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First Ideas: Complex Manifolds, Riemann
Surfaces, and Projective Curves

This chapter presents some elementary (and not so elementary) ideas in con-
tinual use throughout the book. For more details and further information see,
for example, Ahlfors [1979], Bliss [1933], Clemens [1980], Farkas and Kra
[1992], Hurwitz and Courant [1964], Kirwan [1992], Reyssat [1989], Springer
[1981], and/or Weyl [1955]. These are all perfectly accessible to beginners;
further references will be given as we go along.

1.1 The Riemann Sphere

Let R3 be the 3-dimensional (real) space of points x = (x1, x2, x3) and let
|x | =

√
x2

1 + x2
2 + x2

3 be the distance from x to the origin o = (0, 0, 0). M is
the unit sphere |x | = 1 and C is its equatorial plane x3 = 0, identified as the
complex numbers via the map (x1, x2, 0) �→ x1 + √−1x2. M is temporarily
punctured at the north pole n = (0, 0, 1) and the rest (x3 < 1) is mapped 1:1
onto C by the projection p depicted in profile in Fig. 1.1. The rule is: Sight
from n through the point x ∈ M, the projection p(x) being the intersection of
this line of sight with C. Obviously, p(x) and x1 + √−1x2 lie on the same ray
of C; also the triangles n, o, p(x) and n, q = (0, 0, x3), x are similar, so

|p(x)| = distance[o, p(x)]

distance[o, n]
= distance[q, x]

distance[q, n]
=

√
x2

1 + x2
2

1 − x3
.

In short,

p(x) = x1 + √−1x2

1 − x3
.
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2 1 First Ideas
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Figure 1.1. The Riemann sphere.

This is the stereographic projection of the cartographers. Denote it by p+ to
distinguish it from the analogous projection

p−(x) = x1 + √−1x2

1 + x3

of M ∩ (x3 > −1) produced by sighting from the south pole (0, 0, −1). Now,
for −1 < x3 < 1, both maps are available and

[p−(x)]−1 = 1 + x3

x1 + √−1x2
= 1 + x3

x2
1 + x2

2 (= 1 − x2
3 )

× (x1 − √−1x2)

= x1 − √−1x2

1 − x3
= [p+(x)]∗,

the star being complex conjugation, so the two images are anticonformally
related. Replacing p−(x) by [p−(x)]∗ produces the following situation: M is
covered by two open patches U+ = M ∩ (x3 < 1) and U− = M ∩ (x3 >

−1), each provided with a local coordinate: z+ = p+(x) for U+ and z− =
[p−(x)]∗ for U−. Most points of M lie in the overlap U− ∩ U+, and for
them the two competing coordinates are conformally related: z− = 1/z+. This
object [M+ patches + projections] is the Riemann sphere, alias the extended
plane C + ∞, the so-called point at infinity being identified with the north
pole n = (0, 0, 1).

Exercise 1. Prove that p+ maps spherical circles into plane circles or lines and
vice versa. Hints: x • e = cos θ marks off a spherical circle for any unit vector
e and any angle 0 < θ ≤ π/2. Check that p+(x) = a + √−1b satisfies
(1 − x3)(ae1 + be2) + x3e3 = cos θ and a2 + b2 = (1 − x3)−1(1 + x3). Then
eliminate x3.
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1.2 Complex Manifolds 3

Exercise 2. Prove that the map p+:M → C is conformal, that is, angle pre-
serving, spherical angles being measured in the natural way.

1.2 Complex Manifolds

A 2-dimensional manifold or surface M is a geometrical figure that looks in
the small like an (open) disk. To be precise, this means three things: (1) M
is a topological space covered by a countable number of open patches U . (2)
The typical patch U is equipped with a patch map p → x(p) of points p ∈ U
to the open unit disk D = {(x1, x2): x2

1 + x2
2 < 1} ⊂ R2. This map is 1:1,

continuous, and onto; it provides U with local coordinates x = x(p). (3) An
ambiguity arises if the point p ∈ M lies in the overlap U− ∩U+ of two patches
so that two competing coordinates x−(p) and x+(p) are available; in this case,
the composite map x−(p) → p → x+(p), and likewise its inverse, is required
to be continuous; see Fig. 1.2.

U− U+

D

x−(p) x+(p)

p

Figure 1.2. Local coordinates on M.

Examples. The plane; the (open) half-plane, disk, or annulus; the sphere or the
cylinder; the surface of a doughnut (torus) or a pretzel; the Möbius strip.

• M is connected if it comes in one piece, that is, if any two of its points
can be joined by a nice curve; this feature is assumed from now on without
further comment.
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4 1 First Ideas

• M is simply connected if it has no punctures, holes, or handles, that is, if
every closed curve (loop) can be shrunk to a point in M. This is so for the
disk, half-plane, and sphere, but not for the annulus, cylinder, torus, or pretzel.

• M is compact if every cover of it by open sets admits a finite subcover. In
this case it is possible to pick a number 0 < r < 1 so that the images of the
closed disk of radius r under a finite number of the patch maps already cover
M. This is so for the sphere, torus, and pretzel, but not for the disk, plane,
or cylinder.

• M is orientable if the relation between patch maps preserves the sense
of (say, counterclockwise) rotation. This is so for the Riemann sphere of
Section 1, but is not possible on a Möbius band.

• M is smooth if competing local coordinates x− and x+ on overlaps U− ∩U+
are smoothly related, that is, if x−(p) is an infinitely differentiable function of
x+(p) and vice versa. Then you may speak of smooth functions f :M → R,
of which you ask that f (p) be a smooth function of the local coordinate
x(p) on any patch. Plainly, there can be no competition in this regard: On
overlaps, f (p) is a smooth function of both x−(p) and x+(p) or of neither.

• M acquires the more subtle structure of a complex manifold or Riemann
surface if the complex local coordinates or parameters z(p) = x1(p) +√−1x2(p) are conformally related on overlaps; orientability is necessary for
this. Then it makes sense to speak of the class K(M) of functions f :M →
C + ∞ of rational character defined by the requirement that in the vicinity
of any point p0, f (p) have an expansion wd [c0 + c1w + c2w

2 + · · ·](d >

−∞, c0 
= 0) in powers of w = z(p) − z(p0). Naturally the expansion
changes if the local parameter is changed, but the number d does not, so it
is permissible to speak of a root of multiplicity d if d > 0 and of a pole of
multiplicity −d if d < 0; d is the degree of f at p0.

Exercise 1. K(M) is a field.

Exercise 2. Check the statement that the degree d is independent of the local
parameter.

Now for some easy examples.

Example 1. It is needless to pause over the complex structure of the plane C

except to note that it has a global parameter z(p) = x1 +√−1x2. This example
is too simple, as is the disk, half-plane, or annulus, or any other open part of C

which obtains a complex structure by mere inheritance.
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1.2 Complex Manifolds 5

Example 2. The cylinder is the quotient of C by its (arithmetic) subgroup Z,
so it, too, obtains a complex structure by inheritance, and likewise the (square)
torus, which is the quotient of C by the lattice Z ⊕ √−1Z; see Fig. 1.3.

Figure 1.3. Complex structures on the cylinder and the torus.

Example 3. The sphere is more interesting. The stereographic projections of
Section 1 provide it with a complex structure after self-evident adjustments; for
instance, z+(U+) = C is not the unit disk, but no matter.

Example 4. The projective line P1 is the family of all complex lines in the
2-dimensional complex space C2: In detail, C2 is punctured at the origin and
two of its points are identified if they lie on the same (complex) line, that is,
(a, b) is identified with (a′, b′) if a′ = ca and b′ = cb for some nonvanishing
complex number c. P1 is covered by two patches U+ = C×1 and U− = 1×C,
provided with self-evident local parameters: z+(p) = z for p = (z, 1) ∈ U+
and z−(p) = z for p = (1, z) ∈ U−; on the overlap U− ∩ U+ = {(a, b) ∈
C2: ab 
= 0}, you have the identifications (a/b, 1) ≡ (a, b) ≡ (1, b/a) and so
also the relation of local parameters: z+(p) = [z−(p)]−1. This is the same rule
as for the Riemann sphere of Section 1. In short, the projective line and the
Riemann sphere are identical (as complex manifolds).
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6 1 First Ideas

Exercise 3. P1 is compact. That is obvious from its identification with the
sphere, but do it from scratch, from the original definition of compactness.

A Little Topology. Let M be any compact surface, with complex structure or
not, and let it be triangulated by cutting it up into little (topological) triangles
having (in sum) c corners, e edges, and f faces (triangles). Reyssat [1989]
has a nice proof that this is always possible. Then (remarkable fact!) the
Euler number χ = c − e + f is always the same: 2 for the sphere, 0 for the
torus, −2 for the pretzel, and so forth, that is, it depends only upon the surface
and not upon the particular triangulation in hand. This number determines the
topology of M completely. In fact, M is necessarily a handlebody, that is,
a (topological) sphere with g = 1 − (1/2)χ (M) handles attached: 0 for the
sphere, 1 for the torus, 2 for the pretzel, and so on; this number is the genus of
M. Hurwitz and Courant [1964: 497–534] present an elementary proof; see
also Coxeter [1980] for more information and Euler [1752] who started it all.
The next items are illustrative.

Example. The spherical triangulation seen in Fig. 1.4 has 6 corners (the black
spots), 12 edges, and 8 faces for an Euler number of 6 − 12 + 8 = 2.

Figure 1.4. Triangulation of the sphere: c = 6, e = 12, f = 8.

Exercise 4. Check by hand that the Euler number and so also the genus of the
sphere does not depend upon the triangulation. Hint: The sphere can be laid
out flat on the plane by cutting all edges that meet at some particular corner.
Now count.

Exercise 5. Repeat for higher handlebodies: torus, pretzel, and so on; espe-
cially, check that the genus 1 − (1/2)χ (M) really is the handle number.
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1.3 Rational Functions 7

Preview. It is a fact that any handlebody can be provided with a complex
structure, as was already seen for sphere and torus and will appear for the
pretzel in Section 12. This can be done in one and only one way for the sphere,
but already the torus admits infinitely many (conformally) distinct complex
structures; see Section 2.6. It is this unobvious fact that prompted the adjective
subtle in first speaking of complex manifolds.

1.3 Rational Functions

The function field K = K(P1) of the projective line is easy to compute: It is
just the field C(z) of rational functions of z = p+(x).

Proof. f ∈ K is a function of rational character of z+ = p+(x) on the patch
x3 < 1, and likewise of z− = [p−(x)]∗ on x3 > −1. It follows that f has, in the
first patch, a finite number of poles pi (1 ≤ i ≤ m), repeated according to their
multiplicity, and the possibility of an extra pole of multiplicity n at ∞ = the
north pole for a total count of n +m = d . View f (p) as a function of z = p+(x)
and let z1, . . . , zm be the projections of p1, . . . , pm . Then the product Q(z) of
f (p) and P(z) = (z − z1) × · · · × (z − zm) is pole-free in C and of limited
growth at ∞: |Q(z)| ≤ a constant multiple of |z|d far out. Now use Cauchy’s
formula for a big circle of radius R:

D p Q(0)

p!
= 1

2π
√−1

∮
Q(z)dz

z p+1

to check that

|D p Q(0)| ≤ a constant multiple of Rd × R−p−1 × 2π R = o(1)

for R → ∞ if p > d . The upshot is that Q is a polynomial of degree ≤ d and
f is a ratio Q/P , as advertised.

Exercise 1. Check the estimate of Q at ∞.

The degree of f ∈ K is the total number of its poles, counted according to
multiplicity, ∞ included, that is, deg f = d = n + m, and it is plain from its
representation as rational function that f has the same number of roots, counted
likewise, according to multiplicity. But also f − c ∈ K has the same number
of poles as f for any complex number c, so f takes on every complex value, ∞
included, d times. In short, d is also the topological degree of f as a map of
P1 to itself, taking f (p) = ∞ at poles. This is a general principle for functions
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8 1 First Ideas

of rational character on compact Riemann surfaces M: As maps of M to P1,
they take on every value the same number of times; see Section 16.

