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Abstract
We consider the count of subgraphs with an arbitrary configuration of endpoints in the random-connection model
based on a Poisson point process on Rd . We present combinatorial expressions for the computation of the cumu-
lants and moments of all orders of such subgraph counts, which allow us to estimate the growth of cumulants as
the intensity of the underlying Poisson point process goes to infinity. As a consequence, we obtain a central limit
theoremwith explicit convergence rates under the Kolmogorov distance and connectivity bounds. Numerical exam-
ples are presented using a computer code in SageMath for the closed-form computation of cumulants of any order,
for any type of connected subgraph, and for any configuration of endpoints in any dimension d≥1. In particular,
graph connectivity estimates, Gram–Charlier expansions for density estimation, and correlation estimates for joint
subgraph counting are obtained.

1. Introduction

This paper considers the statistics and asymptotic behavior of subgraph counts in a multidimensional
random-connection model based on a Poisson point process, which can be used to model physical
systems in, for example, statistical mechanics [9], wireless networks [8, 19, 28], or cosmology [5, 7].

The random-connection model, in which vertices are randomly located and connected with location-
dependent probabilities, is a natural generalization of, for example, the Erdős–Rényi random graph
or the stochastic block model [27]. Namely, given ` a diffuse Radon measure on Rd , the random-
connection model GH ([) consists of an underlying Poisson point process [ on Rd with intensity of the
form _`(dx), _ > 0, in which any two vertices x, y in [ are connected with the probability H (x, y), where
H : Rd × Rd → [0, 1] is a symmetric connection function.

In addition to modeling the random locations of network nodes, many applications of wireless net-
works require the use of endpoints which are physical devices placed at given fixed locations, such as
for example roadside units in vehicular networks such as VANETs, see, for example, [20] and [29].
The count of subgraphs that connect any single point x in the Poisson process [ to m fixed endpoints
y1, . . . , ym ∈ Rd is known to have a Poisson distribution with mean _

∫
Rd H (x, y1) · · ·H (x, ym) `(dx),

see, for example, Section 4 in [23]. This Poisson property has been used in [13] to derive closed-form
estimates of two-hop connectivity in the random-connection model when m= 2, see Proposition III.2
therein.

In this paper, we consider the count of general connected subgraphs with a general configuration of
fixed endpoints at fixed locations y1, . . . , ym ∈ Rd in the random-connectionmodelGH ([∪{y1, . . . , ym})
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constructed on the union of the Poisson point process [ and {y1, . . . , ym}. In particular, we extend the
subgraph count cumulant formulas obtained on GH ([) in [16] by taking into account the presence of
endpoints inGH ([∪{y1, . . . , ym}), andwe provide SageMath coding implementations for joint cumulant
expressions of any order.

In Proposition 3.4, we derive general expressions for the moments and cumulants of the count
NG

y1,...,ym of subgraphs with fixed endpoints y1, . . . , ym in GH ([ ∪ {y1, . . . , ym}). Such expressions allow
us to determine the dominant terms in the growth of cumulants as the intensity _ of the underlying
point process tends to infinity, by estimating the counts of vertices and edges in connected partition
diagrams as in, for example, [14]. As a consequence, in Theorem 4.2, we obtain growth estimates for
the cumulants of the subgraph count NG

y1,...,ym .
This allows us to show the convergence of renormalized subgraph counts to the normal distribution

in Proposition 4.4 as the intensity _ of the underlying Poisson point process on Rd tends to infinity.
Convergence rates under the Kolmogorov distance are then obtained in Proposition 4.5 for the normal
approximation of subgraph counts from the combinatorics of cumulants and the Statulevičius condition,
see [6, 25] and Lemma B.1, extending the results obtained in [16] for subgraphs without endpoints, see
also [10] for other applications of this condition to concentration inequalities, normal approximation,
and moderate deviations for random polytopes. In Proposition 4.6, connectivity probability estimates
and bounds are derived using the second moment method and the factorial moment expansions in
Proposition B.2.

In Section 5, we consider several examples of subgraphs with endpoints such as k-hop paths, tri-
angles, and trees, for which exact cumulant computations are matched to their Monte Carlo estimates
using the Rayleigh connection function H (x, y) = e−V ‖x−y‖2 , V > 0. In those examples, we obtain graph
connectivity estimates, and correlation estimates for joint graph counting, which are matched to the
outputs of Monte Carlo simulations. In addition, using third order cumulant expressions, we also pro-
vide improved fits of probability density functions of renormalized subgraph counts when the Gaussian
approximation is not valid, see Figure 9.

Computations are done in closed form using symbolic calculus in the SageMath coding imple-
mentations presented in Appendices D–E, and available for download at https://github.com/nprivaul/
random-connection. We note that although intensive computations may be required, the types of con-
nected subgraphs and associated configurations of endpoints considered are only limited by the available
computing power.

This paper is organized as follows. Section 2 introduces some preliminaries on subgraph counting
and the computation of moments using summations over partitions in the random-connection model.
In Section 3, we use partition diagrams to compute the cumulants of the counts of subgraphs with
endpoints in the random-connection model. Subgraph count asymptotics and the associated central
limit theorem are given in Section 4, and numerical examples are presented in Section 5. A general
derivation of joint cumulant identities is given in Appendix A, extending the construction of [16] from
the univariate to the multivariate case, for use in Section 5.5. Basic results on Gram–Charlier expansions
and probability approximation using cumulant and moment methods are recalled in Appendices B and
C. The SageMath codes for the computation of cumulants and joint cumulants are listed in Appendices
D and E, and available for download at https://github.com/nprivaul/random-connection.

2. Subgraph counts in the random-connection model

In what follows we consider a Radon measure ` on Rd , and we let P_, _ > 0, denote the distribution of
the Poisson point process [ with intensity _`(dx) on the space

C :=
{
[ ⊂ Rd : |[ ∩ A| < ∞ for any bounded set A ⊂ Rd}
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of locally finite configurations on Rd , whose elements [ ∈ Ω are identified with the Radon point mea-
sures [ =

∑
x∈[

nx, so that [(B) represents the random number of points contained in a Borel set in Rd . In

other words,

(1) for any relatively compact Borel set B ⊂ Rd , the distribution of [(B) under P_ is Poisson with
parameter _`(B);

(2) for any n≥2 and pairwise disjoint relatively compact Borel sets B1, . . . ,Bn ⊂ Rd , the random
variables [(B1), . . . , [(Bn) are independent under P_.

For n≥1 we let [n] := {1, . . . , n}, where n will later on denote the order of the considered moments and
cumulants of subgraph counts, and for any set A we denote by Π(A) the collection of all set partitions
of A. We also let |A| denote the number of elements of any finite set A, and, in particular, |f | represents
the number of blocks in a partition f ∈ Π( [n] × [r]). Our approach to the computation of moments
relies on moment identities on the following form, see Proposition 3.1 in [22] and Proposition A.5 for
its multivariate generalization.

Proposition 2.1. Let n ≥ 1 and r ≥ 1, and let f : (Rd)r → R be a sufficiently integrable measurable
function. We have

E

©­«
∑

(x1,...,xr ) ∈[r

f (x1, . . . , xr)
ª®¬

n =
∑

d∈Π ( [n]×[r ] )
_ |d |

∫
(Rd ) |d|

n∏
k=1

f
(
xZd (k,1) , . . . , xZd (k,r)

)
`(dx1) · · · `(dx |d | ),

where, for d = {d1, . . . , d |d | } a partition of [n] × [r], we let Zd (k, l) denote the index p of the block dp
of d to which (k, l) belongs.

In particular, Proposition 2.1 will yield cumulant expressions from M¥obius inversion and combina-
torial arguments based on [18], [14], and [16], see Propositions 3.5 and A.8.

