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Abstract

Let j, denote the first positive zero of J,. It is shown that j,/(» + «) is a strictly decreasing
function of » for each positive a provided » is sufficiently large. For each a lowe: bounds
on » are given to assure the monotomcity of j,/(» + «). From this it is shown that
J, > v + j, for all v > 0, which is both simpler and an improvement on the well known
inequality j, = (»(» + 2))!/2.

1. Introduction

The zeros of Bessel functions have been investigated in depth because of their
relation to physical phenomena. For example, the transverse vibrations of a
membrane in the form of a circular sector, which is clamped along its edges, are
determined by the zeros of Bessel functions of the first kind. The study of the
behavior of the zeros of Bessel functions dates back at least as far as an entry in
Gauss’ notebook dated October 16, 1797 (see the footnote on page 506 of [15]).
Since then results concerning the interlacing of zeros of various orders, monoton-
icity of growth, asymptotic expansions, and algebraic bounding functions for the
zeros have been established. Here we shall show that if j, denotes the first positive
zero of the Bessel function of the first kind J,, then for any « > 0, j,/(v + a) is a
strictly decreasing function whenever » is sufficiently large. For each a >0, a
lower bound to » which ensures the monotonicity of j,/(» + a) is given. From this
it is shown that j, > » + j;, for all » > 0. This is an improvement on the well
known inequality j, = (v»(v + 2))'/2
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2. Preliminary lemmas

We begin by considering the eigenvalue problem
—(xyY + Ay =Ax?"Yy fora<x <1, (1)

y(a) = y(1) = 0, )
where 0 <a <1, 0<p, and 4 = A(p) =1 — ap on ihe inierval (0, «™'); and
a > 0. Itis easily verified that the general solution of equation (1) is

Cily,,(N2xP/p) + CY, /o(N7%x?/p)

and that the eigenvalues A are the positive zeros of

T (Na/p) L
¥, (72 sy 4P R) )

Let R[ p, y, a] denote the Rayleigh quotient
1 -
[y + 427y} ydx
R b b = 2
[7.y.a] f‘xzp—lyz dx

a

g(p,a,A) = JA/p(}‘l/z/p) -

(4)

It is well known that the eigenvalues {A,( p, a)} of (1), (2) can be obtained from
the Rayleigh quotient [10, Sections 31 and 35). Let ¥(a) denote the linear space
of all functions in C?([a, 1]) which satisfy the boundary conditions (2). Then

A(p,a) = min R[p,y,a].
yEV(a)
y#0

Moreover, if y, is an eigenfunction of (1), (2) associated with A,( p, a), then
A(p,a) = R[p, y,, a]. Note that the eigenfunction y, may be chosen to be

Jasp(N(*a?/p)

)Q/p()\'(zaﬂ/p) Y/‘/p()\l(zxp/P), (5)

»nip,a, x) =JA/p(N(2xp/p) -
where A\, = A (p, a).

LEMMA 1. If 0 < B < C, then there is an x, € (0, B) such that | Y,(x) |<| Y(2)|
whenever 0 <z < x4,z<x,and B<t<C_C.

PRroOF. The integral representation, for x > 0,

(x) = [sin(xsing ~ 10) df — ' [7(e” + ¢ cos m)e™ x5 ds
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(31 Zeros of Bessel functions 69

is given on page 178 of [15]. If B<xand 0 <t < C, then
1Y (x)|s 1+ 'rr_'/wZe"e_"Si“h‘ds
0

<1+ zﬂ—l/weC:—Bsinhsds’
0

the latter integral being convergent. Thus there is an M such that
| Y(x)|<M (6)
whenever B< xand B<t < C.

Let y, and j/ denote the least positive zeros of Y, and J;. On pages 485 and 487
of [15] it is shown that ¢ </ and that Y,(x)? is strictly decreasing on 0 < x <,
provided 0 < ¢. Thus | Y,(x)| is decreasing and positiveon 0 <x <¢if 0 <. In
particular,

| Y,(x) | is a decreasing function of x
on0 < x < Bwhenever B<t<C, )
and | Y,(x) > O for these values of x and .

For positive integral n, let f,(t) = 1/| Y,(B/n)|. By (7), these functions form a
decreasing sequence of continuous functions of ¢ on [B, C]. Moreover, f,(t) - 0
as n — co. By Dini’s Theorem (page 140 of [13]) this convergence is uniform.
Hence there is a positive integer n, such that | f,(1)|< 1/M whenever n, < n and
t €[B,C). Set x, = B/(ny + 1). Then

M <|Y/(x,)| wheneverB<t<ZC. (8)

Suppose 0 < z < x4,z < x,and B <1 < C. If B < x, then (6), (7) and (8) give
[ Y(x) < M <|Y(x0) |<| Y (2) |
so that | Y,(x)|<| Y,(z)|. If x < B this last inequality follows from (7) only.