Exercise 2. Clarify the statement: f ∈ K(P1) is an analytic map of P1 to itself.

Exercise 3. Check that the roots and poles of f ∈ K(P1) can be placed any way
you like, provided only that they are the same in number. This is not the case
for any other compact Riemann surface: It is already false for the torus; see
Section 2.7, item 4.

Exercise 4. Let p1, . . . , pn be any collection of points on P1, repetition permit-
ted, and let L be the space of functions f ∈ K(P1) having these poles or softer;
for example, f is permitted a pole at p1, of degree no more than the number of
its repetitions. L is a vector space over C. Prove that its (complex) dimension
is n + 1.

Besides its functions of rational character, P1 also carries differentials of ra-
tional character. These are the objects ω expressible patchwise as c(z)dz with
coefficients c of rational character in the local parameter z = z(p). If the pa-
rameter is changed from z+ = z to z− = w on the overlap U− ∩ U+, then the
coefficient changes in the natural way, from c to c × (dz/dw). The differential
ω has a root or pole of degree d at the point p0 if its coefficient does so. The
residue of ω at p0 is the integral (2π

√−1)−1
∮

ω taken about a small circle en-
closing p0. ω is a differential of the first kind if it is pole-free, of the second
kind if it has poles but only vanishing residues, and of the third kind otherwise.

Exercise 5. dz is a differential of the second kind on P1: It has 2 poles at ∞.
d f = f ′(z)dz is likewise of the second kind for any f ∈ K(P1). z−1dz is
different, being of the third kind, in agreement with the fact that the logarithm
is not single-valued. Check all that.

Exercise 6. P1 has no differentials of the first kind besides ω = 0.

Exercise 7. Check that the total degree (roots − poles) of a differential of
rational character on P1 is necessarily −2.

1.4 Luroth’s Theorem∗

The star means that you may skip this section, but do note the following fact
which will be useful later: Any subfield of K = K(P1) containing more than
the constant field C is isomorphic to K itself. This is Luroth’s theorem [1876].
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1.4 Luroth’s Theorem 9

Example. The subfield K0 of functions f ∈ K invariant under the involution
z �→ 1/z is the field C(w) of rational functions of w = z + 1/z. The latter
is viewed as a map from one projective line (the cover) to a second projective
line (the base); it is of degree 2. The field K of the cover is likewise of degree
2 over the field K0 of the base in view of z = [w ± √

w2 − 4]/2. It is this type
of counting that is the key to the present proof. It is not the usual proof in that
it mixes standard field theory with nonstandard geometric considerations. It is
precisely this type of mixture that we want to emphasize in this book. Van der
Waerden [1970] presents the standard proof; see also Hartshorne [1977].

A Little Algebra. Not much is needed. The letter K denotes a field over the
rational numbers Q. The degree of a big field K (the extension) over a smaller
field K0 (the ground field) is the dimension of K as a vector space over K0,
denoted by [K: K0] ≤ ∞. If the degree is not infinite, then the powers yn, n ≥ 0,
of an element y ∈ K cannot be independent over K0, so y is a root of some
polynomial P(x) = xn + c1xn−1 + · · · + cn with coefficients from K0, and
y is algebraic over K0. K0[x] is the ring of such polynomials. The field
polynomial of y over K0 is the irreducible polynomial P(x) = xd + cd−1

1 +· · ·
of class K0[x] that it satisfies. The extended field K1 = K0(y) of rational
functions of y with coefficients from K0, obtained by adjunction of y to K0, is
spanned by the d powers 1, y, . . . , yd−1; in particular, [K1: K0] = d. The roots
x1 = y, x2, . . . , xd of P(x) = 0 are necessarily simple. They are adjoined
to the ground field K0 to produce the splitting field K2 = K0(x1, . . . , xd ) of
P(x). This is the smallest extension of K0 in which P(x) splits into factors of
degree 1: P(x) = (x − x1) · · · (x − xd ); it can be realized as the quotient field
K0[x] modulo P(x). The simplicity of the roots implies that the discriminant
� = ∏

i< j (xi − x j )2 does not vanish. This quantity, together with any other
symmetric polynomial in the roots, belongs to the ground field K0. The only
other fact that will be needed is that if the extended field K is obtained from
the ground field by the adjunction of n such algebraic elements yi (1 ≤ i ≤ n),
then there is a single primitive element y0 that does the job at one stroke:
K = K0(y0). Artin [1953], Lang [1984], Pollard [1950], and/or Stillwell
[1994] are recommended as refreshers and for more information.

Exercise 1. Prove directly that the discriminant � is, itself, a polynomial in the
so-called elementary symmetric functions

σ1 =
∑

xi , σ2 =
∑

i< j

xi x j , . . . , σd = x1 · · · xd .

Exercise 2. Deduce � ∈ K0.
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10 1 First Ideas

Exercise 3. What is the discriminant of the general cubic x3 + ax2 + bx + c?

Aside. Luroth’s theorem illustrates, in the simplest circumstances, an important
theme of complex geometry: The complex structure of a compact Riemann
surface M is determined by the algebraic structure of its function field K(M);
see Section 15 under rational curves for more information and also Section 2.13
for the case of the torus. The characteristic feature of the rational function field
K = C(z) is that it is of infinite degree over the ground field C and isomorphic
to any proper intermediate field. As to the geometry of P1, if M is a compact
complex manifold and if K = K(M) is a copy of C(z) then K = C( f ) for
some distinguished f ∈ K. Now view f as a map of M to P1: It has a degree
d just like an ordinary rational function as expounded in Section 3. Besides, it
is a fact that K separates points of M, so d = 1 and f maps M 1:1 onto P1.
In short, as a complex manifold, M is P1.

Proof of Luroth’s theorem. The first item of business is to check that if f0

is any nonconstant rational function, then the algebraic degree of K = C(z)
over K0 = C( f0) is the same as the topological degree d0 of f0. The first
degree is finite because f0 = a0/b0 with coprime a0, b0 ∈ C[z] and P(x) =
a0(x) − f0b0(x) ∈ K0[x] has x = z as a root; moreover,

d = [K: K0] ≤ deg P = the larger of the degrees of a0 and b0

= deg f0 = d0.

Now let P0 = xd + s1xd−1 + · · · + sd ∈ K0[x] be the field polynomial of z
over K0 and observe that for most values c of f0 three things happen: (1) c is
not a pole of any coefficient sn(n ≤ d); (2) f0(z) = c has d0 simple roots in
C; (3) zd + s1(c)zd−1 + · · · + sd (c) vanishes at each of these. But that makes
d0 ≤ d and equality prevails: d0 = d.

Now comes the proof of Luroth’s theorem itself; compare Fig. 1.5. Let
the intermediate field K1 lie properly above the constant field C so that n =
[K: K1] ≤ min {deg f0: f0 ∈ K1} < ∞ and let P1(x) = xn+r1xn−1+· · ·+rn ∈
K1[x] be the field polynomial of z over K1. Then r1 (or some other of its
coefficients) is not constant, z being of infinite degree over C. It is to be proved
that K1 = C(r1), producing the whole of that field by its adjunction to C. Now
write r1 = a1/b1 with a1, b1 ∈ C[z], and so on, and clear denominators in
P1(x) to produce P2(x) = c0xn + c1xn−1 + · · · + cn ∈ C[z][x]. This divides
P3(x) = a1(x)b1(z) − a1(z)b1(x) ∈ C[z][x] and comparison of degrees with
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deg f

z

0

f0

K1

n

C

C

C

(

(

)

)

∞

Figure 1.5. The extensions.

regard to z produces

deg P3 = the larger of the degrees of a1 and b1

= deg r1

≤ the larger of the degrees of c0 and c1

≤ deg P2,

whereupon the divisibility of P3 by P2 implies P3 = P2 × P4 with P4 ∈ C[x]
independent of z. But P4(x) divides P3 only if it divides both a1(x) and b1(x),
and as these are coprime, so P4 must be constant, whereupon comparison of
degrees with regard to x produces

[K: C(r1)] = deg r1 (by the first item of business)

= deg P3

= deg P2

= [K: K1].

The proof is finished: The degrees of K over K1 and over C(r1) ⊂ K1 match
only if C(r1) = K1.

Exercise 4. Check that r1 is of minimal positive degree in K1. Hint: Any other
such primitive element of K1 must be of the same degree n.
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12 1 First Ideas

1.5 Automorphisms of P1

An automorphism of a complex manifold M is a 1:1 analytic map of M onto
itself. The inverse of such a map is likewise analytic, so the automorphisms
form a group �(M). �(M) is easily identified for M = P1: It comprises all
the rational functions of degree 1, alias the fractional linear substitutions or
Möbius transformations, of the form

z → az + b

cz + d
with a, b, c, d ∈ C and ad − bc 
= 0.

Exercise 1. Explain the proviso ad − bc 
= 0.

The numbers a, b, c, d can be scaled to make ad − bc = 1 without changing
the map, so you may associate to each automorphism the 2 × 2 complex matrix
[ab/cd] of determinant 1. This effects an isomorphism between �(P1) and the
special linear group SL(2, C) of all such matrices. Actually, that is not quite
right: The map is unaffected by the substitution a, b, c, d �→ −a, −b, −c, −d ,
so what you really have is an isomorphism with the projective special linear
group P SL(2, C) which is the quotient of SL(2, C) by its center (±1)× the
identity. The symbol [ab/cd] signifies either the 2 × 2 matrix or the associated
map, as the context requires, [ab/cd] and its negative being identified until
further notice.

Exercise 2. Check all that. Chiefly it is required to prove that the association
of �(P1) to P SL(2, C) respects the group operations.

Exercise 3. What is �(C)?

Exercise 4. �(P1) is generated by (1) translations z �→ z + a, (2) magnifica-
tions (including rotations) z �→ bz, and (3) the inversion z �→ −1/z. Check it.

Exercise 5. Deduce that �(P1) preserves the class of circles and lines.

Exercise 6. SO(3) is the group of proper (i.e., orientation-preserving) rotations
of R3, realized as (real) 3 × 3 orthogonal matrices of determinant +1. Prove
that every such rotation is an automorphism of P1.

�(P1) moves any three distinct points to any other three points, as you will check:
For example, z �→ [(b−a)/(c−b)]× [(c− z)/(z −a)] moves a, b, c to ∞, 1, 0
with the natural interpretation of the map if one of the points is at infinity.

Exercise 7. The action of an automorphism on three distinct points specifies it
completely; especially, it is the identity if it fixes three points. Why?
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1.5 Automorphisms of P1 13

The (one and only) automorphism z �→ w that moves z1, z2, z3 to w1, w2, w3

can be expressed as

z1 − z2

z2 − z3

z3 − z

z − z1
= w1 − w2

w2 − w3

w3 − w

w − w1
.

It moves the additional point z4 to w4 if and only if the zs and ws have the same
cross ratio:

z1 − z2

z2 − z3

z3 − z4

z4 − z1
= w1 − w2

w2 − w3

w3 − w4

w4 − w1
,

with the natural interpretation if any point is at infinity.

Exercise 8. Check that �(P1) preserves cross ratios.

The cross ratio is changed under the action of the symmetric group S4 of
permutations of the four “letters” 1, 2, 3, 4. It is invariant under the subgroup1

K (1234) = id, (2143), (3412), (4321),

so to understand the action, it is permissible to place z4 at infinity and to study
the action of S4/K ∼ S3(= the symmetric group on three letters) on the reduced
ratio x = (z1 − z2)/(z3 − z2). This is seen in Table 1.5.1.

Table 1.5.1. Action of S3 on the reduced cross ratio

(123) (321) (132) (231) (312) (213)

x 1/x 1 − x 1/(1 − x) (x − 1)/x x/(x − 1)

Exercise 9. x 
= 0, 1, ∞. Why?

