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Abstract

Suppose that X is an infinite set and /(X) is the symmetric inverse semigroup defined on X. If
a € 1(X), we let dom o and ran @ denote the domain and range of «, respectively, and we say that
g(a) =|X \domou| and d(a) = | X \ ran «| is the ‘gap’ and the ‘defect’ of «, respectively. In this paper,
we study algebraic properties of the semigroup A(X) ={x € I(X) | g(o) =d(x)}. For example, we
describe Green'’s relations and ideals in A(X), and determine all maximal subsemigroups of A(X) when
X is uncountable.
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1. Introduction

Let I (X) denote the symmetric inverse semigroup on X: that is, the semigroup (under
composition) consisting of all one-to-one partial transformations whose domain,
dom ¢, and range, ran «, are subsets of X (see [3, Volume 1, p. 29]). For each
o € 1(X), we write

gl@)=|X\domeu|, d(ax)=|X\rana|

and refer to these cardinal numbers as the gap and defect of «, respectively. In this
paper, we study various properties of a subsemigroup of 7 (X) defined by

AX) ={a e I(X) | g(a) =d(a)}.

Note that if X is finite, then A(X) = I(X). Consequently throughout this paper, X
denotes a set with cardinal n > R.

Chen and Hsieh showed in [2, Section 3] that any inverse semigroup can be
embedded in some A(X) and that A(X) is the largest factorizable subsemigroup of
I(X) (a semigroup S is factorizable if S = GE where G is a subgroup of S and E
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is a set of idempotents in §). Later, Howie [6] used certain subsemigroups of A(X),
namely

A(X, q) ={a € A(X) [d(a) =q}

where 8o <¢g < |X|, to construct a class of bisimple congruence-free inverse
semigroups; and Sullivan [10, Corollary 4] showed that if X is infinite, then

NI(X) ={a € A(X) | d(a) = | X]}

is the semigroup generated by all of the nilpotents in 7 (X).

In Section 2, we use the Vagner—Preston theorem to show that any factorizable
inverse semigroup S can be embedded directly into A(S). We characterize Green’s
relations on A(X) in Section 3, and show that its ideals form a chain similar to that
formed by the ideals in E(X), the semigroup generated by all nonidentity idempotents
in T (X), the fotal transformation semigroup on X (see [9, Lemma 2]). In a subsequent
paper, we shall use this latter result to describe the congruences on A(X). Finally, in
Section 4 we describe all maximal subsemigroups of A(X) when X is uncountable;
and we show that, in one case, this involves a maximal subsemigroup of G(X), the
symmetric group on X.

2. Basic ideas and results

In what follows, ¥ = AU B means Y is a disjoint union of A and B. For each
nonempty ¥ C X, we write idy for the identity transformation with domain Y. In
particular, idy denotes the identity of /(X) and the empty set ¢ acts as a zero for
1(X).

We extend the convention introduced in [3, Volume 2, p. 241]: namely, if « € 1(X)
is nonzero then we write

= (%)
Xi

and take as understood that the subscript i belongs to some (unmentioned) index set /,
that the abbreviation {x;} denotes {x; |i € I}, and rano = {x;}, doma ={q; | i € I}
and x;a~! = g; for each i.

We begin with a simple result that is used often in the following.

LEMMA I. Ifael(X)and Y, Z C X, then (Y \ Z)a =Y« \ Z«a, where, as usual,
we interpret Yo as (Y N dom o)a.

In [7, pp. 237-238], the authors remarked that, if X is infinite, then A(X)
is a subsemigroup of 7/(X), and we repeat the proof here for convenience.
In [2, Theorem 3.1], the authors say this is ‘routine’.

LEMMA 2. If X is an infinite set, then A(X) is an inverse subsemigroup of 1 (X) with
identity idx. Moreover, the group of units in A(X) is G(X), the symmetric group on X.
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PROOF. Using Lemma 1, we obtain the following equalities for any o, 8 € A(X).

d@p) =X\ XB| + |XB\ Xap]
=d(p) + |[(X \ Xa) N dom B]B|
=g(B) + [(X \ Xa) Ndom B
= |(X \ dom B) N Xa| + |(X \ dom B) N (X \ X&)| + |(X \ Xa) N dom B|
=|(X \ dom B)a ™| + d ()
=|(X \ dom By~ + g(e)
= |Xa '\ (Xa Ndom a4+ |X \ Xa™!|
=X\ (Xa Ndom B)a™ |
= g(ap).

