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AN INVERSE MAPPING THEOREM FOR SOBOLEV CHAINS
AND ITS APPLICATION

TrRuoNG ConG NGHE

The author combines the methods used by Yamamuro and Omori to
define a differentiation in Sobolev chains and obtain an Inverse
Mapping Theorem. He then uses this theorem to give a new proof
for a result of Sunada on the local finite-dimensionality of the
solution space of a non-linear elliptic differential operator

with smooth coefficients.

The purpose of this paper is to combine the methods used by Yamamuro
(7] and Omori [3] to define a differentiation in Sobolev chains and obtain

an Inverse Mapping Theorem. Here, for simplicity, we only consider the
differentiability of class Cl even though the theorem can be extended to

the class Ck for any integer k = 1 and to the class Cw . As its first
application we give a new proof for a result of Sunada [6] on the local
finite-dimensionality of the solution space of a non linear elliptic

differential operator with smooth coefficients.
The paper consists of three sections. In the first section we define

regular Cér maps between Sobolev chains and give a sufficient condition

for a map to be a regular Cér map. The next section is for stating and

proving the Inverse Mapping Theorem and the last section is for its

application.
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1 .
1. Regular CBI‘ mappings

Recall that a Sobolev chain (3], [8] is a sequence {E’, EY 112 d}

(d being a positive integer) satisfying:

(i) each E' is a Banach (or Hilbert) space with the Banach

(or Hilbert) norm |-|_L ,

(ii) for each i2d, E 2E' ana |+|

L+
E’L 1 ,
(iii) E 1is the intersection of all E'1 and has the inverse

limit topology defined by the E’L's ,

(iv) E is dense in every EY , 1=2d.

Thus, since {]+ P 2 = d} is an (increasing) sequence of norms, E

has the structure of a Fréchet space. In practice, Sobolev chains often

arise in the following way. Let E %be a Fréchet space defined by an

increasing sequence of norms | P 2 = d} which are pairwise

coordinated [8, p. 337]. Then E can be considered as the limit space of

the Sobolev chain {E’, EY iz d} where, for each 7 , E' is the

)

completion of the normed space Ei = (E',

Now let {E, E'i :42d} and {F, Fi : 4 2 d} be two Sobolev chains.
et UCE beopenand ¢ : USE*F be a map. We may consider the
I-differentiability of ¢ by taking the following natural calibration [7]
for (E, F)

(1) r=1{(-

v

i’l'i):i d}

Then, by a result in [7], for any integer » 20 , ¢ is of class 6‘; if

and only if & : UEE.,; > F‘L is ¢© (for all % = d ) in the usual sense
of mapping between normed spaces.

let A : E > F Ybe linear Tl-continuous. We say that A4 is quasti

Bl-continuous or is RI'-continuous if there exist constants € > 0
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(independent of < ) and Di > 0 such that
= 0C . . . 2 .
(2) |A(u)|i < |u|$ + D_L|u|_b_l for all u € E and % = d+l

We denote by LBF(E’ F) the space of all quasi Bl-continuous linear
maps E > F . Then, as vector spaces, we have ([71])

(3) Lyr(E, F) S Lgp(E, F) S L(E, F) S L(E, F)

If 4 € LBF(E, F) , let |A| be the Omori semi-norm of A defined in

{31, p. 111,

(4) |a] = inf{C : C is a possible constant in (2)} ,

and, for each Z =2 d , define the following norm on LBF(E’ F)

(5) lall; = max{l4l, [ll4lll;) for 4 €L, (E, F) ,

gl
vhere I“Al”i is the operator norm of 4 .

We endow LBF(E’ F) with the canonical calibration {”-Hi : 1= d}
Note that any A € LBF(E’ F) can be extended to a linear continuous map
B +F forail izd.

We denote by GLBP(E’ F) the totality of elements A € LBF(E’ F)
such that A-l exists and is contained in LBP(F’ E) .

(1.1). GLBP(E’ F) 1is open in LBF(E’ F) endowed with the
calibration {H-Hi : 1 = d} defined by (5).

Proof. This follows from [3, Theorem 11.1.2].