Exercise 10. Check the table.

The substitutions x �→ x, 1/x, 1− x, 1/(1− x), (x −1)/x, x/(x −1) comprise
the group of anharmonic ratios H, which is isomorphic to S3. Harmonic
ratios arise when two anharmonic ratios of x coincide; the nomenclature goes
back to Chasles (1852). The group will play a small but important role later;
see Section 7 under Platonic solids and also Chapter 4.

Exercise 11. The harmonic ratios are of two kinds: x = −1, 1/2, 2 is the
harmonic proportion of nineteenth-century projective geometry; it corresponds,

1 (2143) stands for the permutation 1234 → 2143, not the cycle 2 → 1 → 4 → 3 → 2.
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14 1 First Ideas

for example, to the four points 0, 2/3, 1, 2. Otherwise, x2 − x +1 = 0, x being
a primitive root of −1 such as ω = eπ

√−1/3; the points may now be taken to
form an equilateral triangle 1, ω, 0 (and ∞). Check that no other harmonic
ratios exist.

Exercise 12. Check that the Schwarzian derivative ( f ′)−2[ f ′ f ′′′−(3/2)( f ′′)2]
commutes with the action of �(P1) = P SL(2, C) on the independent variable;
see Ford [1972: 98–101] for more information and for applications of this
intriguing object.

1.6 Spherical Geometry

The sphere inherits from the ambient space R3 its customary (round) geometry,
and it is easy to see that the shortest path (geodesic) joining two points is an arc
of a great circle. Introduce spherical polar coordinates: x1 = sin ϕ cos θ, x2 =
sin ϕ sin θ, x3 = cos ϕ in which 0 ≤ ϕ ≤ π is the colatitude measured from
the north pole and 0 ≤ θ < 2π is longitude. The line element (of arc length)
is ds =

√
(dϕ)2 + sin2 ϕ(dθ )2. The rotation group SO(3) acts in a distance-

preserving way, so you may as well take the first point to be the north pole
n = (1, 0, 0). The second point lies on a great circle passing through n, as seen
in Fig. 1.6. Plainly, any longitudinal deviation from the great-circle path makes
the journey longer.

n

Figure 1.6. Geodesic path on P1.

Exercise 1. Write this up carefully and find a nice expression for the (shortest)
distance.
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1.6 Spherical Geometry 15

Exercise 2. Express the spherical distance between two points in the language
of the stereographic projection. Hint: The line element is 2(1 + r2)−1|dz| with
r = |z|.

Exercise 3. A pair of great circles cuts the spherical surface into two pairs of
congruent lunes. Check that a lune of angle θ has area 2θ .

Exercise 4. A spherical triangle � is formed by joining three points by pieces
of great circles. Gauss [1827] found that the area of � is the sum of its three
interior angles diminished by π . Check this. Hint: Each interior angle is
marked off by two great circles, determining a lune; see Fig. 1.7.

αβ

γ

Figure 1.7. Geodesic triangles on P1.

Exercise 5. Find all the coverings or tessellations of the spherical surface by
f congruent equilateral triangles, e triangles meeting at each corner. Hint:
4/ f = 6/e − 1, the only solutions being (e, f ) = (3, 4), (4, 8), (5, 20). To
what Platonic solids do these correspond? Compare Section 7.

Exercise 6. Prove that the area of a spherical disk of (geodesic) radius r satisfies

A(r ) = πr2 × [1 − r2/12 + O(r4)].

The number

k = lim
r↓0

12

π
r−4[πr2 − A(r )] = +1

measures the deviation of the (round) geometry of the sphere from the (flat)
geometry of the plane. It is the Gaussian curvature of the sphere; obviously,
the plane has curvature k = 0; compare Section 9 for the (hyperbolic) geometry
of the half-plane with curvature k = −1.
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16 1 First Ideas

1.7 Finite Subgroups and the Platonic Solids

The finite subgroups of � = �(P1) were already known to Kepler [1596]
through their connection with the five Platonic solids of antiquity. This will be
explained in a moment. The present section serves also as a prototype for the
considerations of Chapter 4 about arithmetic subgroups of P SL(2, R); compare
Ford [1972: 127–36] and Coxeter [1963].

Let �0 be such a subgroup of order d < ∞ and suppose (what is no loss) that
no element of �0 fixes ∞, the identity excepted, of course. This can always
be achieved by preliminary conjugation of �0 in the ambient group: In fact,
the nontrivial elements of �0 have (in sum) at most 2d − 2 fixed points and
almost any conjugation will move them all away from ∞. Let c ∈ P1 − ∞ be
distinct from any of these fixed points. Then the orbit �0c = {gc: g ∈ �0} is
simple, that is, it is comprised of d distinct points. Pick two such finite points
a and b with different orbits. The product j(z) of (gz − a)(gz − b)−1, taken
over the substitutions g ∈ �0, is a rational function of z, of degree d, with three
properties. (1) It is invariant under the action of �0. (2) It separates orbits;
especially, it has d simple roots and/or poles at the orbit of a/b. (3) Any other
(rational) invariant function of �0 is a rational function of j . In short, the field
of invariant functions of �0 is C( j); for this reason, j is called the absolute
invariant of �0.

Proof of (1). This is self-evident.

Proof of (2). The rational function j is of degree d as it has (simple) poles at
the orbit of b and no others. The rest follows from the fact that j takes each
value d times and so takes distinct values at distinct orbits of �0.

Proof of (3). Let K0 = K(�0) be the field of invariant functions. It is a subfield
of K = C(z), properly including the constant field C because j is in it. By
Luroth’s theorem, K0 = C( j0) for some j0 ∈ K0 of minimal degree d0. But this
function takes the same value d times on any simple orbit, so d0 ≥ d = deg j .
In short, j is of minimal degree and j0 is a rational function of it, of degree 1.

Exercise 1. The derivative j ′ of j is of degree 2d . Why? Note that its roots
come from exceptional (nonsimple) orbits.

The next step in the classification of the subgroups of �0 is to describe the
family of points fixed by some nontrivial element of �0. It is divided into
h < ∞ classes k according to the action of �0; n(k) < ∞ is the number of
points in the class. The function j is invariant, so it takes the same value j(k) at
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Table 1.7.1. Multiplicities

m(k1) m(k2) m(k3) d

2 2 m 2m

2 3 3 12

2 3 4 24

2 3 5 60

each point of k, the latter being a full orbit of �0; moreover, this value is taken
each time with the same multiplicity m(k).

Exercise 2. Check that.

The aim of the next few lines is to recompute the degree 2d of j ′ with the
aid of these numbers n(k) and m(k) so as to obtain a relation between them.
d = n(k) × m(k) is plain, j being of degree d. The situation at ∞ has now to
be clarified: ∞ is not a pole of j by choice of b, so you have an expansion in
powers of the local parameter 1/z: j(z) = c0 + c1z−1 + · · · in which c1 
= 0
because the orbit of ∞ is simple. This means that j ′ has a double root at ∞ for
a new count of its degree as per its roots:

2d = deg j ′ = 2 +
∑

k

n(k)[m(k) − 1],

which is to say

h − 2 + 2

d
=

∑

k

1

m(k)
,

as you will check using d = n ×m. This relation gives rise to a complete list of
the possible values of d, h, n, and m. The fact is that either d ≥ 2 is arbitrary,
h = 2, and m(k) = d , or else h = 3 and the numbers m fall into one of the
four patterns of Table 1.7.1.

Proof. m(k) ≥ 2 (why?) so h −2+2/d ≤ h/2, and this is contradictory unless
h ≤ 3, that is, h = 2 or 3, h = 1 being the case d = 1, which is trivial. (Why
is that?)

Case 1. h = 2. There are two classes and [m(k1)]−1 + [m(k2)]−1 = 2/d . Now
m ≤ d divides d , and if m < d, then it is ≤ d/2 already and the identity cannot
balance. In short, m = d for both classes and each comprises just one point.
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18 1 First Ideas

Table 1.7.2. Platonic solids

Solid Faces Edges Corners m

tetrahedron 4 triangles 6 4 3

cube 6 squares 12 8 3

dodecahedron 12 pentagons 30 20 5

octahedron 8 triangles 12 6 4

icosahedron 20 triangles 30 12 3

Case 2. h = 3. Now [m(k1)]−1 + [m(k2)]−1 + [m(k3)]−1 = 1 + 2/d and if all
three multiplicities were three or more, you would have 1 + 2/d ≤ 1, so that
is out, and some class, say the first, has multiplicity two: m(k1) = 2. m(k2) ≤
m(k3) can also be assumed, and you have [m(k2)]−1 + [m(k3)]−1 = 1/2+2/d .

Case 2−. m(k2) = 2. Then d = 2m(k3), which is line 1 of Table 1.7.1.

Case 2+. m(k2) ≥ 3. m(k2) = 4 or more is contradictory in view of [m(k2)]−1+
[m(k3)]−1 ≤ 1/2 < 1/2+2/d, so you have m(k2) = 3 and [m(k3)]−1 = 1/6+
2/d. It follows that m(k3) = 3, 4, or 5 producing lines 2, 3, 4 of Table 1.7.1
with d = 12, 24, 60. The proof is finished.

Table 1.7.1 displays the possibilities. Now they must be realized concretely.
The role of absolute invariant may be played by (aj+b)(cj+d)−1 for any substi-
tution [ab/cd] of � = P SL(2, C), so you may assign the values j(k) = 0, 1, ∞
(or 0, ∞) to the h = 3 (or 2) classes; also, �0 can be conjugated in �, permitting
you to distribute all (or two) of the points 0, 1, ∞ among the distinct classes
as you will. This freedom permits the group and its absolute invariant to be
brought to standard form, with the final result that each pattern of multiplici-
ties is realized by just one subgroup �0 ⊂ �, up to conjugation; in particular,
lines 2–4 of Table 1.7.1 are realized by the proper (= orientation-preserving)
symmetries of the five Platonic solids of antiquity listed in Table 1.7.2; compare
Fig. 1.8. The idea will now be illustrated in the two simplest cases.

Example 1. h = 2, m(k) = d . The two classes k1 and k2 are single points at
which j takes its value d-fold; they may be placed at 0 and ∞ and assigned the
values j(k1) = 0 and j(k2) = ∞. Then you may take j(z) = zd (how come?),
and the substitutions of �0 fixing, as they do, both 0 and ∞, must be of the
form g: z �→ ωz, ω being a dth root of unity because of the invariance of j , and
every one of these roots must be employed, �0 having d elements. In short, �0

is the cyclic group of rotations about the north pole by the dth roots of unity.
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1.7 Finite Subgroups and the Platonic Solids 19

Cube Octahedron

Tetrahedron

Dodecahedron Icosahedron

Figure 1.8. The five Platonic solids.

Example 2. h = 3, m(k1) = 2, m(k2) = 2, m(k3) = m, d = 2m. This is line
1 of Table 1.7.1. Let j(k1) = 0, j(k2) = 1, and j(k3) = ∞ and let k3, which
has just 2 = d/m points, be the pair 0, ∞, so that j has m poles at each of these
points. �0 contains a substitution g 
= the identity fixing ∞, and this must also
fix 0, k3 being an orbit of the group. Then g is of the form z �→ ωz, and ω can
only be an mth root of unity, the invariant function j having m poles at ∞. Any
substitution of �0 not of this type still preserves k3 and so must exchange 0 and
∞, that is, it is of the form z �→ ω/z. Then j(z) = z−m

∏
(z − a)2, up to a

constant multiplier, the product being taken over a ∈ k1, and ω can only be an
mth root of

∏
a2, by the invariance of j . But now d = 2m forces every mth root

of unity to appear in the first round, and placing 1 in the class k1, as you may,
requires that k1, itself, is just the mth roots of unity; that

∏
a2 = 1; that every ω

in the second round is an mth root of unity, too; and that each of these must also
appear. In short, �0 is the so-called dihedral group comprised of the north-pole
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rotations by mth roots of unity, with the involution z �→ 1/z adjoined; it is the
symmetry group of a degenerate polyhedron formed by pasting together two
copies of the regular m-sided polygon, each divided into m slices of the pie.