LEMMA 2. Let a, b, c, d be positive constants such that 0 <b <c<a~'. Set
t=p~ ' —aand
J(N"%a*/p)
Y,(N/%a?/p)
Then there are positive constants ay, < 3, ko and k such that
|g(p,a, x,A\) —J(N/*x? /p) |< kya*

whenever 0 <a<ajg,a<x,b<p<c,and0<A<d.

g(p,a, x,\) =J(N/?x?/p) — Y,(XN/2x?/p). (9)
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PrROOF. Set B=c¢ ' —aand C=b"" - asothat0 < B < C.Thent € B, C]
if and only if p € [b, ¢]. With x, as in Lemma 1, choose a, € (0, 3) so that
d'/*af /b < x,. Then 0 <N/%a?/p < x, whenever 0 <a<a,, b<p<c, and
0 <A\ < d. Replacing z and x in Lemma 1 by X'/2a? /p and N'/?x? /p respectively
yields

| Y,(N/2x*/p) |<| Y,(N/?a?/p)| (10)

whenever 0 <a<ay, 0<as<x, b<p<c and 0 <A <d. By (9), (10), and
inequality (1) on page 49 of [15] we have

|8(p.a,x, ) = J(N/2x7 /p) |<| J(N/%a? /p) |

_ arp)
T(1+7¢)

t
< (%dl/Z/b) al—ap
Ir(1+¢)

<max{1,(%d‘/z/b)c}m_‘a"‘“ (11)

where 0 <m is a lower bound for I'(1 +¢) on [B,C]. Since ¢ <a~' the
inequality in (11) is the desired inequality.

LEMMA 3. Let a, b, ¢ be positive constants such that 0 <b<c<a~'! Set
t =p~ ' —aandlet A\ = X\, = \,( p, a) denote the least positive root of

g{p,a,1,A\)=0
where g is defined by (9). Set y,(p, a, x) = g(p, a, x, \\). Then there are positive
constants ay < 3, k| and k such that

|y (p,a,x) _JI(NI/ZXP/P)|<klak (12)

whenever 0 < a < ay, a < x and b < p < c¢. Moreover, N{*(p, a)/p converges to a
zeroof Jyasa— 0+ .

PROOF. Assume by analogy with the results on pages 409 and 419 of [2] that

(i) A,( p, a) is a nondecreasing functionof ain 0 <a < 1,

(i) A( p, @) is a continuous funétion of p for fixed a.
By (ii), A,(p, 1) is continuous on b < p < ¢ and therefore bounded, say by N:
0<A(p,3)<N whenever b<p<c. By (1), 0<A(p,a)<A(p,3)<N
whenever0 <a<jandb<ps<c.

Lemma 2 with d and A replaced by N and A, = A,( p, a) respectively now gives
the desired inequality (12).
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With x = 1 this inequality becomes

| (N{*(p, a)/p)|< kia.
Since A ,( p, a) is a nondecreasing function of a there is a nonnegative number /
such that A,(p,a) » [ as a - 0+ . If we now let a - 0+ the above inequality
yields J,(/'/? /p) = 0 so that I'/2? /p is a zero of J,. The last sentence of the lemma
follows.

LEMMA 4. With the notation of Lemma 3, N{*(p, a) - pj, as a — 0+, for
b<sp<c.

PROOF. Set A, = A(p, a). Since J(N/%x?/p) and y,(p, a, x) are solutions of
equation (1) with A = A,, consecutive zeros on (0, 00) of either function are
separated by a zero of the other, by the Sturm comparison theorem. Thus,
between a and 1 (zeros of y,(p, a, x)) there is a zero of J(N/?x”/p). Therefore
the least positive zero (A7 '/?pj)!/? of J(N/*x?/p) is in the interval (0, 1). Since
A,(p, a) is nondecreasing in a (for fixed p),

0 <ATY2(p,3)pj, <ATV*(p, a)pj,
whenever 0 < a < 4. Thus, if 0 < a < min{4, (A]"?(p, H)pj)'/?},

a< (}\l(p’ a)_l/zpjt)l/p < 1;
that is, this inequality holds for a sufficiently small.

Let j, , be the second positive zero of J,. By Sturm’s theorem again, between the
first two positive zeros (A} '/?pj,)"/? and (A;'/?pj,,)"/? of J(N(*x? /p) there is a
zero of y,(p, a, x). It is known (see page 452 of [2]) that an eigenfunction
corresponding to the smallest eigenvalue of a Sturm-Liouville system, such as in
equations (1) and (2), does not change sign on the interval whose endpoints are
given in the boundary conditions. Thus there are no zeros of y,( p, a. x) between
a and 1, so that

(AT20) <1< (\729i2) ",
or equivalently
pj, < Nl/2 <pj{,2'
Since A, isa nondecreasing function of a (for fixed p) we have
iy < tim X{?<pj,.