Definition 2.2. Given H : Rd × Rd → [0, 1] a symmetric connection function and y1, . . . , ym fixed
points in Rd , the random-connection model GH ([ ∪ {y1, . . . , ym}) is the random graph built on the
union of {y1, . . . , ym} and a Poisson point process sample [, in which any two distinct points x, y ∈
[ ∪ {y1, . . . , ym} are independently connected by an edge with the probability H (x, y).

In the sequel, we will consider a family of connected graphs with endpoints which are described in
the following assumption.

Assume 2.3. Given r≥2 and m≥0, we consider a connected graph G = (VG,EG) with edge set EG and
vertex set VG = (v1, . . . , vr;w1, . . . ,wm), such that

(i) the subgraph G induced by G on {v1, . . . , vr} is connected, and
(ii) the endpoint vertices w1, . . . ,wm are not adjacent to each other in G.

In case m= 0, Condition (ii) is void and VG = (v1, . . . , vr).

In Figure 1, an example of a graph satisfying Assume 2.3 is described with r = 4 and m= 2.
As a convention, in the next definition the sets {w1, . . . ,wm} and {y1, . . . , ym} ⊂ Rd are empty when
m= 0.
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Figure 1. Graph G = (VG,EG) with VG = (v1, v2, v3, v4;w1,w2), n= 3, r= 4, m= 2.

Definition 2.4. Let G be a graph satisfying Assumption 2.3. Given m≥0 fixed points y1, . . . , ym ∈ Rd , for
almost surely [ we let NG

y1,...,ym denote the count of subgraphs in GH ([∪{y1, . . . , ym}) that are isomorphic
to G = (VG,EG) in the sense that there exists a (random) injection from VG into [∪ {y1, . . . , ym} which
is one-to-one from {w1, . . . ,wm} to {y1, . . . , ym}, and preserves the graph structure of G.

According to Definition 2.4, we express the subgraph count NG
y1,...,ym as

NG
y1,...,ym =

∑
(x1,...,xr ) ∈[r

fy1,...,ym (x1, . . . , xr),

where the random function f : (Rd)r → {0, 1} defined as

fy1,...,ym (x1, . . . , xr) :=
∏
1≤i≤r
1≤j≤m

{vi,wj }∈EG

1{yj↔xi }
∏

1≤k,l≤r
{vk ,vl }∈EG

1{xk↔xl } , x1, . . . , xr ∈ Rd ,

is independent of the Poisson point process [, and 1{x↔y} = 1 if and only if x≠ y and x, y ∈ Rd are
connected in the random-connection model GH ([ ∪ {y1, . . . , ym}).

3. Partition diagrams

This section introduces the combinatorial background needed for the derivation of moment and cumu-
lant expressions of subgraph counts. The next definition introduces a notion of connectedness over the
rows of partitions of [n] × [r], and a flatness property which is satisfied when two indices on a same
row belong to a given block, see Chapter 4 of [21] and Figure 2.

Definition 3.1. Given n, r≥1, let c := {c1, . . . , cn} be the partition in Π( [n] × [r]) given by

ci := {(i, 1), . . . , (i, r)} , i = 1, . . . , n.

(i) A set partition f ∈ Π( [n] × [r]) is connected if f ∨ c = 1̂, where f ∨ c is the finest set partition
which is coarser than both f and c, and 1̂ = {[n] × [r]} is the coarsest partition of [n] × [r].

(ii) A set partition f ∈ Π( [n] × [r]) is non-flat if f ∧ c = 0̂, where f ∧ c is the coarsest set partition
which is finer than both f and c, and 0̂ is the finest partition of [n] × [r].

We let Π1̂ ( [n] × [r]) denote the collection of all connected partitions of [n] × [r].

In the sequel, every partition d ∈ Π(c1 ∪ · · · ∪ cn) will be arranged into a diagram denoted by Γ(d, c),
by arranging c1, . . . , cn into n rows and connecting together the elements of every block of d. Figure 2
presents two illustrations of flat non-connected and connected non-flat partition diagrams with n= 5
and r = 4, in which the partition d is represented using line segments.
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Figure 2. Two examples of partition diagrams with n= 5 and r= 4. (a) Flat non-connected diagram
Γ(d, c). (b) Connected non-flat diagram Γ(d, c).

In Definition 3.2, to any graph G and set partition d ∈ Π( [n] × [r]), we associate a graph dG whose
vertices are the blocks of d. For this, we use n copies of the graphs induced by the vi’s with addition of
the end-points w1, . . . ,wm, and we merge the nodes obtained in this way on [n] × [r] according to the
partition d.

Definition 3.2. Given d a partition of [n] × [r] and G = (VG,EG) a connected graph on VG =

(v1, . . . , vr;w1, . . . ,wm), we let dG denote the graph constructed as follows on [m] ∪ [n] × [r]:

(i) for all j1, j2 ∈ [r], j1 ≠ j2, and i ∈ [n], an edge links (i, j1) to (i, j2) iff {vj1 , vj2 } ∈ EG;
(ii) for all (j, k) ∈ [r] × [m] and i ∈ [n], an edge links (k) to (i, j) iff {vj,wk} ∈ EG;
(iii) for all i1, i2 ∈ [n] and j1, j2 ∈ [r], merge any two nodes (i1, j1) and (i2, j2) if they belong to a same

block in d;
(iv) eliminating any redundant edges created by the above construction.

If d ∈ Π( [n]× [r]) takes the form d = {b1, . . . , b |d | }, the graph dG forms a connected graph with |d |+m
vertices, and we reindex the set of vertices VdG of dG as VdG = [|d | +m] according to the lexicographic
order on N×N, followed by the remaining m vertices, indexed as {|d | + 1, . . . , |d | +m}, see Figure 3(b)
in which we have |d | = 9, m= 2, and VdG = (1, . . . , 9; 10, 11).

Example. Take r = 4, m= 2, and VG = (v1, v2, v3, v4;w1,w2). Figure 3(b) shows the graph dG defined
from G = (VG,EG) of Figure 1 and the 9-block partition d ∈ Π( [3] × [4]) given by

d =
{
{(1, 1)},
{(1, 2), (2, 2)},
{(1, 3)},
{(1, 4)},
{(2, 1), (3, 1)},
{(2, 3)},
{(2, 4), (3, 4)},
{(3, 2)},
{(3, 3)}

}
.

In Figure 3(a), the partition d is represented using line segments.
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Figure 3. Example of graph dG with n= 3, r= 4, and m= 2. (a) Diagram before merging edges and
vertices. (b) Graph dg after merging edges and vertices.

Definition 3.3. For d ∈ Π( [n] × [r]) of the form d = {b1, . . . , b |d | } and j ∈ [m], we let

Ad

j := {k ∈ [|d |] : ∃(s, i) ∈ bks.t.(vi,wj) ∈ EG}

denote the neighborhood of the vertex ( |d | + j) in dG, j = 1, . . . ,m.

For example, in the graph dG of Figure 3 we have Ad

1 = {1, 5} and Ad

2 = {4, 7}. The following
partition summation formulas extend [16, Prop. 5.1] to the counting of subgraphs with endpoints, and
they are a special case of Proposition A.8 in appendix, which deals with joint subgraph counting.

Proposition 3.4. Let m≥0. The moments and cumulants of NG
y1,...,ym admit the following expressions:

E_
[ (

NG
y1,...,ym

)n]
=

∑
d∈Π ( [n]×[r ] )

d∧c=0̂
(non−flat)

_ |d |
∫
(Rd ) |d|

∏
1≤j≤m
i∈Ad

j

H (xi, yj)
∏

1≤k,l≤ |d |
{k,l}∈EdG

H (xk , xl) `(dx1) · · · `(dx |d | ),

and

^n
(
NG

y1,...,ym

)
=

∑
d∈Π1̂ ( [n]×[r ] )

d∧c=0̂
(non-flat connected)

_ |d |
∫
(Rd ) |d|

∏
1≤j≤m
i∈Ad

j

H (xi, yj)
∏

1≤k,l≤ |d |
{k,l}∈EdG

H (xk , xl) `(dx1) · · · `(dx |d | ). (3.1)

We note in particular thatNG
y1,...,ym has positive cumulants, andwhen n= 1 the first moment ofNG

y1,...,ym
is given by

E_
[
NG

y1,...,ym

]
= _r

∫
(Rd )r

∏
1≤i≤r
1≤j≤m

{vi,wj }∈EG

H (xi, yj)
∏

1≤k,l≤r
{vk ,vl }∈EG

H (xk , xl)`(dx1) · · · `(dxr).

