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Abstract

In this article we consider Re-nnd solutions of the equation AX B = C with respect to X, where A, B, C
are given matrices. We give necessary and sufficient conditions for the existence of Re-nnd solutions and
present a general form of such solutions. As a special case when A = I we obtain the results from a paper
of GroB (‘Explicit solutions to the matrix inverse problem AX = B’, Linear Algebra Appl. 289 (1999),
131-134).
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1. Introduction

Let C"* denote the set of complex n x m matrices. Here I, denotes the unit matrix
of order n. By A*, R(A), rank(A) and V' (A), we denote the conjugate transpose, the
range, the rank and the null space of A € C"*™.

The Hermitian part of X is defined as H(X) = (1/2)(X + X*). We say that X is
Re-nnd (Re-nonnegative definite) if H(X) > 0 and X is Re-pd (Re-positive definite)
if H(X) > 0.

The symbol A~ stands for an arbitrary generalized inner inverse of A, that is, A~
satisfies AA~A = A. By A" we denote the Moore—Penrose inverse of A € C"*™ that
is, the unique matrix A" € C"*" satisfying

AATA=A, ATAAT=AT, (AAH)*=4AT, (ATA)* =ATA.

For some important properties of generalized inverses see [5, 6, 16] and [15].
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Many authors have studied the well-known equation
AXB=C, (1.1)

with the unknown matrix X, such that X belongs to some special class of matrices. For
example, in [18] and [7] the existence of reflexive and anti-reflexive, with respect to a
generalized reflection matrix P, solutions of the matrix equation (1.1) was considered,
while in [9, 14, 17, 19] necessary and sufficient conditions for the existence of
symmetric and antisymmetric solutions of the equation (1.1) were investigated.

The Hermitian nonnegative definite solutions for the equation AXA™ = B were
investigated by Khatri and Mitra [14], Baksalary [4], Dai and Lancaster [10],
GroB [12], Zhang and Cheng [23] and Zhang [24].

Wu [21] studied Re-pd solutions of the equation AX = C, and Wu and Cain [22]
found the set of all complex Re-nnd matrices X such that XB = C and presented
a criterion for Re-nndness. Grof3 [11] gave an alternative approach, which
simultaneously delivers explicit Re-nnd solutions and gave a corrected version of some
results from [22]. Some results from [22] were extended in the paper of Wang and
Yang [20], in which the authors presented criteria for 2 x 2 and 3 x 3 partitioned
matrices to be Re-nnd, found necessary and sufficient conditions for the existence of
Re-nnd solutions of the equation (1.1) and derived an expression for these solutions. In
the paper of Daji¢ and Koliha [3], a general form of Re-nnd solutions of the equation
AX = C is given for the first time, where A and C are given operators between Hilbert
spaces. In addition to these papers many other papers have dealt with the problem of
finding the Re-nnd and Re-pd solutions of some other forms of equations.

In this paper, we first consider the matrix equation

AXA*=C,

where A € C"", C € C"*", and find necessary and sufficient conditions for the
existence of Re-nnd solutions. Also, we present a general form of these solutions.
Using this result, we obtain necessary and sufficient conditions for the equation

AXB =C,

where A € C"*™, B € C"™*" and C € C"*", to have a Re-nnd solution. This way, the
results of [22] and [11] follow as a corollary and a general form of those solutions is
given in addition. As far as the author is aware, this is the first time necessary and
sufficient conditions for the existence of a Re-nnd solution of the equation AXB = C
have been given in terms of g-inverses.

Now, we state some well-known results which are used frequently in the next
section.

THEOREM 1.1 Ben-Israel and Greville [5]. Let A € C**™ B € CP*" and C € C"*".
Then the matrix equation

AXB =C,
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is consistent if and only if, for some A=, B~
AATCB  B=C,
in which case the general solution is
X=A"CB +Y—-A"AYBB™,
for arbitrary Y € C"*P,

The following result was derived by Albert [1] for block matrices, by Cvetkovié-Ili¢
et al. [8] for C* algebras, and by Daji¢ and Koliha [3] for operators between different
Hilbert spaces. Here, we give the basic version proved in [1].