The desired result now follows directly from Lemma 3.

LEMMA 5. With the notation of Lemma 3, N{*(p, a) - pj, as a > 0+ uniformly
onb<sp<c
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ProOF. For clarity we denote 7, that is, p~' — @, by #(p). Let {a,} be a
decreasing sequence tending to 0 as n — c0. Then N{/'?( p, a,) is nonincreasing, by
(i) of Lemma 3; and by Lemma 4

All/z(p’ an) —)pjl(p) asn — oo
for b < p < ¢. For these values of p, #( p) is decreasing, so
t(p)=t(c)=c'—a>0,

since 0 < b <c¢ < a~'. Thus pj, , is a continuous function of p. But \Y*(p, a,)
is also continuous, for each fixed n, by (ii) of Lemma 3. Dini’s Theorem (page 140
of [13]) accordingly shows that the convergence of the sequence A('%(p, a,) is
uniformonb <p <ec¢.

The stated conclusion now follows since N¢'( p, a) is a nondecreasing function
of a.

LEMMA 6. Under the hypotheses of Lemma 3, together with 0 < £ < 1,
yi(p,a,x) > J2(jx?) asa-0+

uniformly for§ <x<landb<p <c.

PROOF. As in Lemma 2, let B=c '—~a and C=5b""'~ a. Since 1/p is
bounded on b <p <c, Lemma 5 gives that N/*(p, a)/p - j, as a » 0+ uni-
formly on b < p < c. So there is an a’ > 0 such that

2jC >jC +jt > Al/z/p >jl - %JB = %]B
whenever 0 < a <a’and b < p < ¢, since then B <t < C. For { < x < | we thus
have
3is€° <N(?x?/p < 2j¢
whenever 0 <a <a’ and b <p < c. Since J,(u) is uniformly continuous on
B<t<C 4jg¢‘<us<lj,,

J(X(2x/p) = J,(jix?) (13)
as a - 0+ uniformly for b < p < cand £ < x < 1. Also, by Lemma 3,
»(p,a,x) = J(N(*x*/p) > 0 (14)

as a » 0+ uniformly for b < p < cand § < x < 1. Adding (13) and (14) gives

»(p,a,x) > J,(jix?)
asa - 0+ uniformlyforb<p<candf{<x<1.
It is easily proved that if f,(x) - f(x) uniformly for x € S, asn - 0, and f(x)
is bounded on the set S, then f*(x) = f%(x) uniformly for x € S. It is known
that ([1], page 362) |J,(z)|< 1 for all » = 0 and z = 0. The desired result follows.
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3. The function K(»)

LEMMA 7. For v > 0 let j, and j, denote the least positive zeros of J, and J]
respectively. Let K(v) denote the least positive integer m such that j, <j, ... Then
K(v) exists, and

(i) for fixed X = § such that K(\) = 3, K(v) = 3 for all v

= =

= A;
(i1) for fixed A = 5 such that K(A\) = 4, K(v) = 4 for all v

=
= A

ProOF. Existence of K(») for all » > 0 follows from the facts that j, > j; and
Ju > pfor all p > 0 (see [15] page 485).

The proofs of (i) and (ii) are similar; we will prove (il). We do not prove here
the existence of a A such that A = 5 and K(A) = 4; for that see Lemma 8.

Suppose that A = 5, K(A) =4, v > A and K(») < 4, and seek a contradiction.
Let p be the lower bound of numbers ¢ > A such that K(1) < 4; then A < p <y,
There is a sequence ¢, —» p+ such that K(¢,) <4, and so K(¢,) < 3 since K is
integer-valued. Hence

Joy <Jt v k() i +3>
using the increasing property of j, (see [15] page 510). Thus j, — j/, 4, which is a
continuous function of ¢, has nonpositive limit as ¢t > p+ .
If p> A, K(¢) = 4 for A < ¢ < p, and so K(¢) > 3. By definition of X, j, = j/, ;;
thus the continuous function j, — j/, ; has nonnegative limit as ¢ - p — . With the

conclusion of the previous paragraph this gives that j, — ji,; = 0. The function
Ji — Ji/+5 is also differentiable, and so

dit(‘]' _jl,+3) |r=p <0.

Similarly, if p = A we have since K(A) > 3 that j, = j;, 5. And by a previous
paragraph the continuous function j, — j,, ; has nonpositive limit as r - A+ . It
follows that it vanishes at £ = A. Further, since 7, > A+ and j, —j/ ;3 <0, its
derivative is nonpositive at t = A.