The cumulant formula of Proposition 3.4 is implemented in the code listed in Appendix D. We also
recall the following lemma, see [16, Lem. 2.8], in which maximality of connected non-flat partitions
refers to maximizing the number of blocks.
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Lemma 3.5.

(i) The cardinality of the set C (n, r) of connected non-flat partitions of [n] × [r] satisfies

|C (n, r) | ≤ n!rr!n−1, n, r≥1. (3.2)

(ii) The cardinality of the set M(n, r) of maximal connected non-flat partition of [n] × [r] satisfies

|M(n, r) | = rn−1
n−1∏
i=1

(1 + (r − 1)i), n, r≥1,

with the bounds

((r − 1)r)n−1(n − 1)! ≤ |M(n, r) | ≤ ((r − 1)r)n−1n!, n≥1, r≥2. (3.3)

4. Subgraph count asymptotics

In this section, we letm≥1 and investigate the asymptotic behavior of the cumulants ^n
(
NG

y1,...,ym

)
in (3.1)

as the intensity _ tends to infinity, which extends the treatment of [16] from m= 0 to m≥1.

Assume 4.1. We assume that

(i) ` is the Lebesgue measure on Rd , and
(ii) the connection function H : Rd ×Rd → [0, 1] is translation invariant, that is H (x, y) = H (0, y−x),

x, y ∈ Rd , and ∫
Rd

H (0, y)dy < ∞.

The following result provides growth estimates for the cumulants of NG
y1,...,ym .

Theorem 4.2 Let m≥1, n≥1 and r≥2, and suppose that Assume 4.1 is satisfied. We have

0 < ^n
(
NG

y1,...,ym

)
≤ n!rr!n−1(C_)1+(r−1)n, (4.1)

and, for n= 2,

(r − 1)rc2r_2r−1 ≤ ^2
(
NG

y1,...,ym

)
≤ r!(C_)2r−1, (4.2)

where c,C > 0 are constants independent of r≥2 and n≥2.

Proof. According to Proposition 3.4, every non-flat connected partition d ∈ Π( [n] × [r]) corresponds
to a summand of order O(_ |d | ). As the cardinality of maximal non-flat connected partitions is 1 +
(r − 1)n, the dominating asymptotic order is O(_1+(r−1)n). Precisely, by (3.2)–(3.3) and (3.1), letting
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j0 ∈ {1, . . . ,m} such that Ad

j0 ≠ ∅, for some i0 ∈ Ad

j0 we have

cn |EG |C1+(r−1)n((r − 1)r)n−1(n − 1)!_1+(r−1)n

≤ ^n
(
NG

y1,...,ym

)
≤ _1+(r−1)n

∑
d∈Π1̂ ( [n]×[r ] )

d∧c=0̂
(non-flat connected)

∫
(Rd ) |d|

∏
1≤j≤m
i∈Ad

j

H (xi, yj)
∏

1≤k,l≤ |d |
{k,l}∈EdG

H (xk , xl)dx1 · · · dx |d |

≤ _1+(r−1)n
∑

d∈Π1̂ ( [n]×[r ] )
d∧c=0̂

(non-flat connected)

∫
(Rd ) |d|

H (xi0 , yj0)
∏

1≤k,l≤ |d |
{k,l}∈EdG

H (xk , xl)dx1 · · · dx |d |

≤ _1+(r−1)n
∑

d∈Π1̂ ( [n]×[r ] )
d∧c=0̂

(non-flat connected)

∫
(Rd ) |d|

H (xi0 , yj0)
∏

1≤k,l≤ |d |
{k,l}∈Ed′G

H (xk , xl)dx1 · · · dx |d | ,

where for every d ∈ Π1̂( [n]×[r]), d
′
G is a spanning tree contained in dG, with vertices {1, . . . , |d |, |d |+j}

and such that |d | + j0 is a leaf. By integrating successively on the variables which correspond to leaves
of d′G as in the proofs of, for example, Theorem 7.1 of [15] or Lemma 3.1 of [3] and using (3.2), we
obtain

^n
(
NG

y1,...,ym

)
≤ (C_)1+(r−1)nn!rr!n−1,

due to Assume 4.1-(ii), where C := max
(
1,

∫
Rd H (0, y)dy

)
, which yields the right-hand side (4.1). In

addition, Proposition 3.4 shows that all cumulants are positive, which completes the proof of (4.1). On
the other hand, when r≥2, by (3.3) we have

^2
(
NG

y1,...,ym

)
≥(r − 1)rC2r_2r−1,

where C > 0 is a constant independent of r≥2 and n≥2, which shows (4.2). �

In what follows, we consider the centered and normalized subgraph count cumulants defined as

ÑG
y1,...,ym :=

NG
y1,...,ym − ^1

(
NG

y1,...,ym

)√
^2

(
NG

y1,...,ym

) .

Corollary 4.3. Let m≥1, n≥2 and r≥2. We have��^n
(
ÑG

y1,...,ym

) �� ≤ n!rCn/2
r _−(n/2−1) ,

where Cr > 0 is a constant depending only on r≥2.

As a consequence of Corollary 4.3, the skewness of ÑG
y1,...,ym satisfies��^3 (ÑG

y1,...,ym

) �� ≤ Cr_
−1/2, (4.3)

where Cr > 0 is a constant depending only on r≥2.
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Proposition 4.4. Let m≥1. The renormalized subgraph count ÑG
y1,...,ym converges in distribution to the

standard normal distribution N (0, 1) as _ tends to infinity.

Proof. From Corollary 4.3 and (4.3), we have ^1
(
ÑG

y1,...,ym

)
= 0, ^2

(
ÑG

y1,...,ym

)
= 1, and

lim
n→∞

^n
(
ÑG

y1,...,ym

)
= 0, n≥3,

hence the conclusion follows from Theorem 1 in [11]. �

In addition, from Corollary 4.3 and Lemma B.1, the convergence result of Proposition 4.4 can be
made more precise via the following convergence bound in the Kolmogorov distance, which extends
Corollary 7.1 in [16] from m= 0 to m≥1.

Proposition 4.5. Let m≥1. We have

sup
x∈R

��P_ (ÑG
y1,...,ym ≤ x

)
−Φ(x)

�� ≤ Cr_
−1/(4r−2) , r≥2,

where Cr > 0 is a constant depending only on r≥2 and Φ is the cumulative distribution function of the
standard normal distribution.

By the second moment method, see, for example, (3.4) page 54 of [12] or Theorem 2.3 in [24], we
also obtain the following lower bound for endpoint connectivity and subgraph existence.

Proposition 4.6. Let m≥1. We have

P_
(
NG

y1,...,ym > 0
)
≥

(
E_

[
NG

y1,...,ym

] )2
E_

[ (
NG

y1,...,ym

)2] , _ > 0. (4.4)

Theorem 4.2 also shows the bounds

Cr,1

_
≤

^2
(
NG

y1,...,ym

)(
E_

[
NG

y1,...,ym

] )2 ≤ Cr,2

_
, _ > 0, (4.5)

for some constants Cr,1,Cr,2 > 0 depending only on r≥2, from which it follows that the lower bound
(4.4) converges to 1 as _ tends to infinity.