Exercise 3. Check that the absolute invariant is j(z) = zm + z−m, up to trivi-
alities.

Exercise 4. The group H of anharmonic ratios x, 1/x, 1 − x, 1/(1 − x),
(x − 1)/x, x/(x − 1) of Section 5 illustrates the case d = 6. Use Luroth’s
theorem to check that

j6(x) = 4

27

(x2 − x + 1)3

x2(1 − x)2

is an absolute invariant and reduce it to (x3 + x−3 + 2)/4 by conjugation. The
function j6, harmless as it may look, plays an important role in several subjects
discussed later; see especially, ex. 2.12.3 on the classification of complex tori
and Section 4.6 on automorphic functions of P SL(2, Z). Quite a big role for
such a little function; compare Ford [1972: 127–36] and also Klein [1884].

Example 3: The Platonic solids. A regular polyhedron in 3-dimensional space
has f faces, say, and if each face has n sides and if m faces meet at each corner,
then it has e = n f/2 edges and c = n f/m corners for an Euler number of
2 = f − e + c = f × (1 − n/2 + n/m).

Exercise 5. Check that n ≤ 5; after all, for n = 6, you have the hexagonal
tessellation of the plane and do not get a 3-dimensional object at all.

Case 1. n = 3. 4m = f (6 − m) so 3 ≤ m ≤ 5, and these choices are all
permitted: m = 3 with f = 4 (for the tetrahedron), m = 4 with f = 8
(octahedron), and m = 5 with f = 20 (icosahedron).

Case 2. n = 4. 2m = f (4 − m), the only possibility being m = 3 with f = 6,
that is, a cube.

Case 3. n = 5. 4m = f (10 − 3m) and only m = 3 with f = 12 will do
(dodecahedron).

Coxeter [1963] presents a beautiful discussion of these issues. Now come the
symmetry groups of the solids. Let Sn be the symmetric group of permutations
of n letters {1, 2, 3, . . . , n} and An the alternating group of permutations of
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1.7 Finite Subgroups and the Platonic Solids 21

parity +1, preserving the sign of the square root of the discriminant
√

� =∏
i< j (xi − x j ). Line 2 of Table 1.7.2 is realized by the tetrahedral group A4,

line 3 by the group S4 of the cube or of its dual the octahedron, and line 4 by
the icosahedral group A5 which is also the group of the (dual) dodecahedron.
Here duality is effected by placing a corner at the center of each face of the
original solid.

Exercise 6. Make yourself a cardboard icosahedron and check its group A5 by
hand.

The orders of the groups are easy to compute. If the solid has f faces and
each face has e edges, then you can map face 1 to any other and rotate the
displaced face in e different ways for a total count of e • f = 3 • 4 = 12 for the
tetrahedron, 6 • 4 = 24 for the cube, and 5 • 12 = 60 for the icosahedron. The
tetrahedron has four corners which any symmetry permutes; odd permutations
such as (2134) are improper, so the group can only be A4. The cube has 24
symmetries. These can be enumerated as follows: Corner 1 can be sent to its
own (front) face or to the back, and to the bottom or to the top, for a count of
four; there are three further possibilities for corner 2 and two for corner 3, for
a total count of 4 • 3 • 2 = 24. This mode of counting identifies the group as S4.
The dodecahedron is a bit more complicated. There are 20 corners which may
be divided into four families of five, each family belonging to a single face and
labeled 12345. A symmetry maps corner 1 of family 1 to one of the other four
families and ascribes to it a new label; this can be done in 4 • 5 = 20 ways. The
two corners of family 1 adjacent to corner 1 can then be placed in three ways
for a total count of 60. It follows that the group is part of S5; it can only be A5.

Exercise 7. Why?

Now imagine such a Platonic solid inscribed in a sphere and project its edges
outward, from the center to the surface, to obtain a tessellation of the sphere.
Its symmetries appear as elements of � = P SL(2, C), so these Platonic groups
appear among the subgroups �0; indeed, you now see that these exhaust the
possibilities.

Proof for line 2 of Table 1.7.1. n(k3) = 4 and �0 permutes these four points, its
action being determined by what it does to any three of them. �0 ⊂ S4 follows
and d = 12 identifies it as A4, S4 having no other subgroup of index 2.

Proof for line 3. This is the same, only now d = 24 is the order of S4.
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Proof for line 4. This is the same as for line 2, only now with A5 ⊂ S5.

Klein [1884: 110–43] computed the absolute invariants for the most symmet-
rical disposition of the solids:

j2(z) = (z4 − 2
√−3z2 + 1)3

(z4 + 2
√−3z2 + 1)3

for the tetrahedron,

j3(z) = (z8 + 14 z4 + 1)3

108 z4(z4 − 1)4
for the cube,

j4(z) = (−z20 + 228 z15 − 494 z10 − 228 z5 − 1)3

1728 z5(z10 + 11 z5 − 1)5
for the dodecahedron.

The phrase symmetrical disposition is explained for the dodecahedron: j4 takes
the value 1 with multiplicity 2 at the 30 midpoints of the edges, 0 with multi-
plicity 3 at the 20 corners, and ∞ with multiplicity 5 at the midpoints of the
12 faces, in accord with line 4 of Table 1.7.1. The claim is that line 4 can be
realized only in this way, up to conjugation.

Proof for the tetrahedron. The class k1 contains six points, of multiplicity 2
each, with assigned value j(k1) = 1. Let 0, 1, ∞ be placed in k1. Then �0

contains a nontrivial substitution z �→ a+bz fixing ∞, and you must have b2 =
1 to fix the form of j(z) = 1+c/z2+· · ·. The possibility b = +1 is excluded by
the fact that the substitution is of order at most 12, so b = −1, and conjugation
of �0 by the substitution z �→ z − a/z reduces a to 0, with the result that j is
invariant under the substitution z �→ −z and so a function of z2. Now �0 also
contains a substitution z �→ a + b/z that sends 0 ∈ k1 to ∞. This means that,
besides 0 and ∞, k1 also contains the six points ±a, ±(a+b/a), and ±(a−b/a)
for a total count of eight, which would be too many if they were distinct. Take
a 
= 0. Then 0 = a ± b/a is one possible conjunction, in which case b = ±a2,
and the class-preserving substitution z �→ a + b/(±z) = a + a2/z sends a to
a × 2, 3/2, 5/3, 8/5, 3/8, 21/13, . . . , which is too many points. Otherwise,
a = −(a ± b/a), in which case b = ±2a2, and z �→ a + b/(±z) = a + 2a2/z
sends a to a × 3, 5/3, 11/5, 21/4, 43/21, 85/43, . . . , which is also wrong, so
a = 0 and a further conjugation of �0 reduces b to +1, with the result that
j(z) = j(1/z). Now assign the values j(k2) = 0 and j(k3) = ∞ and reflect
that each of these classes contains four points of multiplicity 3, whence j(z)
is of the form (z4 + 2αz2 + 1)3/(z4 + 2βz2 + 1)3. It remains to pin down the
numbers α and β. Let z �→ (z + a)(z + b)−1 be a substitution of �0 mapping
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∞ to 1 ∈ k1. Then a/b ∈ k1 and of the eight points 0, ∞, ±1, ±a/b, ±b/a
not more than six can be distinct.

Case 0. ab = 0. Then �0 contains a substitution of the form z �→ 1 + cz, the
number c being a primitive nth root of unity, and this leads to a contradiction
in every case n = 2, 3, 4, 6 (n divides 12).

n = 2: c = −1 and that is impossible since, together with z �→ 1 − z,
z �→ −z �→ 1 + z also belongs to �0.

n = 3 produces, from ±1, four additional points ±(1 + c), ±(1 − c), and
this is too many.

n = 4: c = ±√−1 and z �→ ±z �→ 1 + √−1z produces, from ±1, the
distinct points ±1 ± √−1.

n = 6 produces, from 1, five additional distinct points 1+c+· · ·+cm(m ≤ 5).

Case 1. 1 = a/b is not possible, but 1 = −a/b is, in which case the substitu-
tions known to date produce new points ±(1+a)(1−a)−1 and ±(1−a)(1+a)−1

of k1 which cannot be distinct. This forces a2 = −1 so, besides 0, ∞, and ±1,
k1 also contains ±(1 + √−1)(1 − √−1)−1 = ±√−1.

Case 2. 1 
= −a/b. Then a/b = ±b/a implies a = ±√−1b, and the same
result is obtained: k1 contains a/b = ±√−1.

It follows that

1 = j(±1) =
(

1 + α

1 + β

)3

and 1 = j(±√−1) =
(

1 − α

1 − β

)3

from which follow α2 = β2 and 3α + α3 = 3β + β3. But α 
= β since j 
≡ 1,
so α = −β and α2 = −3, that is, α = ±√−3 and β = ∓√−3, as per the
formula for j = j2 previously displayed.

Proof for the dodecahedron. The values j(k1) = 1, j(k2) = 0, and j(k3) =
∞ are assigned and the point ∞ is placed in the class k3. �0 contains a
nontrivial substitution A fixing ∞. This must be of the form z �→ a + bz with
b5 = 1 to fix the pole of j(z) = cz5 + · · · . Now A is of finite order n and
Anz = a(1 + b + · · · + bn−1) + bnz so b 
= 1 can only be a primitive fifth
root of unity, b = ω = e2π

√−1/5, say, and you can conjugate the group by
z �→ z − a(1 − ω)−1 to bring A to its simplest form: z �→ ωz. Then j is a
function of z5. Now place the point 0 in the class k3. The group �0 contains a
substitution B: z �→ a +b/z mapping 0 to ∞. If a 
= 0, B will map ∞ to a new
point a of k3. Then a, ωa, . . . , ω4a belong to k3, and new applications of the
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substitutions A and B produce further points of k3: ωi a+ω j b/a(0 ≤ i, j < 5).
But k3 contains just 12 points, including ∞, so at most 11 of these new points
are distinct, and a picture will convince you that this is not possible. The upshot
is that a = 0 and a further conjugation reduces b to 1 and j to the form

(z10 − az5 + b + a/z5 + 1/z10)3

f (z5 + c − 1/z5)5
= (z20 − az15 + bz10 + az5 + 1)3

f z5(z10 + cz5 − 1)5

with undetermined constants a, b, c, and f , in which the top accounts for the 20
points of the class k2 together with the pole at ∞, and the bottom for k3 − ∞.
The final step is to require that j take the value 1 with multiplicity 2 at each
of the 30 points of the class k1. Now the derived function j ′ is of degree 70,
having four poles at ∞ and six more at each of the other points of k3; it vanishes
40-fold on class k2, so the condition to be imposed is that the square of j ′, with
its poles and its roots of the class k2 removed, should be a constant multiple of

(z20 − az15 + bz10 + az5 + 1)3 − f z5(z10 + cz5 − 1)5.

The rest of the computation elicits the values a = 228, b = 494, c = 11,
f = −1728. This is omitted, as there seems to be no slick way to do it.

1.8 Automorphisms of the Half-Plane

The group �(H) of automorphisms of the open upper half-plane H = {z =
x1 + √−1x2: x2 > 0} may be identified with the real special linear group
P SL(2, R).