THEOREM 1.2. Let M € C"+™x0+m) be q Hermitian block matrix given by

A B
ve[i 1]

where A € C"*" and D € C"*"™. Then, M > 0 if and only if
A>0, AA'B=B, D-B*A'B>0.

Anderson and Duffin [2] define the parallel sum of matrices for a pair of matrices
of the same order as
A:B=A(A+ B)™ B.

It is clear that for this definition to be meaningful, the expression A(A + B)™ B must
be independent of the choice of the g-inverse (A + B)™. Hence, a pair of matrices A
and B will be said to be parallel summable if A(A + B)™ B is invariant under the
choice of the inverse (A + B)~, that is, if

R(A) CR(A + B) A R(A*) C R(A* + B¥),
or, equivalently,
R(B) € R(A + B) A R(B*) € R(A* + B¥). (12)

Note that
R(A) CR(B) < BB A=A.

By [13, Theorem 2.1],
R(A) CR(B) & AA* <A>BB* forsome A >0,
so, for the nonnegative definite matrices A and B, we have that

A<A+B&RAY CR(A+ B,
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which implies R(A) € R((A + B)l/ 2) or, equivalently,
(A+B)'2((A+B)/*)TA=A.
Now,
A+B) (A+B)A=(A+ B> (A+B)'*")?A=A4,

which is equivalent to R(A) € R(A + B).

Hence, nonnegative definite matrices A and B are parallel summable. Furthermore,
in [2] it was proved that for a pair of parallel summable matrices the following
expression holds:

A:B=B:A,
that is,
A(A+B)"B=B(A+ B) A. (1.3)
2. Results

The next result was first proved by Wu and Cain [22] and later derived in a different
way by GroB [11]. It gives necessary and sufficient conditions for the matrix equation
AX = C to have a Re-nnd solution X, where A, C are given matrices of suitable size
and presents a possible explicit expression for X.

THEOREM 2.1. Let A € C"™™ C e C"™ ", There exists a Re-nnd matrix X € C">m
satisfying AX = C if and only if AAYC = C and AC* is Re-nnd.

From the proof of this theorem we can see that
Xo=ATC — (ATO)* + ATAC*(AT)",

is one of Re-nnd solutions of AX = C. Also, in [11] the author mentions that any
matrix of the form
X=Xo+ U —-ATAY( — ATA),

with Y € C">™ which is Re-nnd is also a Re-nnd solution of AX = C, in the case
where such solutions exist, but he did not present a general form of such solutions.
Our main aim is to generalize these results to the equation AX B = C and to present a
general form of Re-nnd solutions of it.

First, we consider the equation

AXA* = C, 2.1)

and find necessary and sufficient conditions for the existence of Re-nnd solutions.
The next auxiliary result presents a general form of a solution X of (2.1) which
satisfies H(X) = 0.
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LEMMA 2.2. If A € C"", then X € C"™*™ is a solution of the equation
AXA* =0, (2.2)
which satisfies H(X) = 0 if and only if
X=W{UI-ATA) - - ATHW, (2.3)
for some W € C"*™,

PROOF. Denote by r =rank(A). Let us suppose that X is a solution of the
equation (2.2) and H(X)=0. Using a singular value decomposition of A =U*
Diag(D, 0)V, where U € C"*", V € C"™*™ are unitary and D € C"*" is an invertible
matrix, we have that

A" = V*Diag(D~!, 00U and x=v* |31 X2ly
X3 X4

for some X1 € C"™*" and X4 € Clm—7)x(m=r),
From AXA*=0 we obtain that X; =0 and, by H(X)=0, that X3=—XJ

and H(X4) = 0. Hence,
0 X
_ *
v 8 5y

Taking into account that H(X4) = 0, for

- X,

W=V |:0 (1/2)X4 v,
we have that '
X=WU—-A"A) — I - ATAW*.

In the other direction we can easily check that for arbitrary W € C"*™ X defined
by (2.3) is a solution of the equation (2.2) which satisfies H (X) = 0.

