F . Thus, Z, u, v are contained in a common conjugate of G, so Z is
trivial since G belongs to C. This proves that the action of G1 on I(2)

G1
is free.

Then we prove that G1 satisfies assertion (2) of Definition 3.3, namely that any pair of
distinct involutions is of type DZ or DQ. If 〈u, v〉 is hyperbolic, then the pair (u, v) is of type
DZ: the global stabilizer Du,v of lu,v of is an infinite dihedral group (it acts faithfully on lu,v

by our initial claim), and it is quasi-malnormal; if glu,v �= lu,v, then Du,v ∩ Dg
u,v cannot contain

any element of infinite order, so Du,v ∩ Dg
u,v has order at most 2. If 〈u, v〉 is elliptic, then its

commensurator M = CommG1(〈u, v〉) is elliptic because it preserves the union of fixed points of
finite index subgroups of 〈u, v〉, a subtree of diameter ≤ k. Up to conjugacy, we may thus assume
that 〈u, v〉 ⊂ M ⊂ G, so M = CommG(〈u, v〉). If (u, v) has type DQ in G, it also has type DQ
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in G1. If it has type DZ in G, then CommG(〈u, v〉) is infinite dihedral, and so is CommG1(〈u, v〉)
so (u, v) has type DZ in G1. Hence, assertion (2) of Definition 3.3 is proved. Note that we also
proved that the embedding G ⊂ G1 preserves maximal pairs.

Last, since any pair of type DQ has to be elliptic in T , it is conjugate to a pair in G, so
G1 acts transitively on the set of pairs of type DQ. This shows that G1 satisfies assertion (3) of
Definition 3.3 and concludes the proof that G1 belongs to C.

We now assume that G and H satisfy the 3-type condition and prove that G1 satisfies the
3-type condition, hence belongs to the class C′. Clearly, all elements of G1 have order 1, 2 or ∞.
Let h ∈ G1 be an element of infinite order.

If h is hyperbolic in T , let l ⊂ T be its axis and let A be the global stabilizer of l. If the
pointwise stabilizer of l is non-trivial, it is isomorphic to Z/2Z by acylindricity and h is a
homothety. If the pointwise stabilizer of l is trivial, then A acts faithfully on l so A is either
cyclic or infinite dihedral. If dihedral, then h is a translation. If A is cyclic, then it is malnormal
because if gAg−1 ∩ A �= 1, then g must preserve the line l, so g ∈ A. Thus, h is isolated with
〈ĥ〉 = A.

Now assume that h is elliptic in T . Consider the subtree F of T consisting of points
fixed by some power of h. Here F has diameter at most k and is invariant under the group
M = CommG1(〈h〉) so M is elliptic. Thus, we may assume that 〈h〉 ⊂ M ⊂ H or 〈h〉 ⊂ M ⊂ G.

If 〈h〉 ⊂ M ⊂ H and H centralizes an involution, then h is a homothety. If 〈h〉 ⊂ M ⊂ H
and H is torsion-free, then h cannot be a translation or a homothety in H so h is isolated in H,
so M � Z and h is isolated in G1.

If 〈h〉 ⊂ M ⊂ G, and if h is a translation or a homothety in G, then this is also the case
in G1. If h is isolated in G, then M � Z and h is isolated in G1. �

The following corollary allows us to turn a pair of involutions of type DZ into type DQ.

Corollary 3.22 ([AT23, Proposition 4.1] and [RT19, Proposition 1.4]). Let G be a group in

the class C′. Let (u0, v0) ∈ I(2)
G be a pair of type DQ and (u, v) ∈ I(2)

G be any maximal pair of
type DZ. Then the following HNN extension belongs to C′:

G1 = 〈G, t | tut−1 = u0, tvt−1 = v0〉.
Moreover, the inclusion G ⊂ G1 preserves maximality.

Proof. In view of Proposition 3.19, we just have to check that the action on the Bass–Serre tree
is almost 2-acylindrical. This easily follows from the fact that 〈u, v〉 is quasi-malnormal in G,
and that |〈u0, v0〉 ∩ 〈u, v〉g| ≤ 2 for all g ∈ G. �

The following corollary allows us to turn an isolated element into a translation or a homothety.

