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Abstract

Suppose that X is an infinite set and I (X) is the symmetric inverse semigroup defined on X . If
α ∈ I (X), we let dom α and ran α denote the domain and range of α, respectively, and we say that
g(α)= |X \ dom α| and d(α)= |X \ ran α| is the ‘gap’ and the ‘defect’ of α, respectively. In this paper,
we study algebraic properties of the semigroup A(X)= {α ∈ I (X) | g(α)= d(α)}. For example, we
describe Green’s relations and ideals in A(X), and determine all maximal subsemigroups of A(X) when
X is uncountable.
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1. Introduction

Let I (X) denote the symmetric inverse semigroup on X : that is, the semigroup (under
composition) consisting of all one-to-one partial transformations whose domain,
dom α, and range, ran α, are subsets of X (see [3, Volume 1, p. 29]). For each
α ∈ I (X), we write

g(α)= |X \ dom α|, d(α)= |X \ ran α|

and refer to these cardinal numbers as the gap and defect of α, respectively. In this
paper, we study various properties of a subsemigroup of I (X) defined by

A(X)= {α ∈ I (X) | g(α)= d(α)}.

Note that if X is finite, then A(X)= I (X). Consequently throughout this paper, X
denotes a set with cardinal n ≥ ℵ0.

Chen and Hsieh showed in [2, Section 3] that any inverse semigroup can be
embedded in some A(X) and that A(X) is the largest factorizable subsemigroup of
I (X) (a semigroup S is factorizable if S = G E where G is a subgroup of S and E
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is a set of idempotents in S). Later, Howie [6] used certain subsemigroups of A(X),
namely

A(X, q)= {α ∈ A(X) | d(α)= q}

where ℵ0 ≤ q < |X |, to construct a class of bisimple congruence-free inverse
semigroups; and Sullivan [10, Corollary 4] showed that if X is infinite, then

N I (X)= {α ∈ A(X) | d(α)= |X |}

is the semigroup generated by all of the nilpotents in I (X).
In Section 2, we use the Vagner–Preston theorem to show that any factorizable

inverse semigroup S can be embedded directly into A(S). We characterize Green’s
relations on A(X) in Section 3, and show that its ideals form a chain similar to that
formed by the ideals in E(X), the semigroup generated by all nonidentity idempotents
in T (X), the total transformation semigroup on X (see [9, Lemma 2]). In a subsequent
paper, we shall use this latter result to describe the congruences on A(X). Finally, in
Section 4 we describe all maximal subsemigroups of A(X) when X is uncountable;
and we show that, in one case, this involves a maximal subsemigroup of G(X), the
symmetric group on X .

2. Basic ideas and results

In what follows, Y = A ∪̇ B means Y is a disjoint union of A and B. For each
nonempty Y ⊆ X , we write idY for the identity transformation with domain Y . In
particular, idX denotes the identity of I (X) and the empty set ∅ acts as a zero for
I (X).

We extend the convention introduced in [3, Volume 2, p. 241]: namely, if α ∈ I (X)
is nonzero then we write

α =

(
ai
xi

)
and take as understood that the subscript i belongs to some (unmentioned) index set I ,
that the abbreviation {xi } denotes {xi | i ∈ I }, and ran α = {xi }, dom α = {ai | i ∈ I }
and xiα

−1
= ai for each i .

We begin with a simple result that is used often in the following.

LEMMA 1. If α ∈ I (X) and Y, Z ⊆ X, then (Y \ Z)α = Yα \ Zα, where, as usual,
we interpret Yα as (Y ∩ dom α)α.

In [7, pp. 237–238], the authors remarked that, if X is infinite, then A(X)
is a subsemigroup of I (X), and we repeat the proof here for convenience.
In [2, Theorem 3.1], the authors say this is ‘routine’.

