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A GENERALIZATION OF CAPLYGIN'S INEQUALITY 
WITH APPLICATIONS TO SINGULAR BOUNDARY 

VALUE PROBLEMS 

D. W I L L E T T 

1. Introduction. Let 

(1.1) Ly = yW + PiiDyW + ...+ pn(t)y = 0, a < t < 0, 

where pk £ C(a, @) and - c o ^ a < j3 ^ co . A solution of (1.1) is a nontrivial 
function y £ Cn(a, /3), a neighborhood of /3 is an interval of the form (7, /3), 
a S 7 < fi, and a neighborhood of a is an interval of the form (a, 7), a < 7 ^ /3. 
The endpoint 0 (a) is said to be singular if it is co ( — 00) or if one of the 
functions pk in (1.1) is not integrable in a neighborhood of fi (a). An ordered 
set (ui, . . . , un) of functions is called a principal system at fi (a) provided 
uk(t) > 0 in some neighborhood of ($ (a) and 

lim - ^ % = 0 (k = 1, . . . , « - 1), 

and is called a fundamental principal system on [a, (3] provided (wi, . . . , &„.) is 
a principal system at (3 and (ww, . . . , Wi) is a principal system at a. Thus, 
{er\ el) is a fundamental principal system of solutions of y" — y = 0 on 
[-co, 00]. In general the function uk in a fundamental principal system 
(wi, . . . , un) of solutions of (1.1) is unique up to multiplication by an arbitrary 
constant ck. 

The Wronskian determinant of k functions Ui, . . . , uk is denoted by W{u\, 
. . . , uk), i.e., 

W(ui, • • • , uk) = W(ui, . . . , uk) (t) 

I wi(0 . . . «*(*) 

= det (W(Ul) = Ul(t)). 

\u^-»(t) ...uk^(t)\ 

A system («1, . . . , zO of functions for which 

WXtti,. . . ,uk) j* 0 (* 6 / ; * = 1, . . . , n ) , 

is called a Markov system on the interval I. (Such a system was called a 
Pôlya system in [6] and [7].) 
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CAPLYGIN'S INEQUALITY 1025 

Let («lf . . . , un) be a fundamental principal system of solutions of (1.1) on 
[a, /3] for which both (uu . . . , « „ ) and (u„, . . . , Ui) are Markov systems on 
(a, 0). Define 

( « ) ( 0 = lim M^- • •»* . / ) (* ) (* « o, . . . , „ - 1), 

(^//)(0 = lim ^ g p • - ^ - W > ^ 
M« W(«», . . . , Un-k) (s) 

(A = 0 , . . . , » - 1), 

(W(ui, . . . , uk,f) = / = W(MK, . . . , wB_*+1, / ) when k = 0). Define the &th 
generalized derivative of a function/ G C*(a, |8) by the formula 

(^*/)(0 = </<*>(') if « < t <P, 
( W / K / 3 ) iH = /3. 

In contexts where the dependence of the operators @a, S)$ on the fundamental 
principal system (ui, . . . , un) = S is of critical importance to the discussion 
we will write £?as, &ps, 2$s, respectively. If S and T are two fundamental 
principal systems of solutions of (1.1) on [a, /3], then it follows from the 
previous remark about uniqueness that there exist positive constants bk, ck 

such that @Fas
kf = ch@aT

kf and Q^if = bk@pT
kf for all admissible / . Thus, 

(&s
kf)(t) = 0 if and only if (&T

kf)(t) = 0. Define / to have a j th order 
zero at t £ [a, 0] if (9kf){t) = 0 for fe = 0, . . . , j - 1 and {9jf)(t) ^ 0. 
Here, ( i ^ / ) (0 7e 0 means {$Jùf ) (t) does not exist, or exists and is not 0. 
Thus the idea of a zero of a solution of (1.1) at a or /3 becomes meaningful 
even though a and /3 may be singular points of the equation. It is important 
to keep in mind that zeros at singular points depend upon the operator L as 
well as the function. Thus, the function t does not have a zero at oo with 
respect to L = D2 but has a double zero at oo with respect to L = D4. The 
above definition of zero is equivalent (cf. section 2) for solutions of (1.1) to 
the definition used by Levin [3]. 

Define ZyI to be the number of zeros counting multiplicities, of the function 
y in the set 7", and Zyy = Zy[y, y]. Equation (1.1) is called disconjugate on an 
interval I C [«, jS] if for any solution y, ZVI ^ n — 1; and is called disconjugate 
at y, a S 7 = fi, if there exists a neighborhood N of y such that (1.1) is 
disconjugate on [ — oo , oo], thus, the equation y" = 0 is disconjugate on every 
proper subinterval of [ — oo , oo ] but not on [ — oo , oo ]. 

We assume throughout this paper that equation (1.1) is disconjugate on 
[a, #]. Our main purpose is to prove and apply the following two theorems. 

