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Abstract

We document significant time-series and cross-sectional momentum in 28 equity option
factors. Factor momentum is distinct from a static factor portfolio, and prominent option
factor models cannot fully explain its returns. Despite high autocorrelation, factor momen-
tum profits aremainly driven by high and persistently differentmean factor returns in the case
of longer formation periods. Option factor momentum fully subsumes option momentum,
but not vice versa. Our findings are robust over time, across various market states, and for
alternative momentum strategy constructions.

I. Introduction

The existence of momentum, the continuation of past, relative asset returns
into the future, has questioned market efficiency for over 30 years. The profitability
of momentum strategies has been documented for various asset classes and invest-
ment regions.1 Most recently, Heston, Jones, Khorram, Li, and Mo (2023) docu-
ment momentum in option straddle returns.

Options constitute an asset class that has attracted considerable interest from
practitioners and academics alike. According to data from the Options Clearing

We are grateful to an anonymous referee,Manuel Ammann, Hendrik Bessembinder (the editor), Philipp
Decke (discussant), Pasquale Della Corte, BowenDu (discussant), CanGao, Jens Jackwerth, JulianKölbel,
Manuel Leininger (discussant), Martin Nerlinger, Lasse Pedersen, Killian Plusanski (discussant), Ryan
Riordan, FlorianWeigert, Bo Yuan (discussant), and seminar participants at the University of Konstanz, the
University of Liechtenstein, the University of St. Gallen, the 2023 Elsevier Finance Conference at FGV
EBAPE in Rio de Janeiro, the 2023 Australasian Finance and Banking Conference, the 2024 International
Conference of the French Finance Association, the 2024 Frontiers of Factor Investing Conference, the 2024
Structured Retail Products and Derivatives Conference, the 2024 FMA Europe Conference, and the 2024
FMA Asia/Pacific Conference for their constructive and insightful comments.
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Corporation, the average daily volume amounted to 44.2 million contracts in 2023,
compared to just 1.2 million contracts in 1996.2 The study of the cross-section and
prediction of delta-hedged option returns is still evolving, especially compared to
the analogous literature on stock returns. In this context, as demonstrated by Käfer,
Mörke, Weigert, and Wiest (2024) using Bayesian model averaging, option
momentum is a likely part of the true stochastic discount factor that prices single-
name options. Consequently, it is vital to deepen the understanding of the origins
and characteristics of momentum in the options market.

To explain momentum profits, a new strand of literature focuses on momen-
tum in factors that describe the cross-section of returns. Gupta and Kelly (2019)
show that strong autocorrelation in equity factors results in profitable time-series
(TSFM) and cross-sectional factor momentum (CSFM) strategies. Ehsani and
Linnainmaa (2022) show that factor momentum subsumes stock momentum, and
results by Arnott, Kalesnik, and Linnainmaa (2023) suggest that factor momentum
also explains industry momentum. Crucially, factor momentum is a recent addition
to possible explanations for momentum effects in financial markets.3 On the
contrary, Heston et al. (2023) find that a momentum strategy based on seven option
factors cannot explain the momentum inherent in straddle returns. However, the
authors concede that “[g]iven the relatively nascent literature on factors in option
returns, it is possible that the factors we consider are an incomplete representation of
the true factor structure” (Heston et al. (2023), p. 3178). Our article utilizes a larger
set of 28 option factors shown to have explanatory power for the cross-section of
(delta-hedged) option returns to construct option factor momentum strategies over
the sample period from 1999 to 2021. Our main research goal is to study factor
momentum’s existence, characteristics, and drivers in the options market. Also,
based on the advances in the stock momentum literature, we test if option factor
momentum can explain option momentum.

We construct TSFM and CSFM strategies for option factors using various
formation periods. For cross-sectional momentum (CSM) strategies, we assign a
long position to factors with above-median returns during the formation period and
a short position otherwise. For the time-series momentum (TSM) strategy, we
assign the positions based on the sign of each factor’s formation period return.
Strategies are rebalanced monthly.