Corollary 3.23 (See also [AT23, Proposition 4.2]). Let G be a group in C′ and let g, h be two
elements of G of infinite order. Suppose that g is a translation or a homothety in G and that h
is a maximal isolated element. Then the following HNN extension belongs to C′:

G1 = 〈G, t | tgt−1 = h〉.
Moreover, the inclusion G ⊂ G1 preserves maximality.

Proof. Acylindricity follows from malnormality of 〈h〉 in G, and from the fact that 〈h〉 ∩ 〈g〉a =
{1} for all a ∈ G. This last fact holds true because otherwise, some power of h would be conjugate
in a group isomorphic to DZ or to Z × (Z/2Z) contradicting the fact that 〈h〉 is malnormal
in G. �
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The following result allows to make two given homotheties conjugate.

Corollary 3.24. Let G be a group in the class C′. Let h1, h2 ∈ G be two homotheties cen-
tralizing the involutions u1 and u2, respectively. Then the following HNN extension belongs to
C′:

G1 = 〈G, t | tu2t
−1 = u1, th2t

−1 = h1〉.
Moreover, the inclusion G ⊂ G1 preserves maximality.

Proof. This HNN extension is not acylindrical. We rewrite it as an acylindrical amalgam as
follows. First, since all involutions of G are conjugate, we may replace h2 and u2 by some
conjugates and change t accordingly to ensure that u2 = u1, and we let u = u1 = u2. Then
G1 = 〈G, t | tut−1 = u, th2t

−1 = h1〉. Let Z = CentG(u) be the centralizer of u in G. Then
G1 = G ∗Z H where H is the HNN extension

H = 〈Z, t | tut−1 = u, th2t
−1 = h1〉.

Since no two involutions commute in G, u is the unique involution of Z. Since H is an HNN
extension, any involution of H is conjugate to an element of Z, thus conjugate to u. On the other
hand, we see that u is central in H, so u is the unique involution of H. Moreover, all elements
of H are of order 1, 2 or ∞ because this is the case for Z ⊂ G. As noted in Remark 3.21, this
shows that H satisfies the 3-type condition.

Now Z is malnormal in G (see Remark 3.5) and it follows that the Bass–Serre tree of the
amalgam G1 = G ∗Z H is 2-acylindrical. Thus, Proposition 3.19 applies. �

4. An infinite simple sharply 2-transitive group with exactly four conjugacy classes

In this section, we use the tools of the previous section to construct an infinite countable simple
sharply 2-transitive group of characteristic 0 in C′ with exactly four conjugacy classes (but still
not finitely generated). As proved in Proposition 2.3, this number of conjugacy classes is the
smallest possible.

Theorem 4.1. Given a countable group G0 belonging to C′, there exists a countable group G
containing G0 such that:

• G is sharply 2-transitive and belongs to C′;
• G has exactly four conjugacy classes, the trivial element, the set of involutions, the set of

translations and the set of homotheties.

Proof. Starting from G0, we are going to construct inductively an increasing sequence of groups
(Gn)n∈N in the class C′ such that the group G =

⋃
n∈N Gn is in the class C′, and such that all

its pairs of involutions are of type DQ. As noted in Remark 3.4, this implies that G acts sharply
2-transitively on its set of involutions.

We note that if g ∈ Gn is a homothety (i.e. it centralizes an involution) in Gn, then it still is a
homothety in Gn+1. Similarly, if g ∈ Gn is a translation (i.e. a product of 2 distinct involutions)
in Gn, it still is a translation in Gn+1, its type may change from DZ to DQ but not the other
way around.

Suppose that the group Gn has already been constructed and let us construct Gn+1 as an
increasing union of groups Gm

n , starting with G0
n = Gn. We fix (u0, v0) a pair of involutions

of type DQ in G0. Consider an enumeration g1, g2, . . . , of the maximal isolated elements of
Gn, an enumeration h1, h2, . . . of its homotheties, and an enumeration (u1, v1), (u2, v2), . . . of
the set maximal pairs of involutions of type DZ. For each homothety hk, we denote by ik the
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unique involution it centralizes (uniqueness follows from 2-sharpness of the action on involutions).
Starting with G0

n = Gn, we define inductively an increasing sequence of groups Gm
n as follows.