THEOREM 1.1. Assume that (1.1) is disconjugate on [a, 0 ] , / £ Cn~l(a, 0) and 
f(n)(t) exists for a < t < fi. If there exists a solution y of (1.1) (may be the 
identical zero solution) such that Zf-V[a, 13] ^ n + 1 and Z/_2/(a, 0 ) ^ 1 , then 
there exists £, a < £ < 0, such that (Lf ) (£) = 0 . 
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1026 D. WILLETT 

T H E O R E M 1.2. Assume that (1.1) is disconjugate on [a, ft]. If f ^ Cn(a, ft), 
there exists an integer r, 0 S r ^ n, such that { — \)n~rLf §: 0 and 

(1.2) W ) W H (j = 0, . . . , r - 1), 

W ) W ^ O (j = 0, . . . f » - r - 1), 

then f if) ^ 0/tfr a < t < ft. Furthermore, if (—l)n~rLf > 0 or strict inequality 
holds for at least one value of j in (1.2), thenf{t) > 0 for a < t < ft. ( I t is to be 
understood t h a t all the conditions in (1.2) are to be taken a t ft if r = 0 and 
a t a if r = n). 

Theorem 1.1, which is proven in section 2, is a generalization of a well-known 
theorem of Pô lya [4]. Some consequences of this theorem are given in section 3. 
These include generalized finite Taylor expansion formulas with remainders 
in an integral form in one case and in a Lagrange form in another case. 

Theorem 1.2 is a generalization of Caplygin 's inequali ty [2], which s ta tes 
t h a t Lz ^ 0, z{k)(a) = 0 (k = 0, . . . , n — 1) implies z ^ 0 on [a, ft) provided 
Ly = 0 is disconjugate on [a, ft). Levin [3] (cf., also [6; 7]) has shown t h a t 
the disconjugacy of (1.1) on [a, ft] implies the existence of a fundamental 
principal system of solutions on [a, ft]. Thus , if (1.1) is disconjugate on [a, ft] 
in the sense of Levin and its solutions can be found, then the appropr ia te 
behaviour of a function / a t a a n d / o r ft with respect to these solutions and 
( — l)n-rLf ^ 0 i m p l y / ^ 0. For example, f(t) ^ 0, — GO < / < oo , provided 
either / " ( * ) ^ f(t), - o o < t < oo, 

lim elf(t) ^ 0 and lim e~\f '(t) + f(t)] ^ 0, 
t->—oo t-$—oo 

orf"{t) ^f(t), - o o < t < oo, 

lim elf(t) ^ 0 and lim e~lf{t) ^ 0. 
£->—oo t-^cu 

Note t h a t (1.2) is invar iant of the fundamental principal system used in 
evaluat ing the generalized derivatives, i.e., 2skf ^ 0 a t a point with respect 
to one fundamental principal system S implies &T

kf = 0 a t t h a t point with 
respect to any other fundamental principal system T. In section 4, Theorem 
1.2 is proven, and a refinement eliminating the requirement t h a t the solutions 
of (1.2) be known in order to evaluate the generalized derivat ives a t a and ft, 
is obtained for a large class of second order equat ions. 

Theorem 1.2 is applied in section 5 to generalized boundary value problems 
of the form 

(1.3) Ly = fit, y,y',..., ?<»-») (a < t < ft), 

(1.4) (@ky)(a) =ak+1 (k = 0 , . . . , r - 1), 

(&*y)(fi) = bk+1 (k = 0, . . . , n - r - 1), 
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where both a and fi may be singular points. Corollary 5.1 is a result for the 
conventional boundary value problem 

yw =f(t,y) (0 s t< oo), 

(1.5) y(*)(0) =ak+1 (fc = 0 r - l ) , 

H m ^ œ ( - l ) * / * - y * > ( 0 = &*+! (* = 0, . . . , n - r - 1). 

For the special case n = 2, it implies the corresponding result of Bebernes and 
Jackson [1, Problem I I ] . 

2. Zeros a n d T h e o r e m 1.1. T h e following Wronskian identities (cf., eg., 
Pôlya and Szego [5, p . 113]) will be needed: 

(2.1) W(vult . . . , vuk) = vkW(uu . . . , uk), 

(2.2) W(uu . . . , « * ) = u1
kW((u2/u1)

,
} . . . , (uk/Uly) («! ^ 0) , 

d/ W(wi, . . . , uk) W2(uu . . . , uk) 

Also, any principal system (u\, . . . , ww) of solutions a t ($ have the properties 
t h a t 

(2.4) W(uilt . . . , uik) > 0 (1 ^ i i < . . . < ik S n; k = 1, . . . , n) 

is some neighborhood of /?, and 

(2.5) lim (
 l1' ' ' ' '—^- = o (im ^ j m with strict inequality for a t least one 

^ W{u3lJ...,ujk) v a m e o f m ) . 

Pôlya [4] proved t h a t (1.1) is disconjugate on an interval / C («, 0) provided 
(1.1) has a Markov system on / . T h e existence of a principal system a t a point 
is not sufficient to imply disconjugacy a t t h a t point (cf., Levin [3, p . 49]). 
However, it is t rue t h a t a principal system (ui, . . . , un) a t /3, as well as the 
system (unj . . . , Ui), are Markov systems a t /3 if and only if (1.1) is dis­
conjugate a t f3. Thus , the disconjugacy of (1.1) on (a, fi) implies t h a t the 
denominators in the définition of £?a

k and Sf^ do not vanish. We assume 
throughout this section t ha t (1.1) is disconjugate on [a, /3]. 