TSFM and CSFM strategies across all formation periods produce positive and
statistically significant annualized mean returns, ranging from 6.46% (t-stat: 7.07)
to 14.60% (t-stat: 10.65). The strategies offer returns distinct from an equal-
weighted option factor portfolio, the 2-factor model by Zhan, Han, Cao, and Tong
(2022), and the 3-factor model by Horenstein, Vasquez, and Xiao (2022), with high
annualized information ratios (IRs) ranging from 0.82 to 2.88 for short and
medium-term formation periods.

2https://www.theocc.com/market-data/market-data-reports/volume-and-open-interest/historical-
volume-statistics, accessed on Jan. 25, 2024.

3Other explanations include behavioral-based explanations such as underreaction and overreaction
theories (e.g., Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998),
Hong and Stein (1999), and Grinblatt and Han (2005)), and risk-based explanations (e.g., Berk, Green,
and Naik (1999), Pástor and Stambaugh (2003), Avramov, Chordia, Jostova, and Philipov (2007), and
Kelly, Moskowitz, and Pruitt (2021)).

2 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109025000225
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . IP address: 13.201.136.108 , on 30 Jul 2025 at 23:39:37 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s .

https://www.theocc.com/market-data/market-data-reports/volume-and-open-interest/historical-volume-statistics
https://www.theocc.com/market-data/market-data-reports/volume-and-open-interest/historical-volume-statistics
https://doi.org/10.1017/S0022109025000225
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


We conduct multiple momentum return decompositions to shed light on the
drivers of option factor momentum. The hypothetical decomposition of CSMbyLo
and MacKinlay (1990) emphasizes positive autocorrelation alongside negative
cross-serial covariance and variation in mean returns as possible momentum
drivers. We find that both autocorrelation and mean return variation significantly
contribute to cross-sectional option factor momentum. Similarly, Moskowitz, Ooi,
and Pedersen (2012) decompose a hypothetical TSM strategy into return autocor-
relation and high mean returns. The second decomposition part indicates that high-
mean factors consistently yield high returns independent of autocorrelation effects.
Similar to the CSM decomposition, we document both channels as important
sources of time-series option factor momentum, yet mean returns are more pro-
nouncedmomentum drivers than return autocorrelation. These findings contrast the
evidence in Ehsani and Linnainmaa (2022), who highlight autocorrelation as the
main source of momentum in stock factors. Our results are similar to Leippold and
Yang (2021), who demonstrate that a buy-and-hold strategy rather than factor
timing largely explains TSFM for stocks. The buy-and-hold strategy is long
(short) in factors with positive (negative) prevailing historical mean return. There-
fore, it represents the contribution of high mean factor returns to TSM in contrast to
the autocorrelation-related factor timing, which buys (sells) factors that outperform
their prevailing historical mean. We show that a buy-and-hold strategy indeed
explains a large part of TSM effects in option factors, although factor timing yields
sizeable annualized Sharpe ratios between 0.67 and 0.80.

To test whether option factormomentum arises fromoptionmomentumor vice
versa, we first construct equivalent momentum strategies on the option level. TSM
strategies yield positive and significant profits for the 1-month, the 6-month, and the
1-year (excluding the most recent month) formation periods. Annualized mean
returns for those strategies range from 4.45% (t-stat: 4.04) to 6.27% (t-stat: 4.70).
For CSM, all strategies yield significant returns. Shorter-term option momentum is
robust to controlling for the risk factors proposed by Horenstein et al. (2022).
However, no option momentum alphas remain significant after augmenting the
Horenstein et al. (2022) model with factor momentum returns. On the contrary,
factor momentum remains significant across strategies even when controlling
for the Horenstein et al. (2022) model augmented with option momentum, with
t-statistics on the intercept ranging from 2.90 to 5.18. Our findings that option factor
momentum subsumes single optionmomentum fall in line with the interpretation of
option momentum as a historical risk premium as proposed by Tian andWu (2023):
The historical risk premium manifests itself in persistence and variation in risk
exposures that drive option returns. As factor mean returns considerably contribute
to the performance of option factor momentum strategies, the explanatory power of
these strategies for single optionmomentum strengthens the view of a historical risk
premium driving momentum effects in the options market.