5. Numerical examples

In this section, we assume that H is the Rayleigh connection function

HV (x, y) := e−V ‖x−y‖2 , x, y ∈ Rd ,

where V > 0, and ` is the Lebesgue measure onRd . In this case, Assume 4.1 is satisfied. In the following
examples, the SageMath code listed in Appendix D is run after loading the definitions of Table 1.
Computations in this and the following examples are run on a standard desktop computer with an 8-
core CPU at 4.10GHz. The limitations imposed by this hardware configuration constrain the product
n × r × d to be below 15 approximately, in order to maintain computation times at a reasonable level.
The illustrations of Figures 4, 6, 8, and 10 are provided in dimension d = 2 for ease of visualization only.
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Table 1. Functions definitions.

load("cumulants_parallel.sage") # Loading the functions definitions
_, V= var("_, V"); assume(V> 0) # Variable definitions
def H(x,y,V): return exp(-V*(x-y)**2) # Connection function H (x, y)
def mu(x,_, V): return 1 # Flat intensity of `(dx)

Endpoints

Figure 4. A three-hop path with two endpoints in dimension d= 2.

Actual computations may be provided in lower dimension d, due to hardware performance constraints
when the cumulant order n is beyond 4. Computations in dimension d = 2 are presented in Section 5.3
for triangles with endpoints and in Section 5.4 for trees with one endpoint cumulants of orders 2 and
3, while in Section 5.1 for three-hop paths with two endpoint and in Section 5.2 for four-hop paths
with two endpoints we take d = 1 in order to reach the cumulant orders n= 6 and n= 4. In subsequent
code inputs, graphs are coded by their edge set EG, and the set of endpoints is given by the sequence
EP = [EP1, . . . ,EPm], where EPi denotes the set of vertices of the subgraph G on {v1, . . . , vr} which
are attached to the ith endpoint, i = 1, . . . ,m, with EP := [ ] the empty sequence when G has no
endpoint (m= 0).

5.1. Three-hop paths with two endpoints

By a k-hop path, we mean a non-self intersecting path having k edges. We take m= 2, r = 2, and in
Table 2 we compute the first three cumulants of NG

y1,y2 when G is a three-hop path with two endpoints
in dimension d = 1, see Figure 4 for an illustration in dimension d = 2. Unlike in the two-hop with two
endpoints case, this three-hop count does not have a Poisson distribution. In the following Figures 4, 6,
8, and 10, the endpoints are denoted by red dots, and their edges are denoted by purple dashed lines.
To make cumulant expressions more compact, the exact formulas in Table 2 are expressed with y1 =

y2 = 0 and V := c, in dimension d = 1.
Table 3 lists the counts of connected non-flat partitions and runtimes for the computation of cumulants
of orders 1–6 and shows that such partitions represent only a fraction (around 25%) of total partition
counts.
Figure 5 presents connectivity estimates based on the moment and cumulant formulas of Propositions
4.6 and B.2, in dimension d = 1.
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Table 2. Cumulants of the count of two-hop paths with two endpoints in dimension d= 1.
G = [[1,2]]; EP =[[1],[2]]; d=1 # Single edge graph r = 2, two endpoint m= 2, dimension d = 1

Command Order Cumulant output

Connected
non-flat
partitions

c(1,d,G,EP,mu,H) 1st 1√
3
_2 1

c(2,d,G,EP,mu,H) 2nd
(

1√
3
+ 1√

2

)
_3 +

(
1√
3
+ 1

2
√
2

)
_2 6

c(3,d,G,EP,mu,H) 3rd
(√

12
7 + 3√

5
+ 3√

7
+ 12√

31

)
_4 +

(√
3 +

√
3
2 + 17

5
√
2
+ 12√

19

)
_3

+
(

3
2
√
2
+ 1√

3

)
_2

68

Table 3. Computation times and counts of connected non-flat vs. all partitions in Π( [n] × [2]).
Order n 2 blocks 3 blocks 4 blocks 5 blocks 6 blocks 7 blocks Total Π ( [n] × [2] ) Comp. time

1st 1 0 0 0 0 0 1 2 0.5 s
2nd 2 4 0 0 0 0 6 15 1 s
3rd 4 32 32 0 0 0 68 203 3 s
4th 8 208 624 352 0 0 1,192 4,140 1m
5th 16 1,280 8,960 13,904 5,040 0 29,200 115,975 47m
6th 32 7,744 116,160 375,776 351,456 88,544 939,712 4,213,597 29 hours

Figure 5. Connection probabilities. (a) First and second moment bounds (4.4). (b) Cumulant approxi-
mations (B.1) with n = 0.

5.2. Four-hop paths with two endpoints

Here, we take m= 2 and r = 3, and in Table 4 we compute the first cumulant of NG
y1,y2 when G is a

four-hop path with two endpoints in dimension d = 1, see Figure 6 for an illustration in dimension d = 2.
The closed-form expressions in Table 4 are expressed with y1 = y2 = 0 and V := c, in dimension d = 1.
Table 5 presents the counts of connected non-flat partitions at different orders, and shows that such
partitions represent only a fraction (around 10%) of total partition counts.
In Figure 7, we plot the correspondingmoment expressions vs. theirMonte Carlo estimates in dimension
d = 1, with the parameters of Table 4.

5.3. Triangles with endpoints

Taking r = 3 and m= 3, in Table 6, we compute the first and second cumulants of NG
y1,y1,y3 when G is a

triangle with three endpoints in dimension d = 1, see Figure 8 for an illustration in dimension d = 2.
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Endpoints

Figure 6. A four-hop path with two endpoints in dimension d= 2.

Table 4. First and second cumulants of the count of four-hop paths with two endpoints.
G = [[1,2],[2,3]]; EP=[[1],[3]]; d=1 # four-hop path r = 3, two endpoints m= 2, dimension d = 1

Instruction Order Cumulant output Connected non-flat partitions

c(1,d,G,EP,mu,H) 1st _3

2 1

c(2,d,G,EP,mu,H) 2nd 1
6_

3
((√

6 + 4
√

3
5 + 3

2
√
2
+ 12√

7

)
_2

+
(
3
√
3 + 16

√
3
7 + 8

√
3
11 + 3

2
√
2
+ 6√

5

)
_

+
√
3 +

√
6 + 6

)
33

Table 5. Computation times and counts of connected non-flat vs. all partitions in Π( [n] × [3]).
Order n 3 blocks 4 blocks 5 blocks 6 blocks 7 blocks 8 blocks 9 blocks Total Π ( [n] × [3] ) Comp. time

1st 1 0 0 0 0 0 0 1 5 1 s

2nd 6 18 9 0 0 0 0 33 203 2 s

3rd 36 540 1,242 864 189 0 0 2,871 21,147 4m

4th 216 13,608 94,284 186,624 145,908 48,276 5,589 494,500 4,213,597 19 hours

The closed-form expressions in Table 6 are expressed with y1 = y2 = y3 = 0 and V := c, in dimension
d = 1.
Table 7 presents computation times in dimension d = 2.
Figure 9 presents second and third order Gram–Charlier expansions (C.1)–(C.2) for the probability
density function of the count NG

y1,y1,y3 of triangles with three endpoints, based on exact second and third
cumulant expressions.
In Figure 9, the purple areas correspond to probability density estimates obtained by Monte Carlo sim-
ulations with V = 2. The second order expansions correspond to the Gaussian diffusion approximation
obtained by matching first and second order moments. Figure 9 shows that the actual probability density
estimates obtained by simulation can be significantly different from their Gaussian diffusion approxima-
tions when skewness takes large absolute values. In addition, in Figure 9, the fourth order Gram–Charlier
expansions appear to give the best fit to the actual probability densities, which have positive skewness.

5.4. Trees with one endpoint

Here we take r = 4 and m= 1, and in Table 8 we compute the first and second cumulants of NG
y1,y1,y3 when

G is made of a tree and a single endpoint in dimension d = 2, see Figure 10 for an illustration.
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Figure 7. Moment estimates. (a) First moment. (b) Second moment. (c) Third moment. (d) Fourth
moment.

Figure 8. A triangle with three endpoints in dimension d= 2.

