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A GENERALIZATION OF CAPLYGIN’S INEQUALITY
WITH APPLICATIONS TO SINGULAR BOUNDARY
VALUE PROBLEMS

D. WILLETT

1. Introduction. Let
(1.1) Ly = y® 4+ py(0)y™D 4+ ...+ p, )y =0, a<it<8B,

where p; € C(a, 8) and —0 < a < 8 =< . A solution of (1.1) is a nontrivial
function y € C"(a, 8), a neighborhood of g8 is an interval of the form (v, 8),
a < v < 8, and a neighborhood of « is an interval of the form (a, v), a < v = 8.
The endpoint 8 («) is said to be singular if it is 00 (—o0) or if one of the
functions p; in (1.1) is not integrable in a neighborhood of 8 (). An ordered
set (u1, ..., u,) of functions is called a principal system at 8 (a) provided
ui(t) > 0 in some neighborhood of 8 (a) and

30)
z.,?(i)itku(lf) =0 k=1,...,n—1),
and is called a fundamental principal system on [a, 8] provided (uy, ..., u,) is
a principal system at 8 and (u,, ..., #;) is a principal system at a. Thus,
(e7!, e') is a fundamental principal system of solutions of y"" —y = 0 on
[—oo, ]. In general the function #; in a fundamental principal system

(u, - . ., u,) of solutions of (1.1) is unique up to multiplication by an arbitrary
constant ¢.
The Wronskian determinant of & functions u;, . .., u; is denoted by W (u,,
., Uy, 1.e.,
Wy oo yug) = W(ny, - .., ug)(8)
ul(t) e u,c(t)
= det . cee (W (u1) = u1(2)).
wi V() LB (0)
A system (uy, ..., u,) of functions for which
Wy, ...,u,) #0 (¢ €l;ik=1,...,n),

is called a Markov system on the interval I. (Such a system was called a
Poélya system in [6] and [7].)
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Let (uy, ..., u,) be a fundamental principal system of solutions of (1.1) on
[, B] for which both (ui, ..., u,) and (u,, ..., u;) are Markov systems on
(@, B). Define

P e W, o u, ) () _
(Do) (t) = 1313: W ae) ) kE=0,...,n—1),

® e Wty o g, N (5) _
s H(t) = lslf: Wl ey o) k=0,...,n—1),
W@y ooyt f)=f= Wy, ..., Uyss1,f) when £ = 0). Define the kth
generalized derivative of a function f € C*(a, 8) by the formula

(D) (@) ift=a
(D)) = f @) ifa <t<B,
(D)) ift=8.

In contexts where the dependence of the operators &,, &5 on the fundamental
principal system (u1, ..., #,) = S is of critical importance to the discussion
we will write Das, Dss, D s, respectively. If S and T are two fundamental
principal systems of solutions of (1.1) on [, 8], then it follows from the
previous remark about uniqueness that there exist positive constants by, ¢
such that D.sf = :Dar"f and Dsf = b, D, f for all admissible f. Thus,
(D)) =0 if and only if (2% ) () = 0. Define f to have a jth order
zero at t € [o, B] if (Z*f)(t) =0fork=0,...,75— 1and (Zf)(#) = 0.
Here, (27 )(t) # 0 means (Zf )(t) does not exist, or exists and is not 0.
Thus the idea of a zero of a solution of (1.1) at @ or 8 becomes meaningful
even though « and 8 may be singular points of the equation. It is important
to keep in mind that zeros at singular points depend upon the operator L as
well as the function. Thus, the function ¢ does not have a zero at 0 with
respect to L = D? but has a double zero at o0 with respect to L = D*. The
above definition of zero is equivalent (cf. section 2) for solutions of (1.1) to
the definition used by Levin [3].

Define Z,I to be the number of zeros counting multiplicities, of the function
v in the set I, and Z,y = Z,[v, v]. Equation (1.1) is called disconjugate on an
interval I C [a, B8] if for any solution y, Z,I = n — 1; and is called disconjugate
at v, a £ v £ 8, if there exists a neighborhood N of v such that (1.1) is
disconjugate on [—00, 00], thus, the equation " = 0 is disconjugate on every
proper subinterval of [—o0, ] but not on [—o0, 00].

We assume throughout this paper that equation (1.1) is disconjugate on
[e, B]. Our main purpose is to prove and apply the following two theorems.