Proof. Let g be an automorphism of H mapping
√−1 to a + √−1b (b > 0)

and observe that g1 = b−1(g − a) fixes
√−1. Let h be the standard map

z �→ (z − √−1)(z + √−1)−1 of H to the disk |h| < 1. Then g2 = h ◦ g1 ◦ h−1

is an automorphism of the disk fixing the origin and |g2(z)/z| ≤ 1 by application
of the maximum modulus principle on the perimeter. The same idea applies to
the inverse map g−1

2 , so the reciprocal modulus |z/g2(z)| = |g−1
2 (z′)/z′| with

z′ = g2(z) is likewise ≤ 1. The upshot is that g2(z)/z is of modulus ≡ 1 and
so must be constant. This pretty trick is due to H. A. Schwartz. The rest is
computation if you like. A better way is to note that g = [ba/01]◦h−1 ◦g2 ◦h is
a fractional linear substitution preserving the completed line R + ∞ bordering
H and to deduce that it belongs to P SL(2, R).

Exercise 1. Do it.
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Exercise 2. Check that a nontrivial element [ab/cd] of �(H) = P SL(2, R) is
conjugate to (1) a magnification (d = 1/a, b = c = 0, a > 0), (2) a translation
(a = d = 1, c = 0, b ∈ R), or (3) a rotation (a = d = cos θ, −b = c =
sin θ, θ 
= 0, π ) according as the absolute value of its trace is > 2, = 2, or < 2.

Exercise 3. Use ex. 2 to prove that any subgroup of P SL(2, R) isomorphic to
Z2 comes as close to the identity as you like. Hint: What commutes with a
translation is a translation.

Exercise 4. Show that � = P SL(2, R) will move one point of H to
√−1 and

any second point to some position on the imaginary half-line.

1.9 Hyperbolic Geometry

This is a model of the non-Euclidean geometry discovered by Bolyai, Lo-
batchevsky, and Gauss about 1820; it is connected in a beautiful way to
P SL(2, R) and H. The latter can be equipped with the hyperbolic line
element ds = x−1

2

√
dx2

1 + dx2
2 of Liouville and Beltrami (1868) and Klein

(1870), which was rediscovered by Poincaré [1882] and usually called by his
name, relative to which the vicinity of each point looks like a mountain pass or
saddle point: two ridges rising, one on either hand, two valleys falling away.
The geodesics of this geometry are semicircles with centers on the bordering
line x2 = 0 and/or vertical lines, and �(H) = P SL(2, R) is its group of proper
(= orientation-preserving) rigid motions, playing the same role as the rotation
group SO(3) for the (round) spherical geometry of Section 6 or the Euclidean
motion group (translations and rotations) for the (flat) geometry of R2. See
Milnor [1982] for historical remarks, Pogorelov [1967] and Beardon [1983] for
further information, and Section 4.9 for a deep connection to complex function
theory.

Exercise 1. Check that the hyperbolic line element is invariant under the action
of �(H).

Now let
√−1a and

√−1b (0 < a < b) be two points of the imaginary half-
line. Inspection of the line element shows that any deviation from the vertical
path joining them makes the journey longer, so that is the geodesic, and a
self-evident application of ex. 8.4 confirms the statement made before that the
general geodesic is either a semicircular arc meeting R at 90◦ or else a vertical
line. The identification of �(H) as the rigid motions is a by-product.
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Exercise 2. The hyperbolic distance from
√−1a to

√−1b is
∫ b

a x−1
2 dx2 =

log(b/a). Confirm the general formula for the distance between any two points
of H: cosh(d(p, q)) = 1 + (1/2)× the flat distance between p and q , squared,
divided by the product of their heights. Hint: The right-hand side had better be
invariant under the action of �(H).

Exercise 3. Prove that, for fixed θ , the point

x = x1 + √−1x2 =
√−1er cos θ − sin θ√−1er sin θ + cos θ

traverses a geodesic issuing from
√−1 as r runs from −∞ to ∞, and that, for

fixed r > 0, it passes (twice) about the geodesic circle with center at
√−1 and

(hyperbolic) radius r as θ runs from 0 to 2π . The latter is also a flat circle of
radius sinh r centered at

√−1 cosh r , as you will check.

Exercise 4. Deduce that the line element (x2)−1
√

(dx1)2 + (dx2)2 can be ex-
pressed as

√
(dr )2 + (sinh r )2(dθ )2 and use it to evaluate a) the area A(r ) =

2π (cosh r − 1) of the hyperbolic circle of radius r and b) the curvature k =
limr↓0

12
π

r−4[πr2 − A(r )] = −1; compare ex. 6.6.

A down-to-earth picture of curvature k = −1 is obtained from the simple surface
of revolution y = h(x) seen in Fig. 1.9. The so-called principal curvatures are

x

y

Figure 1.9. A surface with curvature −1.

k1 = −h′′[1 + (h′)2]−3/2 in the plane of the paper and k2 = 1/h
√

1 + (h′)2

in the plane perpendicular to the paper and the surface. Their product is the
Gaussian curvature k, so the condition k = −1 becomes h′′ = h[1 + (h′)2]2,
producing a convex function starting at h(0) = 1 and vanishing at ∞, expressed
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1.10 Projective Curves 27

explicitly as

x =
√

1 − h2 + log
1 − √

1 − h2

h
. (1)

Exercise 5. Check this.

Exercise 6. Compute the hyperbolic area of a geodesic triangle with interior
angles α, β, γ .

Pogorelov [1967: 127–67] is recommended as an introduction to this circle of
ideas; see also Stillwell [1992] which is nice and elementary.

1.10 Projective Curves

Clemens [1980] presents a splendid account of this subject; Kirwan [1992] is
fine, too. The projective line P1 you know. The projective plane P2 is similarly
defined: It is the space of complex lines in C3 obtained by identifying two
points of C3 − 0 that differ by a nonvanishing complex multiplier. It is covered
by three patches U1 = C×C× 1, U2 = C× 1 ×C, and U3 = 1 ×C×C, and,
with a self-evident extension of the terminology of Section 2, it is a compact
manifold of (complex) dimension 2. The higher projective spaces Pd (d ≥ 3)
follow the same pattern.

Exercise 1. A line in P2 is determined by the vanishing of a linear form ax +
by + cz = 0 with fixed (a, b, c) ∈ C3 − 0. Check that it is nothing but a copy
of the projective line P1.

To explain projective curves, think first of the real quadratic curves (conic
sections) of the schoolroom. They come in three varieties: circle, hyperbola,
and parabola, typified by x2 + y2 = 1, xy = 1, and x2 = y; see Fig. 1.10. A
different and, in many respects, a superior picture is obtained by complexifying
x and y; it is even better to compactify everything, by taking a projective
standpoint in P2, so as to take into account what is happening at infinity. The
idea is due to Bezout [1779]. The case of the circle will convey the idea. The
old curve x2 + y2 = 1 in R2 is replaced by the locus x2 + y2 + z2 = 0 in
C3 − 0. This makes projective sense, each term being of the same degree, and
so defines a projective curve in P2 of 1 complex (= 2 real) dimension. The
old curve (and more) is seen in the patch C2 ×√−1 = C2 ×1, projectively, but
now you pick up two new (compactifying) points “at infinity”: (1, ±√−1, 0)
in (1 × C2) ∩ (C × 1 × C). The same recipe applies to the projective hyperbola
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Figure 1.10. Quadratic curves.

xy − z2 = 0 and to the parabola x2 − yz = 0, which are evidently the same in
P2. In fact, all three types of curves fall together into a single projective class.
The (1:1 projective) substitution

x �→ x + √−1y, y �→ x − √−1y, z �→ √−1z

converts xy = z2 into x2 + y2 + z2 = 0. In short, up to such substitutions, the
conic sections are indistinguishable in P2. But what does the circle C: x2 + y2 +
z2 = 0 really look like in P2? The pretty answer is: the projective line. The
proof is easy. P1 is viewed as C+∞ and provided with the parameter w. Then
x = (1/2)(w+1/w) and y = (1/2

√−1)(w−1/w) solve x2 + y2 = 1 provided
w 
= 0, ∞. This presents, in a 1:1 manner, the finite part of C that lies in the
patch C2×√−1: in fact, w = x+√−1y. To cope with the points at ∞, the cor-
respondence [x, y, z] = [(w + 1/w)/2,

√−1(w − 1/w)/2,
√−1] is expressed

in the projectively equivalent forms [(1+1/w2)/2, (1−1/w2)/2
√−1,

√−1/w]
and [(w2 + 1)/2, (w2 − 1)/2

√−1,
√−1w]: The first places the north pole

w = ∞ in correspondence with [1/2, 1/2
√−1, 0] = [1, −√−1, 0] projec-

tively; the second places the south pole w = 0 in correspondence with the
second point at infinity [1,

√−1, 0].

Moral. The recipe places the whole projective circle in faithful (rational) cor-
respondence with the projective line; in particular, the totality of real solutions
of x2 + y2 = 1 is obtained by numerical specialization of the rational functions
x = 1

2 (w + 1/w) and y = 1
2
√−1

(w − 1/w). Do you recognize them?

More generally, any irreducible polynomial P ∈ C[x, y] defines, by its vanish-
ing, a projective curve X in P2: The individual terms xm yn of P are brought up
to a common (minimal) degree d by powers of a new variable z. Then the van-
ishing of P makes projective sense, and the rest is as before; in particular, the
original curve X0 = C2 ∩{P(x, y) = 0} is seen in the patch C2 ×1. P2 is com-
pact and X inherits that; it is also connected, automatically, but that lies deeper.
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Amplification 1. X need not be a projective line; that is the exception, not the
rule. For example, if e1, e2, e3 are distinct complex numbers, then the cubic
y2 = (x − e1)(x − e2)(x − e3) is a torus in P2 and cannot be identified with
P1 for topological reasons; see Section 1.12 for pictures and Section 2.11 for a
full explanation of this striking geometric fact.

Amplification 2. X inherits from P2 the structure of a complex manifold, with
exceptions at a few places. Let P ∈ C[x, y, z] be the homogeneous polynomial
that defines X by its vanishing. Then, with the notation P1 = ∂P/∂x , and so
forth, the form P1dx + P2dy + P3dz vanishes on X, so if, for example, you
place yourself in the patch C2 × 1 and if (P1, P2) does not vanish, then you
can get rid of dz (z = 1) and use the implicit function theorem in the small to
solve for y in terms of x (or vice versa), placing a whole patch of neighboring
points p = (x, y) ∈ X in faithful correspondence with a little disk by means
of the local parameter x = x(p); see Section 13 for more details from another
point of view. The exceptions alluded to are the singular points of X at which
the gradient (P1, P2, P3) vanishes. If the gradient never vanishes the curve is
termed nonsingular.

Exercise 2. Check that the circle x2 + y2 + z2 = 0 is nonsingular.

Exercise 3. The cubic X: y2 = x2 + x3 has just one singular point: (0, 0, 1), as
you will check.

This example is more typical. At x = 0, the two analytic branches y =
±x

√
1 + x of X cross, accidentally so to speak, so, in the small, the curve

looks like two complex lines touching at one point and not like a disk; see
Fig. 1.11. This can be cured. The branches are distinguished at x = 0 by their
slopes y′ = ±1, which suggests a new attitude toward X, described afresh as
the common roots (in P3) of the two relations xz = y and z2 = 1 + x ; in fact,
z = y/x takes distinct values ±1 at x = 0, depending on the branch, so the old
point (0, 0) splits into two separate points (0, 0 ± 1). The present discussion is
just to whet the appetite; it is continued in Section 11, and also in Section 13. For
further information, Bliss [1933], Walker [1978], Kirwan [1992], Shafarevich
[1977], and Mumford [1976] are recommended, in order of sophistication.

1.11 Covering Surfaces

We review a few topological facts needed for the further study of projective
curves and/or Riemann surfaces. The ideas go back to Poincaré. Ahlfors [1973],
Forster [1981], and Massey [1991] are recommended for more information.
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Figure 1.11. Crossing of branches.

Covering Spaces. Let M and K be surfaces, that is, topological manifolds of
real dimension 2. K is an (unramified) cover of M if it admits a projection
p onto M with the characteristic feature that every point p ∈ M has an open
neighborhood U such that p−1(U ) breaks up into disjoint open pieces V of
K, finite or countable in number, the restrictions p: V → U being homeomor-
phisms; see Fig. 1.12. The cardinality of the fiber p−1(p) is independent of the
point p ∈ M; it is the degree or sheet number of the cover.