LEMMA 2. If X is an infinite set, then A(X) is an inverse subsemigroup of I (X) with
identity idX . Moreover, the group of units in A(X) is G(X), the symmetric group on X.
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PROOF. Using Lemma 1, we obtain the following equalities for any α, β ∈ A(X).

d(αβ) = |X \ Xβ| + |Xβ \ Xαβ|

= d(β)+ |[(X \ Xα) ∩ dom β]β|

= g(β)+ |(X \ Xα) ∩ dom β|

= |(X \ dom β) ∩ Xα| + |(X \ dom β) ∩ (X \ Xα)| + |(X \ Xα) ∩ dom β|

= |(X \ dom β)α−1
| + d(α)

= |(X \ dom β)α−1
| + g(α)

= |Xα−1
\ (Xα ∩ dom β)α−1

| + |X \ Xα−1
|

= |X \ (Xα ∩ dom β)α−1
|

= g(αβ).

Therefore, A(X) is a semigroup. In fact, since d(α−1)= g(α) and g(α−1)= d(α),
A(X) is an inverse subsemigroup of I (X). Clearly, G(X)⊆ A(X), and if α ∈ A(X)
and αβ = idX for some β ∈ A(X), then g(α)= 0, so α ∈ G(X). Thus, G(X) is the
group of units in A(X). 2

In passing, we assert that A(X)= A (say) is not a maximal inverse subsemigroup of
I (X). To see this, choose α ∈ I (X) with g(α)= 1 and d(α)= 2, and let B denote the
subsemigroup of I (X) generated by A ∪ {α, α−1

}. Clearly A B and B is inverse.
Suppose that B = I (X) and let β be an element of I (X) with g(β)= 0 and d(β)= 1.
Then β /∈ A. If β = αkγ for some k ∈ Z+ and γ ∈ B, then g(α)= 0, which is a
contradiction. On the other hand, if β = λαkγ for some λ ∈ A, k ∈ Z+ and γ ∈ B,
then g(λ)= 0 and so λ ∈ G(X). Therefore, λ−1β = αkγ and, since λ−1β ∈ T (X),
it follows that g(α)= 0, a contradiction. If β = α−kγ for some k ∈ Z+ and γ ∈ B,
then d(α)= g(α−1)= 0, a contradiction. In addition, if β = λα−kγ for some λ ∈ A,
k ∈ Z+ and γ ∈ B, then λ ∈ G(X) and λ−1β = α−kγ , so d(α)= g(α−1)= 0, which
is a contradiction. Hence, A B  I (X), and the assertion follows.

The Vagner–Preston theorem [3, Volume 1, Theorem 1.20] states that any inverse
semigroup S can be embedded in I (S) via the representation ρ : S→ I (S), a→ ρa ,
where ρa : Sa−1

→ Sa, x→ xa, for each a ∈ S. In [2, Theorem 3.4], the authors
prove that any infinite inverse semigroup S can be embedded in some A(X). They
do this by first using the representation ρ to embed S in I (S), and then showing
that I (S)⊆ A(X) where X = S ∪̇ Y for some set Y whose cardinal equals that of S
(compare with [5, Proposition 5.9.6]).

Clearly, if α ∈ A(X), then there is a bijection θ : X \ dom α→ X \ ran α. In
addition, if we regard α, θ as subsets of X × X , then π = α ∪ θ is a permutation of X
such that α = π · α−1α. It follows that A(X)= G(X)E where E is the set of all
idempotents in I (X), and so A(X) is factorizable. We now show that any factorizable
inverse semigroup S can be embedded directly into A(S) using the representation ρ. In
other words, A(X) is a ‘model’ for all factorizable inverse semigroups. This is similar
to the Vagner–Preston theorem, as well as Teissier’s theorem which states that any
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right simple, right cancellative semigroup without idempotents can be embedded into
a transformation semigroup with the same properties (see [3, Volume 2, Theorem 8.5]).

THEOREM 3. If S is a factorizable inverse semigroup, then the representation ρ

embeds S into A(S).

PROOF. We need to show that ρa ∈ A(S) for each a ∈ S: that is, |S \ Sa−1
| = |S \ Sa|

for each a ∈ S. It is easy to see that if S = G E and S is inverse, then S contains an
identity, G is the group of units of S and S = EG (see [2, Lemma 2.1]). Therefore,
if a ∈ S, then a = eu for some e ∈ E and u ∈ G. So, ea = a and au−1

= e, hence
eaa−1

= aa−1 and aa−1e = e, and thus e = aa−1 (since idempotents commute in an
inverse semigroup). Clearly, for each u ∈ G, dom ρu = Su−1