L E M M A 2.1. If Zfa = j (j ^ n), then for any principal system (un, . . . , u\) of 
solutions at a, 

lim (/(0/«*(0) = 0 (* = 1, • • • ,j), 

and the corresponding limit with k = j + 1 is not zero when j < n. 

Proof. Clearly the lemma is true for all first order equations. Suppose t h a t 
i t is t rue for all disconjugate equations of order less than n (n > 1). Le t 
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(wi, . . . , un) be a fundamental principal system of solutions of (1.1) on [a, &] 
and suppose t h a t 

(2.6) ( « ) ( < * ) = lim ^ " " • • • ' " * ' / ? = 0 (* = 0 , . . . J - 1) 
t->a VV [Ui, . . . , Uk+i) 

and the corresponding limit with k = j is not 0 (provided j ^ ^ ) . Now, (2.1) 
and (2.2) imply 

U O W(uu ...,um) ~ W(vh . . . , vm^) Vn-*,---,n), 

where 

Since 

and 

F = W(uuf), vk = W(ui, uk+1) (k = 1, . . . , n - 1). 

W(vu . . . , ^ _ i ) = U!*-2W(ul9 . . . , « t ) ^ 0 (fe = 2, . . . , n) 

lim (w*+i(0/w*(0) = 0 = lim (v fc(0/»*+i(0) (* = 1, . . . , » - 2) 

by (2.5), we conclude t h a t (vi, . . . , vn-\) is a fundamental principal system 
on [a, (3] for the disconjugate {n — l ) s t order differential equat ion My = 
W(vi, . . . , vn-u j) = 0. B u t (2.6) and (2.7) imply t h a t F has a ( j - l ) s t 
order zero a t a with respect to M. Thus , the induction hypothesis implies 

lim (F(t)/vk(t)) = 0 (* = 1, . . . ,j - 1) 

and the corresponding limit with k = j is no t zero (provided j ^ w). B u t 
(2.2) and L 'Hopi ta l ' s Rule in conjunction with another induction a rgument 
imply 

lim * ' = hm T ^ J , ' , /Av? = hm — ~ = 0 (k = 1, . . . , j — 1), 

and the corresponding limit with k = j is not zero (provided j ^ w). T h u s , 
the conclusion holds for the part icular principal system (un, . . . , U\) a t a. 
I t is a trivial manner to obtain the conclusion for all principal systems once 
it has been achieved for one principal system. 

T h e converse of L e m m a 2.1 is easy to prove for s o l u t i o n s / of (1.1). T h u s , 
our definition of zero and the definition of Levin [3] coincide for solutions 
of (1.1). 

L E M M A 2.2. For any T,<X < T < fi, Zfr = j (j ^ n), if and only if 

W / ) ( r ) = 0 (* = 0 j - 1), 

W / ) ( T ) * 0 ( i f j < « ) . 

Proof. Since («i un) is a Markov system on (a, ft) and a < r < /3, 
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there exist positive constants ck such tha t 

lim W(uh . . . ,uk)(t) = ck (k = 1, . . . , n). 

Suppose tha t / <m) (r) = 0 for m = 0, . . . , k (k g j). Then 

W + 1 / ) ( r ) = <:*/<*> (r)/Cjt+1 

which implies / (k) (r) = 0 if & < J and / (A°(T) F^ 0 if k = j and j < n, i.e., 
Z / T = j . T h e converse is trivial. 

L E M M A 2.3. 7/ (wi, . . . , un) is a fundamental principal system of solutions of 
(1.1) on [a, ft], then 

(2.8) W(«i , . . . , uT1 un-s+i, . . . , un) > 0 on (a, /3) (1 ^ r, s ^ n — I; 

r + s ^ n). 

Proof. In [6] and [7] we showed tha t there exist functions £# £ Cn~k(a, j3) 
(k = 2, . . . , n), which are positive on (a, f3), locally integrable in [a, /3] bu t not 
integrable on [a, ft] such tha t 

(2.9) uk(t) = 11,(1)1(1, a; fa, • • • , £*) (* = 2, . . . , » ) , 

where 

{*(/») £»(*»)••. Zk(tk)dtk... dh. 
s *J s *J s 

Thus , r applications of (2.2) implies 

(2 .10) W(UU . . . ,Ur, «n-H-li • • • , «n) = 

where 

(2.11) z i ( 0 = JH-I ( 0 , * * ( 0 = 

£r+1(t)I(t, a; £r+2, • • • , £r+À;)(& = 2, . . . , » — f) . 

But (2.11) clearly implies t ha t (zi, . . . , 3w_r) is a Markov system on (a, 13) 
and a fundamental principal system of solutions on [a, (3] of the (n — r ) t h 
order equation My = W(zi, . . . , zw_r, 3>) = 0, which must then be discon-
jugate on [a, ft]. Hence, (zn-r, . . . , Z\) is a Markov system on (a, /3), which 
implies t h a t (2.10) cannot vanish in (a, /3), and hence mus t be positive by (2.4). 