Therefore, A(X) is a semigroup. In fact, since dle ) = g(a) and g(oe’l) =d(a),
A(X) is an inverse subsemigroup of /(X). Clearly, G(X) € A(X), and if ¢ € A(X)
and o =idy for some B € A(X), then g(a) =0, so « € G(X). Thus, G(X) is the
group of units in A(X). O

In passing, we assert that A(X) = A (say) is not a maximal inverse subsemigroup of
I (X). To see this, choose o € I (X) with g(o) =1 and d(«) = 2, and let B denote the
subsemigroup of I(X) generated by A U {, «~!}. Clearly A ¢ B and B is inverse.
Suppose that B = I (X) and let 8 be an element of 7 (X) with g(8) =0and d(8) = 1.
Then B¢ A. If =afy for some k € Z* and y € B, then g(a) =0, which is a
contradiction. On the other hand, if 8 = AaXy for some A € A, k € Z* and y € B,
then g(A) =0 and so A € G(X). Therefore, A‘lﬁ =o¢ky and, since A‘lﬂ e T(X),
it follows that g(a) =0, a contradiction. If 8 =a ¥y for some k € Z* and y € B,
then d(a) = g(oz_l) =0, a contradiction. In addition, if § = ka_ky for some A € A,
keZt andy € B, then A € G(X) and A~ '8 =a ¥y, so d(«) = g(e~ ') = 0, which
is a contradiction. Hence, A & B & I(X), and the assertion follows.

The Vagner—Preston theorem [3, Volume 1, Theorem 1.20] states that any inverse
semigroup S can be embedded in 7 (S) via the representation p : S — I(S), a — pg,
where p, : Sa—! — Sa, x — xa, for each a € S. In [2, Theorem 3.4], the authors
prove that any infinite inverse semigroup S can be embedded in some A(X). They
do this by first using the representation p to embed S in /(S), and then showing
that 7(S) € A(X) where X = S U Y for some set ¥ whose cardinal equals that of S
(compare with [5, Proposition 5.9.6]).

Clearly, if o € A(X), then there is a bijection 6 : X \doma — X \ranc. In
addition, if we regard o, 0 as subsets of X x X, then m = o U 6 is a permutation of X
such that @« = -« la. It follows that A(X) = G(X)E where E is the set of all
idempotents in 7 (X), and so A(X) is factorizable. We now show that any factorizable
inverse semigroup S can be embedded directly into A(S) using the representation p. In
other words, A(X) is a ‘model’ for all factorizable inverse semigroups. This is similar
to the Vagner—Preston theorem, as well as Teissier’s theorem which states that any
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right simple, right cancellative semigroup without idempotents can be embedded into
a transformation semigroup with the same properties (see [3, Volume 2, Theorem 8.5]).

THEOREM 3. If S is a factorizable inverse semigroup, then the representation p
embeds S into A(S).

PROOF. We need to show that p, € A(S) foreacha € S: thatis, |S\ Sa~!| =S \ Sqa|
for each a € S. It is easy to see that if S = GFE and S is inverse, then S contains an
identity, G is the group of units of S and S = EG (see [2, Lemma 2.1]). Therefore,
ifae S, then a =eu for some e € E and u € G. So, ea =a and au—! = ¢, hence
eaa”' =aa=! and aa~'e = e, and thus e = aa~! (since idempotents commute in an
inverse semigroup). Clearly, for each u € G, dom p, = Su=l=8=5Su=ran Pu, and
so py, is a permutation of S. In particular, if a =aa~! - u, then Sa = Saa™"' - u =
Sa~!.u: thatis, p, maps dom p, into ran p,. Similarly, a~! a - u implies
that p,—1 maps ran p, into dom p,. Since p, permutes S, it follows that p, maps
S\ dom p, bijectively onto S \ ran p,, and thus p, € A(S). O

:a_

3. Green’s relations and ideals

Since A(X) is an inverse subsemigroup of [I(X), Hall’s theorem
[5, Proposition 2.4.2] implies that the £ and R relations on A (X) are the restrictions of
the corresponding relations on 7 (X) to A(X), and the latter are well known: namely,
a L B in I(X) if and only if rana =ran 8; and @« R B in I(X) if and only if
dom o = dom 8 (see [5, Exercise 5.11.2]). In what follows, we let (@) = | ran «|
denote the rank of a € I (X).

LEMMA 4. Suppose that |X| =n > Rg and let a, € A(X). Then:

(@) B =Aafor some A € A(X) if and only ifran B C ran o,

(b) B =au for some u € A(X) if and only if dom B C dom o,

() B =rauforsome i, u € A(X) if and only if r(B) <r(a) and d(B) > d(a);
d D=J.