By the two preceding paragraphs we have constructed p = A, and so p = 5,
such that

L d .
Jo—Jji+3=0 and ()= ji3) |=, <O
The rest of the proof develops a contradiction of this.
Using the standard identity xJ/(x) + tJ(x) = xJ,_,(x) once and the identity
J_(x) + J(x) = (2t/x)J(x) twice, we find that

#des(4) = {Gu+5) — 4(p + D + 21 + 3) /2 (1)
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The left side vanishes since j, = ji,5; but J,,(j,) 7 0 since j, <j,,,. Conse-
quently
Ji=4(p+ D)(p+2)(p+3)/(Bu+5).

We shall also need the formula

dj, h 2
j" = f Jcosh2t — v KO(Zj,smht)e_z”’dt

from the Note on page 510 of [15]; it holds for all » > 0. Here K, is the modified
Bessel function of the second kind of order 0.
Consider for ¢t = 0 the function

g(1) = {Jiscosh2t = (u+ 3"} = A5 — (u+ 3)*)e
To prove this decreasing we have, since j; .3 = j,,
g'(¢r) =22sinh2s — 6{1;‘2 —(p+ 3)2}e6’
= 6e6’{(/.¢ +37—-(1— %e'°’sinh21)jf}.
Now e~ % sinh 27 is maximum when tanh2¢ = {, sinh2t = 1/2/2, e =1/V2
and e %sinh2¢ = {. So
g'(r) < 6e8{(p + 3)" — (23/24) 2}
= e%(3p + 5)" (u+ 3){6(p + 3)3p +5) — 23(p + 1)(# +2)}
— (3 + 5) " '(u + 3)(5u% — 151 — 44).

Since p = 5, this is negative and so g(¢) is decreasing.
Now g(0) = 0; consequently g(¢) <0 for t > 0, and so

dj’+3 ., =) , ) N
;“ <2J,‘+3/(; 66'K0(21”+3smht)e Ap+3e gy
=2 'fwK (2j,sinht)e > dt = A
j‘-" 0 0 jp, dp'

using (3) on page 508 of [15]. This provides the desired contradiction.

LEMMA 8. Let K(v) be as in Lemma 1. Ther

() K(») » wasv > o0,

(ii) if m is a positive integer, then J, ., (j,) > 0if and only if K(v) < m,
() K(r)=2ifvr>0,

(VWK@)=3ifv=35

VMK@)=4ifv=185.
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ProoF. (i) The asymptotic expansions
j=t+ca'P+o0(3), ji=t+cP4+0(7?)

r

when ¢t - oo, where c = 1.855757 1... and ¢’ = 0.808 616 5. .., may be found in
[14] or on page 371 of {1]. They give

0 <jirkey —Jo = K@) + (v + K(»))" = '3 + 0(y~'73)

as v - o0, since (v + K(»))" /3 <»p~1/3,

Suppose that K(¥) » oo as v — oo. Then there is B such that K(») < B for
arbitrarily large »; and so K(»,) < B for a sequence », — oo. Therefore, as
n — 00,

0<B+c(v,+B) =+ 0(y7'?).

But the right side tends to —oo since ¢ > ¢’ > 0. This contradiction proves (i).

(ii) Suppose that K(v) < m. Using the inequality » <j, and the Note on page
510 of [15], we find that j; is an increasing function of » for » > 0. Since
v + K(v) < » + m we have

Jy <j;f+l((u) <Jptm
Since J/(x) >0 for all >0 and positive x sufficiently small, J/(x) >0 for
0 < x <j/; consequently
Jen(x)>0 forO<x<j/,,.
In particular,

Jx:+m(jv) > 0

Conversely, suppose this last inequality holds. Then the graph of J,, ,, shows
that either j, <j, .., or j, 1,2 <Jj,,» where j/, is the second positive zero of J;. The
graph of J, shows that j, <j/,; and, by page 508 of [15], j, is increasing for ¢ > 0.
Hence j, <, 4 m < J,+m2> Which rules out the second alternative; and s0 j, <,
Since m is a positive integer, the definition of K(») now gives that K(») < m,
which completes the proof of (ii).

(iii) Using the recurrence formula J,_(x) — J,, (x) = 2J/(x) with t = » + 1
and x = we have — J, ,(j,) = 2J,,,(j,). Since » >0 and 0 <j, <j,,,, this
gives

20,01(5,) = = 4,42(4,) <O.

Hencej;, , <j,. This proves that K(») = 2, giving (iii).
(iv) and (v). Using the table on page 321 of [11],

Js5 <696 <js, Jors <23.78 <jigs.