Table 6. First and second cumulants of the count of triangles with three endpoints.
G = [[1,2],[2,3],[3,1]]; EP=[[1],[2],[3]]; d=1; # Triangle graph r = 3; three endpoints m= 3; dimension d = 1

Instruction Order Cumulant output Connected non-flat partitions

c(1,d,G,EP,mu,H) 1st _3

4 1
c(2,d,G,EP,mu,H) 2nd

(√
3
8 + 3

8

)
_5 +

(
2
√
105
35 +

√
3
5 + 3

4

)
_4

+
(
3
√
35

35 +
√
2
5 + 1

4

)
_3

33
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Table 7. Computation times and counts of connected non-flat vs. all partitions in Π( [n] × [3]).
Order n 3 blocks 4 blocks 5 blocks 6 blocks 7 blocks Total Π( [n] × [3]) Comp. time

1st 1 0 0 0 0 1 5 1 s
2nd 6 18 9 0 0 33 203 21 s
3rd 36 540 1,242 864 189 2,871 21,147 1 hour

Figure 9. Gram–Charlier density expansions vs. Monte Carlo density estimation. (a) _ = 50.
(b) _ = 400.

Figure 10. Four trees with a single endpoint in dimension d= 2.

Table 8. First and second cumulants of the count of trees with one endpoint.
G = [[1,2],[2,3],[2,4]]; EP=[[1,3,4]]; d=2; # Tree r = 4; single endpoint m= 1; dimension d = 2

Instruction Order Cumulant output Connected non-flat partitions

c(1,d,G,EP,mu,H) 1st _4

12 1
c(2,d,G,EP,mu,H) 2nd 41_7

384 + 99039_6

165760 + 232885_5

175824 + 37_4

50 208

In Table 8, the location of the unique endpoint has no impact on cumulant expressions due to space
homogeneity of the underlying Poisson point process.
The computation times presented in Table 9 are for dimension d = 2.
In Figure 11, we plot the second cumulant of NG

y1,...,ym and the third cumulant of ÑG
y1,...,ym vs. their Monte

Carlo estimates in dimension d = 2 with y1 = y2 = y3 = 0.
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Table 9. Computation times and counts of connected non-flat vs. all partitions in Π( [n] × [4]).
Order n 4 blocks 5 blocks 6 blocks 7 blocks 8 blocks 9 blocks 10 blocks Total Π ( [n] × [4] ) Comp. time

1st 1 0 0 0 0 0 0 1 15 1 s

2nd 24 96 72 15 0 0 0 208 4,140 2m

3rd 576 13,824 50,688 59,904 29,952 6,912 640 162,496 4,213,597 40 hours

Figure 11. Cumulant estimates. (a) Second cumulant. (b) Normalized third cumulant.

Table 10. Functions definitions.

load("cumulants_parallel.sage");
load("jointcumulants.sage")

# Loading the functions definitions

_, V= var("_, V"); assume(V> 0) # Variable definitions
def H(x,y,V): return exp(-V*(x-y)**2) # Connection function H (x, y)
def mu(x,_, V): return exp(-V*x**2) # Finite intensity measure `(dx)

Table 11. Second (joint) moments of triangle counts vs. four-hop counts.
G1 = [[1,2],[2,3],[3,1]]; G2 = [[1,2],[2,3],[3,4],[4,5]]; G2c = [[4,5],[5,6],[6,7],[7,8]]; G = [G1,G2c]; EP=[]; d=2;

# Triangles G1 and four-hop G2; r1 = 3, r2 = 5; no endpoints m= 0; dimension d = 2

Instruction Order Cumulant output Connected non-flat partitions

c(2,d,G1,EP,mu,H) 2nd 3_5

64 + 6_4

25 + 3_3

8 33
c(2,d,G2,EP,mu,H) 2nd 7344738590701_9

687218605505250 + · · · 1,545
jc(d,G,EP,mu,H) 2nd joint 34409_7

1537920 + 9101145477_6

55004486680 + 10774977_5

28148120 135

5.5. Correlation of triangles vs. four-hop counts

In this example, we run the joint cumulant code provided in Appendix E to compute the correlation of
triangle and four-hop counts without endpoints, as a function of the intensity parameter _. Here, ` is
taken to be a finite measure as no endpoints are considered, that is we have EP=[ ] and m= 0, and the
SageMath code listed in Appendix E is run after loading the definitions of Table 10.
The closed-form expressions in Table 11 are expressed with V := c, in dimension d = 2.
In Figure 12, we plot the second joint cumulant and correlation of

(
NG1 ,NG2

)
vs. their Monte Carlo

estimates in dimension d = 1.
The limit correlation as _ tends to infinity can be exactly estimated from Table 11 as

34409
1537920

√
64
3

× 687218605505250
7344738590701

≈ 0.999602.
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Figure 12. Correlation and second joint cumulant estimates. (a) Second joint cumulant.
(b) Correlation.
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[25] Rudzkis, R., Saulis, L., & Statulevǐcius, V.A. (1978). A general lemma on probabilities of large deviations. Lithuanian
Mathematical Journal 18(2): 99–116.
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Appendix A. Multivariate moment and cumulant formulae

In this section, we prove an extension of Proposition 3.4 for the joint moments and cumulants of
subgraph counts. The next definition extends Definition 3.1.

Definition A.1. Given r1, . . . , rn≥1, we set

ci = {(i, 1), . . . , (i, ri)} , i = 1, . . . , n,

and c := {c1, . . . , cn}.

(i) A set partition f ∈ Π(c1 ∪ · · · ∪ cn) is connected if f ∨ c = 1̂.
(ii) A set partition f ∈ Π(c1 ∪ · · · ∪ cn) is non-flat if f ∧ c = 0̂.

We let Π1̂(c1 ∪ · · · ∪ cn) denote the collection of all connected partitions of c1 ∪ · · · ∪ cn.

In what follows, every partition d ∈ Π(c1 ∪ · · · ∪ cn) will be arranged into a diagram denoted by
Γ(d, c), by arranging c1, . . . , cn into n rows and connecting together the elements of every block of d,
see Figure A1 for two illustrations with n= 5, (r1, r2, r3, r4, r5) = (3, 2, 4, 3, 4).
Definition A.2 extends [16, Def. 2.4] to the multivariate setting.

Definition A.2.

(i) Given d ∈ Π(c1 ∪ · · · ∪ cn), we let fd be the partition of [n] defined by the condition

d ∨ c =

{⋃
i∈b

ci : b ∈ fd

}
.
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Figure A1. Two examples of partition diagrams. (a) Non-connected partition diagram Γ(d, c).
(b) Connected partition diagram Γ(d, c).

Figure A2. Diagram Γ(d, c) and splitting of the partition d with d ∨ c = {c1 ∪ c2, c3 ∪ c4 ∪ c5}.
(a) Connected subpartition d{1,2} . (b) Splitting d into connected subpartitions db1, db2.

(ii) For any non-empty set b ⊂ [n], we let

db :=
{
c ∈ d : c ⊂

⋃
i∈b

ci

}
.

As an example, in Figure A2(a), when b = {1, 2} we have

d{1,2} =
{
{(1, 1), (2, 1)}, {(1, 2), (1, 3), (2, 2)}

}
.

We note that for b ⊂ [n] we have cb = {ci : i ∈ b}, and any partition d ∈ Π(c1 ∪ · · · ∪ cn) can be split
into subpartitions deduced from the connected components of Γ(d, c), that is

d =
⋃

b∈fd

db,

as illustrated in Figure A2(b) with b1 = {1, 2}, b2 = {3, 4, 5}, and fd = {b1, b2}.
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Definition A.3. For f ∈ Π( [n]) we let Πf (c1 ∪ · · · ∪ cn) denote the collection of partitions d ∈
Π(c1 ∪ · · · ∪ cn) such that

d ∨ c =

{⋃
i∈b

ci : b ∈ f

}
.