Proof of Theorem 1.1. Since Lf = Lf — Ly = L(f — y), the theorem is t rue 
provided the special case when y = 0 is true. The proof of this case will be 
divided into two main par ts . 

First , suppose t ha t Zf[a, (3) ^ n + 1 and Zf(a, /3) ^ 1. Let 

W(uu . . . , Mfc-iJ) ,, - - . __ 1 v 

& = -wjuv^^r (k = *•• • • >n + hUn+i = l)i 
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and define/ to have at least j(J ^ n — k + 2) g^-zeros at a point r £ [a, 0) if 

(2.12) Kmg,(0 = 0 (* = &, k + 1, . . . , & + / ~ 1). 

The assumptions and Lemma 2.2 imply that / has at least n + 1 gi-zeros in 
[a, /S) with at least one gi-zero in (a, /?). Suppose there exist at least n + 3 — k 
gfc_i-zeros in [a, j3) ( 1 < & < W + 1 ) with at least one gk-i-zero in (a, 0). Let 
these gfc_i-zeros be located at the points fi, . . . , fm, where a ^ fi < . . . < 
fm < P, with multiplicity at least v\,..., vm so that ?i + . . . + vm = n + 3 — k. 
Since f 5 is a gfc_i-zero of multiplicity at least vs, f s is clearly a g^-zero of multi­
plicity at least vs — 1. Furthermore, since 

lim g*-i(0 = 0 = lim gk-i(t) (s = 1, . . . , m - 1), 
*->Ts z->r? +i 

Rolle's theorem implies there exists rjs(Çs < rjs < f s+i) such that (Dgk-i) (r]s) = 
0 (5 = 1, . . . , m - 1). But then (2.3) implies 

(s = 1, . . . , w - 1). 

So, strictly in between every two gfc_i-zeros f s, f s +i , there exists at least one 
gfc-zero 77 s, which implies that the total number of g^-zeros in [a, ft) is at least 

fa - 1) + . . . + (vn - 1) + (m - 1) = n + 2 - k, 

and clearly, fm or r/m_i is in (a, 0). Thus the finite induction principal implies 
that there exist at least one gw+i-zero £ in (a, /3), i.e., 

0 = £»+itt) = (£/)(«)• 
Now suppose that there are r + 1 zeros of/ in [a, /3), 0 ^ r < n, and at least 

n — r zeros at /3. Consider the equation My = W(ui, . . . , ur, y) = 0. Clearly 
the r + 1 zeros of / in [a, 0) with respect to Ly = 0 are also zeros of / with 
respect to My = 0. Thus, by the first case of this proof, the part already 
established, there exists £i £ (a, /3) such that 

(2.13) 0 = (M/ ) (£0 = TF(Ml, . . . , «, , / ) & ) . 

The remainder of the proof in this case is by induction. Assume that there 
exists %j G (a, /3), 1 g j < n — r + 1, such that 

(2.14) W(^i, . . . , ur, / , «„_i+2, . . . , « » ) (£;) = 0. 

Here, if j = 1, then (2.14) is to be interpreted as (2.13), which has been 
established. Similar adjustments, which will not be made explicit, in the 
notation have to be made for the case j = 1 in what follows. Let 

a(}\ =
 W(U1> - •- ,Ur,f, Un-j+2, . . . , Un) (t) 

W(ui, . . . , uT, un-j+i, . . . , un) (f) 

Lemma 2.3 and (2.3) imply q Ç 0(a, 0), and (2.14) implies q(^) = 0. 

https://doi.org/10.4153/CJM-1973-110-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-110-x


CAPLYGIN'S INEQUALITY 1031 

If there exists rj G (a, f3),rj 5* ̂ , such that q(rj) = 0, or if q(t) —> 0 as t —> 0, 
then Rolle's Theorem implies there exists £ m G (a, £) such that g'fe+i) = 0, 
which implies by (2.3) and Lemma 2.3 that 

(2.15) W(UU . . . , ttr,/, Un-j+i, . . . , Un)(£J+i) = 0. 

We will show in what follows that there must always exist £^+i G (oc, (3) such 
that (2.15) holds. 

Suppose that \q(t)\ > G > 0 for T ̂  t < /3, where ^ < r < 0. For all 
|c| > 1/e, the differential equations 

~ W ( ^ i , . . . , ^ r , ^ - ; + l , Un-j+2, . . • ,Unj_y) n 

ÏV(Wi, . . . , UT, U*-j+i, Un-j+2, . . . , Un) 

where u*-j+i(t) = un-j+i(t) — cf(i), are well defined on [r, 13). Suppose there 
exists c(\c\ > 1/e) such that Kcy = 0 is not disconjugate on (r, (3). Then, 
there exists a solution 

0(/) = clUl(t) + . . . + (/) + . . . + CnWn(0 

of Kcy = 0 with r + j zeros in (r, /3). Also, cn-i+\ 7^ 0, for otherwise 0 would 
be a nontrivial solution of the equation 

Ny = W(ui, . . . ,ur,y, un-j+2, . . . , un) = 0, 

which would violate the disconjugacy of Ny = 0 on (r, /3). Thus, w*-;+i agrees 
with the solution 

iKO = [ - 0 ( 0 + cn-j+1ut-j+i{t)}/cn-j+1 

of the (r + j — l)st order disconjugate equation Ny = 0 at r + j points 
(counting multiplicities) of (r, /3). So by the first case of this proof, which 
has already been established, there exists f G (r,/3) such that (Nu*-j+i) (f) = 0, 
i.e. 