(1) Define G
m+1/3
n = 〈Gm

n , t | tumt−1 = u0, tvmt−1 = v0〉 as in Corollary 3.22 if (um, vm) is
maximal of type DZ in Gm

n and G
m+1/3
n = Gm

n otherwise.
(2) Define G

m+2/3
n = 〈Gm+1/3

n , t | tgmt−1 = u0v0〉 as in Corollary 3.23 if gm is a maximal isolated
element in G

m+1/3
n , and G

m+2/3
n = G

m+1/3
n otherwise.

(3) Define Gm+1
n = 〈Gm+2/3

n , t| timt−1 = i1, thmt−1 = h1〉 as in Corollary 3.24.

We finally define Gn+1 =
⋃

m Gm
n . Corollaries 3.22–3.24 show that each group Gm

n is in C′ and that
the embedding of each group in the next one preserves maximality. Lemma 3.18 then concludes
that Gn+1 belongs to C′, and that the embedding Gn ⊂ Gn+1 preserves maximality. Applying
again Lemma 3.18 to G =

⋃
n Gn, we see that G belongs to C′.

We now check that G acts sharply 2-transitively on its set of involutions. Since G belongs
to C, it suffices to check that no pair of involutions of G is of type DZ (see Remark 3.4). Thus,
consider (u, v) a pair of involutions of G, and let n ∈ N be such that u, v ∈ Gn. If (u, v) is of type
DQ in Gn, it is obviously of type DQ in G. Otherwise, let (ũ, ṽ) be a maximal pair of type DZ

in Gn such that 〈u, v〉 ⊂ 〈ũ, ṽ〉. Since all embeddings preserve maximality, at each step, the pair
(ũ, ṽ) remains maximal unless it becomes of type DQ. Then step 1 of the construction ensures
that (ũ, ṽ) and (u, v) become of type DQ at some step. This shows that (u, v) is of type DQ in
Gn+1, hence also in G. This shows that G acts sharply 2-transitively on its set of involutions.
It also follows that all translations of G are conjugate.

Since G belongs to C′, it remains to show that G has no isolated element and that all
homotheties of G are conjugate.

Assume by contradiction that there exists g ∈ G a maximal isolated element, (equivalently,
〈g〉 is malnormal in G). Then g is a maximal isolated element in all Gm

n , but step 2 ensures that
g is conjugate in 〈u0, v0〉 in Gn+1, contradicting that g is isolated in G.

Similarly, step 3 ensures that all homotheties of Gn become conjugate in Gn+1. Since
any homothety of G is a homothety in some Gn, this shows that all homotheties of G are
conjugate. �

Having only four conjugacy classes, the group G above is not far from being simple, but may
still fail to be so. The following result shows that we can additionally ensure that G is simple
(see also [AT23]).

Theorem 4.2. Given a countable group G0 belonging to C′, there exists a countable group G
containing G0 such that:

• G is sharply 2-transitive and belongs to C′;
• G has exactly four conjugacy classes, the trivial element, the set of involutions, the set of

translations and the set of homotheties; and
• G is simple.

Taking, for instance, G0 = Q∗ � Q, we get the following result.

Corollary 4.3. There exists a countable sharply 2-transitive group in the class C′ which is
simple and has exactly four conjugacy classes.

Proof of Theorem 4.2. We claim that one can construct a group G′
0 containing G0 and in the

class C′ such that there are four distinct involutions u1, u2, u3, u4 ∈ G′
0 such that h = u1u2u3 and

h′ = u1u2u3u4 are two homotheties.
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If the claim holds, then one can take for G the group constructed by applying Theorem 4.1
to G′

0. Indeed, h and h′ are still homotheties in G, and let us check that G is simple. Consider N
any non-trivial normal subgroup. If N contains an involution or a translation, then it contains all
of them so contains h or h′ respectively. This shows that in all cases, N contains all homotheties,
so N also contains the involution h′h−1, hence all involutions, all translations, and N = G.