Now let & : UCE - F be as above and let a € U . We say that ¢
is quasi BT-differentiable at a (or BI-differentiable at a ) if there
exists an element A € LBF(E’ F) such that the following condition is

satisfied: for all 7 =2d , all € > 0 , there exists § > 0 such that

(6) |o(a+v)-0(a)-4(0)|; < e|v],

whenever Iv'i <6 and a+v €U .
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The map 4 = Dd(a) € LBI‘(E’ F) 1is then uniquely determined and is called

the Bl'-derivative of ® at a € U . Thus we can define the notion of

Br-differentiable map on U . We say that & is continuously BT~

differentiable at a € U f{or ¢ is Cél.. at a ) if ® is BI-

differentiable in a neighbourhood of a and the derived map

Dd : UCE~> LBI‘(E’ F) is Pocontinuous at a with respect to the natural

calibration T = {(]' i ||'||1) :1=2d} for (E', LBI‘(E’ F)) .  The notion

of a C%I. map on U 1is then defined as usual. The notion of Cgr maps

(r =22 or +° ) can also be defined. But here we are more interested in

C'ér maps.

A C'ér map ® : UGS E + F is called regular if and only if the

following conditions are satisfied:
(i) there exists an open set Q¢C E? such that U=QnE ;

(ii) for each 7 2 d , ¢ can be extended to a Cl—map
QnEg > F
The following proposition will give us & sufficient condition for a

map to be a regular C:BLI‘ map.

(1.2). rLet {g, E* :i2d}, {F, ¥ :i2d} be two Sobolev
chains, UCE be open such that U =Q nE where Q 18 an open convex
set in E’d Let ¢ : UCE~+F be a mp and endow (E, F) with the
calibration T = {(|-|;, |-|1) 212 d} .

Suppose that & : UC E +~ F 1is of class 621. (7], and satisfies the

following condition: for all u €U =9 nE , all v, Vs Y, € E and all
1 = d+1 , we have

(i) |D‘I’(u)v|1; = C{|u|i1v|d+|v|i} + Pi(luli_l)lvli_l s
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.. 2
(i) [pPotum,o, = cllulloy ] gloglgtloy 1ol 19, Lol )

WA PRV IDY PR LA P
where C 1is a positive constant (independent of 1 ) and P, 15 a
polynomial with positive coefficients depending on 1 .
Then ¢ : UCE+ F 18 a regular C;f map with respect to the
. .7 >
'i) : 12 d+l} .

calibration T = {(l-[i,

Proof. Since ¢ : @ nECE +F is of class c , for 11 1 2d ,

r
we have, by [7],
(1) ®:QnECE, >F, is of class ct
vhere Ei = (E, 'Ii) and Fi = (F, . i)
We first prove that ¢ is of class Cl . Since, by (%),

BT
Dd(u) € LBF(E’ F) for all u € U , it suffices to show that

Do : UCE>Ly(E, F) is T-continuous.

Now, for u, u., € U , we have

0
1

(8) | (po()-Do (u,)) ol ; = jo l02¢[uo+t(u-uo)]‘(u—u0]°v’idt .

Thus, by a simple calculation, using (ZZ), we have, for all < = d+1 ,

(9) l{m(u)-Dd’(uo])vli = Clu-uoldlvli + Pi(l“o'i’ |u-uo|i)|vli_l ?

where ii is a polynomial in |uo| and |u—uo|i with positive

i
coefficients depending on 7 .

Thus, by definition of the Omori semi-norm,

(10) lD@(u)-D¢(uo)| < Clu—uo|d < Clu—uoli for all 2 =d .
From this it follows quickly that D® is [-continuous.

To see that, for all 1 =2 d+l , & can be extended to a Cl map from
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QnE to F , Wwe notice that conditions (%) and (%) in (1.2) ensure

that, for all < =2 d+l , all u €Q nE , all v, vy and UQEE,wehave

(11) |Do(u)v], < Pt[|u|1]|v|7/ ,
and
2 ~
(12) |D ¥(u)v, v, : < Pi(luli)lvllilvzli ,

where ?’1, and 1"7, are polynomials with positive coefficients depending on
i

Now, using (11), it can be seen that, for all < = d+1 ,
®: QnpE C E > F can be extended to a continuous map £ n E’i g Fi which
is still denoted by ¢ .