(«1, . . . , Ur, Un-i+i, . . . , Un) — cW(uU . . . , Ur, f, Un-j+2, . . . , Un)] (f ) = 0. 

Thus, 
| 2 ( f ) | = l / |c | < « < |ff(f)|, 

which is a contradiction; hence, each of the differential equations Kcy = 0 
(|c| > 1/e) must be disconjugate on (r, f$). Since/ has at least n — r > j — 1 
zeros at /3, Lemma 2.1 implies 

lim ( / W M - i + i ( 0 ) = 0, 

which implies 

uï-j+1(t) = ^ _ i + i ( 0 [ l - cf(t)/un-j+i(t)] = Un-j+i(t)[l + 0(1)], as *->£. 

Thus, («i, . . . , wr, UnLj+i, un-j+2, • • • , ww) is a principal system of solutions of 
X«/y = 0 at fi. Hence, (2.4) implies W(uu . . . , ur, un-j+i, u%-j+2, . . . , un) > 0 
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in some neighborhood N(c) of ft i.e., 

\q(t)\ < l/\c\ for t e N(c) C\ N(-c). 

Hence, once again q (t) —> 0, as t —-> ft and Rolle's Theorem implies the existence 
of £i+i in (a, j8) such that (2.15) holds. 

Thus in every case, (2.14) implies (2.15); hence, by the principal of finite 
induction, there exists %n-j+\ € («» 0) such that 

W(Wi, . . . , Mr,/, ttr+1, • • • , Wn)(fn-r+l) = 0, 

i.e., (L/)&_ r + 1) = 0 . 

3. Generalized mean value theorems. Throughout this section we 
assume that (1.1) is disconjugate on [a, 13] and (ui, . . . , un) is an arbitrary but 
fixed fundamental principal system of solutions on [a, ft]. If 

(3.1) vk(t) = W(«i, . . . , Wit-i, uk+u . . . , « » ) ( 0 / ^ ( « i , • • • » wn)(0 
(k = 1, . . . , «), 

(3.2) *,(*,*) = 1 
E 
A ; = l 

(3.3) 

* = i + i 

Wo 

a < 5 < t, 

t^s < ft 

z (-ir^(/)^(5)/^.(5))', 
fc=i 

(0 = £^(1,5) ( j'Vi(x)f(r)dT^ds, 

V>i(!) = J h/(t, S) ( £ V,(T)f(T)dT)ds 0 = 1 , . . . , » ) , 

(where £ £ i = 0 if j = 1 and £ ï _ i + i s 0 if j = n in (3.2)) then (cf. [6; 7]) 
(v„, . . . , Vi) is a fundamental principal system on [a, #], 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

where 

( - l ) - i - 1 A i ( / , s ) > 0 ( s ^ 0 , 

Uj(t) = (-If-1-1 J h,(f,s)ds, 

(Lw})(t) = -fit) (a<t<p), 

wjtt>(0 = E cr(o«,w(o (* = o , . . . , » - i), 

( - i r , + 1 f't>,(*)/(5)ds (r = 1, . . . ,7; 1 ^ j S w), 

(r = j + 1, . . . , n; 0 ^ j ^ w — 1). 
cr(0 = 

The formula (3.7) follows from (3.3) by an appropriate integration by parts 
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and the fact that un(t)vn(s) — . . . + ( — n)n~1Ui(t)v1(s) is the Cauchy function 
for (1.1). 

LEMMA 3.1. If vj (when 1 S j ^ n) is integrable on [a, t] and vj+if (when 
0 ^ j ^ n — 1) is integrable on [t, 0] for a < t < 0, then ^ / w - 1 ) is locally 
absolutely continuous on (a, /3) and 

(^kwj)(a) = 0 (k = 0, . . . , i - l;j = l , . . . , w ) , 
(^^•) ( /3) = 0 (* = 0, . . . , n - j - l;j = 0, . . . , » - 1). 

Proof. Consider just the situation at the point a; the situation at 0 can be 
handled similarly. The elementary properties of determinants and (3.7) imply 

H / ^ i , . . . , WA:+I ; ^ Z r=j+l 

W(ui, . . . ,ukyur)(t) 
TJ7/ \ /A ' ^ + ^ (1 ) 
W(ttl, . . . ,W*+i)(0 

(k = 0, . . . , j — 1). Let the functions wfc be represented by (2.9); then 

vk(t) = vn(t)I(t, a; £n, . . . , &+1) (& = 1, . . , . n — 1) 

(cf. [6, Theorem 1.2, p. 294]), and if 

fr(f, 5) = / ( / , a; Êfc+2, . . . , £r)7(s, « ; £ » , . . . , f r + i ) , 

then (cf. [6, Lemma 2.2, pp. 298-299]) 

(3.8) E ( - i r r f^ , *) = ( " i r + 1 / (5 , *;£,,..., È»,). 