THEOREM 2.3. Let AeC"™ CeC"™" be given matrices such that the
equation (2.1) is consistent and let r = rank H(C). There exists a Re-nnd solution of
the equation (2.1) if and only if C is Re-nnd. In this case the general Re-nnd solution

is given by
X =ACAS)* + (I — A~ AUU*(I — A"A)* + WU — ATA) — (I — ATAYW*,
(2.4)
with
AS=A"+U—-A"AZHO)H, (2.5)

where A~ and (H(C)'/?)~ are arbitrary but fixed generalized inverses of A and
H(C)'72, respectively, and Z € C"*", U e C"*"m=") W e C"*™ are arbitrary
matrices.
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PROOF. If X is a Re-nnd solution of the equation (2.1), then
AH(X)A*=H(C)>0.

In the other direction, if C is Re-nnd, then Xo = A~ C(A™)* is a Re-nnd solution of
the equation (2.1).

Let us prove that a representation of the general Re-nnd solution is given by (2.4).
If X is defined by (2.4), then X is Re-nnd and AXA* = AA~C(AA™)* =C.

If X is an arbitrary Re-nnd solution of (2.1), then H (X) is a Hermitian nonnegative-
definite solution of the equation

AZA* = H(C),
so, by [12, Theorem 1],
HX)=ATHCO)(AD)*+U - AAUU*I — A~ A",

where A= is given by (2.5), for some Z € C"*" and U € C"*"—"),
Note that,

HX)=HATC(AD)"+(I —A"AUU*(I — A~ A)"),
implying
X=ATCATY"+(U -A"AUU*I - A" A"+ Z,
where H(Z) =0 and AZA* = 0. Using Lemma 2.2, we have that
Z=W(I—-ATA) — (I — ATA)W*,
for some W € C"*". Hence, we obtain that X has a representation as in (2.4).

Now, let us consider the equation
AXB =C, (2.6)

where A € C"*", B € C™*" and C € C"*" are given matrices and find necessary and
sufficient conditions for the existence of a Re-nnd solution.

Without loss of generality we may assume that n = m and that matrices A and B are
both nonnegative definite. This follows from the fact that whenever the equation (2.6)
is consistent then X is a solution of that equation if and only if X is a solution of the
equation A*AXBB* = A*C B*. Hence, from now on, we assume that A and B are
nonnegative-definite matrices from the space C"*".

The next theorem is the main result of this paper which presents necessary and
sufficient conditions for the equation (2.6) to have a Re-nnd solution.

THEOREM 2.4. Let A, B, C € C"*" be given matrices such that A and B are

nonnegative definite and the equation (2.6) is consistent. There exists a Re-nnd
solution of (2.6) if and only if

I'=B(A+B) C(A+B) A,
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is Re-nnd, where (A + B)™ is a g-inverse of A + B. In this case a general Re-nnd
solution is given by

X=A+B)~(C+Y+Z+W)(A+B))*
+(I—(A+B) (A+B)UU*(I — (A+ B) (A + B)*
+0UI—-A+B)(A+B)—U-(A+ B (A+ B)Q*, (2.7

where Y, Z, W are arbitrary solutions of the equations
Y(A+B)™"B=C(A+B)" A,

A(A+B) Z=B(A+B) C, (2.8)
A(A+B)"W(A+B) B=T,

such that C +Y + Z + W is Re-nnd, (A + B)~ is defined by

(A+B)~=(A+B) " +(I—-(A+B) (A+B)PHC +Y +Z+ W)/},
where U € C*=1) 0 e C™" P e C"™" gre arbitrary, r =rank(C +Y + Z + W).
PROOF. Denote by

E=(A+B) B, F=C(A+B) A,
K=A(A+B)", L=B(A+B) C.

Now, equations (2.8) are equivalent to
YE=F, KZ=L, KWE=T. (2.9)

Using (1.2), (1.3) and the fact that E is g-invertible and E~ = B~ (A + B), we have
that

FE'E=C(A+B) AB (A+B)(A+B) B
=C(A+B)"AB"B=CB B(A+B) AB™B
—CB A(A+B) BB B=CB A(A+B) B
—CB B(A+B) " A=C(A+B) A=F,

which implies that the equation Y E = F is consistent. In a similar way, we can prove
that the other two equations from (2.9) are consistent. Furthermore, T* = F*FE =
K L* is Re-nnd which implies, by Theorem 2.1, that the first two equations from (2.9)
have Re-nnd solutions.