Exercise 1. Check that p(z) = zk(k ∈ N) is a projection from C − 0 to itself.
What happens if 0 is included?

Exercise 2. Check that the exponential exp: C → C − 0 is a projection.

Exercise 3. Let ω be a complex number of positive imaginary part and let L be
the lattice Z ⊕ ωZ. The map p: C → X = C/L, reducing the plane modulo
the lattice L, induces a topology on the torus X. Check that p is a projection.

Universal Cover. Among all the surfaces that cover M, there is a largest one.
This is its universal cover K, distinguished by the property that if K0 is any
other cover of M, then K covers K0. K is unique up to homeomorphisms
and simply connected, that is, any closed loop in K can be shrunk to a point.
This feature, too, distinguishes the universal cover among its competitors. K is
formed by a) fixing a base point o ∈ M; b) stacking up, over the general point
p ∈ M, covering points q, one to each deformation class of curves leading
from o to p in M; and c) lifting up to q the topology in the vicinity of p, as
indicated in Fig. 1.12. The projection is p : q → p.
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  1

K

M

o p

p

q

q

2

Figure 1.12. The universal cover.

Exercise 4. The universal cover of the torus X = C/L is the plane C, by
ex. 3. What is the universal cover of the disk, annulus, sphere, cylinder, or the
once-punctured plane?

Lifting and Covering Maps. The universal cover K is provided with a group
�(K) of covering maps. These are homeomorphisms of K that commute with
the projection p:K → M; in particular, covering maps preserve fibers. Let
o be a point of M, fix a point o1 of K covering it, and select a loop in the
base starting and ending at o, as in Fig. 1.13. The beginning of the loop lifts
unambiguously to a patch about o1 via the inverse projection, and this lifting
can be continued without obstruction until the moving base point returns to o.
The lifted loop ends at a point o2 covering o and the map o1 �→ o2 may be
extended to a covering map of the whole of K by a self-evident continuation.
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K

M

p

o

o

1

o2

Figure 1.13. Lifting of loops.

Exercise 5. Check all that by means of pictures. Think of an example in which
the lifted curve is not closed.

Exercise 6. Prove that every covering map arises in this way.

Exercise 7. Prove that covering maps have no fixed points, the identity excepted.

Fundamental Group. The loops of M, starting and ending at o, fall into
deformation classes; and it is easy to see that these classes form a group: The
formation of classes respects the composition of loops effected by passing first
about loop 1 and then about loop 2; the identity is the class of the trivial loop =
the point o itself; the inverse is the class of the loop run backward; and so on.
This is the fundamental group π1(M) of the surface.

Exercise 8. What is the fundamental group of the annulus, sphere, torus, once-
punctured plane, or twice-punctured plane? Answer: Z, id, Z2, Z, the free
group on two generators.

Exercise 9. The covering map attached to a loop depends only upon the class
of the latter. Why? Deduce that the group �(K) of the cover is isomorphic to
the fundamental group of the base.

More Structure. K may be equipped with any extra structure, smooth or com-
plex, that M enjoys: Just lift it up via the inverse projection. Then the covering
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maps appear as diffeomorphisms of K if M is smooth, and as conformal auto-
morphisms if M is a complex manifold.

Exercise 10. Give all the necessary details in the complex case.

Monodromy. The universal cover leads to a simple proof of the monodromy
theorem of classical function theory. Let f0 be a function element, that is, a
convergent power series in the local parameter of a small patch of a complex
manifold X, and suppose its continuation along paths of X is unobstructed.
This leads to a cover K0 of X whose points are pairs comprising a point p of
X and a function element f at p obtained by continuation of f0. Now let X be
simply connected, so that it is its own universal cover. Then X = K0, which
is to say that the process of continuation of f0 leads to a single-valued function
on X. This is the monodromy theorem. The more conventional proof is to note
that a function element produced by continuation is insensitive to small (and so
also to large) deformations of the path as long as the endpoints of the latter are
fixed.

Exercise 11. Why?

1.12 Scissors and Paste

The most general compact orientable surface is a sphere with handles, as noted
in Section 2. The number of handles is the genus g: 0 for the sphere, 1 for
the torus, 2 for the pretzel, and so on. It is a fact that each of these can be
equipped with a complex structure, and that in many distinct ways if g ≥ 1.
This will now be made plausible by the familiar informal method of scissors
and paste.

Take the simple two-valued function
√

z. It is desired to make a 2-sheeted
Riemann surface S on which it can live comfortably as a single-valued function.
Let P1 be the projective line with parameter z. The radical branches at z = 0
and at z = ∞, but may be made single-valued by cutting P1 from 0 to ∞ in
view of the fact that a circuit enclosing both 0 and ∞ produces two changes of
sign and so no change at all. It has, however, different signs at the two banks of
the cut, the endpoints 0 and ∞ excepted, and now it is clear what to do. Take
two copies of the severed P1 with the cuts opened up to make holes and paste
them together as in Fig. 1.14, matching the banks of the cuts according to the
sign of the radical to produce a copy S of P1. The two original copies of P1

are the sheets of S; naturally, upon erasing the cuts, it will not be clear where
one sheet ends and the other begins. The discussion is sloppy: For example,
careless pasting could leave a crease in S; presumably, it can be ironed out, but
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e1 e1

∞ ∞

∞ ∞

∞

_ _

_

__

+ +

++

+

∞∞

0 0

0 0

0

Figure 1.14. The Riemann surface for
√

z.

the more subtle (because less visible) complex structure of S is best treated from
another standpoint. Now look at the function z2 as a 2:1 map of one copy of P1

to another, with exceptions at 0 and ∞ where it is 1:1 (but still of degree 2 in that
0 is a double root and ∞ a double pole). The map is seen in Fig. 1.15. The great
circle seen in the upper sphere represents the inverse stereographic projection
of R ⊂ C, cutting P1 into two hemispheres, labeled + and −, and z2 opens up
each of these into a full copy of P1. The inverse map is

√
z whose Riemann

surface S, seen in Fig. 1.14, may now be identified with the covering projective
line of Fig. 1.15. The complex structure of S is clarified thereby: Plainly, it is
compatible with that of the base except over 0 and ∞ where the branching of
the radical takes place. There the cover is ramified over the base, its two sheets
touching as in Fig. 1.16, or, more realistically, as in Fig. 1.17, in which you see
that one revolution about 0 carries you from sheet 1 to sheet 2, and a second
revolution (not shown) brings you back to sheet 1. Figures 1.16 and 1.17 hint
that the complex structure of the cover goes bad at the ramifications, but this is
not so: Both cover and base are complex manifolds in themselves; it is just that
their complex structures are not the same: At 0, z is local parameter downstairs
and

√
z is local parameter upstairs; at ∞, you must use 1/z downstairs and

1/
√

z upstairs. Forster [1981] and Springer [1981] provide more details.
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0

0

∞

∞
√

z z 2

+−

Figure 1.15. The maps z �→ z2 and z �→ √
z.

2 2

21 1

1

√
z z 2

0 ∞
P1

Figure 1.16. The two sheets touch at certain points.
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√
z

z

0

2

.

Figure 1.17. The two sheets.

Exercise 1. Give a parallel discussion of the Riemann surface for d
√

z as a d-fold
ramified cover of P1 for d ≥ 3.

Handlebodies. The same idea applies to the radical
√

(z − e1) · · · (z − en) with
distinct branch points ei (i ≤ n). For n = 2, nothing changes; it is only that e1

and e2 play the roles of 0 and ∞. For n = 3, the radical branches at e1, e2, e3,
and ∞ since a loop enclosing e1, e2, and e3 produces 3(= 1) changes of sign.
To make the radical single-valued on P1 requires two cuts, one from e1 to e2,
say, and one from e3 to ∞, as in Fig. 1.18. Two copies of this cut P1 are now
pasted together in the manner of Fig. 1.14, but with the very different outcome
seen in Fig. 1.18. The complex structure of the torus so produced may be
clarified as in Fig. 1.16; for example,

√
z − e1 is local parameter over e1 and

so on. For n = 4, you get the same figure with e4 in place of ∞, but for n = 5
or 6 a pretzel appears, and for general n = 2g + 1 or 2g + 2, a handlebody
of genus (= handle number) g. The moral is that every handlebody appears
as a Riemann surface; in particular, they all admit a complex structure. More
complicated examples abound. The projective curve y3 = x − 1/x is pretty
typical: y branches triply over x = 0, ∞, and over the roots ±1 of x2 = 1, as
in Fig. 1.19; in detail

y = x1/3
[
1 + powers of 1/x

]
at x = ∞

= x−1/3
[−1 + powers of x

]
at x = 0

= 3
√

x − e
[

3
√

2 + powers of x − e
]

at x = e = ±1,

so a little counterclockwise circuit about x = ∞, 0, −1, or +1 multiplies y
by e−2π

√−1/3 for x = ∞ or 0 and by e2π
√−1/3 for x = ±1. Otherwise, y has
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e1

e1

e2
e3

∞

e1

e2
e3

∞

∞

e2

e3

Figure 1.18. The Riemann surface for
√

(z − e1)(z − e2)(z − e3).

∞ 1− 0 1+

Figure 1.19. The projective curve y3 = x − 1/x .

three distinct values over every value of x ∈ P1. Now take three copies of the
projective line cut from ∞ to −1 and from 0 to 1 so as to account for the three
different determinations of y = 3

√
x − 1/x . These are seen in Fig. 1.20I. They

must be pasted by the numbers. A preliminary pasting of 3 to 3 and 4 to 4
produces Fig. 1.20II; the final handlebody (III) is of genus 2.

Exercise 2. Check the numbering of Fig. 1.20. Hint: As you pass just below
the real line from −∞ to 1 and just above it to −∞, y changes by the factor
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Figure 1.20. Cutting and pasting for y3 = x − 1/x .

ω = eπ
√−1/3 at −1, ω2 at 0, and ω2 at 1, and again, on the return trip, by ω2 at

0 and ω at −1, for a net change of ω8 = ω2.

Exercise 3. Check that the Riemann surface of y3 = x2 − x−2 has genus 4.

The Helix. The Riemann surface of the logarithm should also be mentioned.
The function w = ez maps each horizontal strip R+ 2π

√−1 × [n, n + 1) of C

faithfully onto the punctured plane C−0, as in Fig. 1.21, so the inverse function
z = log w, defined on the base C − 0, has the covering plane C as its Riemann
surface, each strip constituting a sheet of the latter. A counterclockwise circuit
about the puncture downstairs raises the covering point to the next sheet up, by
addition of 2π

√−1, suggesting that the cover is better viewed as the infinite
helix, with log z itself filling the office of global parameter, opening up the punc-
tured disk 0 < r < 1 downstairs into the half-plane (−∞, 0)×√−1R upstairs.

Ramified Covers. The Riemann surface of z1/3 provides an example of a rami-
fied cover: It is a copy of P1 covering the projective line three-fold, except over
0 and ∞ which are covered once; compare Fig. 1.22. The anomalous covering
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Figure 1.21. The exponential and logarithm.

points are the ramifications. More generally, a cover is ramified if d ≥ 2 sheets
meet at a point in the manner of the Riemann surface z1/d , |z| < 1. The idea
of a cover is now widened to admit such ramifications; it is even convenient
to admit infinite ramifications as in the Riemann surface of the logarithm. The
index of a ramification is 1 less than the degree, that is, 1 less than the number
of adjacent sheets.

Riemann–Hurwitz Formula. Let K be a compact orientable manifold (= a
handlebody) covering the projective line P1 with total ramification index r , d
sheets, and g handles. Then r = 2(d + g − 1). This is the Riemann–Hurwitz
formula.

Example 1. The formula precludes unramified covers unless d = 1 and g = 0
(K = P1).
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Figure 1.22. Ramified covers.