In particular, Π1̂(c1 ∪ · · · ∪ cn) represents the set of connected partitions of c1 ∪ · · · ∪ cn, and
Π0̂(c1 ∪ · · · ∪ cn) represents the partitions of c1 ∪ · · · ∪ cn that are finer than c := {c1, . . . , cn}.

Given F : Π′ (c1 ∪ · · · ∪ cn) → R, where Π′ (c1 ∪ · · · ∪ cn) is the collection of all subpartitions of
c1 ∪ · · · ∪ cn, we define the mixed moments F̂ : 2[n] → R by

F̂ (A) =
∑

d∈Π (∪i∈A ci )
F (d), A ⊂ [n], (A.1)

cf. [18, p. 33]. The semi-invariants CF : 2[n] → R are defined by the induction formula CF (A) = F̂ (A)
when |A| = 1, and

CF (A) = F̂ (A) −
∑

{b1,...,bk }∈Π (A)
k≥2

k∏
i=1

CF (bi),

for |A| > 1, see Relation (16) page 33 of [18], where the sum is taken over all partitions f ∈ Π(A) such
that |f | ≥ 2, that is

CF (A) =
∑

d∈Π (A)
(−1) |d | ( |d | − 1)!

∏
b∈d

F̂ (b), (A.2)

see Relation (16’) in [18]. The next proposition generalizes [16, Prop. 3.3] to the multivariate case.

Proposition A.4. Suppose that F satisfies the connectedness factorization property

F (d) =
∏

b∈fd

F (db), d ∈ Π′ (c1 ∪ · · · ∪ cn). (A.3)

Then, the semi-invariants are given by

CF (A) =
∑

d∈Π1̂ (∪i∈A ci )
F (d), ∅ ≠ A ⊂ [n] . (A.4)

Proof.

(i) It is clear that (A.4) holds when |A| = 1. When |A| = 2, taking A = {i, j} ⊂ [n], i ≠ j, we have

CF (A) = F̂ ({i, j}) − CF ({i})CF ({j})
=

∑
d∈Π (ci∪cj )

F (d) − F̂ ({i})F̂ ({j})

=
∑

d∈Π1̂ (ci∪cj )
F (d) +

∑
d∈Π0̂ (ci∪cj )

F (d) − ©­«
∑

d1∈Π (ci )
F (d1)

ª®¬ ©­«
∑

d2∈Π (cj )
F (d2)

ª®¬ .
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By splitting any d ∈ Π0̂(ci ∪ cj) into two disjoint subpartitions according to Definition A.2, that is

d = d{i} ∪ d{j} ,

together with the factorization property (A.3), we find∑
d∈Π0̂ (ci∪cj )

F (d) =
∑

d∈Π0̂ (ci∪cj )
d=d{i}∪d{j}

F (d{i})F (d{j})

=
©­«

∑
d1∈Π (ci )

F (d1)
ª®¬ ©­«

∑
d2∈Π (cj )

F (d2)
ª®¬ ,

which shows (A.4).
(ii) Next, suppose that (A.4) holds for any A ⊂ [n] with |A| ≤ l ≤ n − 1. Let A ⊂ [n] be a subset of

[n] with |A| = l + 1. We have

F̂ (A) =
∑

d∈Π (∪i∈A ci )
F (d)

=
∑

f={b1,...,bk }∈Π (A)
k≥1

∑
d∈Π (∪i∈A ci )

d∨cA={∪i∈bj ci }k
j=1

F (d)

=
∑

f={b1,...,bk }∈Π (A)
k≥1

∑
d∈Π (∪i∈A ci )

d∨cA={∪i∈bj ci }k
j=1

k∏
j=1

F (dbj )

=
∑

f={b1,...,bk }∈Π (A)
k≥1

k∏
j=1

∑
dj∈Π (∪i∈bj ci )

dj∨cbj=1̂

F (dbi )

=
∑

f={b1,...,bk }∈Π (A)
k≥1

k∏
j=1

∑
dj∈Π1̂ (∪i∈bj ci )

F (dbi )

=
∑

d∈Π1̂ (∪i∈A ci )
F (d) +

∑
{b1,...,bk }∈Π (A)

k≥2

k∏
j=1

CF (bj),

where the last equality follows from the induction hypothesis (A.4) when |A| ≤ l. The proof is
completed by subtracting the last term from both sides.

�

Given n ≥ 1 and f (i) : (Rd)ri → R, i = 1, . . . , n, measurable functions, we let(
n⊗

i=1
f (i)

)
(x1,1, . . . , x1,r1 , . . . , xn,1, . . . , xn,rn) :=

n∏
i=1

f (i) (xi,1, . . . , xi,ri ).

For d ∈ Π(c1 ∪ · · · ∪ cn), we also denote by
(⊗n

i=1 f (i)
)
d
: (Rd) |d | → R the function obtained by

equating any two variables whose indexes belong to a same block of d. We refer to [1, Thm. 3.1] for
the next result.
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Proposition A.5. Let n ≥ 1, r1, . . . , rn ≥ 1, and let f (i) : (Rd)ri → R be a sufficiently integrable
measurable function for i = 1, . . . , n. We have

E


n∏

i=1

∑
(x1,...,xri ) ∈[

ri

f (i) (x1, . . . , xri )
 =

∑
d∈Π (c1∪···∪cn )

_ |d |
∫
(Rd ) |d|

(
n⊗

i=1
f (i)

)
d

(x) `⊗|d | (dx),

Proposition A.5 can be specialized as follows.

Corollary A.6. Let ri ≥ 2, i = 1, . . . , n, and consider f (i) : (Rd)ri → R measurable functions that
vanish on diagonals, that is f (i) (x1, . . . , xri ) = 0 whenever xk = xl for some 1 ≤ k ≠ l ≤ ri, i = 1, . . . , n.
We have

E


n∏

i=1

∑
(x1,...,xri ) ∈[

ri

f (i) (x1, . . . , xri )
 =

∑
d∈Π (c1∪···∪cn )

d∧c=0̂
(non−flat)

_ |d |
∫
(Rd ) |d|

(
n⊗

i=1
f (i)

)
d

(x) `⊗|d | (dx). (A.5)

For i = 1, . . . , n, let Mi ⊂ {1, . . . ,m}, ri≥2, and let Gi = (VGi ,EGi ) be a connected graph with edge
set EGi and vertex set of the form VGi =

(
v(i)1 , . . . , v(i)ri ; {w(i)

j }j∈Mi

)
, such that

(i) the subgraph Gi induced by Gi on {v(i)1 , . . . , v(i)ri } is connected, and
(ii) the endpoint vertices {w(i)

j }j∈Mi are not adjacent to each other in Gi,

and let G := {G1, . . . ,Gn}. In Definition A.7, for every d ∈ Π(c1 ∪ · · · ∪ cn) we build a graph
structure induced by (G1, . . . ,Gn) on the diagram Γ(d, c), analogous to [16, Def. 2.2].

Definition A.7. Given d ∈ Π(c1∪· · ·∪cn) a partition of c1∪· · ·∪cn, we let d̃G denote the multigraph
constructed as follows on [m] ∪ c1 ∪ · · · ∪ cn:

(i) for all j1, j2 ∈ [ri], j1 ≠ j2, and i ∈ [n], an edge links (i, j1) to (i, j2) iff {v(i)j1 , v(i)j2 } ∈ EGi .
(ii) for all (j, k) ∈ [ri] × Mi and i ∈ [n], an edge links (k) to (i, j) iff {v(i)j ,w(i)

k } ∈ EGi ;
(iii) for all i1, i2 ∈ [n] and (j1, j2) ∈ [ri1] × [ri2], we merge any two nodes (i1, j1) and (i2, j2) if they

belong to a same block in d.

In addition, we let dG be the graph constructed from the multigraph d̃G by removing any redundant
edge in d̃G.