Both in Ehsani and Linnainmaa (2022) and in Arnott et al. (2023), the largest
principal components (PCs) of equity factors subsume the momentum in lower PCs
and in the underlying factors. The authors argue that profitable autocovariance only
exists in factors with high systemic risk. Otherwise, near arbitrage opportunities
would exist. We transfer their tests to the option market and confirm that the
momentum effects are the highest and most significant in the largest 7 PCs. These
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effects largely subsume momentum effects in the lower eigenvalue PC subsets.
Additionally, high-eigenvalue PCs exhibit stronger explanatory power for momen-
tum in single options.

Our results are robust to an alternative momentum strategy construction
following Gupta and Kelly (2019), who weigh factors proportionally to their
(risk-adjusted) past performance. Factor momentum returns remain highly signif-
icant and largely explain any of the profits of option momentum strategies con-
structed in the same way. Finally, these findings also hold for the vast majority of
formation periods when constructing option factors and option momentum with
delta-hedged put options instead of call options, when weighting options by their
underlying market capitalization, or when excluding the least liquid options based
on their proportional bid–ask spread.

Related Literature

Next to the option momentum documented by Heston et al. (2023) and the
seminal work by Gupta and Kelly (2019), Ehsani and Linnainmaa (2022), and
Arnott et al. (2023) on factor momentum, our article most and foremost relates to
further studies on factor momentum effects. By focusing on the Chinese stock
market, Ma, Liao, and Jiang (2024) provide evidence of factor momentum in
international equity markets. Turning to asset classes other than stocks, Zhang
(2022) finds that momentum in the dollar and carry factors subsumes currency
momentum. Fieberg, Liedtke, Metko, and Zaremba (2023) document momentum
effects in cryptocurrency anomalies. For commodity futures, Qian, Liu, and Jiang
(2024) find factor momentum effects driven by mispricing. Lastly, Jiang, Ma,
Wang, and Zhou (2024) find significantly positive factor momentum returns based
on 10 corporate bond factors.

Second, our study also relates to the strand of literature that explains the
cross-section of equity option returns. Many studies relate option returns and prices
to various option and stock-related characteristics. Notably, Goyal and Saretto
(2009) find that the difference between historical realized volatility and implied
volatility, a general proxy for mispricing in the options market, negatively predicts
future returns of straddles and delta-hedged call portfolios. Also, several studies
highlight market frictions and required risk compensation of market makers as
relevant drivers of option returns. For example, Cao and Han (2013) demonstrate
that options on underlying stocks with high idiosyncratic volatility are more diffi-
cult to hedge and thus require higher returns by market makers, Christoffersen,
Goyenko, Jacobs, and Karoui (2018) show that more illiquid options yield higher
returns, and Tian and Wu (2023) can explain the variation in option returns using
factors proxying for the risk of market making. Other studies focus on the impact of
investors’ behavioral biases on option returns: Bali and Murray (2013) find a
negative relationship between option positions’ risk-neutral skewness and returns,
consistent with the notion of a positive skewness preference by investors. More-
over, Byun and Kim (2016) show that lottery-like properties of underlying stocks
lead to overvaluation in call options as investors exhibit gambling preferences.
Regarding option return anomalies without a clearly identified economic explana-
tion, Zhan et al. (2022) provide evidence of predictability in the cross-section of

4 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109025000225
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . IP address: 13.201.136.108 , on 30 Jul 2025 at 23:39:37 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s .

https://doi.org/10.1017/S0022109025000225
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


delta-hedged option returns related to 10 stock-level characteristics, such as stock
price, profitability, or cash holdings.

Given the abundance of characteristics with explanatory power for the
cross-section of (delta-hedged) option returns, a large set of candidate factors exists
for the options market. Our study exploits this large set of sorting variables intro-
duced in the literature to construct option factors and option factor momentum
strategies. Therefore, we contribute to the general literature on return anomalies and
factors in the options market. Finally, analyzing option factor momentum enhances
the understanding of factor autocorrelation and persistence in risk exposures that
drive the returns and momentum of single equity options.

The rest of this article is structured as follows: In Section II, we describe the
data sources, the definition of daily delta-hedged option return, and the option factor
construction. In Section III, we present the main results of our baseline factor
momentum strategies. In Section IV, we conduct various momentum decomposi-
tions to identify the main drivers of option factor momentum. We test for option
momentum and perform the spanning tests between option and option factor
momentum in Section V. In Section VI, we introduce and summarize the results
of various additional analyses, such as PC momentum and robustness tests.
Section VII concludes.