Example 2. The Riemann surface of y3 = x − x−1 seen in Fig. 1.19, viewed
as a ramified cover of the projective line with parameter x , has 4 ramifications
of degree 3 apiece for a total index of 4(3 − 1) = 8, 3 sheets, and 2 handles:
8 = 2(3 + 2 − 1).

Proof of the Riemann–Hurwitz formula. The compactness of K implies that
both the ramification index and the sheet number d are finite. Let the base
be provided with a fine triangulation in which the projections of the ramified
points of the cover appear as corners, and lift it up by the inverse projection to
obtain a triangulation of K. The alternating sum: corners − edges + faces is
the Euler number: Upstairs its value is 2−2g; downstairs its value is 2(g = 0).
Now the Euler number of the cover should be 2 − 2g = 2d because everything
downstairs appears d-fold upstairs, but not quite: A base point that lifts to one
or more ramified points of K, of total index m, is covered only d − m times,
so there is an imbalance of − ∑

m = −r to the right, the true relation being
2 − 2g = 2d − r . This is the formula.

Exercise 4. Extend the Riemann–Hurwitz formula to the case of a ramified
cover of a general compact complex manifold.
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1.13 Algebraic Functions

The idea of a Riemann surface applies to the projective curves of Section 10.
Let P(x, y) be an irreducible polynomial in y with coefficients from C[x]. The
roots y of P(x, y) = 0 are viewed temporarily as elements of the splitting field
of P over the ground field C(x). They are simple, so their discriminant is a
nonvanishing element of C(x); see Section 4. The totality of these roots is
an algebraic function y of the indeterminate x. Riemann’s idea provides a
geometrical picture of this, as will now be explained in stages.

The Covering. Fix a point x0 of the projective line P1 punctured at ∞ and at
the points where either the discriminant or the top coefficient of P(x, y) =
c0(x)yd + c1(x)yd−1 + · · · vanishes. Near x0, you have d distinct numerical
roots y1, . . . , yd , each of which is capable of being expanded in powers of
z = x − x0: y = k0 + k1z +· · · . The resulting pairs p = (x, y) with x = x0 and
y = y1, . . . , yd are displayed in Fig. 1.23 stacked up over x0. The latter is the

p0

K

M
x0

p1

p2

Figure 1.23. Function elements.

base point; y is a function element; the map p0 �→ x0 is the projection. Now
any such function element y0 can be reexpanded about any center x close to
x0. This produces a patch of points p = (x, y) about p0 = (x0, y0), and as this
patch is faithfully mirrored by the projection x = x(p), so it may be equipped
with a complex structure by use of the local parameter z(p) = x(p) − x0. This
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makes the totality of points p into a complex manifoldK covering the punctured
base P1.

Connectivity. The possible disconnectivity of the cover is easily disproved.
Any function element y0 can be continued without obstruction over the punc-
tured base, producing a subfamily y1, . . . , yn of the function elements over each
base point x, of fixed cardinality n ≤ d. The coefficients of the polynomial
P1(y) = (y − y1) · · · (y − yn) are single-valued functions of x. These must be
rational since any function element obeys an estimate |y| ≤ C1 ×|x − x0|−m at
a finite puncture or |y| ≤ C2 × |x|m at ∞. It follows that P1(y) divides P(x, y)
over C(x), violating the irreducibility of the latter unless n = d; in short, con-
tinuation of y0 produces the full family of function elements over every base
point, which is to say that K is connected.

The Punctures Filled In. This is a pretty application of the monodromy the-
orem of Section 11. Fix a puncture x = 0, say, and let 0 < |x| < r0 be
puncture-free. The left half-plane H of the Riemann surface of log x covers
this punctured disk, and any function element y over a point of the latter can be
lifted to the former and continued there without obstruction. This produces a
single-valued function of the logarithm because H is simply connected. Now
each of the points log x + 2π

√−1Z covers x and each of the associated func-
tion elements is a root of P(x, y) = 0. It follows that only a finite number
of different function elements appear at log x + 2π

√−1Z and that the origi-
nal branch repeats itself after a continuation upward by 2π

√−1n units with
minimal n ≤ d independent of x, the intervening branches being distinct. This
means that the continued function element y may be viewed as a single-valued
function of x1/n; it is even of rational character in this parameter at x = 0 in
view of the estimate |y| ≤ C1 × |x|−m used before. The upshot is that the
totality of function elements so produced can be obtained from a single frac-
tional expansion y0 = c−kx−k/n +· · ·+ c0 + c1x1/n +· · · by reexpansion about
centers 0 < |x| < r0. K is now completed at punctures by the insertion of
points of this new type p0 = (0, y0), and the complex structure is extended by
attributing the local parameter z(p) = [x(p)]1/n to an ambient patch. The new
points have the (ramified) aspect of Fig. 1.24, and the completed surface K is a
compact ramified cover of the unpunctured base P1 with a full complex struc-
ture: It is the Riemann surface of the algebraic function y. Bliss [1933] and
Springer [1981] present more details and additional information. Weyl [1955]
and Narasimhan [1992] are recommended for a more sophisticated view. K is
a nonsingular model of the projective curve defined by P(x, y) = 0; compare
amplification 2 in Section 10. The present desingularization is an overkill as it
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Figure 1.24. The ramified cover.

is realized only in the infinite-dimensional space of points p = (x, y). Actually,
a nonsingular model of any projective curve can always be accommodated in
P3; see Shafarevich [1977].

Uniformization. The universal coverK of a complex manifold can be equipped
with the natural complex structure lifted up from the base; it is also simply con-
nected. What are the possibilities? The answer is contained in the celebrated
theorem of Klein [1882], Poincaré [1907], and Koebe [1909–14]: Up to con-
formal equivalence, K is either the sphere P1, the plane C, or else the disk
D: |x | < 1. Note that P1 is inequivalent to C or D on topological grounds
already and that C is inequivalent to D because an analytic map of C to D has
a one-point image, by Liouville’s theorem: In short, sphere, plane, and disk
are genuinely different. The statement includes the earlier Riemann mapping
theorem [1851]: A simply connected region of the sphere omitting two or more
points is conformally equivalent to a disk. It is important to understand what
is involved in the general statement, though the proof is not so simple and we
refer you to Ahlfors [1973], Springer [1981], or Weyl [1955] for full details.
Poincaré himself did not find a fully successful proof. The following informal
discussion may be helpful.
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Some Hydrodynamics. A pretty hydrodynamical picture was introduced by
Klein in his Cambridge lectures [1893]. Let U be a patch of K equipped
with a local parameter z(p) = x1(p) + √−1x2(p). A steady irrotational flow
of an incompressible fluid is specified by a velocity field v(p) = (v1, v2)
subject to (1) div(v) = ∂v1/∂x1 + ∂v2/∂x2 = 0 for the incompressibility
and (2) curl(v) = ∂v2/∂x1 − ∂v1/∂x2 = 0 for the irrotational character.
(2) implies the existence of a potential function p, producing the velocity
field v = gradp, subject to (3) �p = 0 in place of (1), and conversely, if
�p = 0 in U , then v = grad p is the velocity field of a steady irrotational
flow of an incompressible fluid: x

�

(p) = v(p) with x(p) = (x1(p), x2(p)). Let
z′(p) = x ′

1(p) + √−1x ′
2(p) be a new local parameter. The new velocity field is

also incompressible and irrotational, and the new flow appears in the old coor-
dinates as x

� = J J †∂p/∂x = cv with Jacobian J = ∂x/∂x′, its transpose J †,
and the positive factor c = |detJ |2 = |dz/dz′|2, as you will check by means of
the Cauchy–Riemann equations ∂x1/∂x ′

1 = ∂x2/∂x ′
2, ∂x1/∂x ′

2 = −∂x2/∂x ′
1.

The new streamlines are the same as the old; it is only the speed that is changed.
This ambiguity of speeds is unavoidable: K has only a conformal structure, so
there is no preferred local parameter on any patch.

Exercise 1. Check the new flow.

A Global Flow. K is equipped with the streamlines of a steady incompressible
irrotational flow produced by a single source at a point o, with the understanding
that ifK is compact, it will be necessary to destroy fluid at a complementary sink
o′. The source is modeled by the potential function p = log |z(p)| with local
parameter z(p) vanishing at p = o, but care is needed: If the local parameter
is poorly chosen, it may not be possible to extend the flow patchwise over
the whole of K without unpleasant singularities besides the necessary sink in
the compact case. What is needed, and this is the hard part of the proof, is
the existence of a global function p with �p = 0 at ordinary points of K, the
singularity log |z(p)| at the source, and in the compact case, a second singularity
− log |z′(p)| at the sink, z′(p) being a local parameter there. This defines a flow
over the whole of K with velocities v = (v1, v2) = grad p . The conjugate flow
with velocities (v2, −v1) is at right angles; it has a (local) potential function
q determined up to an additive constant. The associated circulation = ∮

dq
taken about any of the (closed) level lines of p is independent of the particular
level line, by Stokes’s theorem, and may be evaluated as 2π by shrinking the
level line to o. The new parameter z(p) = exp

[
p(p) + √−1q(p)

]
is now seen

to be a single-valued function of rational character on K with a simple root at
the source and, in the compact case, a simple pole at the sink. This function
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Figure 1.25. Global parameters.

is 1:1 as is plain from the picture (Fig. 1.25) but not so easy to prove: The
streamlines issuing from o cover the punctured surface simply, except that they
come together again at the sink in the compact case; p serves as coordinate
along the streamline and q tells which streamline it is. Three cases are now
distinguished according as K is compact or not and, in the noncompact case,
according as p is bounded or not.

Case 1. K is compact. Then it is a topological sphere and z:K → P1 is a
conformal equivalence between K and the projective line.

Case 2. K is noncompact and p is unbounded. Then z:K → C is a conformal
equivalence between K and the whole complex plane.

Case 3. K is noncompact and p tends to the finite number p(∞). Then z maps
K 1:1 onto a disk of radius r = exp [p(∞)]. This is Riemann’s case.

Idea of the proof. Springer [1981] explains the actual construction of p: Let
∧1 be the class of smooth 1-forms ω = ω1dx1 + ω2dx2 on K and let ∗ω =
−ω2dx1 +ω1dx2. Weyl [1955] proved that ∧1 splits into three pieces, mutually
perpendicular relative to the natural quadratic form

∫
ω∧∗ ω̄,2 of which the first

is differentials of smooth functions (ω = d f = (∂ f/∂x1)dx1 + (∂ f/∂x2)dx2),

2 ω̄ is the complex conjugate of ω.
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the second is codifferentials (ω = ∗d f ), and the third is the harmonic differen-
tials which are simultaneously closed (dω = (∂ω2/∂x1−∂ω1/∂x2)dx1∧dx2 =
0), like differentials of functions, and also coclosed (d ∗ ω), like codiffer-
entials. Now place yourself in the noncompact case and cook up a smooth
exact differential ω that imitates dlogz(p) near p = o and vanishes at a lit-
tle distance from it. Then ω − √−1 ∗ ω̄ vanishes near 0 and ∞ and, being
smooth, may be split into its three parts: d f1 +∗d f2 +ω3. The new differential
ω − d f1 = √−1 ∗ ω + ∗d f2 + ω3 is plainly smooth, exact, and coclosed away
from o, and its real part is the differential of a single-valued harmonic function
p on K − o having the required singularity log|z(p)| at p = o. The simple
connectivity of K is now used to confirm that dq = ∗dp is also exact modulo
2π so z(p) = exp

[
p(p) + √−1q(p)

]
is single-valued too. The final point is

that z:K → C is 1:1. This is more subtle, so we stop here.

Exercise 2. The map of K to a sphere, plane, or disk (= half-plane) may be
standardized by fixing its values at any three points as you will. Why?

1.14 Examples

The deep content of the Koebe–Poincaré theorem is plain from elementary
examples.