= S = Su = ran ρu , and
so ρu is a permutation of S. In particular, if a = aa−1

· u, then Sa = Saa−1
· u =

Sa−1
· u: that is, ρu maps dom ρa into ran ρa . Similarly, a−1

= a−1a · u implies
that ρu−1 maps ran ρa into dom ρa . Since ρu permutes S, it follows that ρu maps
S \ dom ρa bijectively onto S \ ran ρa , and thus ρa ∈ A(S). 2

3. Green’s relations and ideals

Since A(X) is an inverse subsemigroup of I (X), Hall’s theorem
[5, Proposition 2.4.2] implies that the L and R relations on A(X) are the restrictions of
the corresponding relations on I (X) to A(X), and the latter are well known: namely,
α L β in I (X) if and only if ran α = ran β; and α R β in I (X) if and only if
dom α = dom β (see [5, Exercise 5.11.2]). In what follows, we let r(α)= | ran α|
denote the rank of α ∈ I (X).

LEMMA 4. Suppose that |X | = n ≥ ℵ0 and let α, β ∈ A(X). Then:

(a) β = λα for some λ ∈ A(X) if and only if ran β ⊆ ran α;
(b) β = αµ for some µ ∈ A(X) if and only if dom β ⊆ dom α;
(c) β = λαµ for some λ, µ ∈ A(X) if and only if r(β)≤ r(α) and d(β)≥ d(α);
(d) D = J .

PROOF. It remains to show (c) and (d). Clearly, if β = λαµ for some λ, µ ∈ A(X),
then r(β)≤ r(α). Moreover,

d(β) = |X \ Xµ| + |Xµ \ Xλαµ|,

= g(µ)+ |(X \ Xλα)µ|,

≥ |(X \ Xα) ∩ (X \ dom µ)| + |(X \ Xα)µ| + |(Xα \ Xλα)µ|,

≥ |(X \ Xα) ∩ (X \ dom µ)| + |(X \ Xα) ∩ dom µ|,

= d(α). (1)

Conversely, suppose that the condition holds and write

α =

(
ai a j
xi x j

)
, β =

(
bi
yi

)
.
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Define λ, µ ∈ I (X) by λ : bi 7→ ai and µ : xi 7→ yi . If r(α) < n, then d(λ)= |J | +
g(α)= n and g(λ)= g(β)= n, so λ ∈ A(X), and similarlyµ ∈ A(X). If r(α)= n and
r(β) < n, then |J | = n and so λ, µ ∈ A(X) as before. If r(α)= r(β)= n then, since
d(β)≥ d(α), we can choose J so that |J | + g(α)= g(β). Then d(λ)= d(β) and
g(λ)= g(β), so λ ∈ A(X) and, with the same choice of J , we also see that µ ∈ A(X).

To show (d), suppose that α J β in A(X). Then r(α)= r(β) and d(α)= d(β), and
we can write

α =

(
ai
xi

)
, β =

(
bi
yi

)
, γ =

(
bi
xi

)
.

Now d(γ )= d(α) and g(γ )= g(β)= d(β)= d(α), so γ ∈ A(X) and, thus,
α L γ R β by (a) and (b). That is, J ⊆D, and this completes the proof. 2

Let |X | = n ≥ ℵ0 and, for each cardinal p, let p′ denote the successor of p. In
addition, for each r, d such that 1≤ r ≤ n′ and 0≤ d ≤ n, let

A(r, d)= {α ∈ A(X) | r(α) < r and d(α)≥ d}.

Clearly, if α ∈ A(r, d) and λ, µ ∈ A(X), then r(λαµ) < r and Lemma 4(c) shows that
d(λαµ)≥ d(α). Therefore, A(r, d) is an ideal of A(X). In particular, A(1, n)= {∅}
and A(n′, 0)= A(X) and the sets A(r, d) form a chain as follows.

A(1, n) ⊂ A(2, n)⊂ · · · ⊂ A(n, n)

⊂ A(n′, n)⊂ · · · ⊂ A(n′, ℵ0)⊂ · · · ⊂ A(n′, 1)⊂ A(n′, 0).