THEOREM 1.1. Assume that (1.1) is disconjugate on |a, 8], f € C*(«, B) and
f®(@) exists for a« < t < B. If there exists a solution y of (1.1) (may be the
identical zero solution) such that Z; o, 8] =2 n+ 1 and Z,_,(e,B) 2 1, then
there exists &, a < & < B8, such that (Lf)(&) = 0.
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THEOREM 1.2. Assume that (1.1) is disconjugate on [a, B]. If f € C"(a, B),
there exists an integer r,0 < r < n, such that (—1)*~"Lf = 0 and

(1.2) D)) 20 (G=0,...,7r—1),
(ij)(ﬂ)io (j=(),...,n—1'——1),

then f(t) =2 0 for @ < t < B. Furthermore, if (—1)"~"Lf > 0 or strict inequality
holds for at least one value of j in (1.2), then f(¢) > 0 fora < t < B. (Itis to be
understood that all the conditions in (1.2) are to be taken at 8 if » = 0 and
ata if r = n).

Theorem 1.1, which is proven in section 2, is a generalization of a well-known
theorem of Pélya [4]. Some consequences of this theorem are given in section 3.
These include generalized finite Taylor expansion formulas with remainders
in an integral form in one case and in a Lagrange form in another case.

Theorem 1.2 is a generalization of Caplygin’s inequality [2], which states
that Lz 2 0,2% () =0 (k =0,...,n — 1) implies z = 0 on [«, B) provided
Ly = 0 is disconjugate on [«, 8). Levin [3] (cf., also [6; 7]) has shown that
the disconjugacy of (1.1) on [a, B8] implies the existence of a fundamental
principal system of solutions on [, 8]. Thus, if (1.1) is disconjugate on [«, f]
in the sense of Levin and its solutions can be found, then the appropriate
behaviour of a function f at « and/or 8 with respect to these solutions and
(=1)""Lf =z 0 imply f =2 0. For example, f({) 2 0, —0 < ¢ < 0, provided
either f"'(¢) = f(t), —0 <t < ©,

lim ef(t) 20 and lim e ‘[f'(t) + f(t)] = 0,

t>—w

or f"(t) = f(t), —0 <t < w0,
lim e'f(t) =2 0 and lime f(t) = 0.

t>—w T

Note that (1.2) is invariant of the fundamental principal system used in
evaluating the generalized derivatives, i.e., & s*f = 0 at a point with respect
to one fundamental principal system S implies & ,*f = 0 at that point with
respect to any other fundamental principal system 7. In section 4, Theorem
1.2 is proven, and a refinement eliminating the requirement that the solutions
of (1.2) be known in order to evaluate the generalized derivatives at @ and B,
is obtained for a large class of second order equations.

Theorem 1.2 is applied in section 5 to generalized boundary value problems

of the form
(1.3) Ly = f(t, 3,9y ..., 9" ) (a <t <B),
(1.4) (D*y)(@) = aryr (R =0,...,7r — 1),

(D*y)B) =bgyr (k=0,00.,n—7r—1),
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where both « and 8 may be singular points. Corollary 5.1 is a result for the
conventional boundary value problem

y® = f(t, y) 0=t <w),
(1.5) y®(0) = g (B=0,...,r —1),
limo (=DM =y® () = by (B =0,...,m—7r—1).

For the special case n = 2, it implies the corresponding result of Bebernes and
Jackson [1, Problem I1].

2. Zeros and Theorem 1.1. The following Wronskian identities (cf., eg.,
Pélya and Szego [5, p. 113]) will be needed:

(2.1) Wuy, ..., vu) = 0*W(us, ..., u),
(2.2) Wuy, ooy ug) = wl"W((ue/ur)y ..oy (e/u1)’)  (uy # 0),
(2 3) _d_ W(uh s ooy Uy, uk+1) — W(uly ‘e yuk—l)W(uly e vuk+1)
’ dt Wiy, . .., u) W (u, ..., u) )
Also, any principal system (uy, ..., u,) of solutions at 8 have the properties
that
(2.4) Wiy oo ohuy) >0 A=< ... <y Snmk=1...,n)

is some neighborhood of 8, and

(25) lim E(uin L ] uzk)

=0 (i < jnu with strict inequality for at least one
t-B W(“J‘H sy %]‘l:) " "

value of m).

Polya [4] proved that (1.1) is disconjugate on an interval I C («, 8) provided
(1.1) has a Markov system on I. The existence of a principal system at a point
is not sufficient to imply disconjugacy at that point (cf., Levin [3, p. 49]).
However, it is true that a principal system (uy, ..., u,) at 8, as well as the
system (#,, ..., 1), are Markov systems at 8 if and only if (1.1) is dis-
conjugate at 8. Thus, the disconjugacy of (1.1) on (@, 8) implies that the
denominators in the definition of Z.* and Z4* do not vanish. We assume
throughout this section that (1.1) is disconjugate on [«, 3].