We now prove the claim. The group G0 ∗ 〈t〉 belongs to C′ by Example 3.20, and if
u, v, w, z ∈ G0 are 4 distinct involutions, then the element h = uv(twt−1) is isolated, and
Proposition 3.23 yields a larger group G1 in which h is a homothety. Similarly, the free
product G1 ∗ 〈s〉 belongs to C′, the element h′ = h(szs−1) ∈ G1 ∗ 〈s〉 is isolated, and we can
embed G1 ∗ 〈s〉 using Proposition 3.23 into a larger group G′

0 to ensure that h′ is a homothety.
This proves our initial claim. �

5. Getting finite generation

5.1 Small cancellation over relatively hyperbolic groups
Let G be a group hyperbolic relative to a collection of subgroups H = {Hλ}λ∈Λ. Recall that an
element g ∈ H is parabolic if it is conjugate in some Hλ, and hyperbolic if it is not parabolic
and of infinite order (we note that in [Osi10], hyperbolic elements are synonymous with non-
parabolic, and may have finite order). Given a hyperbolic element h ∈ G, its commensurator
CommG(〈h〉) = {g ∈ G | ghng−1 = h±n for some n ∈ N∗} is the unique maximal virtually cyclic
subgroup of G containing h. Following [Osi10], we use the following technical definition.

Definition 5.1. Let G be a relatively hyperbolic group. We say that a subgroup H ⊂ G
is suitable if it contains two hyperbolic elements h1, h2 ∈ H (of infinite order) such that
CommG(〈h1〉) ∩ CommG({h2}) = {1}.

We need the following slight refinement of Theorem 2.4 in [Osi10].

Theorem 5.2. Let G be a group hyperbolic relative to a subgroup P , and H ⊂ G be a suitable
subgroup. Let t1, . . . , tn be arbitrary elements of G. Then there exists an epimorphism η : G � Q
such that:

(1) Q is hyperbolic relative to η(P );
(2) η is injective in restriction to P ;
(3) η(H) is a suitable subgroup of Q;
(4) η(t1), . . . , η(tn) belong to η(H);
(5) for every finite subgroup F of Q, there exists a subgroup F ′ ⊂ G isomorphic to F such that

η(F ′) = F .

Proof. This is Theorem 2.4 in [Osi10] except for Assertion 5 which is only stated for finite cyclic
groups but the argument actually works for all finite groups. One can also refer to [Cou13,
Proposition 6.12] where this assertion is proved for small cancellation quotients of hyperbolic
groups, or to [DG18, Lemma 4.3] in the context of Dehn fillings. �

5.2 Construction
The main result of this section is the following Theorem from which we will deduce
Theorems 1.1 and 1.4.

Theorem 5.3. Let G0 be a sharply 2-transitive group belonging to the class C′. Then there exists
a 2-generated sharply 2-transitive group G with Kazhdan property (T), such that G contains G0

and every element of G is conjugate to an element of G0.
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Theorems 1.1 and 1.4 are immediate consequences of the following corollary.

Corollary 5.4. There exists an infinite sharply 2-transitive group G of characteristic 0 with
the following properties:

• G is generated by two elements;
• G has exactly four conjugacy classes;
• G is simple;
• G has property (T).

Proof of the corollary. Start with a countable simple sharply 2-transitive group G0 of character-
istic 0 with four conjugacy classes and belonging to C′, whose existence is proved in Theorem 4.2.
Let G be the 2-generated group provided by Theorem 5.3. Then G has at most four conjugacy
classes, and at least four by Proposition 2.3. Simplicity of G follows immediately from the
simplicity of G0 since all conjugacy classes of G intersect G0. �

The following notation will be convenient.

Definition 5.5. Consider a group G with two subgroups P, H ⊂ G. We say that (G, P, H)
satisfies (∗) if the following hold:

(1) G is a group in the class C′;
(2) G is hyperbolic relative to P ;
(3) H is a suitable subgroup of G.