Note that each of these containments is proper. For example, if X = A ∪̇ B ∪̇ C
where |A| = r < s = |B|< n, then |C | = n and idB ∈ A(s′, n) \ A(r ′, n); if X =
A ∪̇ B where |A| = |B| = n, then idA ∈ A(n′, n) \ A(n, n); and if X = A ∪̇ B ∪̇ C
where n > |B| = d > e = |C |, then |A| = n and idA∪B ∈ A(n′, e) \ A(n′, d).

THEOREM 5. The ideals of A(X) are precisely the sets A(r, d). Moreover, A(r, d) is
principal if and only if r = s′ for some cardinal s.

PROOF. Suppose that I is a nontrivial ideal of A(X) and let

r = min {s | s > r(α) for all α ∈ I },

d = min {t | t = d(β) for some β ∈ I }.

Note that r and d always exist since the cardinals are well ordered. Now, either
r(α) < r ≤ n for all α ∈ I , or r(α)= n for some α ∈ I . If the former occurs, then
d(α)= n for all α ∈ I , and so I ⊆ A(r, n). Conversely, if β ∈ A(r, n), then there exists
α ∈ I with r(β)≤ r(α): otherwise, if r(α) < r(β) < r for all α ∈ I , we contradict the
choice of r . Moreover, if r(β)≤ r(α) < r , then d(β)= n = d(α). So, by Lemma 4(c),
β = λαµ for some λ, µ ∈ A(X), hence β ∈ I and thus A(r, n)⊆ I .

Now, assume that r(α)= n for some α ∈ I , so that I ⊆ A(n′, d). Now, by
definition, there exists π ∈ I such that d(π)= d and clearly r(π)≤ n. If r(π) < n,
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then r(α)≥ d = n. In this case, if β ∈ A(n′, n), then r(β)≤ r(α) and d(β)= n =
d(α), so Lemma 4(c) implies that β ∈ I . On the other hand, if r(π)= n, then the
same argument (using π instead of α) shows that A(n′, d)⊆ I . That is, in both cases,
I = A(n′, d).

In effect, the first paragraph of this proof shows that, if r ≤ n, then A(r, d)=
{α ∈ I (X) : r(α) < r} = Ir (say) and it is well known that this is an ideal of I (X).
Moreover, Ir is principal if and only if r = s′ for some cardinal s (compare with [3,
Volume 1, Theorem 2.9(ii)] for the ideals of T (X)). Thus, we assume that r = n′

and show that A(n′, d) is principal for each d ≥ 0. Clearly, if X = B ∪̇ C where
|B| = n and |C | = d then r(idB)= n and d(idB)= d . Moreover, if α ∈ A(n′, d)
then, by Lemma 4(c), α = λ · idB ·µ for some λ, µ ∈ A(X). Hence, A(n′, d)⊆
A(X) · idB ·A(X), and the reverse containment holds since idB ∈ A(n′, d) which is
an ideal of A(X). 2

4. Maximal subsemigroups

Some work has been done on determining all maximal subsemigroups of certain
transformation semigroups defined on a finite set X : see [1] for T (X), [11] for the
ideals of T (X), and [12] for E(X). There are partial results in the same direction
for Baer–Levi semigroups defined on an infinite set: see [4, 8]. Here we describe all
maximal subsemigroups of A(X) when X is uncountable.

In what follows, we often write A = A(X) and let M denote a maximal
subsemigroup of A. Also, if B ⊆ A, then 〈B〉 denotes the subsemigroup of A generated
by B. We begin with a simple result.

LEMMA 6. Every maximal subsemigroup M of A contains idX and ∅.

PROOF. If idX /∈ M , then M ∪ {idX } is a subsemigroup of A that properly contains M ,
so A = M ∪ {idX } (by maximality) and, hence, each nonidentity γ ∈ G(X) belongs
to M . In addition, γ−1

∈ M and so γ γ−1
= idX ∈ M , a contradiction. If ∅ /∈ M , then

A = M ∪ {∅}, hence each nonzero idempotent of A belongs to M . In particular, if
X = Y ∪̇ Z where Y, Z are nonempty, then idY , idZ ∈ M and so ∅ ∈ M , which is a
contradiction. 2

So far, all results aimed at determining the maximal subsemigroups of a
transformation semigroup reduce the given problem to knowing the maximal
subgroups of G(X). However, the main result of this section involves a maximal
subsemigroup of G(X).