Let a be an arbitrary element in £ n E' and let {an} cCQnE

converging to a in E . Then, by (7), for every n , the derivative

D‘D(an) € L(Ei’ F,L} exists. We may consider it as a linear continuous map
Ei + F” . Then it extends to a unique element D@[an) € L[E' s F ) with
o~~~
the same norm. From (12) it can be seen that {DQ(an)} is a Cauchy
sequence in L(E‘ , F ) and thus converges to an element
D®(a) € L(E"L, F1’) . Then it is easily seen that the map
Db : @ ng" < B +L(E*, F*) : a D¥(a)

is continuous and the extension ¢ :  n E’i c E’i > Fi is differentiable at
a with D%(a) as its derivative.

REMARK |, The above proof shows that the regularity condition is a
consequence of the inequalities (%) and (ZZ) in (1.2).

REMARK 2. (1.2) shows that all ¢“11B-* normal mappings in [3] are

regular Cér maps with respect to natural calibrations.
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2. The Inverse Mapping Theorem
Since, by (1.1), GLBT(E’ F) is open in LBF(E’ F) , we may expect
that the Inverse Mapping Theorem is true for Cér maps between Sobolev

chains. In fact, we have

(2.1). et (B, E* :i=2d}, {F, F* :4i2d} be two Sobolev

chains, & : U=Q nECE+F be a regular Cér map, where Q ig open

convex in Ed . Suppose that 0 € U and &(0) = 0 and assume that
D8(0) € GLy(E, F) .

Then & is a local Cér—difféonwrphism at 0 (that is, there are

open neighbourhoods ﬁ, W of 0 in E, F respectively such that

-~ ~

d:W>+W 1is a Cér-difjbonwrphisnﬂ.
Proof. This is basically the proof given by Omori [3] with suitable
modification.

By hypothesis, D®(0) : E + F is a toplinear isomorphism satisfying,
for all v € E and all i = d+1 ,

1A

(13) |pe(0)v],; = alv|, + 8;[v]

-1 ?

(14) ]D¢(O)v|i

v

vivlg - 800,
where a, Y, Bi’ 6i are positive constants (o, Y being independent of
7 ), and, for a1l 7 =2d , ¢ extends to a Cl map

(15) ¢ :QnE CE +F .

Since E (respectively F ) is dense in every Et (respectively

P ], D®(0) extends to a toplinear isomorphism of E' and F* for
every 1 =2 d . We still denote the extensions by D®0) which satisfy

(13) and (14) for all v € E' and all % > d+l .
Since M:QOEEE+LMW,H is ﬁwMme,mﬂem §'">0

such that
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(16) |u|d < §' implies |D®(u)-D®(0)} < y/3 .

Thus, for all % = d+l1 , we have

(A7) luly< 8’ implies |DO(u)v-DO(0)w|; = (v/3)|vl; + D 0], , .

Hence, from (1il), for all |u|d <8' and all < = d+1 , we have

(18) |Do(u)v|; 2 (2v/3) [, - D}lvl,_ | for al1 v ¢ B,

where D! =6. + D. .
7 7 7

Furthermore, since ¢ : QEEd + Fd is and D®(0) : E'd > Fd is
a toplinear isomorphism, there are open convex neighbourhoods W and W'

of 0 in E‘d and Fd respectively such that ¢ is a Cl—diffeomorphism
of an open neighbourhood of W onto an open neighbourhood of W' _W, W'

being the closures of W, W' in E'd, Fd respectively) and W 1is

contained in an open ball centred at 0 in E'd and of radius
p < min(8'/3, v/3) .

Theorem (2.1) then follows from the following three lemmas.

(2.2). Forall i2d andall u €W nE , Dd(u) : EE +F isa

toplinear isomorphism of Banach spaces.

Proof. Using (18) we can proceed as in [3, Lemma 3.1.2].
(2.3). o(WnE) =W nF forall i24d.

Proof. For all y € W n E’i we have
1
(19) (y) = o(y) - ¢(0) = DO(0)y - I [(D®(0)y-D®(ty)yldt .
0
Hence, by (1L),

1
o), = vlyl, - 68,1yl, ; - ”o (D8(0)y-D3( ty )y Jdt .