PROOF. It remains to show (c) and (d). Clearly, if 8 = Aau for some A, u € A(X),
then r(8) < r(a). Moreover,

dB) =X\ Xpul+|Xpu\ Xraul,
= g(u) + [(X \ Xra)pul,
> [(X\ Xa) N (X \ dom )| + [(X \ Xo)pu| + [(Xee \ Xho) ],
> |(X\ Xa) N (X \ dom )| + [(X \ Xar) N dom p],
=d(a). (1)

Conversely, suppose that the condition holds and write

a, a; b;
=5 0) =0
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Define A, p € I(X) by A:b; — a; and p: x; — y;. If r(a) <n, then d(A) = |J| +
gl@)=nand g() = g(B) =n,soir € A(X), and similarly u € A(X). If r(0) =n and
r(B) <n,then |J| =n and so A, u € A(X) as before. If r(a) = r(8) = n then, since
d(B) > d(a), we can choose J so that |J|+ g(a) = g(B). Then d(A) =d(B) and
g(A) = g(B), so A € A(X) and, with the same choice of J, we also see that u© € A(X).

To show (d), suppose that « 7 8 in A(X). Then r (o) =r(B8) and d(«) = d(f), and

we can write
_(ai _ b; _ b;
=(0) =) =)

Now d(y)=d(a) and g(y)=g(B)=d(B)=d(a), so y € A(X) and, thus,
a Ly R B by (a) and (b). Thatis, J € D, and this completes the proof. O

Let | X| =n > Rg and, for each cardinal p, let p’ denote the successor of p. In
addition, for each 7, d such that 1 <r <n’and 0 <d <n, let

A(r,d)={a € A(X) | r(a) <r and d(x) > d}.

Clearly, if @ € A(r, d) and A, u € A(X), then r(Aap) < r and Lemma 4(c) shows that
d(hap) > d(a). Therefore, A(r, d) is an ideal of A(X). In particular, A(1, n) = {¢}
and A(n/, 0) = A(X) and the sets A(r, d) form a chain as follows.

A(l,n) C AQ2,n)C---CA(n,n)
CA(m,n)C---CA(mM,Ng)C---CAW,1)C AW, 0).

Note that each of these containments is proper. For example, if X=AUBUC
where |A|=r <s=|B| <n, then |C|=n and idg € A(s’, n) \ A(+', n); if X=
AU B where |A| =|B|=n, then idy € A(n’, n) \ A(n,n); and if X=AUBUC
where n > |B|=d > e =|C|, then |A| =n and idaup € A(n/, e) \ AW/, d).

THEOREM 5. The ideals of A(X) are precisely the sets A(r, d). Moreover, A(r, d) is
principal if and only if r = s’ for some cardinal s.

PROOF. Suppose that [ is a nontrivial ideal of A(X) and let

r=min{s|s > r(x) forall o € I},
d = min {z | t =d(B) for some 8 € I}.

Note that » and d always exist since the cardinals are well ordered. Now, either
r(a) <r <nforall @« €, or r(e) =n for some o € I. If the former occurs, then
d(a)=nforalla € I,andso I € A(r, n). Conversely, if 8 € A(r, n), then there exists
o € I withr(B) < r(a): otherwise, if r() < r(B) < r for all « € I, we contradict the
choice of r. Moreover, if r(8) < r(a) < r,thend(B) =n =d(a). So, by Lemma 4(c),
B = Aau for some A, u € A(X), hence B € I and thus A(r, n) C 1.

Now, assume that r(a) =n for some «a €I, so that I C A(n’,d). Now, by
definition, there exists w € I such that d(;r) =d and clearly r(7) <n. If r(w) <n,
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then r(«) > d =n. In this case, if B € A(n/, n), then r(B) <r(a) and d(B) =n =
d(a), so Lemma 4(c) implies that 8 € I. On the other hand, if () = n, then the
same argument (using 7 instead of o) shows that A(n’, d) C I. That is, in both cases,
I=AW,d).