LemMma 2.1. If Z;a = j (j £ n), then for any principal system (i, . . ., #1) of
solutions at «,

ltiT (fO/u@®)) =0  (k=1,...,7),

and the corresponding limit with k = j 4 1 is not zero when j < n.

Proof. Clearly the lemma is true for all first order equations. Suppose that
it is true for all disconjugate equations of order less than # (# > 1). Let
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(41, . . ., u,) be a fundamental principal system of solutions of (1.1) on [a, f]
and suppose that

k 1 W(ul,...,uk,f) _ _ .
(2‘6) (gaf)(a) - 111_132 W(ul, R uk+1) =0 (k - Or ceen] 1)
and the corresponding limit with & = j is not 0 (provided j < 7). Now, (2.1)
and (2.2) imply
Wy, oy tmes, f) W, ..., Vs, F)

2.7 Wi, - ) W, ..., 991 (m =

o

7"‘7”)’

where

F = W(ul,f), Vy = W(ul, uk+l) (k = 1, R 1).
Since

Wy ooy vm1) = w2 W(uy, .. .,u) 0 (B=2,...,n)
and

lim (01 () /o)) = 0 = lin; @ () /vr1(t)) k=1,...,n—2)

by (2.5), we conclude that (i, ..., v,-1) is a fundamental principal system
on [, B] for the disconjugate (n — 1)st order differential equation My =
Wi, ..., ,0-1,%) = 0. But (2.6) and (2.7) imply that F has a (j — 1)st
order zero at a with respect to M. Thus, the induction hypothesis implies

lim (F(t) /v, (t)) = 0 k=1,...,7—1)

and the corresponding limit with 2 = j is not zero (provided j < n). But
(2.2) and L’Hopital’s Rule in conjunction with another induction argument

imply

SO GOa®Y L F@)
i @~ i 0/ )) 0

and the corresponding limit with 2 = j is not zero (provided j < #n). Thus,
the conclusion holds for the particular principal system (u,, ..., u#;) at a.
It is a trivial manner to obtain the conclusion for all principal systems once
it has been achieved for one principal system.

=11"-1j—1)1

The converse of Lemma 2.1 is easy to prove for solutions f of (1.1). Thus,
our definition of zero and the definition of Levin [3] coincide for solutions
of (1.1).

LEMMA 2.2. Forany m,a < 7 < B,Z;r = j (j = n), if and only if
(Df)r) =0 (k=0,...,7—1),
@I )(r) =0 (fjF<mn).

Proof. Since (u1,...,u,) is a Markov system on (a, 8) and o < 7 < 8,
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there exist positive constants ¢; such that

Im Wug, ..., u) @) = ¢ k=1,...,n).

5T

Suppose that f ™ (r) = 0form =0,...,%k (k £ j). Then

<gak+lf)(T) = Ckf ® (T)/Ck+1

which implies f ®(r) =0 if e <jand f®(r) #0if 2 =7 and j < n, ie.,
Z;r = j. The converse is trivial.

LemMaA 2.3. If (uy, . .., u,) is a fundamental principal system of solutions of
(1.1) on [a, 8], then
2.8) Wut, ..oy thy, Uposyiy - ty) >00m (@, 8) A Zr,s En—1;

r+s = n).

Proof. In [6] and [7] we showed that there exist functions & € C"*(«, B)
(k = 2,...,n), which are positive on (e, 8), locally integrable in [«, 8] but not
integrable on [a, B8] such that
(2.9) we () = w1t ;6.0 8) (R=2,...,n),
where

I(t, S; EQy o e ey Ek) = f Ez(tg) f Ea(ts) e f ) Sk(tk)dtk e dtz.

Thus, » applications of (2.2) implies
(2.10) W (a1, « v vy Upy Unesity - o+ 5 Up) =

u1’+3$2'+8_1 .. ETS+IW(Zn—r—s+1: EER yzn—r)9
where

(2.11)  2.(t) = E1(0), 2(t) =
1 )I(t o5 Erpny ooy b)) (B =2, 000, m — 7).

But (2.11) clearly implies that (zi, ..., 2z,_,) is a Markov system on (a, 8)
and a fundamental principal system of solutions on {&, 8] of the (n — r)th
order equation My = W(z1, ..., 2., ¥) = 0, which must then be discon-
jugate on [a, 8]. Hence, (z,—;, ..., 21) is a Markov system on (e, 8), which
implies that (2.10) cannot vanish in (@, 8), and hence must be positive by (2.4).