Furthermore, by (17), for all y € W n E* , we have
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1
Ho [D&(0)y-Do(ty)y ldt ; < (_Y/3)lyli + Di|y|i_l .

Hence, for all % = d+l and all y €W n Ei , we have
(20) let)|; 2 /3yl - plyl;_, (B =6, + D)) .
Using (20) we can proceed just as in [3, Lemma 3.1.3].
(2.4). There is an open neighbourhood Wi of © in Ed such that
W]'_ C W' , and the following inequalities hold for all < = d+l1 , all

uEW]'_ﬂFL and all v € F*

IA

. -1 ’ ,
(i) |p® (u)vli c |v[1’ +Di|v|

i-1"°
(ii) e o)l = v vl - 82lvl. o .
K 1 1 1-1
wvhere C', Y', Dé and Gé are positive constants (C' and vy' being
independent of 1 ).
Proof. Use (18) and (20) and proceed as in [3, Lemma 3.1.41].
REMARK |. Theorem (2.1) can be stated and proved for any a € U and

b= &a) .

REMARK 2. The inverse map Q-l is also a regular C%F map.

3. Application

In this section, we shall prove, as an application of our Inverse
Mapping Theorem, a result of Sunada on the local finite dimensionality of
the solution space of a non linear elliptic differential operator with

smooth coefficients [6].

Let M be a compact C  manifold without boundary, E, F be two
finite-dimensional vector bundles over M . We denote by S(E) and S(F)
the spaces of é” secticns of £ and F respectively. Let
L : S(E) » S(F) be a non linear differential operator of order m with
smooth coefficients [4], [5]. Suppose that L is elliptic at 0 € S(E)
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(that is, the linearisation dOL is a linear elliptic operator (2], [4])
and assume that L(0) = 0 . Put

(21) )

o {t € S(E) : L(t) = 0} ,

(22) T,(2) = {u € S(E) : dyL(w) = o} .

Endow (S(E), S(F)) with the calibration
(23) S (P A R
where, for each i 2 m , ||'||1 is the H-norm defined in [3], p. 28.

Put D= a’OL and apply the Hodge-Kodaira theory to the linear
elliptic operator D (4], [6]. We have the direct decompositions

(24) S(E) = Ker D ® Im D* = TO(Z) ® Im D* ,

(25) S(F)

let H : S(E) ~+ TO(Z) =Ker D and K : S(F) > Im D be the

Ker D* @ In D .

corresponding projections, and consider the bifurcation operator, [6],

(26) ® : S(E) » To():) @ Imn D

defined by &(t) = H(t) ® K o L(t) for all t € S(E) , where TO(E) ®ImD
is the topological direct sum of the Fréchet spaces TO(Z) and Im D .

Notice that Im D and Im D* are closed in S(F) and S(E)
respectively, Ker D and Ker D* are finite-dimensional, and
®(0) = (0, 0) .

Endow TO(E) and Im D with the relative calibrations and define the

sum-calibration for G = TO(Z) ®Im D,
(27) rG = {".”i I = m} £
where ||u+v||i = IIuIIi + Ilvlli for all u + v € G = TO(E) @ImnD.

(3.1). The decompositions (24) and (25) are Bl-direct decompositions

that is, the projections are BI-continuous linear maps.

Proof. By symmetry, it suffices to prove that (24) is a PBI-direct
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decomposition. Let [0 denote the restriction of DD* to Im D < S(F) .

Then O : Im D+ Im D is an isomorphism. Furthermore, for any u € S(E) ,
the element u - D*0 “Du € Ker D . Thus, the identity
u= (u—D’D_lDu) + D"D-lDu shows that the projections corresponding to the
decomposition (24) are
-1 ~1
H:uvr u-D¥ " Du and P : uv>r D] "Du .

It suffices to show that P is a Bl'-continuous linear map. Now,

since D and D* are differential operators of order m , we have by [3],

p. 73,

* 14 !
(28) loull, = clull,,, + 0kl ol = vl + D}l

i+m-1 ° i+m-1

where (C, C' and Di’ Dé are positive constants as usual.