Using (2.2) and (3.8), we conclude that 

4^i ^ ^ ^(^i, . . . ,^+i)(0 
Z (-ir^Mfr(/,^) 

r= j+ l 

= 1>n(s) I(s, / ; & , . . . , £*+2) - 7 (5, * ; £ „ , . . . , &+*) + £ (-l)*- rf r(*, 5) 
r=A+2 

^ vn(s)I(s, a; fn, . . . , ̂ +i) 2 / ( J , a; £,, . . . , &+2) + £ ?r(*, s) 
L r=k+2 J 

^ ^(5)[27(5, «;£,, . . . , &+2) + o ( l ) , a s / - ^ a 

(EÎ=H2 = 0 and 7(5, a; £,, . . . , £fc+2) = 1 if & = j — 1). Let e > 0 be given 
and choose T = Te > a such that 

Then 

2 £ 7(5, a; fc, . . . , Èfc+2)^(s)|/(s)|<fc < e. 

+ lim I g e, 

since the second limit is zero by (2.5). Since e is arbitrary, we conclude that 
(^kWj)(a) exists and is zero (k = 0, . . . , j — 1). 
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COROLLARY 3.1. For any integer r, 0 ^ r ^ w, awd constants a0 , . . . , ar_i 
(r ^ 1), 6o, • • • , K-r-i (r ^ n — 1), Equation (1.1) /^as //ze unique solution 

r n 

y(t) = Z) ak_iuk(t) + XI bn-kUk(t) 
k=l k=r+l 

satisfying 
{^"y){a)=ak (i = 0 r - 1 ) , 

(^*y)(0) = 6 * (* = 0, . . . , » - r - 1). 

Lemma 3.1 and Corollary 3.1 imply a generalized finite Taylor expansion for 
functions; namely 

(3.9) /(/) = £ ( ^ w / ) ( a ) « t ( 0 + £ {9n-kf){f})uk(t) -R(t) 
£ = 1 k=r+l 

(0 <. r ^ n; Yll=i = 0 = TJk=n+i), provided / £ Cn(a, 0), the generalized 
derivatives of/appearing in (3.9) exist, and vT+i(t) (Lf) (t) (if 0 ^ r ^ w — 1) 
is integrable at 0 and vr(t)(Lf)(t) (if 1 ^ r S n) is integrable at a. Here the 
remainder term R(t) has the exact integral representation 

W) = 
£ /*,+1(/, s) ( J ' V r + 1 ( r ) (L / ) ( r )d r )d5 (0 ^ r S n - 1), 

£ hr(t, s) ( £ VT(r) (Lf) (r)drjds 

Lemmas 2.1 and 3.1 imply 

( U r g w). 

7?<Ti = f°(ur(t))> a s / - ^ a (1 ^ r ^ w), 
^ \ ( ? (w r + i (0 ) , a s / -^ /3 (0 ^ r ^ » - 1). 

Theorem 3.1, which follows, generalizes (3.9) to the multi-point situation at 
the expense of preciseness in the remainder term, i.e., there is a Lagrange type 
remainder term. 

THEOREM 3.1 (Generalized Mean Value Theorem). Let m, 0 ^ m ^ n — 1, 
and rk(k = 0, . . . , m) be integers such that XX=o^ = n. If a ^ t0 < t\ < . . . < 
tmSP, f e Cn(a, 0), (9kf)(t,) (k = 0, . . . , rj - 1; j = 0, . . . , m) exist, 
g G C(a, ]8) and g > 0, then there exists £ (= £(0) sz/c/z ^#£ rnin (t0, t) < % < 
max (/m, t) and 

(3.10) /(*) = u(t) + w(t)(Lf)mg(ï)]-1 (a<t<0), 

where Lu = 0 = L ^ — g and 

(@ku)(tf) - (9kf)(t,) = 0 = (^*w)(*,) 
(k = 0, . . . , rs - 1; j = 0, . . . , m). 

Proof. Let a < t < 0, / ^ /r (r = 0, . . . , m). If w(t) = 0, then w has 
(« + 1) zeros in [a, 0] with at least one in (a, /3); hence, Theorem 1.1 implies 
there exist f £ (a, 0) such that (Lw) (f ) = 0, which contradicts (Lw) (f ) = 
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g(f) > 0. So /(/) = u(t) + cw(t) has a solution for c, namely, 

(3.11) c = [f(t) - u(t)]/w(t). 

Thus, the function z(s) = f(s) — u(s) — cw{s) has (n + l)-zeros in [a, fi], 
one of which is at t £ (a, 0). Theorem 1.1 implies there exist £, min (t0, i) < 
£ < max (tm, t), such that 

0 = (Za)(É) = ( L / ) ( É ) - c (£w)(£), 
which implies 

and proves the theorem upon substituting into (3.11). 