The proof of Theorem 5.3 is based on the following result which will be applied iteratively.

Proposition 5.6. Consider a group G with two subgroups P, H ⊂ G such that (G, P, H)
satisfies (∗). Let E ⊂ G be a finite or virtually cyclic subgroup of G. Then there exists an
epimorphism η : G � Ḡ which is injective on P , such that (Ḡ, η(P ), η(H)) satisfies (∗) and such
that η(E) ⊂ η(H) and η(E) is conjugate to a subgroup of η(P ). Moreover, every involution of
Ḡ is the image of an involution of G.

We first deduce Theorem 5.3 from Proposition 5.6.

Proof of Theorem 5.3. Let G0 be a sharply 2-transitive group belonging to C′. Let H1 be a
2-generated torsion-free hyperbolic group with Kazhdan property (T); the existence of such
group is standard: for instance, take a common torsion-free hyperbolic quotient (see [Ols93] and
[Cha00, Th. 5.19]) of a free group F2 and a torsion-free cocompact lattice in Sp(2, 1). Consider
the free product G1 = G0 ∗ H1. It is hyperbolic relative to P1 := G0. Moreover, H1 is a suitable
subgroup of G1, and it is in the class C′ by Proposition 3.19, so (G1, P1, H1) satisfies (∗).

Let E1, . . . , En, . . . be an enumeration of all the virtually cyclic subgroups of G1 (including
all cyclic groups of order 2 or ∞). We construct inductively a chain of quotients using Proposi-
tion 5.6 as follows. Apply Proposition 5.6 to (G1, P1, H1) and E1 ⊂ G1, and denote by G2 = Ḡ1

the obtained quotient and by η1 : G1 � G2 the quotient map. Define H2 = η(H1) and P2 =
η(P1) � G0 so that the image of E1 is contained in H2 and conjugate in P2. Since (G2, P2, H2)
satisfies (∗), one can repeat the argument and obtain a chain of quotients

G1
η1−→→ G2

η2−→→ · · · ηn−1−−−→→ Gn
ηn−→→ · · ·

and subgroups Hn = ηn−1(Hn−1), Pn = ηn−1(Pn−1) � G0 of Gn such that (Gn, Pn, Hn) satisfies
(∗) and such that the image of E1, . . . , En−1 in Gn are contained in Hn and conjugate in Pn.

Let G∞ be the direct limit of this chain and denote the corresponding epimorphism by
η∞ : G1 → G∞. Denote H∞ = η∞(H1) and P∞ = η∞(P1) � G0. Any element g ∈ G1 is contained
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in some Ej , so its image in Gj+1 lies in Hj+1, hence η∞(g) ∈ H∞. This shows that η∞|H1
is onto,

so G∞, as a quotient of H1, has property (T) and is 2-generated. Similarly, if g ∈ Ej , then its
image in Gi+1 is conjugate in Pj+1, which shows that every element of G∞ has a conjugate
in P∞.

We finally check that G∞ acts sharply 2-transitively on its set of involutions. Let u, v ∈ G∞
be a pair of involutions, and let us prove that it is conjugate to a pair of involutions of P∞. There
exist n and preimages un, vn ∈ Gn of u, v such that un, vn are involutions. Since every involution
of Gi is the image of an involution of Gi−1 under ηi−1, there exist involutions u1, v1 ∈ G1 that map
to u, v ∈ G∞, respectively. Since the elementary group 〈u1, v1〉 = Ej for some index j, its image
in Gj+1 is conjugate in Pj+1 hence 〈u, v〉 is conjugate in P∞. Since P∞ � G0 acts transitively on
its pairs of involutions, so does G∞.

It remains to check that the centralizer of a pair of distinct involutions u, v ∈ G∞ is trivial. If
z ∈ G∞ centralizes u �= v, then there exist n and lifts un, vn, zn ∈ Gn of u, v, z such that un �= vn

are involutions and zn centralizes un, vn. Since Gn belongs to C, it acts freely on its pairs of
involutions so zn = 1 and z = 1 which concludes the proof. �

It remains to prove Proposition 5.6.