Since O is the restriction of a linear elliptic differential

operator of order 2m , [3, Lemma 5.2.1] or [71, p. 358] gives

1 < "
(29) Nl < el + oyloll,_,, -

Thus it follows from (28) and (29) that, for all u and all © = m+l ,

(30) leull, < 2l + B, lull,_,

~

where C, b,l/ are positive constants (C being independent of 7 ).
(3.2). et L : S(E) » S(F) be a (non-linear) differential operator
of order m and let d = dim M +5 (M being the base space of E and

F). Denote by J'E the m-jet bundle of E and by J" : S(E) + S{/"E) °
the m-jet extension. Endow the pair (_S(E'), S(F)] with the calibration

r= {0l s U} = 224},
where, for each j , |l*ll; is the H-norm defined as above.

Let W be a relatively compact open tubular neighbourhood of the zero

section of JE, SW) = {u € S(J"E) : u(z) € W for all = € M} , and
suppose that U 4is an open neighbourhood of the zero element in S(E)

such that J(U) c S(W) and U= n S(E) where 9 is an open ball
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m+d

centred at 0 in S (E) , the completion of S(E) with respect to the

norm ”'"m+d .

Then L : U< S(E) + S(F) <8 a regular C;f‘ map with respect to the

calibration T = {(||*| : 1 > del}  for the pair (S(E), S(F)) .

o o)
Proof. L may be factorised [4], [5], [6] as follows:

(31) S(E) —J—m—>s(J’"E) 2, 5(p)

where @ = ¢, : S(JmE') + S(F) 1is the induced map of a ¢” fibre bundle

morphism ¢ : J'E + F which is a fortiori a fibre preserving map.
Endow S(JmE'} with the calibration {II'ILL : © = d} , where for each

i, “."i is the H-norm in S(JmE] [3, p. 28].

Since Jm is linear continuous, by using the chain rule and [3, Lemma

2.5.3], we have for all u € U , all v, Vs Y, € S(E) ,

(32) ||DL(u)U”,£ “(D@)Jm( )JM(U)‘L
u

IA

{1l 1 @1} + 2 (17 |10,

(33) [Pruwy, )

I ) T ) ||
o)y | |7 )

IA

I (v,)

el el frea] el )

e 2y (10 | y) |, @)

Z

-1
Hence, using [3, Lemma 5.1.2], p. 70, it is easily seen that L satisfies
the hypotheses of (1.2) and (3.2) is proved.

Now we can prove the following theorem which is due to Sunada [6,
Theorem 2].
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(3.3). ¢ maps a neighbourhood of 0 in S(E) diffeomorphically
onto a neighbourhood of &(0) = (0, 0) 1in TO(Z) @ImD.

Proof. Endow (S(E), 7,(X) ® Im D) with the calibration

(34) F= (el Io0;) = 224},

+1

where the second norm, "."i , is given in (27).

Then, in view of (3.1) and (3.2), we may suppose that
4>:U=QﬂS(E)SS(E)->G=TO(Z)@ImD is a regular (,']'Br map
(recalibrate if needed).

Furthermore, it follows quickly that

(35) D<I>(0)=H®Kod0L=H®K°D=H@D.

From this it is easily seen that D®(0) : S(E) - G is a toplinear

isomorphism [6, Lemma 5].

Now, since D is a linear elliptic operator of order m , [1] or [3,
Lemma 5.2.1] gives us, for all u« and all 7 = d+1 ,
> -
(36) ”Du”'l: = Y"u”m*’: ’Siuu”m*’i—l ’
where Y and (Si are positive constants (y being independent of <% ).

Thus, for all u € S(E) and all 7 = d+l1 , we have, by (35),

(37) I|D<I>(O)u|],b

MG, + 2ull; = ipull,

v

vial,; - 8 Ml -
Therefore D®(0) € GLBI‘(S(E)’ G} and (3.3) then follows from (2.1).

It is an easy consequence of (3.3) that if E, F are two ¢ fibre
bundles over M and if L : S(E) - S(F) is a non-linear differential

operator with smooth coefficients and is elliptic at 8 € S(E) , [6], then
the solution space Zs = {t € S(E)} : L(t) = L{s)} is locally a finite-

dimensional subset in S(E) near s [6, Theorem 1].
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