Proof of Theorem 1.1. Since Lf = Lf — Ly = L(f — y), the theorem is true
provided the special case when y = 0 is true. The proof of this case will be
divided into two main parts.

First, suppose that Za, 8) = n 4+ 1 and Z,(a, B) = 1. Let

_ W(ul, ... yuk—-lrf)
gk W(uly ) uk)

k=1,...,04 LU = 1),
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and define f to have at least j(j £ n — k + 2) gi-zeros at a point 7 € [, 8) if
(2.12) limg,(t) =0 (G =Fkk+1,...,k+j—1).

t>T

The assumptions and Lemma 2.2 imply that f has at least # + 1 g;-zeros in
[a, B) with at least one g;-zero in («, 8). Suppose there exist at leastn + 3 — &
gi_1-zeros in [a, B8) (1 < B < n 4+ 1) with at least one g;_;-zero in («, 8). Let
these g;_i-zeros be located at the points {1, ..., {m, Wherea < & < ... <
¢ < B, with multiplicity at least vy,...,», s0 thatv; +... 4+ v, =n+3—k.
Since {; is a g;_1-zero of multiplicity at least »,, {, is clearly a g;-zero of multi-
plicity at least »; — 1. Furthermore, since

lim g,_1(() = 0= Hlm g,1(f) s=1,...,m — 1),
t>8s t>8e +1

Rolle’s theorem implies there exists 7,({s < 75 < {sp1) such that (Dgi_y) (n,) =
0(s=1,...,m — 1). But then (2.3) implies

W (us, . . ., i)
143 ("78) = W(ul, L uk‘.z)W(ul, ) (ng—l) (778) =0

s=1,...,m —1).

So, strictly in between every two g;_;-zeros {;, {sr1, there exists at least one

gr-zero 75, which implies that the total number of gi-zeros in [, B8) is at least
=D Aot =1+ m—1) =n+2 —kF,

and clearly, ¢, or 9,—1 is in (&, 8). Thus the finite induction principal implies
that there exist at least one g,,:-zero ¢ in («, (), i.e.,

0 = g1(8) = (Lf) ().
Now suppose that there are r + 1 zeros of f in [a, 8), 0 = r < #u, and at least
n — r zeros at B. Consider the equation My = W(uy, ..., #, v) = 0. Clearly
the 7 4 1 zeros of f in [a, B) with respect to Ly = 0 are also zeros of f with
respect to My = 0. Thus, by the first case of this proof, the part already
established, there exists £ € (a, 8) such that

(2.13) 0= (Mf)E) = Wluy, ..., unf)(E).

The remainder of the proof in this case is by induction. Assume that there
exists £ € (@, 8),1 =j <n — r + 1, such that

(214) W(uly ooy Uy f: Un—jt2y « + « un) (E]) = 0

Here, if j = 1, then (2.14) is to be interpreted as (2.13), which has been
established. Similar adjustments, which will not be made explicit, in the
notation have to be made for the case j = 1 in what follows. Let

(t) — W(ulv LI ) uT!fY un-—j+27 s e ey un) (t)
q Wttay oo oy thry Un—ji1y - o -y Up) ()

Lemma 2.3 and (2.3) imply ¢ € C'(, 8), and (2.14) implies ¢(¢;) = 0.
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If there exists 7 € (@, 8), 7 ¥ &;, such that ¢(y) = 0, or if ¢(t) — 0 as t — 8,
then Rolle’s Theorem implies there exists £;11 € (e, ) such that ¢’ (¢;41) = 0,
which implies by (2.3) and Lemma 2.3 that

(2.15) Wty o ooy thry fy Unjity -« oy Un) (Ej31) = 0.

We will show in what follows that there must always exist £;41 € (@, 8) such
that (2.15) holds.