In effect, the first paragraph of this proof shows that, if » <n, then A(r,d) =
{e e I(X):r(e) <r}=1I (say) and it is well known that this is an ideal of I(X).
Moreover, I, is principal if and only if » = s’ for some cardinal s (compare with [3,
Volume 1, Theorem 2.9(ii)] for the ideals of T(X)). Thus, we assume that r =n’
and show that A(n’, d) is principal for each d > 0. Clearly, if X = B U C where
|B|=n and |C| =d then r(idg) =n and d(idg) =d. Moreover, if a € A(n’, d)
then, by Lemma 4(c), @ = A -idg -u for some A, u € A(X). Hence, A(n',d) C
A(X) -idp -A(X), and the reverse containment holds since idg € A(n’, d) which is
an ideal of A(X). O

4. Maximal subsemigroups

Some work has been done on determining all maximal subsemigroups of certain
transformation semigroups defined on a finite set X: see [1] for T (X), [11] for the
ideals of T(X), and [12] for E(X). There are partial results in the same direction
for Baer—Levi semigroups defined on an infinite set: see [4, 8]. Here we describe all
maximal subsemigroups of A(X) when X is uncountable.

In what follows, we often write A = A(X) and let M denote a maximal
subsemigroup of A. Also, if B C A, then (B) denotes the subsemigroup of A generated
by B. We begin with a simple result.

LEMMA 6. Every maximal subsemigroup M of A contains idyx and (.

PROOF. Ifidy ¢ M, then M U {idy} is a subsemigroup of A that properly contains M,
so A =M U {idx} (by maximality) and, hence, each nonidentity y € G(X) belongs
to M. In addition, y ~! € M and so yy~! =idy € M, a contradiction. If # ¢ M, then
A = M U {4}, hence each nonzero idempotent of A belongs to M. In particular, if
X =Y UZ where Y, Z are nonempty, then idy, idz € M and so ¥ € M, which is a
contradiction. O

So far, all results aimed at determining the maximal subsemigroups of a
transformation semigroup reduce the given problem to knowing the maximal
subgroups of G(X). However, the main result of this section involves a maximal
subsemigroup of G(X).

LEMMA 7. Suppose that M is a maximal subsemigroup of A and write G = G(X). If
G\ M #£@, then M N G is a maximal subsemigroup of G.

PROOF. By Lemma 6, M N G 5# ¥ and clearly it is closed under composition. If = €
G \ M then A = (M, m). Hence, if y € G, then there exist A, u, ... € M and positive
integers r, s, ... such that y = Ax"un®.... Then i e Gand 7 A7y = um® ...,
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and so u € G. Clearly, we can repeat this argument to show that each mapping that
appears in the expression for y is a permutation of X. Moreover, we reach the same
conclusion if the expression for y begins with 7" for some r > 0. In other words, if
T ¢ MNG,then G C (M NG, ), and equality follows. O

By a remark on [4, p. 157], there are infinitely many maximal subsemigroups of
G(X) which are not groups. Here we show that there are four types of maximal
subsemigroup of A(X) when X is uncountable. To do this, we need a special case
of Lemma 4(c).

LEMMA 8. Suppose that o, B € A have rank n. If d(a) =d(B), then B = lau for
some A, u € G(X).

PROOF. If d(a) =d(B) =d (say) then g(«) = g(B) = d and we can write

doma ={a;}, X \doma={a;},
dom B = {b;}, X \domp =/{bj},

where |J| =d. If we adopt similar notation for ran ¢, ran 8 and their complements,

then
o= (5) =) =l D) =G
Xi Yi ai aj Yi Yj
Clearly A, € G(X) and B = Ao, as desired. d

If0 <d <e <n, we write

Sld,el={aeA:d <d(a) <e},
Sld,e)={axe A:d <d(x) <e},

and we use similar notation to denote other subsets of A corresponding to defects lying
between specified cardinals. In particular, note that S[0, 0] = G(X).

LEMMA 9. Suppose that | X|=n > 8. Let T be a maximal subsemigroup of G =
G(X) and let d be a cardinal such that Ry <d <n. Then the following sets are
maximal subsemigroups of A:

(@) M=TUS[I,n];

(b) M=GUS(1,n];

(c) M=GUSI[1,d)U S, n];

d M=GUS[l,n)UA(n,n).

PROOF. (a) In this case, M contains every element of A except those in G \ 7. By
supposition, if 7 € G\ T,then G = (T, &) € (M, m), and it follows that A = (M, 7).

(b) In this case, M contains all elements of A except those with defect 1. If
o € S[1, 1], then Lemma 8 implies that any element of S[1, 1] belongs to (M, «),
and thus A = (M, «a).
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(c) Here, M contains all elements of A except those o with infinite defect d < n,
in which case Lemma 8 implies that any 8 € A with defect d belongs to (M, «), and
thus A = (M, o).