4. Proof of Theorem 1.2. Let g £ C(a,fi), g > 0, z>rg be integrable at 
a and flr+ig be integrable at 13. Then Lemma 3.1 and Corollary 3.1 imply that 

«w= É (^*~!f)(«K(0+ £ (̂ " /̂)C8)«»w, 

ds, 1 < r < n, 

satisfy the assumptions of Theorem 3.1 with m = 1, t0 = a, t\ = 0, r0 = r 
and ri = n — r. Hence, there exists £, a < £ < /3, such that 

/(*) = «(0 + ^WWJfâfe©]-1 (<*<*< 0). 
The assumptions imply #(/) ^ 0 and ( — l)n~r(Lf ) (£) ^ 0, and (3.4) implies 
( — l)n~rw(t) > 0; hence,/(0 è 0. The case r = 0 is similar. 

An unfortunate aspect of Theorem 1.2 in applications is the need to find a 
fundamental principal system of solutions of (1.1) in order to evaluate the 
generalized derivatives in (1.2). In some cases, one of which we shall now give, 
this problem can be partially circumvented. 

Suppose that 
L2z = (r{t)z'Y + p{t)z ^ 0 (a < t < 13), 

z(a) ^ 0, zf(a) è « / ( « M a ) , 

where [a, fi] is bounded, p £ C[a, fi], r £ C[a, fi], r > 0, and u\(t) is the 
minimal solution of L2y = 0 at /3 normalized at a, i.e., Ui(a) = 1. Then, 
Theorem 1.2 implies z(t) ^ 0 for a ^ / ^ £ provided L2^ = 0 is disconjugate 
on [a, j8]. Assume that 

R(t) = I r~1(s)ds < 00 (a^t^fi), 
(4.1) J < 

M s *(«) - J^ [£(«) - R(t)]R(t)p+(t)dt > 0 (£+(/) = max(0,/>(*))). 

Then Corollary 3 of Willett [8, p. 541] implies that L2y = 0 is disconjugate 
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on [a, |8], and the general procedure [8, pp. 542-544] can be easily adapted 
to L2y = 0 using /3 as the fixed endpoint to imply that 

(4.2) MI'(a) ^ v = [ j R(t)p+(f)dt - l j / /if(a). 

This proves the following corollary. 

COROLLARY 4.1. If (4.1) holds, L2z ^ 0, z(a) ^ 0 and z'(a) è ^ ( a ) , /Aew 
z(t) ^ 0 for a S t ^ P. 

5. Generalized boundary value problems. Once again assume that (1.1) 
is disconjugate on [a, 0], and that the notation of the previous two section 
holds; in particular, (u\, . . . , un) is a fixed fundamental principal system of 
solutions of (1.1) on [a, fi] and (vn, . . . , Vi) is the companion fundamental 
principal system (3.1) on [a, /3]. Let Mir(0 = uT(t) and 

*'(*) - t, Wm^ (t)\vm{t)vr~\t) = {*'!,.. 
k = 2, . . . , n — 1, 

' , & = U. 

The generalized boundary value problem (1.3)-(1.4), which includes the 
generalized initial value problem (r = 0 or r = n), will be considered in this 
section. 

THEOREM 5.1. If f(t, yly . . . , yn) £ C((a, 0) X i?w) flw^ f̂ there exists a 
constant ô, 0 < 8 < co, s^/z //za£ 

(5. 1) j a Vr(f) SUP |/(/, tt(0 + Si(/)f . . . , « ^ ( j ) + Zn{t))\dt S 5, 

w/^re //ze supremum is over all zk £ C(a, ft) such that \zk(t)\ ^ diJLk
T(t) 

(k = 1, . . . , n), and 

r n 

(5.2) u(t) = X) <ikUk(t) + ]T) bn-k+i k(t), 
k=l k=r+l 

then (1.3)-(1.4) has a solution y Ç Cn(a, 0) SWC/Ê that 

(5.3) :y(0 = «(0 - £hT(t,s) {£vr(r)f(r,y(r), . . . . ^ " ( r ) ) ^ )^ . 

Proof. The operator r : X —> X defined by 

(7*)»(0 = -£>*_1 £hr(t,s) ( J \ (T) / (T,M(T) 

+ *i(r), . . . , « ' " " " ( T ) + XB(T))<2T]<2S 

(fe = 1, . . . , w) is completely continuous on the space X = {(xi, . . . , x„) : 
xk € C(a, /3) and |x&(i)| ^ ô/j,k

r(t)(k = 1, . . . , »)}, which implies that T has 
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a fixed point (y, yf, . . . , y{n~1}) by the Schauder-Tychonoff Theorem. The 
details are essentially the same as in the proof of Theorem 4.2 of [6, pp. 311-312]. 