Suppose that |¢(¢t)] > € > 0 for 7 = ¢ < B, where & < 7 < . For all
le| > 1/¢, the differential equations

*
(uly y Ury Up—j Un—j U, )
_ 4/ ... —i+1) Un—jt2y « o oy Upy Y _
Kcy - - 07

Wua, o ooy gy Uity Un—jiay « + vy Un)

where u}_;11(¢) = sy—j41(t) — ¢f(t), are well defined on [, 8). Suppose there
exists ¢(|¢c| > 1/€) such that K,y = 0 is not disconjugate on (7, 8). Then,
there exists a solution

o(t) = can(t) 4+ ..o F Comjrrtti_ 1) + ..o+, (8)

of K,y = 0 with 7 4+ j zeros in (7, 8). Also, ¢,—j+1 # 0, for otherwise ¢ would
be a nontrivial solution of the equation

Ny = W(ul! ooy Ury Yy Up—jt2y - o '!un) = Oy

which would violate the disconjugacy of Ny = 0 on (r, 8). Thus, ;i1 agrees
with the solution

Y() = [ () + cnjrrttaji1(t)]/Crmsir
of the (r +j — 1)st order disconjugate equation Ny = 0 at » 4+ j points
(counting multiplicities) of (r, 8). So by the first case of this proof, which
has already been established, there exists { € (7,8) such that (Nuf_;41) (¢) = 0,
i.e.
(uly ey Upy Up—jb1y o o oy un) - CW(uly ooy Upy fy Un—j+2y « « - yun)] (g‘) = 0.

Thus,

lg(©)] = 1/]e] < e <|g()l,

which is a contradiction; hence, each of the differential equations K,y = 0
(le] > 1/€) must be disconjugate on (r, 8). Since f has at least w — 7 > j — 1
zeros at 3, Lemma 2.1 implies

131? (@) /ttnejia(£)) = 0O,
which implies

Un_j1(t) = o s 1 ([ — ¢f (8) /a1 (1)] = tp—j1()[1 + 0(1)], as £ — 6.

Thus, (%1, « .., %r, U ji1, Un—jso, - - -, Uy) is @ principal system of solutions of
K.y = 0atB. Hence, (2.4) implies W (u1, . . ., Ur, Unejy1, Un—jizy o oy Up) > 0
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in some neighborhood N(c) of 8, i.e.,
lg()| < 1/l¢] for t€ N(c) N\ N(—c).

Hence, once again ¢(¢) — 0, as ¢t — 8, and Rolle’s Theorem implies the existence
of £;41 in (@, 8) such that (2.15) holds.

Thus in every case, (2.14) implies (2.15); hence, by the principal of finite
induction, there exists £,_;11 € (e, 8) such that

W(ulv ey Uy fy Urply « + oy un)(gn—r+1) = Oy
ie., (Lf) (En—r+1) = 0.

3. Generalized mean value theorems. Throughout this section we
assume that (1.1) is disconjugate on [, 8] and (%1, . . ., %,) is an arbitrary but
fixed fundamental principal system of solutions on [a, 8]. If

(31) 'Uk(t) = W(ulv ooy Up—1y Up41y o+ oy un)(t)/W(ulv sty M")(t)

k=1,...,n),
J ]S;‘ (—Dn-kuk(t) (vk(s)/v]-(s))', a<s<t,
32) hilt,s) =1 .
{_Z; (= 1", () @ (5) /2, (5))', f<s <8

ona) _ f ") ( J:vl(r)f(r)d-r)ds,

[wj(t)= fjhj(t,s)(fvj(f)f(r)df)ds G=1,..0,m),

(where Y21 =0if j = 1and Yj_;51 = 0 if j = n in (3.2)) then (cf. [6;7])
(¥, . . ., 1) is a fundamental principal system on [«, (],

(=)t s) >0 (s#=1),

(3.3)

(3.4)
) 8
(3.5) u;(t) = (=171 J h;(t, s)ds,
(3.6) Lwy) () = —f(@) (@ <t <B),
(3.7) w,P () = Zl ¢ (O)u,® (@) (k=0,...,n—1),
where ”
1[(—1)""+1 ftv,(s)f(s)ds (r=1,...,5;1 27 < n),
e(t) = :

B
{(—1)”"’ f v,(s)f (s)ds r=j+1,...,7;0<j=<n—1).

The formula (3.7) follows from (3.3) by an appropriate integration by parts
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and the fact that u, (£)v,(s) — ... 4+ (—n)"'u;(¢)v;(s) is the Cauchy function
for (1.1).

Lemma 3.1. If v,f (when 1 < j < n) s integrable on [, t] and v;.f (when
0=j=<n—1) s integrable on [t, B] for a« < t < B, then w;"V is locally
absolutely continuous on (a, B) and

(G*w;)a) =0 (=0,...,7—1;7=1,...,n),
(Dw)B) =0 (=0,....,n—j—1;7=0,...,n—1).