Thus K(3.5) > 2, from which Lemma 7(i) gives that K(») = 3 for all » = 3.5,
proving (iv). Similarly K(18.5) > 3, and Lemma 7(ii) gives (V).
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4. The integral I( p)

The next four lemmas are to assist in showing that the Rayleigh quotient is an
increasing function of p whenever p is sufficiently small. From this we shall be
able to derive the desired results.

LEMMA 9. For a a positive constant, andp € (0, o™ "), set A(p) =1 — ap and
. L, - .
1=1I(p) =p13(p>f0 {4(p) = A(p)n x}x2P7 Y7 (i pyx?) dx.
Then
o0
1I(p)= Z ((v — o)n— w)s% (),
n=1

1

where v and j stand for v(p) = A(p)/p = p~' — a and j,, respectively.

PrROOF. We begin by noting that » > 0. If we change variables according to
t = jx?, integrate by parts, and use the asymptotic expansion, for small z,
J(z) ~(2’T(» + 1))~ 'z*, we find that

I=- aj;jz‘lf(t) dt — v/oj(lnf)uf(t)dt

=- ajofz./}(t) dt + yjo’rljo’yf(s) ds dt.

Using the well known identity

Jo—i(2) + J,11(2) = 2027 Y (2), (15)
we have J,_(j) = = J,,1(J)- On page 135 of [15] it is shown that for w > 0
[s73(s) ds = 42(U2(1) = Jums(D) (1)) (16)

With ¢ replaced by j, and w successively replaced by v + 1, » and » — 1, we find
that

fo’uf(z)dz = /OjtJ,,z_,(t)dt = f()’u,al(t)dz. (17)

Using the recurrence formula (15) it is easy to verify that

Joer() 1 (2) = =32 () = 377.(1) + 20272 2(1). (18)
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The identities (16), (17), and (18) enable us to write I as
1= - af'uX(e) di+ (v/2) ['H{I0) = ()i (1))}
0 0
= (v/2— o) [PU2(t) dt + (/) [H{I2\() + JZ\(1) — 42 Y2 (0) )
0 0
= 3(v — ) [W2() dr + (v~ @) [ (1) e — v [ U (e) dr.
0 0 0
On pages 151 and 152 of [15] it is shown that

[oiyd=2F (o +2m)020(2)
n=0

and

z [e o]
ny CUYdt=JXz) +2 Y T (2).
0

n=1

These identities enable us to write I as

[>2]

I= 3 (= o)+ m)d2n() = 2 S J2()

n=1 n=1

= § (v = a)n — &) I ).

LemmMma 10. I( p), defined in Lemma 9, is positive whenever p is sufficiently small,
that is, whenever v(p)=p~' — a is sufficiently large. Specifically, I(p) >0
whenever v > a and K(v) > 2av /(v — a).

PROOF. We will do the proof for the case K(») even; when K(») is odd the
proof is analogous. We begin by noting that 0 <J, () and 0 <J, ,() since
j :jv <jv+l <jv+2‘

For integers n = K(v), with » > « and K(») > 2ar/(» — a),

(v—an—av=(v—a)K(v) —av=2av — av = av > 0.
Hence
K(v)

I(p) > gl ((» = a)n — av)J7% () (19)

By Lemma 8(ii), for n = 1,2,...,K(v) — 1 we have J,, (j)<0. From the
recurrence formula J,_(z) — J,,.(2) = 2J;(z) we conclude that 0 < J () <
Js(J)s -0 < Jv+K(v)—l(j) and 0 <J, ,(J) <J ()< -~ < Iyt k) J)-
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Let M be the least odd integer such that (v — a)M = av, and let N be the least
even integer such that (# —a)N=av. Then N=M = 1. If N=M + 1, then
M —1<av/(v — a) < 3K(v). By Lemma 8(iii) we have that 1 < {K(») and so
M < {K(v) + 1 < K(»). Since K(») is integer valued, N=M + 1 < K(»). A
similar argument shows that if N = M — 1, then N < K(v) and M < K(v). In
either case we have N, M < K(»).

For notational simplicity set f(n) = (v — a)n — av. Then

K KO
2 (v = a)n — @) I (j) = 2 ), (5) + 2 ()}, (5)
K0

Ln(J) 2 f(n),

n even

since J, , ,.(J) <J,,,.+.(J) for positive even integers m < K(»), and since f(n) <0

forn <N — 2, and f(n) = 0 for n = N. Hence

K(») K(»)
2 (v — a)n — )12, (J) = 22 () § ((r —a)n — av)

_ [(y_a) K(z”)(K(z") + 1) K(z”) }Jiw(j)

since 2av /(v — a) < K(») and v > a. Similarly,

K(») K(v)
2‘. (v = a)n — av) I () = T (4) 2 (v — a)n — av)
nodd nodd

= K—(ZV—)— {(v - a)K(ZV) - w’]-’ n(j) > 0.