As in Section 3, the graph dG forms a connected graph with |d | +m vertices. Figure A3 presents two
examples of multigraphs d̃G and graphs dG when G1,G2,G3 are line graphs, G4 is a triangle, and G5
is a rectangle on a partition diagram Γ(d, c) with no endpoints, that is M1 = · · · = Mn = ∅ here.
For each i = 1, . . . , n denote by NGi

Mi
the count of subgraphs in the random-connection model GH ([ ∪

{yj}j∈Mi ) with endpoint set {yj}j∈Mi , that is

NGi
Mi

=
∑

(x1,...,xri ) ∈[
ri

f (i)Mi
(x1, . . . , xri ),
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Figure A3. Diagram Γ(d, c), multigraph d̃G, and graph dG. (a) Multigraph d̃G in blue. (b) Graph dG
in red. (c) Multigraph d̃G in blue. (d) Graph and dG in red.

where f (i)Mi
: (Rd)ri → {0, 1} is the random function defined as

f (i)Mi
(x1, . . . , xri ) :=

∏
1≤l≤ri, j∈Mi

{w(i)
j ,v(i)l }∈EGi

1{yj↔xl }
∏

1≤k,l≤ri
{v(i)k ,v(i)l }∈EGi

1{xk↔xl } , x1, . . . , xri ∈ Rd .

For d = {b1, . . . , b |d | } ∈ Π(c1 ∪ · · · ∪ cn), we also let

Ad

j := {i ∈ [|d |] : ∃(s, k) ∈ bis.t.
(
v(s)k ,w(s)

j
)
∈ EGs }

denote the neighborhood of the vertex ( |d |+j) in dG, j = 1, . . . ,m. The next proposition is a consequence
of Relation (A.4) and Corollary A.6.

Proposition A.8. Let NGi
Mi

be subgraph counts in the random-connection model GH ([ ∪ {y1, . . . , ym})
as defined above, for i = 1, . . . , n. We have

E

[
n∏

i=1
NGi

Mi

]
=

∑
d∈Π (c1∪···∪cn )

d∧c=0̂
(non−flat)

_ |d |
∫
(Rd ) |d|

∏
1≤j≤m
i∈Ad

j

H (xi, yj)
∏

(k,l) ∈EdG

H (xk , xl) `(dx), (A.6)

and joint cumulant

^(NG1 , . . . ,NGn) =
∑

d∈Π1̂ (c1∪···∪cn )
d∧c=0̂

(non-flat connected)

_ |d |
∫
(Rd ) |d|

∏
1≤j≤m
i∈Ad

j

H (xi, yj)
∏

(k,l) ∈EdG

H (xk , xl) `(dx). (A.7)

Proof. The moment identity (A.6) is obtained by taking expectation on both sides of (A.5) in Corollary
A.6 and using the relation H (x, y) = E[1{x↔y}], x, y ∈ Rd . Next, we note that the connectedness
factorization property (A.3) is satisfied by

F (d) := _ |d |
∫
(Rd ) |d|

∏
1≤j≤m
i∈Ad

j

H (xi, yj)
∏

(k,l) ∈EdG

H (xk , xl) `(dx1) · · · `(dx |d | ),
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d ∈ Π(c1∪· · ·∪cn), hence (A.7) follows fromRelations (A.1), (A.4), (A.6), and the classical cumulant-
moment relationship (A.2), see, for example, Relation (3.3) in [17]. �

The cumulant formula of Proposition A.8 is implemented in the code listed in Appendix E.

Appendix B. Cumulant and factorial moment estimates

The following result can be found in [26, Cor. 2.1] or [6, Thm. 2.4].

Lemma B.1. Let {X_} be a family of random variables with moments of all orders, mean zero and unit
variance for all _ > 0. Suppose that for all j≥3 and sufficiently large _, the cumulant of order j of X_ is
bounded by

|^j (X_) | ≤
(j!)1+W
(Δ_)j−2

where W ≥ 0 is a constant independent of _. Then we have the Berry–Esseen bound

sup
x∈R

|P(X_ ≤ x) −Φ(x) | ≤ CW (Δ_)−1/(1+2W) ,

for CW > 0 a constant depending only on W.

We let mn(X) := E[X (X −1) · · · (X −n+1)] denote the factorial moments of order n≥1 of a discrete
random variable X.

Proposition B.2. Corollary 1.13 in [2] Assume that

lim
n→∞

mn(X)
nk

n!
= 0, k≥0.

Then for any n≥0, we have

P(X = n) = 1
n!

∑
i≥0

(−1)i

i!
mn+i (X). (B.1)

Appendix C. Gram–Charlier expansions

Let i(x) := e−x2/2/
√
2c, x ∈ R, denote the standard normal probability density function. In addition to

the second order expansion Gaussian approximation

q
(1)
X (x) = 1

√
^2

i

(
x − ^1√

^2

)
(C.1)

for the probability density qX (x) function of a random variable X, higher order Gram–Charlier
expansions of third and fourth order are given by

q
(3)
X (x) = 1

√
^2

i

(
x − ^1√

^2

) (
1 + c3H3

(
x − ^1√

^2

))
(C.2)
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and

q
(4)
X (x) = 1

√
^2

i

(
x − ^1√

^2

) (
1 + c3H3

(
x − ^1√

^2

)
+ c4H4

(
x − ^1√

^2

)
+ c6H6

(
x − ^1√

^2

))
.

see Section 17.6 of [4], where

• H0(x) = 1, H1(x) = x, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3, H6(x) = x6 − 15x4 + 45x2 − 15 are
Hermite polynomials,

• the sequence c3, c4, c5, c6 is given from the cumulants (^n)n≥1 of X as

c3 =
^3

3!(^2)3/2
, c4 =

^4

4!(^2)2
, c5 =

^5

5!^5/25

, c6 =
^6

6!(^2)3
+ (^3)2

2(3!)2(^2)3
,

where c3 and c4 are expressed from the skewness ^3/(^2)3/2 and the excess kurtosis ^4/(^2)2.

Appendix D. Cumulant code

The following code generates closed-form cumulant expressions via symbolic calculations in SageMath
for any dimension d≥1, any connected subgraph G induced by G, and any set of endpoint connections
represented as the sequence EP = [EP1, . . . ,EPm]. When G has no endpoint (m= 0) we have EP = [ ],
however, in this case the measure ` should be finite, that is, the density function mu(x,_, V) should be
integrable with respect to the Lebesgue measure onRd . The choice of SageMath for this implementation
is due to its fast handling of symbolic integration via Maxima, which is significantly faster than the
Python package Sympy. This code is also sped up by parallel processing that can distribute the load
among different CPU cores. This SageMath code and the next one are available for download at https://
github.com/nprivaul/random-connection.

from time import time
import datetime
import multiprocessing as mp

global cumulants

def partitions(points):
if len(points) == 1:

yield [ points ]
return

first = points [0]
for smaller in partitions(points [1:]):

for m, subset in enumerate(smaller):
yield smaller [:m] + [[ first ] + subset] + smaller[m+1:]

yield [ [ first ] ] + smaller

def nonflat(partition ,r):
p = []
for j in partition:

seq = list(map(lambda x: (x-1)//r,j))
p.append(len(seq) == len(set(seq)))

return all(p)
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def connected(partition ,n,r):
q = []; c = 0
if n == 1: return all([len(j)==1 for j in partition ])
for j in partition:

jk = list(set(map(lambda x: (x-1)//r,j)))
if(len(jk) >1):

if c == 0:
q = jk; c += 1

elif(set(q) & set(jk)):
d=[y for y in (q+jk) if y not in q]
q = q + d

return n == len(set(q))

def connectednonflat(n,r):
points = list(range(1,n*r+1))
randd = []
for m, p in enumerate(partitions(points), 1):

randd.append(sorted(p))
cnfp = [e for e in randd if (connected(e,n,r) and nonflat(e,r))]
for rou in range(r,(r-1)*n+2):

rs = [d for d in cnfp if len(d)==rou]
print("Connected non -flat partitions with",rou ,"blocks:",len(rs))

print("Connected non -flat set partitions:",len(cnfp))
return cnfp

def graphs(G,EP ,setpartition ,n):
r=len(set(flatten(G)));rhoG = []
for j in range(n):

for hop in G: rhoG.append ([r*j+hop[0],r*j+hop [1]])
for l in range(len(EP)):