Spheres. This is already instructive. The statement is that a complex structure
on a topological sphere can be described by a global parameter z:K → P1.
This is what is meant by saying that the sphere has just one complex structure.

Annuli. The sphere is peculiar in this respect; for instance, two annuli equipped
with the natural complex structure they inherit from C are conformally equiv-
alent if and only if they have the same ratio r of inner to outer radii. In short,
the inequivalent complex structures of a topological annulus are in faithful
correspondence with the numbers 0 < r < ∞.

Exercise 1. Why? Hint: A map of annuli extends by circular reflection to a
map of punctured planes.

Punctured Spheres. The once-punctured sphere is the plane, so the twice-
punctured sphere is a punctured plane, and its universal cover K may be viewed
as the Riemann surface of the logarithm; in short, K is a plane. The thrice-
punctured sphere (= the doubly punctured plane) is different: Its universal
cover is the disk.

https://doi.org/10.1017/9781009602129.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009602129.003


1.14 Examples 47

Proof. The cover is not compact (why?), so only K = C needs to be ruled
out. But if K = C, then the covering group is populated by substitutions of
P SL(2, C) fixing ∞; see Section 5. These are of the form z �→ az + b and
have fixed points if a �= 1, whereas covering maps do not; see ex. 11.7. It
follows that the covering group is commutative, contradicting the fact that the
fundamental group of the twice-punctured plane is not. A very different proof
will be found in Section 4.9.

Picard’s Little Theorem [1879]. A very pretty bonus is a proof of the fact that
a nonconstant integral function takes on every complex value with at most one
exception. The exception is real: the exponential does not vanish.

Proof. Let the integral function f omit the values a and b. Then (b−a)−1( f −a)
omits 0 and 1, so it is permissible to take a = 0 and b = 1. Now use f to map
a small disk into the punctured plane C − 0 − 1, lift the map to the (universal)
covering half-plane via any branch of the inverse projection, and map the lift
into the unit disk. The composite map C → C − 0 − 1 → H → D may be
continued without obstruction along paths of the plane. This produces a single-
valued function in that plane by the monodromy theorem of Section 11, and as
its values are confined to the disk, so it must be constant. But the projection is
not constant nor is the map from the half-plane to the disk. The only way out
is for f to be constant.

Ahlfors [1973: 19–21] presents a beautiful elementary proof, not employing
such transcendental aids; see also Nevanlinna [1970: 248–9] for a thorough
geometric discussion and Section 4.9 for a reprise.

Hyperbolic Geometry. Another amusing consequence is that the thrice-punc-
tured sphere admits a geometry of constant curvature −1. The cusps of this
horned sphere are modeled in ex. 9.5; see Fig. 1.26. The point is that the
covering group of the punctured sphere is realized by substitutions of P SL(2, R)
acting upon the covering half-plane, and as these are rigid motions of the
cover, so this geometry drops down to the punctured sphere; see Section 8 and
Pogorelov [1967: 166–7] for such matters. It is not possible to do this for the
unpunctured sphere. The obstacle is expressed by the Gauss–Bonnet formula
which states that if a handlebody X of genus g is equipped with a geometry
with (possibly variable) curvature κ and surface element dσ , then the value of
the curvatura integra

∫
X κdσ is 2π times the Euler number 2 − 2g of X; for

example, it is +4π for the sphere. Pogorelov [1967: 164–6] explains this well.
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Figure 1.26. The horned sphere.

Higher Handlebodies. The idea behind the horned sphere applies, as well, to
higher handlebodies of genus 2 or more: Their universal covers are always
half-planes so the covering maps appear as substitutions of P SL(2, R) and the
geometry of curvature −1 drops down. Note, also, that the covering group must
be noncommutative.

Exercise 2. Check this. Hint: Two handles produce a nontrivial commutator
aba−1b−1 in the fundamental group; see Fig. 1.27.

Poincaré [1898] had the attractive idea of producing the universal cover of a
higher handlebody by endowing the body with a geometry of curvature −1,
lifting this geometry to the cover, and identifying the latter with the hyperbolic
half-plane; see Kazdan [1985] for such matters.

Tori. These are different; for example, the curvatura integra vanishes, so a
geometry of constant curvature ±1 is not possible. Let ω be a complex number
of positive imaginary part and let L be the lattice Z ⊕ ωZ. The torus X = C/L

inherits the complex structure of C and has this plane as its universal cover.
The latter divides naturally into cells as in Fig. 1.28. The fundamental cell is
shaded. The projection C → X is identification modulo L and the covering
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a

b

Figure 1.27. Handles produce noncommutativity.

1

ω

0

Figure 1.28. The lattice.

group is a copy of the fundamental group Z2 = Z ⊕ Z, as it had to be. The fact
is that, up to conformal equivalence, every complex torus arises in this way.

Proof. The universal cover of the torus is the plane; intuitively, it is just the
torus rolled out vertically and horizontally. Now the covering maps are fixed-
point-free conformal self-maps of C, that is, translations z �→ z + c, as noted
under the heading “punctured spheres.” The numbers c form a sublattice L of
C, isomorphic to Z2 and so of the form ω1Z⊕ω2Z with noncollinear ω1 and ω2,
as will be verified in Section 2.6. X is now identified with the quotient C/L. A
trivial map z �→ z/ω1 and, if need be, a change of sign of the ratio ω = ω2/ω1

brings L to the standard form Z ⊕ ωZ with ω of positive imaginary part.

The identification X = C/L leads to a simple proof of the fact that, unlike the
unpunctured sphere, but like the annulus of ex. 1, the topological torus has many
inequivalent conformal structures. The same is true of the higher handlebodies.
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Proof. Let X1 = C/L1 and X2 = C/L2 be complex tori with a conformal map
between them and lift this map up to a self-map of their common universal
cover C; see Fig. 1.29. The lifted map is single-valued by the monodromy
theorem, the continuation being unobstructed; moreover, it is of linear growth
at ∞ since a closed path that goes around or through the hole of X1 leads from
a point in one cell of the cover to a new point in an adjacent cell. But then the
lifted map is a linear function az + b of the parameter z of K1 = C, and as it
commutes with projections, so you must have b ∈ L2 and aL1 ⊂ L2; indeed,

X1 = C/ L1 X2 = C/L2

Figure 1.29. Conformal maps between tori.

aL1 = L2 by consideration of the inverse map. The moral is that the tori cannot
be conformally equivalent otherwise. For example, the period ratios ω = √−1
and ω = (1 + √−3)/2 produce inequivalent tori.

Geometric Explanation. The fact that tori admit many different complex struc-
tures is the subject of Section 2.6 and of the first part of Chapter 4. A geometric
explanation can be given right now. Let the fundamental cell be

F = {x = x1 + sx2 + √−1x2 : 0 ≤ x1 < 1, 0 ≤ x2 < h}

with fixed base [0, 1). This standardization does not affect the number of
complex structures. There are two degrees of freedom left: the slant s and
the height h > 0. The corresponding torus is made in two steps from the
rectangular cell of height h(s = 0): First paste together the vertical sides to
make a right cylinder; then twist the upper circle by sh and paste it to the bottom.
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This produces a shear in the amount sx2 at level 0 ≤ x2 < h and changes the
complex structure; a change of height usually changes the structure, too.

Example. Let h = 1 and let the two slants s1 and s2 produce equivalent tori.
The corresponding lattices L = ⊕ (s + √−1)Z are related by a multiplication
aL1 = L2, as you know, and |a| = 1 by comparison of areas of fundamental
cells. But then a ×1 = i + j(s2 +√−1) with i, j ∈ Z and 1 = (i + js2)2 + j2,
so either j = 0, a = i = ±1, and L�� = L�=, or else j = ±1, s2 = ∓i , and
a = ±√−1. Now note that s2 may be reduced modulo the period 1 so as to
lie in [0,1), the moral being that, with this adjustment, the conformal structure
determines the slant.

Exercise 3. Does the conformal structure determines the height if the slant is
0? If not, how far does it go?

1.15 More on Uniformization

The statement of Koebe–Poincaré is called the uniformization theorem in
the older literature. The name refers to the nineteenth-century usage uni-
form = one-valued. To clarify matters let X be a projective curve defined
by the vanishing of an irreducible polynomial: P(x, y) = 0. Its points are
triples (x, y, z) ∈ C3 − 0 with projective identifications, so x = x/z and
y = y/z make projective sense; in fact, they are functions of rational character
on X, and the vanishing of P expresses a relation between them, specify-
ing y as a many-valued function of x and vice versa. These functions may
be promoted to the universal cover K of X where they appear as functions
x, y of rational character, invariant under the action of the covering group.
In this way, X is uniformized by K in that the totality of points X is dis-
played by means of single-valued functions on K(= sphere, plane, or half-
plane).

Genus 0. If X has no handles, then it is a projective line P1 and is its own
universal cover, so x and y appear as rational functions of the parameter w of
P1 and the map w �→ (x, y) is a conformal equivalence between P1 and X. The
simplest nontrivial example is provided by the projective circle X: x2 + y2 = 1
of Section 10 and its uniformization by

x = 1

2
(w + w−1), y = 1

2
√−1

(w − w−1).

Rational Curves. Here is a deeper fact: If X is a rational curve in the sense
that there exists a nonconstant map of rational character of P1 into X, then
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X is of genus 0 already and so itself a projective line, as before; compare
Section 14. The idea will be plain from a picture: P1 is simply connected,
so a map of rational character of P1 into X lifts to a map of P1 into K, by a
self-evident application of the monodromy theorem. This is impossible if K
is not a projective line since nonconstant rational functions take all complex
values, ∞ included.

Tori. The complex torus X cannot be uniformized by rational functions since
its universal cover K is not a projective line; see ex. 2.11.3. Indeed, K = C, X
is its quotient by the lattice L as in Section 14, and x = x/z and y = y/z may be
promoted to functions of rational character on C having every complex number
ω ∈ L as a period. These functions uniformize X in the former style, but are
not rational. The whole of Chapter 2 is devoted to such elliptic functions.

Higher Handlebodies. K is a half-plane by Section 14. Now the uniformizing
functions x and y, promoted toK, are invariant under a subgroup of P SL(2, R):
the so-called automorphic functions. The subject lies mostly outside the scope
of this book, but see Ford [1972] and Terras [1985] for more information,
and Chapters 4 and 5 for a number of special instances and some general
information.

1.16 Compact Manifolds as Curves: Finale

The methods sketched in Section 14 can be used to prove the existence of
nonconstant functions of rational character on any compact complex manifold
M; see, for example, Hurwitz and Courant [1964], Springer [1981], or Weyl
[1955]. Let x be such a function: It has a finite number of poles and an equal
number of roots, as may be seen by integrating (2π

√−1)−1d log[x(p)] about
the edges of a triangulation of M, every edge being traversed twice, in opposite
directions. This number is its degree d . It follows that x takes on every complex
value d times, so M appears as a d-fold ramified covering of P1 with projection
p �→ x(p). Now two cases arise according as d = 1 or d ≥ 2.

Case 1. If d = 1, then the projection is a conformal equivalence of M to P1;
indeed, x fills the office of global parameter on M.

Case 2. If d ≥ 2, a further construction is necessary to produce a function y
of rational character taking d distinct numerical values y = y1, . . . , yd at the
d points of the fiber x = x(p), for most values of the base point x ∈ P1. Then
it is easy to see that (y − y0) · · · (y − yd ) is of rational character in x and so
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represents a polynomial P ∈ C(x)[y] satisfied by x and y; moreover, P is nec-
essarily irreducible over the ground field C(x), as you will see by continuation
of the identity P(x, y) = 0 over the necessarily connected manifold M. Now
comes the punch line: The vanishing of P(x, y) defines a nonsingular projec-
tive curve X, as in Section 10, and the map p �→ (x, y) of M to X is a conformal
equivalence; in short, every compact complex manifold is a projective curve.
The discussion has come full circle.
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