(d) Now M contains all elements of A except those o with rank and defect n. Now
Lemma 8 implies that any B € A with rank and defect n belongs to (M, «), and thus
A= (M, ). O

The next three lemmas will show that a maximal subsemigroup of A(X) is one of
the above types when | X| =n > N.

LEMMA 10. If M is a maximal subsemigroup of A and o ¢ M, then r(o) =n and
either d(a) <1 ord(a) > Ny.

PROOF. Clearly M & M U AxA, and M U AxA is a subsemigroup of A, so A=

M U Aa A (by maximality). Now, each element of Ax A has rank at most r (o). Hence,

if r(a) < n, then d(e) = n and M contains all elements of A with rank n. Write
doma ={a;}, X \doma ={b;}U{c;},

rana = {x;}, X \rana = {y;}U{z;},

where |J| = n. Thus,

a=(jf), ﬁ=(j% bf;), y=(x’j )
i i yj Xi y./

where 8, y € A and have rank n. Hence, B,y € M and clearly « =8y e M, a
contradiction. Therefore, each « € A \ M has rank n.

Next we assume that d(«) > 2 and d is finite. Since r(«) = n, Lemma 4(c) implies
that Aa A consists of all of the elements of A with defect at least d. Hence, M must
contain all of the elements of A with defect less than d. Write

domo ={a;}, X\domoa ={ay,ay, ..., aq},

rana = {x;}, X \rana = {x{, x2, ..., x4},

_fa a (X x2
=(n) =GR
Then B,y € A and d(B) =d(y)=d — 1, so B,y € M and clearly o = 8y € M,
which is a contradiction. Therefore, if « ¢ M, then d(«) <1 or d(«) > Ny. O

and define

LEMMA 11. Suppose that M is a maximal subsemigroup of Aanda ¢ M. Ifd(a) =1
or Rg <d(a) =d < n, then M contains no element of A with defect 1 or d.

PROOF. By the last result, (o) = n and so Lemma 4(c) implies that Ax A consists of
all of the elements of A with defect at least 1 or at least d. Since A =M U AaA, M
must contain all of the elements of A with defect zero or defect less than d. Hence,
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in each case, G(X) C M. Now suppose that there exists § € M with d(8) equal to
1 or d <n. Then r(B) =n and, by Lemma 8, there exist A, u € G(X) € M so that
o = ABu € M, which is a contradiction. Therefore, M contains no element of A with
defect 1 or d. O

LEMMA 12. If there exists o ¢ M with defect d, then M contains every element of A
with defect less than d or greater than d.

PROOF. Suppose that there exists o ¢ M with defect d and § ¢ M with defect greater
than d. Then A = (M, B), so « = ABu for some A, u € A (one, but not both, of
A, w may equal idy). Then Lemma 4(c) implies that d(«) > d(B), a contradiction.
Similarly, if there exists y ¢ M with defect less than d, then A = (M, ), so y = Aau
for some A, u € A and hence d(y) > d(«), a contradiction. O

Suppose that M is a maximal subsemigroup of A. In view of the last result, at most
one infinite cardinal can be the defect of some o € A \ M. Moreover, if there exists
o ¢ M withn > d(o) =d > Ro, then Lemma 11 implies that every element of A with
defect d lies outside M.

THEOREM 13. Suppose that | X| =n > Rg. If M is a maximal subsemigroup of A(X),
then M equals one of the following sets, where T is a maximal subsemigroup of
G = G(X) and d is a cardinal such that Rg < d < n.

(a) T US[1,n];

(b) GUS(,n];

(c) GUS[1,d)uU S, n];

(d GUS[L, n)UA®m,n).

PROOF. Let v ¢ M. If d(a) =0, then M NG & G and, by Lemma 7, MNG =T
(say) is a maximal subsemigroup of G. Also, Lemma 12 implies that S[1, n] C M,
and we conclude that M =T U S[1, n].

If d(a) =1 then, by Lemma 12, G U S(1, n] € M and equality follows (since, by
Lemma 11, no element of M has defect 1).

If Rg <d(x) =d <n, then, by Lemma 12, S[0,d)U S(d,n] C M. Also, by
Lemma 11, no element of M has defect d. Hence, in this case, M =G U
S[1,d)uU S, n].

Finally, if d (o) = n, then Lemma 12 implies that S[0, n) € M. In addition, if 8 € A
and r(B) <n, then B € M (since if 8 ¢ M, then Lemma 10 implies that r(8) = n,
which is a contradiction). Thus, it follows that M = G U S[1, n) U A(n, n). d
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