These, with (19), show that I( p) > 0 whenever » > a and K(») > 2av/(v — a).
Finally, these conditions are satisfied for all » sufficiently large; because K(») — oo
as » -» o0 by Lemma 8(i), while 2av /(v — a) — 2a. This completes the proof of
Lemma 10.

The estimate contained in Lemma 10 as to how large » must be before I( p) > 0
is probably very crude. Two special cases which will be of use later are a < 1.1
and a < 2.411. We will compute better estimates for » in these two cases in the
following lemma.
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LemMa 11. I( p) > O whenever either

()0<a=<lland3.5<v;or

(ii) O <a<22411, 205<v, and (¢t + 1) ' is a nondecreasing function on
205 <

PrROOF. (i) Suppose a<1.1. If »=35 and n=2, then (» —a)n —av =
(v — 1.1D)2 — 1.1y = 0. By Lemma 8(iv) K(») = 3 so that by Lemma 8(ii) we have
J!.»(j) < 0. From the recurrence relation J, _ ,(j) — J,3(j) = 2J,,,(j) we ob-
tain 0 <J,,(j) <J,43(/). By Lemma 9,

I(p)=((v — @) — av)J %, (J) + ((v — @)3 — av) J25())
= (-0.v — 1L.1)J%4 1 (J) + (1.9» — 3.3)125())
= (1.8» —4.4)J%,(j) >0.

This completes the proof of (i).

(i) Now suppose a < 2.411 and 205<yp. If n=5, then (v —a)n —av =
5(v — 2.411) — 2,411y = 2.589» — 12.055 > 0. By Lemma 8(v), K(») = 4 and so
by Lemma 8(i1) J/,,(j) <0, J/,,(j) =0, and J/ (/) < 0. Using the recurrence
formula J, (x) — J,5(x) = 2J/,,(x), we conclude that

0=J(j) <J120)) <J44()s
0 <J+|(]) </ +3(j)'

From the recurrence formula J,_,(x) + J,,(x) = 2tx~J(x), we obtain that
Jr(J)=2(» + 1)j~Y, . ,(j). Hence, by Lemma 9,

I(p) > (~1.411y — 2.411)J2 () + (-0.411» — 4.822)J2 ()
+ (0.589» — 7.233)J2 () + (1.589» — 9.644)J2 (/)
> {-0.822v — 9.644 + (1.178» ~ 14.466)4(» + 1)* ;2 }J2 (/).

Let E(») denote the coefficient of J2 (/) in the last line. Since (v + 1)/
nondecreasing we have (v + 1) 7' = 21.5(j,5) " > 0.828335, where the value of
Ja0.5 15 found on page 28 of {12]. Hence,

E(v) > -0.822» — 9.644 + (1.178» — 14.466)(2.744555). (20)

A short calculation shows that the right hand side of the inequality in (20) is
positive whenever » = 20.5. This completes the proof of (ii).

5. The Rayleigh quotient

LEMMA 12. Let 0<py<a™', A(p)=1—ap, v(p) =p ' — a. Let N\ ((p, a)
and y,(p, a, x) be as defined in Lemma 3, except that t there is replaced by v here.
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Let I( p) be as defined by the integral in Lemma 9. Let I( py) > 0, and
1 -
Kg, p,a) = [ {4(q) ~ A(g)in x}x*"Y¥(p, a, x) dx.
a

Then there are a, € (0,1) and a neighborhood D, C (0,a") of p, such that
I(q, p, a) > 0 whenever 0 < a< ayand q, p € D,.

ROGF. Fix b and ¢ such that0 < » < py<c <a~' Then

A'(q) —A(g)nx=-a— (1 —ac)lnx>0
if 0<x<e /172 ge&[b,c] and x € (0,1]. Hence there is an a, € (0, 1),
independent of g, such that A'(¢) — A(g)lnx >0 forb<g<cand 0 <x <aq,.
Writing A4, Ay, and », for A(p,), A'(p,), and »( p,), we have, by definition of
I( py),

1 - . ,
[ (A = Agln x)xo7 Y2(j, xP0) dx = 1( po) /P 2

as a —» 0+ ; so that this integral is positive for all a sufficiently small, say
0 < a < a, < 1 where a, is independent of ¢ since the whole integral is. Now set
a, = min{a,, a,} € (0,1). Then