LEMMA 7. Suppose that M is a maximal subsemigroup of A and write G = G(X). If
G \ M 6= ∅, then M ∩ G is a maximal subsemigroup of G.

PROOF. By Lemma 6, M ∩ G 6= ∅ and clearly it is closed under composition. If π ∈
G \ M then A = 〈M, π〉. Hence, if γ ∈ G, then there exist λ, µ, . . . ∈ M and positive
integers r, s, . . . such that γ = λπrµπ s . . . . Then λ ∈ G and π−rλ−1γ = µπ s . . . ,
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and so µ ∈ G. Clearly, we can repeat this argument to show that each mapping that
appears in the expression for γ is a permutation of X . Moreover, we reach the same
conclusion if the expression for γ begins with πr for some r > 0. In other words, if
π /∈ M ∩ G, then G ⊆ 〈M ∩ G, π〉, and equality follows. 2

By a remark on [4, p. 157], there are infinitely many maximal subsemigroups of
G(X) which are not groups. Here we show that there are four types of maximal
subsemigroup of A(X) when X is uncountable. To do this, we need a special case
of Lemma 4(c).

LEMMA 8. Suppose that α, β ∈ A have rank n. If d(α)= d(β), then β = λαµ for
some λ, µ ∈ G(X).

PROOF. If d(α)= d(β)= d (say) then g(α)= g(β)= d and we can write

dom α = {ai }, X \ dom α = {a j },

dom β = {bi }, X \ dom β = {b j },

where |J | = d. If we adopt similar notation for ran α, ran β and their complements,
then

α =

(
ai
xi

)
, β =

(
bi
yi

)
, λ=

(
bi b j
ai a j

)
, µ=

(
xi x j
yi y j

)
.

Clearly λ, µ ∈ G(X) and β = λαµ, as desired. 2

If 0≤ d ≤ e ≤ n, we write

S[d, e] = {α ∈ A : d ≤ d(α)≤ e},

S[d, e)= {α ∈ A : d ≤ d(α) < e},

and we use similar notation to denote other subsets of A corresponding to defects lying
between specified cardinals. In particular, note that S[0, 0] = G(X).

LEMMA 9. Suppose that |X | = n > ℵ0. Let T be a maximal subsemigroup of G =
G(X) and let d be a cardinal such that ℵ0 ≤ d < n. Then the following sets are
maximal subsemigroups of A:

(a) M = T ∪ S[1, n];
(b) M = G ∪ S(1, n];
(c) M = G ∪ S[1, d) ∪ S(d, n];
(d) M = G ∪ S[1, n) ∪ A(n, n).

PROOF. (a) In this case, M contains every element of A except those in G \ T . By
supposition, if π ∈ G \ T , then G = 〈T, π〉 ⊆ 〈M, π〉, and it follows that A = 〈M, π〉.

(b) In this case, M contains all elements of A except those with defect 1. If
α ∈ S[1, 1], then Lemma 8 implies that any element of S[1, 1] belongs to 〈M, α〉,
and thus A = 〈M, α〉.
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(c) Here, M contains all elements of A except those α with infinite defect d < n,
in which case Lemma 8 implies that any β ∈ A with defect d belongs to 〈M, α〉, and
thus A = 〈M, α〉.

(d) Now M contains all elements of A except those α with rank and defect n. Now
Lemma 8 implies that any β ∈ A with rank and defect n belongs to 〈M, α〉, and thus
A = 〈M, α〉. 2

The next three lemmas will show that a maximal subsemigroup of A(X) is one of
the above types when |X | = n > ℵ0.

LEMMA 10. If M is a maximal subsemigroup of A and α /∈ M, then r(α)= n and
either d(α)≤ 1 or d(α)≥ ℵ0.

PROOF. Clearly M  M ∪ AαA, and M ∪ AαA is a subsemigroup of A, so A =
M ∪ AαA (by maximality). Now, each element of AαA has rank at most r(α). Hence,
if r(α) < n, then d(α)= n and M contains all elements of A with rank n. Write

dom α = {ai },

ran α = {xi },

X \ dom α = {b j } ∪̇ {c j },

X \ ran α = {y j } ∪̇ {z j },

where |J | = n. Thus,

α =

(
ai
xi

)
, β =

(
ai b j
xi y j

)
, γ =

(
xi z j
xi y j

)
,

where β, γ ∈ A and have rank n. Hence, β, γ ∈ M and clearly α = βγ ∈ M , a
contradiction. Therefore, each α ∈ A \ M has rank n.