Some remarks concerning Theorem 5.1 can be made. First, (5.4) holds if 
\f(t, yu...9 yn)\ ^ m for a < t < 0, (yu . . . , yn) £ R\ and £(*K(0 i s 

integrable on [a, /3]. Second, the generalized boundary value problem has a 
solution 

(5.4) y(t) = u(t) + J hr+1(t, s) ( J vr+1(r)f(rf y(r), . . . , y^» (r))dr)ds 

provided (5.1) with vr replaced by vr+i holds. Both (5.3) and (5.4) imply that 

(5.5) ?<*>(*) - «<*)(*) = M/**+i r+1(0), as *->0, (k = 0, . . . , n - 1). 
(oGufc+r^)), as / - » « , 

THEOREM 5.2. If f(t, y) £ C((a, 13) X i?) awd //zere exist functions 
f, f G Cw(a, j8) SMCA /Aa* (a < / < 0) 

(i) f (0 è f (0 , 

(h) (-ir-[Lf - /a ,É)] è o ̂  (-i)»-'[Lf -/(*,r)], 
(iii) (^*£)(a) è (^*f)(a) (* = 0, . . . , r - 1) and (0*£) (/?) ^ (^*f)(/3) 

(fe = 0, . . . , « - r - 1), 
(iv) ( — l)n~rf(t, y) is nondec?-easing in y for {" (0=^ = ^(0» 

(v) - c o < ( - 1 ) - ' f vr(t)f(t,!(t))dt£ ( - l ) " - r f f>,(0/(U(0)<&<oo, 

then for any ai, . . . , ar, 6i, . . . , fr„_r sz/cA that 

m ) ( a ) ^ o*+i ^ m ) ( « ) (* = 0, . . . , r - 1), 

( ^ ) ( / 3 ) è &*+i ^ (^*f)(0) (* = 0, . . . , » - r - 1), 

//fgre exists a solution 31Ç C(a , /8) 0/ Z/y = / ( / , y) satisfying 

(5.6) (^*y)(0) = W * = 0, . . . , « - r - 1), 
{3>ky){a) =ak+1(k = 0, . . . , r - 1), 

f (0 ^ y ( 0 ^ *(*)(« <t<P). 
Proof. Let 

(/a, KO), y > m, 
F{t,y)=lf{t,y), m^yèiït), 

UU r(0), f (0 > y, 
so that the problem Ly = F(t, y) and (5.6) has a solution w(J) by Theorem 3.1. 
Let 2 = £ — w so that 

(-ir- riZ è (-D"-r[/(/,{(0) - f(uw)] ^ o, 
(3>kz)(P) ^ 0 (* = 0, . . . , n - r - 1), {9kz)(a) ^ 0 (* = 0, . . . , r - 1). 

Thus, Theorem 1.2 implies z(0 ^ 0, a < t < 0. Similarly, w(t) - f (*) è 0, 
a < J < /8; hence, w is actually a solution of Ly = f(t, y) such that I ^ w â f • 
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COROLLARY 5.1. Assume that f(t, y) 6 C((a, 0) X R), 0 S t < oo, y ç J?, 
and that 0 S r ^ n — 1 (r = n is trivial). If there exist functions £, Ç £ Cw[0, oo ) 
5 ĉ/z //za£ (0 < / < oo ) 

0) É(0 è f (0, 
ai) ( - i ) - r fê w (0 - / (* , KO)] ^ o ^ (-i)"-r[f<">(/) -/(*,*•(*))], 

(iii) £(l)(0) ^ f<*>(0) (* = 0, . . . , r - 1) and 

-oo < lim ( ( - l ) ¥ - r f a ) ( 0 ) ^ lim ( ( - l ) * * * - ^ / ) < oo 

(* = 0, . . . , » - r - 1), 

(iv) ( — \)n~rf{t, y) is nondect-easing in y for f (/) ^ y g £(2), 

(v) -oo < ( - i r r fVyc,*•(*))<« ^ ( - i r r rtn-rf(t,m)dt<™, 
V 0 I ' d 

then for any a\ ar, 6i, . . . , bn-r such that 

£<*>(0) è a,+i è fw(0)(& = 0, . . . , r - 1), and 

lim ( - l ) Y ~ ^ a ) ( 0 ^ 6 t+1 ^ lim ( - l ) Y - r f t t ) ( 0 (jfe = 0, . . . , n - r - 1), 

/&£ boundary value problem 

yM=f(t,y), 

y(k)(Q)=ak+1 (k = 0,...,r-l), 

lim (-l)*<*-ry t t )(/) = bk+1 (k = 0 , . . . , n - r - 1), 

has a solution y G Cn[0, oo ) ŝ c& £/za£ 

f(/) ^y (0 ^ KO (0 < / < oo). 

Proof. Let 

(5.7) «*(*) = **-7(* - 1)! = W„-IH-I(0 (* = 1, . . . , »), 

so that (wi, . . . ,un) and (vw, . . . , Pi) are corresponding fundamental principal 
systems on [0, oo ) for yw = 0. The corollary is a consequence of Theorem 5.2 
and the following lemma. 

LEMMA 5.1. / / the generalized derivatives are defined in terms of (5.7) and 

oo > lim ( - 1 ) V - V * } ( 0 è 0 (fc = 0, . . . , n - r - 1), 

then 

(9n-r~lz) ( o o ) ^ O awd (^*s) (oo ) = 0 (k = 0, . . . , n - r - 2). 
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Proof. The lemma follows from the identity 

W(un, . . . , ttn-ft+li z) 

W^tt», . . . , Un-k) 

(j = 0, . . . , k; k = 0 , . . . , n - r - 1), 

where Y ; are nonnegative constants (yj ^ 0 follows from (2.4)). 
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