A(q) —A(¢)n x>0 (21)
forb<g<cand 0 <x <a,. Also

H= [ (A= Aoln x)x>0"Y2(j, xP0) dx > 0. (22)
a3

By Lemma 6, y2( p, a, x) = J*(j,x?) as a » 0+ uniformly for b < p < ¢ and
a,; = x <1. Moreover, [4(q) — A(g)ln x]x297" is continuous on b<g<c,
a, < x < 1, and independent of p and a. Consequently

{4(q) — A(@)n x}x*"yi(p, a, x) = {4'(q) — A(q)In x}x>7Y2(j,x)
asa —» 0+ uniformlyforb<g<c¢,b<p<¢ anda; <x < 1. Thus

/‘;I{A’(q) ~A(g)lnx}x* Y (p,a, x)dx

= [ (4(q) = A@)In x}x27 Y2 () x7) d (23)

asa - 0+ uniformlyforb<g<candb<p<c

The right side of (23) is a continuous function of (¢, p) in [b, ¢] X [b, c] and by
(22) has the positive value H when ¢ = p = p,. Therefore, there is a compact
neighborhood D, C (0, a™") of p, such that the right hand side of (23) is greater
than 3H on Dy X D,. By the uniform convergence, the left side of (23) exceeds
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+H for all a sufficiently small, say 0 < a < a,. The integrand on the left of (23) is
nonnegative on 0 <x <g, if b<g<c and b<p <, by (21). Writing a, =
min{a,, a,},

fl{A'(q) — A(g)In x}x**" "y p,a,x)dx >LH >0

if (¢, p) € Dy X Dy and 0 < a < a,. This completes the proof.

DEFINITIONS. For each a € (0,1) let V(a) denote the set of all functions y €
C?[a, 1] satisfying y(a) = 0 = y(1). Let D be any closed subinterval of (0, a™ ') and
let W(a, D) denote the set of all functions y € V(a) such that

fa]{A'(q) — A(g)In x}x297y2(x) dx >0

for all q € D.

LEMMA 13. If0<p<a ', A(p)=1—ap, 0<a <1, D is any closed subin-
terval of (0, a™ "), and y € W(a, D), then

f{( —xy') + A*(p)x~'y}ydx

f x2P71y2 gx
a

R[p,y,a] =

is an increasing function of p on D.

PROOF. Whenever p > g we have x2?7! < x297! for every x € (0, 1). Hence, if
ae (O’ ao),

fa )y dx f (—xy")'y dx

flx2p—ly2 dx fxz" 12 dx

a

since f! —(xy’Yydx = [! xy’* dx = 0. This shows that one term of R[p, y, a] is
nondecreasing. For the other, it suffices to show that

g(p)= 2(p)/f 27lytd

is an increasing function on D. A short calculation shows that g’( p) is a quotient
with positive denominator and numerator

24(p) [ {4'(p) = A(p)In x}x?»'y? dx.

Since y € W(a, D) we have g’'(p) > 0 on D. The desired result follows directly.
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LeMMA 14. If the conditions of Lemma 12 hold, including I( py) > 0, and D, is
the neighborhood of p, constructed there, then pj, ,, is a nondecreasing function of p
on D,.

PROOF. Let p,q € Dy and ¢ <p. By Lemma 12, y(r, a, x) € W(a, D,) for
every r € Dy and a € (0, a,). Also, by Rayleigh theory, A((r, a) = R[r, y,, a]. So
by Lemma 13, since W(a, D;) C V(a)

A\ Vi \* /)
AM(g,a)= min_ Rlg,y,a]< min R[p,y,a]l=A(p,a)
yEW(a,Dy) yE W(a,Dy)
y#0 y#0

for each a € (0, a,). By Lemma 5, A (r, a) = (1j,(,))*> asa — 0+, so that
2 . . 2
] = lim A < lim A(p,a)={pj .
(9hp) = lim N(g,a) < lim A\(p,a) = (i)

The desired result now follows immediately.

6. Main result

THEOREM 15. The quantity j,/(v + &) is a strictly decreasing function of v, for
fixed a, whenever a = 0 and any of the following hold:

Da<1land35 <y,

(i) a <2411 and 20.5 < »,

(i) » > a and K(») > 2av /(v — a).
Moreover, j,/(v + a) = 1 as v > 0.

ProoF. The case a =0 is Theorem 3 of [8]. Let p = (v + a)~!, so that
v=wp)=p ' —a

(i) Suppose that 0 <« < 1.1 and 3.5 <». By Lemma 11(i), I(p) > 0; and by
Lemma 14, pj,(,) is nondecreasing. By the definition of p and »( p) we have that
Jo(p/(»(p) + @) is a nondecreasing function of p. Since p is a decreasing function
of », j,/(v + &) is a nonincreasing function of ». In particular, j, /(v + 1) is
nonincreasing for 3.5 < ».