Now, suppose that the equation (2.6) has a Re-nnd solution X. Then

H(T) = H(B(A+ B)"AXB(A+ B)"A)
= (B(A+ B)"A)H(X)(B(A + B)"A)* > 0.
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Conversely, let T be Re-nnd. We can check that
Xo=A+B) (C+Y+Z+W)A+B)", (2.10)

is a solution of the equation (2.6), where Y, Z, W are arbitrary solutions of the
equations (2.9). This follows from

AXoB=(A+B)(A+B) C(A+B) (A+ B)
=(A+B)(A+B)"AA"CB " B(A+B)" (A+ B)
=AACB B=C.
Now, we have to prove that for some choice of ¥, Z, W, the matrix C+Y +Z + W
is Re-nnd which would imply that X is Re-nnd.
Let
Y=FE — (FE )"+ (E")*F*EE"+(U —-EE)*U —-EE"),
Z=K L— (K LY*+K KL*"(K")*"+(I—-K K)QU — K K)*,
W=K TE  —(I—-K K)S—S(U—-EE™),
where Q=(C*— K T*E ) (C*— K T*E™)* and S=K KC*+ C*EE™.
Obviously, Y, Z, W are solutions of the equations (2.9) and
H(Y)=(E")*H(T)E” +(I —EE")*(I — EE"),
H(Z)=K H(T)K)"+ U - K K)H(Q)I — K™ K)",
HW)=K TE  +(E")*T"(K")*— H(C*EE~ + K" KC*—-2K " T*E").
Using
K KK T*ET =K KK KL*ET =K KL*E- =K T*E™,
K T*ETEE =K F*EE"EE =K F*EE =K T*E™,
KC*E=KL*"=T",

we compute,

HC+Y+Z+W)=(E)" +K)HMW(E ) +K)*

. _ | —EE-
where
D= 1 C—(E7)*T(K)*
T |C*—KTT*E~ H(Q) )

By Theorem 1.2, it follows that D is nonnegative definite, so H(C +Y + Z + W)
> 0.
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Hence, with such a choice of Y, Z, W, it can be seen that X defined by (2.10) is
Re-nnd solution of (2.6). So, we proved the sufficient part of the theorem.

Let X be an arbitrary Re-nnd solution of (2.6). It is evident that ¥ = AXA,
Z = BXB and W = BXA are solutions of (2.9), and that

(A+B)X(A+B)=C+Y+Z+W,

is Re-nnd. Now, using Theorem 2.3, we obtain that X has the representation (2.7).
Let us mention that, if we apply Theorem 2.4 to the equation

AX =C,

we obtain [11, Theorem 1] as a corollary.

Note that if the equation AX = C is consistent then X is a solution of it if and only
if A*AX = A*C. By Theorem 2.4, we obtain that there exists a Re-nnd solution of the
equation AX = C if and only if

T=(A*A+ 1) "A*C(A*A + 1)1 A*A,

is Re-nnd. Note that in this case (I + A*A) is invertible matrix.
Let us prove that T is Re-nnd if and only if C A* is Re-nnd.
By
(A*A+ D 'A*"A= A"AA*A+ D71,

we have that
T =((A*A+ )" 'A)(CA*)((A*A + )71 A)*,

that is,
H(T)=(A*A+ )" 'A"H(CA*)((A*A+ )~ A%)*.

From the last equality, H(C A*) > 0 implies H(T) > 0.
Now, suppose that H(T) > 0. Owing to the consistence of the equation AX = C, it
follows that AATC = C which implies that

(AN (A*A+ DT (AN (A*A + 1)* = (ANH*A*CA*AAT = AATCA* = CA¥,

that is,
H(CA*) = (A" (A*A + D)H(T)((AH*(A*A + 1))* > 0.
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