Proof of Proposition 5.6. Consider (G, P, H) satisfying (∗). In a first step, we are going to embed
G in a group G1 so that E is conjugate to a subgroup of P in G1. If E is already parabolic in G,
we let G1 = G so assume otherwise. This implies that E is infinite because, since G belongs to C′,
every finite subgroup of G has order at most 2 (Lemma 3.15) and all involutions are conjugate
(Definition 3.3).

Since G is relatively hyperbolic, the commensurator Ê of E is virtually cyclic infinite. By
Lemma 3.15, Ê is isomorphic to Z, DZ or Z × (Z/2Z). Note that if 〈h〉 is a maximal infinite
cyclic subgroup of Ê, then h is isolated, a translation of type DZ, or a homothety accordingly.

The following consequence of relative hyperbolicity will be useful: P̄ is almost malnormal in
Ḡ, i.e. if P̄ g ∩ P̄ is infinite, then g ∈ P̄ (see, for instance, Lemma 8.3 in [Osi10]). We note that
since G lies in the class C, it contains a pair of involutions (u0, v0) of type DQ. Such a pair is
conjugate in P̄ because a group isomorphic to DQ has to be parabolic.

Consider E′ a subgroup of P isomorphic to Ê: if E is isomorphic to Z or Z × (Z/2Z),
Lemma 3.16 ensures that E′ exists, and if Ê = 〈u, v〉 � DZ, we choose E′ = 〈u0, v0〉. Let
σ : Ê → E′ be an isomorphism and let G1 be the HNN extension G1 = 〈G, t |txt−1 = σ(x),
x ∈ Ê〉, and let us check that (G1, P, H) satisfies (∗).

The group G1 belongs to C′:

• if Ê = 〈h〉 � Z, this follows from Corollary 3.23;
• if Ê � DZ, this follows from Corollary 3.22;
• if Ê = 〈h〉 × 〈u〉 � Z × (Z/2Z), then this follows from Corollary 3.24.

The group G1 is hyperbolic relative to P by Dahmani’s combination theorem [Dah03] as
stated in [Osi10, Theorem 2.5] where we view G as hyperbolic relative to {P, Ê} (see, for instance,
[Osi10, Theorem 2.1]).

We now check that H is suitable in G1. By [Osi10, Lemma 2.3], H contains infinitely
many non-commensurable hyperbolic elements h1, h2, . . . ∈ H of infinite order such that
CommG(〈hi〉) = 〈hi〉. Up to discarding at most two elements, we may assume that no power
of any hi is G-conjugate in Ê or Ê′. To check that CommG1(〈hi〉) = 〈hi〉, consider G1 � T be
the Bass–Serre tree of the HNN extension defining G1, and x ∈ T a vertex with stabilizer G.
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For all k ≥ 1, the set of fixed points of hk
i in T is exactly {x}. It follows that CommG1(〈hi〉) fixes

x so CommG1(〈hi〉) = CommG(〈hi〉) = 〈hi〉. This shows that H is suitable in G1.
We thus have embedded G in a group G1 such that (G1, P, H) satisfies (∗), and such that E

is conjugate to a subgroup of P in G1.
Let {t1, t2} be a generating set of E, and recall that t denotes the stable letter of the HNN

extension defining G1; in the case where we defined G = G1, we let t = 1. Let η1 : G1 � Ḡ be
the quotient of G1 given by Theorem 5.2 applied to the elements t, t1, t2 ∈ G1. We denote by η :
G → Ḡ the restriction of η1. Since G1 is generated by G and t, and since η1(t) ∈ η1(H) ⊂ η1(G),
it follows that η : G → Ḡ is onto. Theorem 5.2 says that η is injective in restriction to P , that the
group Ḡ is hyperbolic relative to η(P ), that η(H) is suitable in Ḡ, and that η(E) = 〈η(t1), η(t2)〉
is contained in η(H). Since E is conjugate in P in G1, η(E) is conjugate in η(P ) in Ḡ.