(ii)) By Lemma 11(ii), I( p) > 0 for 0 < a < 2.411 and 20.5 < ». An argument
analogous to that above shows that j,/(v + a) is nonincreasing under these
conditions.

(iii) Similarly, under conditions (iii), Lemmas 10 and 14 give that j, /(» + a) is
a nonincreasing function of ».

(iv) We will now show that under conditions (i), (ii) or (iii), j, /(v + «) is not
only nonincreasing but is indeed a strictly decreasing function of ». Suppose that
it is nonincreasing for a <y and § <v. Let B € (&, v). Then j, /(v + B) is
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nonincreasing and (v + B)/(v + a) is strictly decreasing for & < ». Therefore
J,/(v + a) is strictly decreasing, since

o _ b rt+B

v+ a v+B rv+a’

(v) From the asymptotic expansion j, = » + O(»'/3) as v - oo, found in [14] or
on page 371 of [1), it follows immediately that j,/(» + a) — 1. This completes the
proof of Theorem 15.

7. Consequences

Theorem 15 can be used to compute upper bounds for j,. For example, using
(ii) we have

Jy <Jnos(v + 2.411)(22.911) 7"
< L.133(» + 2.411)
< L.I33v + 2732 (24)

for 20.5 < », where the value of j,, s has been taken from page 28 of [15]. To the
authors’ knowledge the best upper bound for j, previously known is

J< {4+ 1)(» + 5)}' (25)

which may be found on page 487 of [15]. A short calculation shows that the upper
bound in (24) is better than that in (25) for 20.5 < ».

The theorem may also be used to compute a lower bound for j,. Since
Jo <2.405 and j(v + a)~' > 1 whenever a < 2.411 and 20.5 < », we have j, > »
+ jip, whenever 20.5 < ». Using the tables in [12], [5, page 167], and [3, page 317],
we find that

J,>205+j,=v+ for v € [18,20.5],
L, > 18+ o=+, forv € [15.5, 18],
L, >155+j,=v+j, forve([13.5155],

5, >015+j,=v+j, forve€[0.1,0.15],
J,>01+j,=v+j, forve[0.075,0.1],
J, > 0075 +j,=v+j, forvr e [0.050.075].

Hence, j, > v + j, whenever 0.05 < ».
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On page 508 of [15] (where j, is denoted by j) it is shown that, for v > 0,
4 2y —152
o = T ) 5T (s ds.

dv () '/;)

Using the identity

z o0
2 [ sYA(s)ds = JH(2) +2 3 T (2)
0

m=1
which is (5) on page 152 of [15], we have
. 2 ,
dv J Ja())
From the recurrence formula J,_,(x) + J,, (x) = 2tx7Y,(x), with t = » + 1, we
have J,.,(j) = 2(v + 1)~ Y,4,(j). Hence,

dj,
dv

From the table on page 317 of [3] we find that j, < 2.4817 on the interval [0, 0.05].

Hence, on this interval,
dj,
dv

> 257 {1+ 40 + 1)° ;2.

>2(2.4817) {1 + 4(2.4817) 7’} > 1.

It follows directly that j, > » + j, for » € (0,0.05]. Combining the above calcula-
tions, we have

THEOREM 16. If j, is the least positive zero of J,, then
J,>v+j, forv>0.
The most commonly cited lower bound for j,, other than j, > v, seems to be
i (v + 2}

which may be found on page 486 of [15]. Clearly » + j, > {#(» + 2)}'/2 for all
v > 0. In [9] it is shown that

W= (i)
Again it is clear that, for » > 0, » + j, > (»? + j2)!/2
In [4] it is shown that

Jj,=vw/2+ 37/4 (26)

whenever » € [0, ]. The inequality in Theorem 16 becomes equality when » = 0,
while the expression in (26) has a strict inequality. However, when » = § equality
holds in (26). Hence, for » € [0, 1] neither of the inequalities in Theorem 16 or
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(26) implies the other. It should be emphasized that Theorem 16 is valid for all
v > 0 while (26) is valid only for » € [0, 3].

The inequality in Theorem 16 may be interpreted as follows. Consider a
membrane, clamped along its edges, in the form of a circular sector 0 <r <1,
0 < 0 < a, where a < 2#. The fundamental frequency for the transverse vibra-
tions of the membrane is proportional to j, .. From Theorem 16 we see that the
fundamental frequency is a superlinear function of a™".

It is of interest to consider the behavior of the function f(v) =j, /(v + jp).
Using the tables in [12] for v = 3k, k = 0, 1,...,41, we find that f(3k) increases
from f(0) = 1.0000 to f(4.5) = 1.1850 and then decreases to f(20.5) = 1.1332.*
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