Proof. Consider just the situation at the point «; the situation at 8 can be

handled similarly. The elementary properties of determinants and (3.7) imply

Pt ") 35 (=1 () Bltos it 4 g

. ,“k+1) Wua, . .., tgq1) ()
(B =0,...,7—1). Let the functions u; be represented by (2.9); then
9,(t) =0, )¢ a; by i) (R=1,..,.n—1)
(cf. [6, Theorem 1.2, p. 294]), and if
Co(tys) = It a; Eryoy ooy EDI(S, 05 6y o ooy Ep1),

then (cf. [6, Lemma 2.2, pp. 298-299])
(38) —;{—l (— l)n_rg‘f(tr S) = (_ l)n—k+11(sy t; Em ceey £k+2)'

Using (2.2) and (3.8), we conclude that

S e W(uy, ..., u, 1))
r——-zj-:’-l ( 1) UT(S) W'(ulr LI uk+1) (t)

= ,(s)

Z (=10, ()¢, (¢, 5)

r=j+1

I<Srt;£ny"'y£k+2) —I(S,OZ;E",...,EIH_Z)‘}‘

T=2:: l)k_rg‘,(t, S) i

é vﬂ(s)I(s, o5 Enr LR ] Ej+l) |:2I(s!a;£j) e ey £k+2) + ff(t S)]

é 'Uj(S)[2I(S,a; E,’iy ] £k+2) + 0(1), ast—a«a

i iie=0and I(s, a; &, ..., 5&2) = 1if B =37 — 1). Let e > 0 be given
and choose " = T > «a such that

2 J; I(S, a;, Ej, ey £k+2)7)j(s)|f(s)|ds < e

fﬂ
T
since the second limit is zero by (2.5). Since e is arbitrary, we conclude that
(D*w,) (o) exists and is zero (k = 0,...,7 — 1).

Then

<e

=%

T
+ lim

tsa

9w, @) < lim

H>a t
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COROLLARY 3.1. For any integer v, 0 < v < n, and constants ao, . . ., a,_q
(rz1), boy... b1 (r =n—1), Equation (1.1) has the unique solution

y(t) = E ap—1 () + Z bp—sur ()
k=1 k=r+1
satisfying
(D) (@) =a, (=0,...,7r—1),
(D*y)B) =b, (k=0,...,m—7r—1).
Lemma 3.1 and Corollary 8.1 imply a generalized finite Taylor expansion for
functions; namely

69 0= T @ N@uO+ 3 @ NEHO - RO

O=Lr=n Xp1i=0=>r,1), provided f € C"(a, B), the generalized
derivatives of f appearing in (3.9) exist, and v,.;(¢) (Lf)(¢) G0 = r < n — 1)
is integrable at 8 and »,(¢) (Lf)(¢) (if 1 < r < #») is integrable at a. Here the
remainder term R (¢) has the exact integral representation

(

"= | [nes ([ vounei)s  asrsm.

fjhﬁu(t, 5) (L ‘U,+1(T)(Lf)(r)dr)ds O<r<n—1),

Lemmas 2.1 and 3.1 imply
R() = {o(u,(t)), ast—a (1

= n),
o(u,1(t)),ast—pg (0 =r

n—1).

IIATIA

Theorem 3.1, which follows, generalizes (3.9) to the multi-point situation at
the expense of preciseness in the remainder term, i.e., there is a Lagrange type
remainder term.

THEOREM 3.1 (Generalized Mean Value Theorem). Let m, 0 < m < n — 1,
andry(k = 0, ...,m) beintegers such that 3 jory, = n. [fa S th < h < ... <
tn £8, f€Cey B), (D)) (k=0,...,7;—1; j=0,...,m) exist,
g € Cla, B) and g > 0, then there exists £ (= £(t)) such that min (4, t) < £ <
max (¢p, t) and

(3.10) F@&) =u@®) +w@)LHEE]T (@<t<p),
where Lu = 0 = Lw — g and

(Dru) (t;) — (D)) = 0 = (D*w) ()
(B=0,...,7, —1;7=0,...,m).

Proof. Let a <t < B, t#t (r=0,...,m). If w(t) =0, then w has
(n 4+ 1) zeros in [a, 8] with at least one in (a, 8); hence, Theorem 1.1 implies
there exist { € (a, 8) such that (Lw)(¢) = 0, which contradicts (Lw)({) =
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2(t) > 0.So f(t) = u(t) + cw(t) has a solution for ¢, namely,
(3.11) c=[ft) —u@®)]/w().