It also says that any involution v ∈ Ḡ is the image of some involution ṽ in G1. It follows that
v is the image of some involution in G: ṽ is conjugate to some involution ṽ′ ∈ G, and since η
is onto, there exists g ∈ G such that η(gṽ′g−1) = v. We note that since all involutions of G are
conjugate to each other, this is also the case in Ḡ.

To check that (Ḡ, η(P ), η(H)) satisfies (∗), the only remaining fact to prove is that Ḡ belongs
to C′. In what follows, we use the notation P̄ = η(P ).

We first characterize finite and virtually cyclic subgroups of Ḡ. Since G1 belongs to C′, every
non-trivial finite subgroup of G1 is isomorphic to Z/2Z (see Lemma 3.15), and the same holds
for Ḡ by assertion (5) of Theorem 5.2. By Lemma 3.15, it follows that every infinite virtually
cyclic subgroup of Ḡ is isomorphic to Z, DZ or Z × (Z/2Z).

We now check that Ḡ belongs to C (Definition 3.3).
First, for any pair of involutions (u, v) ∈ I(2)

Ḡ
, the group 〈u, v〉 is infinite dihedral since finite

subgroups of Ḡ have order at most 2. We already noted that Ḡ acts transitively on its involutions.
Let (u, v) ∈ I(2)

Ḡ
be a pair of involutions, and let us check that its centralizer Z = ZḠ(〈u, v〉) is

trivial and that (u, v) is either or type DZ or DQ.
If 〈u, v〉 is not parabolic, then its commensurator CommḠ(〈u, v〉) ⊃ Ḡ(〈u, v〉) is virtually

cyclic, necessarily isomorphic to DZ, so (u, v) is of type DZ and its centralizer Z is trivial.
If 〈u, v〉 is parabolic in Ḡ, we may assume that 〈u, v〉 ⊂ P̄ . Then Z is contained in P̄ by

almost-malnormality of P̄ , so Z is trivial because P̄ is isomorphic to the subgroup P of G, and
G belongs to C. Denote by ũ, ṽ ∈ P the preimages of u, v by the isomorphism η|P : P

∼−→ P̄ .
If (ũ, ṽ) is of type DQ in G, then 〈ũ, ṽ〉 is contained in a subgroup D̃ of G isomorphic

to DQ. Such a group D̃ has to be parabolic, hence conjugate in P . It follows that (u, v) is
of type DQ since 〈u, v〉 ⊂ η(D̃) � DQ. If (ũ, ṽ) is of type DZ in G, then CommP (〈ũ, ṽ〉) � DZ.
Using the isomorphism η, CommP̄ (〈u, v〉) � DZ. By almost malnormality of P̄ , we get that
CommḠ(〈u, v〉) = CommP̄ (〈u, v〉) so (u, v) is of type DZ in Ḡ.

To prove that Ḡ belongs to C, it remains to prove that Ḡ acts transitively on the set of pairs
(u, v) ∈ I(2)

Ḡ
of type DQ. However, any such pair is conjugate in P̄ so it remains to check that

P̄ acts transitively on its set of pairs (u, v) ∈ I(2)

P̄
of type DQ. Viewing P̄ � P as a subgroup of

G, we know that any two pairs in I(2)
P of type DQ are in the same G-orbit. Since P is almost

malnormal in G, they are actually in the same P -orbit. This concludes the proof that Ḡ is in
the class C.

To check that Ḡ belongs to C′, it remains to show that any element h ∈ Ḡ of infinite order is a
translation, a homothety or is isolated. If 〈h〉 is not parabolic, this follows from the classification
of elementary subgroups (the three cases occurring when CommḠ(〈h〉) is isomorphic to DZ,
Z × (Z/2Z) or Z, respectively). Thus, we may assume that h ∈ P̄ . Let h̃ ∈ P be its preimage in
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P under the isomorphism η : P
∼−→ P̄ . If h̃ is a translation or a homothety in G, it stays so in Ḡ

because η does not kill any involution. If h̃ is isolated in G, it is isolated in P and h is isolated
in P̄ . Its commensurator CommḠ(〈h〉) is contained in P̄ by almost malnormality. It follows that
h is isolated in Ḡ, which proves that Ḡ belongs to C′ and concludes the proof. �
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