Next we assume that d(α)≥ 2 and d is finite. Since r(α)= n, Lemma 4(c) implies
that AαA consists of all of the elements of A with defect at least d . Hence, M must
contain all of the elements of A with defect less than d . Write

dom α = {ai },

ran α = {xi },

X \ dom α = {a1, a2, . . . , ad},

X \ ran α = {x1, x2, . . . , xd},

and define

β =

(
ai a1
xi x1

)
, γ =

(
xi x2
xi x2

)
.

Then β, γ ∈ A and d(β)= d(γ )= d − 1, so β, γ ∈ M and clearly α = βγ ∈ M ,
which is a contradiction. Therefore, if α /∈ M , then d(α)≤ 1 or d(α)≥ ℵ0. 2

LEMMA 11. Suppose that M is a maximal subsemigroup of A and α /∈ M. If d(α)= 1
or ℵ0 ≤ d(α)= d < n, then M contains no element of A with defect 1 or d.

PROOF. By the last result, r(α)= n and so Lemma 4(c) implies that AαA consists of
all of the elements of A with defect at least 1 or at least d . Since A = M ∪ AαA, M
must contain all of the elements of A with defect zero or defect less than d . Hence,
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in each case, G(X)⊆ M . Now suppose that there exists β ∈ M with d(β) equal to
1 or d < n. Then r(β)= n and, by Lemma 8, there exist λ, µ ∈ G(X)⊆ M so that
α = λβµ ∈ M , which is a contradiction. Therefore, M contains no element of A with
defect 1 or d . 2

LEMMA 12. If there exists α /∈ M with defect d, then M contains every element of A
with defect less than d or greater than d.

PROOF. Suppose that there exists α /∈ M with defect d and β /∈ M with defect greater
than d . Then A = 〈M, β〉, so α = λβµ for some λ, µ ∈ A (one, but not both, of
λ, µ may equal idX ). Then Lemma 4(c) implies that d(α)≥ d(β), a contradiction.
Similarly, if there exists γ /∈ M with defect less than d , then A = 〈M, α〉, so γ = λαµ
for some λ, µ ∈ A and hence d(γ )≥ d(α), a contradiction. 2

Suppose that M is a maximal subsemigroup of A. In view of the last result, at most
one infinite cardinal can be the defect of some α ∈ A \ M . Moreover, if there exists
α /∈ M with n > d(α)= d ≥ ℵ0, then Lemma 11 implies that every element of A with
defect d lies outside M .

THEOREM 13. Suppose that |X | = n > ℵ0. If M is a maximal subsemigroup of A(X),
then M equals one of the following sets, where T is a maximal subsemigroup of
G = G(X) and d is a cardinal such that ℵ0 ≤ d < n.

(a) T ∪ S[1, n];
(b) G ∪ S(1, n];
(c) G ∪ S[1, d) ∪ S(d, n];
(d) G ∪ S[1, n) ∪ A(n, n).

PROOF. Let α /∈ M . If d(α)= 0, then M ∩ G  G and, by Lemma 7, M ∩ G = T
(say) is a maximal subsemigroup of G. Also, Lemma 12 implies that S[1, n] ⊆ M ,
and we conclude that M = T ∪ S[1, n].

If d(α)= 1 then, by Lemma 12, G ∪ S(1, n] ⊆ M and equality follows (since, by
Lemma 11, no element of M has defect 1).

If ℵ0 ≤ d(α)= d < n, then, by Lemma 12, S[0, d) ∪ S(d, n] ⊆ M . Also, by
Lemma 11, no element of M has defect d . Hence, in this case, M = G ∪
S[1, d) ∪ S(d, n].

Finally, if d(α)= n, then Lemma 12 implies that S[0, n)⊆ M . In addition, if β ∈ A
and r(β) < n, then β ∈ M (since if β /∈ M , then Lemma 10 implies that r(β)= n,
which is a contradiction). Thus, it follows that M = G ∪ S[1, n) ∪ A(n, n). 2
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