Thus, the function z(s) = f(s) — u(s) — cw(s) has (» + 1)-zeros in [a, B],
one of which is at ¢ € (a, 8). Theorem 1.1 implies there exist & min (4, {) <
¢ < max (¢, t), such that

0 = (Lz) (&) = (L) (&) — c(Lw)(?),
¢ = (LHE)/g(®),

and proves the theorem upon substituting into (3.11).

which implies

4. Proof of Theorem 1.2. Let g € C(a, 8), g > 0, v,g be integrable at
a and v,,1¢g be integrable at 8. Then Lemma 3.1 and Corollary 3.1 imply that

w0 = X @ N@n0) + 3 @ NELO,

k=1

w() = — Jj k., s) (J;s v,(-r)g(-r)dr)ds, 1=r Za,

satisfy the assumptions of Theorem 3.1 with m =1, ) =, 1 =8, ro =7
and r; = n — r. Hence, there exists £, « < ¢ < 8, such that

J@&) = u@®) +w@®) L)@ (@<t<p).

The assumptions imply #(t) = 0 and (—1)"7"(Lf )(¢) = 0, and (3.4) implies
(=1)~"w() > 0; hence, f(¢) = 0. The case » = 0 is similar.

An unfortunate aspect of Theorem 1.2 in applications is the need to find a
fundamental principal system of solutions of (1.1) in order to evaluate the
generalized derivatives in (1.2). In some cases, one of which we shall now give,
this problem can be partially circumvented.

Suppose that

Lz = (r()z") + )2z 20 (a<t<B),
z(@) 2 0, () 2 ui(2)z(a),

where [a, 8] is bounded, p € Cle, 8], 7 € C'le, 8], ¥ > 0, and u;1(¢) is the
minimal solution of Lyy = 0 at B8 normalized at «, i.e., #;(@) = 1. Then,
Theorem 1.2 implies 2(¢) = 0 for a = ¢ < B provided Lyy = 0 is disconjugate
on [a, B]. Assume that

8
R(@) = f r(s)ds < @=st=8),
(4.1) !

8
b= R(a) — fa [R@) = ROIRNp+(D)dt > 0 (p4(t) = max(0, p(1))).

Then Corollary 3 of Willett [8, p. 541] implies that Lsy = 0 is disconjugate
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on [a, 8], and the general procedure [8, pp. 542-544] can be easily adapted
to Lyy = 0 using B as the fixed endpoint to imply that

4.2) w'(@) S v = [ f " RO, ()il — 1} / ur(@).

This proves the following corollary.

COROLLARY 4.1. If (4.1) holds, Loz = 0, z(@) = 0 and 2’ (a) = vz(a), then
z2(t) 2 0fora =t = B.

5. Generalized boundary value problems. Once again assume that (1.1)
is disconjugate on [«, 8], and that the notation of the previous two section
holds; in particular, (u1,...,u,) is a fixed fundamental principal system of
solutions of (1.1) on [«, 8] and (v,,...,7;) is the companion fundamental
principal system (3.1) on [e, 8]. Let u1"(¢) = u,(¢) and

WO = 3 OO0 = {0y B2

m=1,mz#r

The generalized boundary value problem (1.3)-(1.4), which includes the
generalized initial value problem (r = 0 or » = #), will be considered in this
section.

TueoreM 5.1. If f(¢, y1,...,%) € C((a, B) X R*) and if there exists a
constant 6, 0 < & < o0, such that

(5.1) fﬂ v, (¢) sup| f(¢, u(@) + z:(), . .. L u @) + 2,(t))]dt <3,

where the supremum s over all z, € Cla, B) such that |z;(t)| = omi”(¢)
k=1,...,n), and

T

(5.2) w(t) = Y aun(t) + ki baosss £ (D),

k=1 =741

then (1.3)-(1.4) has a solution y € C*(a, B) such that

33) y() = u(t) — fh,(t, 9 ( f Co )y Y5y ey D (T))df)ds.
Proof. The operator 7' : X — X defined by
@00 = - [ 19 ([ 000646
+a:1(r), ., w0 (r) + xn(f))df)ds

(k=1,...,n) is completely continuous on the space X = {(x1,...,%,) :
x; € Cla, B) and |x;(#)| < ow"(¢) (B = 1,...,n)}, which implies that 7" has
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a fixed point (v, y,...,y® V) by the Schauder-Tychonoff Theorem. The
details are essentially the same as in the proof of Theorem 4.2 of [6, pp. 311-312].