F=EP[l]
for i in F: rhoG.append ([j*r+i,n*r+l+1]);

for i in setpartition:
if(len(i) >1):

b = []
for j in rhoG:

b.append ([i[0] if ele in i else ele for ele in j])
rhoG = b

for i in rhoG: i.sort()
return rhoG

def inner(n,d,G,EP ,mu ,H,setpartition ,z,r):
rhoG=graphs(G,EP ,setpartition ,n)
for ll in range(len(EP)+1):

for l in range(1,d+1): z[d*(n*r+ll)+l] = var(str(y)+str(ll)+str('_')+str(l
))

for key in range(1,n*r+1):
for l in range(1,d+1): z[key*d+l] = var(str(x)+str(key)+str(x)+str(l))

edgesrhoG = [i for n, i in enumerate(rhoG) if i not in rhoG[:n]]
vertrhoG = set(flatten(edgesrhoG));
for ll in range(len(EP)): vertrhoG.remove(n*r+ll+1);
strr = ' *'*len(vertrhoG)
for i in vertrhoG:

for l in range(1,d+1): strr = '*mu({} ,{} ,{})'.format(z[i*d+l], , ) + strr
for l in range(1,d+1): strr = strr + ').integrate ({},-infinity ,+ infinity)'

.format(z[i*d+l])
for i in edgesrhoG:

for l in range(1,d+1): strr = '*H({} ,{} ,{})'.format(z[i[0]*d+l],z[i[1]*d+l
], ) + strr

strr = '('*len(vertrhoG)*d+strr [1:]
return eval(preparse(strr))

def collect_result(result):
global cumulants
global iii
global tim
iii=iii +1;
if (mod(iii ,100) ==0):

tim=(time()-t_start2)*(lencnfp -iii)/iii/60
print('[%d]\r'%(iii),'Est. remaining time (minutes):%d'%(tim),end="")

cumulants += result
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def c(n,d,G,EP,mu ,H):
global cumulants
global iii
global t_start2
t_start2 = time()
d_start2 = datetime.datetime.now()
r=len(set(flatten(G)));
x,y=var("x,y")
cumulants = 0; iii = 0
z = dict(enumerate ([str(x)+str(key)+str(x)+str(l) for key in range(0,n*r+1)

for l in range(1,d+1)], start =1))
global lencnfp
cnfp=connectednonflat(n,r)
lencnfp=len(cnfp)
pool = mp.Pool (4) # pool = mp.Pool(mp.cpu_count ())
for setpartition in cnfp:

pool.apply_async(func = inner , args=(n,d,G,EP,mu ,H,setpartition ,z,r),
callback=collect_result)

pool.close ()
pool.join()
print("\n");
d_end2 = datetime.datetime.now()
print("Runtime is",(d_end2 -d_start2))
return cumulants._sympy_ ()

Appendix E. Joint cumulant code

The following code generates closed-form joint cumulant expressions via symbolic calculations in
SageMath for any dimension d≥1, any sequence (G1, . . . ,Gn) of connected subgraphs induced by
(G1, . . . ,Gn). As above, the endpoint connections are represented using represented as the sequence
EP = [EP1, . . . ,EPm] where EPi denotes the set of vertices of G1 ∪ · · · ∪ Gn which are attached to the
ith endpoint, i = 1, . . . ,m.

def jpartitions(points):
if len(points) == 1:

yield [ points ]
return

first = points [0]
for smaller in jpartitions(points [1:]):

for m, subset in enumerate(smaller):
yield smaller [:m] + [[ first ] + subset] + smaller[m+1:]

yield [ [ first ] ] + smaller

def jnonflat(partition ,rr):
n=len(rr); p = []
for j in partition:

for i in range(n):
j2 = [l for l in j if l > sum(rr[0:i]) and l<=sum(rr[0:(i+1)])]
p.append(len(j2) <= 1)

return all(p)

def jconnected(partition ,rr):
n=len(rr); q = []; c = 0;
if n == 1: return True
for j in partition:

jk = [i for i in range(n) if len([l for l in j if l > sum(rr[0:i]) and l<=
sum(rr[0:(i+1)])]) >=1]

if(len(jk) >1):
if c == 0:

q = jk; c += 1
elif(set(q) & set(jk)):

d=[y for y in (q+jk) if y not in q]
q = q + d

return n == len(q)
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def jconnectednonflat(rr):
n=len(rr);
points = list(range(1,sum(rr)+1))
randd = []
for m, p in enumerate(jpartitions(points), 1): randd.append(sorted(p))
for rou in range(min(rr),sum(rr)-n+2):

rs = [d for d in randd if (jnonflat(d,rr) and len(d)==rou)]
rss = [e for e in rs if jconnected(e,rr)]
print("Connected non -flat partitions with",rou ,"blocks:",len(rss))

cnfp = [e for e in randd if (jconnected(e,rr) and jnonflat(e,rr))]
print("Connected non -flat set partitions:",len(cnfp))
return cnfp

def jgraphs(G,EP ,setpartition):
rr=[len(set(flatten(g))) for g in G];
n=len(G); rhoG = []
ee=[len(set(flatten(e))) for e in EP];
for j in range(n):

for hop in G[j]: rhoG.append ([hop[0],hop [1]])
for l in range(len(EP)):

F=EP[l]
for i in F: rhoG.append ([i,sum(rr)+l+1]);

for i in setpartition:
if(len(i) >1):

b = []
for j in rhoG:

b.append ([i[0] if ele in i else ele for ele in j])
rhoG = b

for i in rhoG: i.sort()
return rhoG

def jc(d,G,EP,mu ,H):
rr=[len(set(flatten(g))) for g in G];
if(sum(rr)!=len(set(flatten(G)))):

print("Wrong G format");
return 0

n=len(G);
ee=[len(set(flatten(e))) for e in EP];
x,y=var("x,y")
jcumulants = 0; ii=0
z = dict(enumerate ([str(x)+str(key)+str(x)+str(l) for key in range(1,sum(rr)

+1) for l in range(1,d+1)], start =1))
cnfp=jconnectednonflat(rr)
for setpartition in cnfp:

ii=ii+1; print('[%d/%d]\r'%(ii,len(cnfp)),end="")
rhoG=jgraphs(G,EP ,setpartition)
for j in range(n):

m=len(EP);
for l in range(m+1):

for ld in range(1,d+1): z[d*(sum(rr)+l)+ld] = var(str(y)+str(l)+
str('_')+str(ld))

for key in range(1,sum(rr)+1):
for l in range(1,d+1): z[key*d+l] = var(str(x)+str(key)+str(x)+str(l))

edgesrhoG = [i for n, i in enumerate(rhoG) if i not in rhoG[:n]]
vertrhoG = set(flatten(edgesrhoG));
m=len(EP);
for l in range(m): vertrhoG.remove(sum(rr)+l+1);
strr = ' *'*len(vertrhoG)
for i in vertrhoG:

for l in range(1,d+1): strr = '*mu({} ,{} ,{})'.format(z[i*d+l], , ) +
strr

for l in range(1,d+1): strr = strr + ').integrate ({},-infinity ,+
infinity)'.format(z[i*d+l])

for i in edgesrhoG:
for l in range(1,d+1): strr = '*H({} ,{} ,{})'.format(z[i[0]*d+l],z[i

[1]*d+l], ) + strr
strr = '('*len(vertrhoG)*d+strr [1:]
jcumulants += eval(preparse(strr))

print("\n");
jcumulants = simplify(jcumulants).canonicalize_radical ().maxima_methods ().

rootscontract ().simplify ()
return jcumulants._sympy_ ()
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