Some remarks concerning Theorem 5.1 can be made. First, (5.4) holds if

[f( Y1y ooy W) S EQ) for a < E<B, W1y.--,¥) € R, and £(¢)v.(¢) is
integrable on [a, B]. Second, the generalized boundary value problem has a
solution

W W
64) 50 = 1) + [ hiasts) ([ 0@ 3 @ie s
provided (5.1) with v, replaced by v, holds. Both (5.3) and (5.4) imply that

(5'5) y(k) (t) —u® (t) = {0(#k+lr+l(t))r ast _?Bv (k = 07 BN (2 1)'
o(l‘k+lr(t)), as ¢ —a,

TrEOREM 5.2. If f(t, ) € C((o, B) X R) and there exist functions

£,¢ € Ca,B) such that (a < t < B)
i) £@®) z ¢,

(i) (=)™ "[LE —f( )] 2 0 = (—1)""[Ls — f(& )],

(iil) (Z*%) (@) =z (Z¥)(@) (k =0,...,7 — 1) and (Z*£) (B) = (D*7)(8)
k=0,...,n—7r—1),

@Gv) (—=1)™"f(t, v) is nondecreasing in vy for {(t) < vy < £(¢),

8 8
(v) —oo < (=177 fa v (Of (@ $(0))dt = (—D""J; v (Of @, £(@))dt < w0,

then for any ay, . .., ar, b1, . .., by, such that
(D) (@) 2 a1 2 (D)@ (R=0,...,7r—1),
(D) B) 2 berr 2 (D)B) k=0,...,n—7r—1),
there exists a solution y € C*(a, B) of Ly = f(t, v) satisfying
(5.6) (D*y)B) = b1k =0,...,n—7r — 1),
(D) (@) = agpa(k =0,...,7r — 1),

and

C@) 2@ W) (@<t <B).
F@E@®), v> £,
F(t,y) =

Proof. Let

ft,y), E@)zy=i@),
ft, £(8), ¢@) >y,

so that the problem Ly = F(¢, ¥) and (5.6) has a solution w(¢) by Theorem 3.1.
Let z = £ — w so that

(=1)*"Lz 2 (=1)""[f(t E@®) — FEw()] 2 0,

(D¥)B) =20k =0,...,n—7r—1), ( @*3)a) 20,k =0,...,r — 1).
Thus, Theorem 1.2 implies z(t) = 0, @ < ¢ < 8. Similarly, w(t) — ¢(¢) = 0,
a < t < B; hence, w is actually a solution of Ly = f(¢, ¥) such that{ = w = ¢.
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CoroLLARY 5.1. Assume that f(¢, y) € C((a,8) X R), 0 £t < w0, vy € R,
and that0 < r < n — 1 (r = nistrivial). If there exist functions £, ¢ € C"[0,00)
such that (0 < t < o)

(i) £@®) =z ¢ @),
(i) (=)™ () — f@E@)] 2 0 2 (1) 7[c™ (@) — f¢t, ¢ @))],
(iii) E&®0) =2 ¢®0) (k=0,...,7r — 1) and

—oo < lim (=D ¢® @) £ lim ((—1)"7"E% ¢) <

t>c t>c0
k=0,...,n —r—1),
(iv) (=1)*7"f(t, y) is nondecreasing in y for {(t) < v < £(¢),

@ —o < (<0 [T s s (o [T e s < o,
then for any ay, . .., ar b1, ..., by, such that
f(k)(O) = Ag41 = §'(k)(0)(k = 0, R 1), and

lim (=) ER (1) = by = lim (=179 (1) k=0,...,n—7r—1),
>

>0

the boundary value problem
¥ = £t ),
y(k)(o) = Qg1 k=0,...,r — 1),
lim (D% yP @) = by k=0,...,n—7r—1),

100

has a solution y € C"[0, o) such that

cW) =y@) =80 (0<ti< ).

Proof. Let
(5.7) we(t) = 57k — 1) =0, 42(t) (k=1,...,n),
so that (u1, ..., u,) and (v, ..., v:) are corresponding fundamental principal

systems on [0, o) for y® = 0. The corollary is a consequence of Theorem 5.2
and the following lemma.

LEmMA 5.1. If the generalized derivatives are defined in terms of (5.7) and
o > lim (-1 P@® =20 (k=0,...,n—7r—1),
[

then
(9"13)(0) 2 0and (D*2)(©0) =0k =0,...,n—7r — 2).
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Proof. The lemma follows from the identity

W(unr e ooy Up—pt1y Z) _ Xk: (_ l)jz(j) W(un—k’ e e ey un—j—lr Up—jtly o ooy un)
W(uny ceey un—k) =0 W(un—k; ceey un)

J
z;) (_ 1)7t1+k+ —-nz(j) (t)'Yj
=

G=0,...,k;k=0,...,n—7r—1),

Il

where v, are nonnegative constants (y; = 0 follows from (2.4)).
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