II. Option Data and Factor Construction

Our primary data source is OptionMetrics IvyDB, which provides historical
prices for all U.S. single equity options.We obtain option prices and the interpolated
volatility surface from OptionMetrics from Jan. 1996 to Dec. 2021. Volatility
surface data is only required for constructing option-based characteristics, whereas
option returns are based on historical option prices.

Historical prices for underlying stocks are obtained fromCRSP.We retain only
underlying stocks with share codes 10 or 11. Moreover, we exclude stocks with a
prior month’s closing price below USD 5 to avoid options on highly illiquid
underlying stocks. Wematch CRSP with OpionMetrics using the linking algorithm
provided by WRDS. Daily risk-free rates are taken from Kenneth French’s online
data library (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html).

A. Option Returns

We use the excess return of buying a delta-hedged call option on a daily
rebalancing schedule to construct option factor returns. In line with previous
literature (e.g., Horenstein et al. (2022)), we focus on call options in our analyses
as these contracts have a higher volume than puts (Bollen andWhaley (2004)).4 For
the computation of delta-hedged returns, we first consider delta-hedged call gains
following Bakshi and Kapadia (2003) as the value of a self-financing portfolio
consisting of a long call that is hedged by a position in the underlying such that
the portfolio is locally immune to changes in the stock price. We choose a daily

4Our key results also hold for option factor strategies constructed with delta-hedged put returns
(see Section VI.D).
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delta-hedging schedule as Tian and Wu (2023) document that delta-hedging at
position initiation removes approximately 70% of the directional risks embedded in
the option position, whereas daily delta-hedging yields a reduction of 90%. To
establish notation, consider the partition Π= t = t0 <⋯< tN = t + τf g of the interval
from t to t + τ. Assume that the long option position is hedged discretely N times at
each date tn,n= 0,…,N �1. The discrete delta-hedged call option gain over the
period t, t + τ½ � is then given by

Π t, t + τð Þ=Ct + τ �Ct�
XN�1

n= 0

Δtn S tn+ 1ð Þ�S tnð Þ½ ��
XN�1

n= 0

anrn
365

Ct�ΔtnS tnð Þ½ �,(1)

where Ct denotes the price of the call option at time t, rn is the risk-free rate at tn, an
is the number of calendar days between the re-hedging dates tn and tn+ 1, which we
set to an = 1, and Δtn is the observed delta of the call as provided by OptionMetrics.
The last term in equation (1) is the return on the position’s net cash investment. We
consider gains for investment horizons of 1 calendar month. Subsequently, we
define option returns following Cao and Han (2013) as

rt,t + τ =
Π t, t + τð Þ
ΔtSt�Ct

,(2)

wherewe scale the delta-hedged option gains by the absolute values of the securities
involved in initiating the position.5

B. Option Filters

Weclosely follow the filters of Zhan et al. (2022) andBali, Beckmeyer,Mörke,
and Weigert (2023) to obtain our final option sample, from which we construct
characteristics-based option portfolios.We followBali et al. (2023) and apply filters
only at position initiation. This mitigates any forward-looking bias, which can
significantly affect option returns, as pointed out by Duarte, Jones, Mo, and
Khorram (2024). If no option price is available at the time of position closing,
we use the intrinsic value of the option (Bali et al. (2023)). First, at the end of each
month and for each stock, we select the call option closest to being at-the-money,
which has the shortest maturity among contracts that do not expire in the next
month. Second, we only retain calls if the underlying stock did not pay dividends

5We consider 3 alternative definitions of the option return and the discrete delta-hedged call gain in
Section D of the Supplementary Material and show that option factor momentum is robust to these
choices. First, equation (1) does not account for compound interest in the net cash balance. We derive an
alternative definition of the discrete delta-hedged gains accounting for compounding and show addi-
tional baseline results in Section D.1 of the Supplementary Material. Second, the Black-Scholes delta is
subject tomodel risk and does not necessarilyminimize the variance of the changes in the hedge portfolio
if, e.g., there is a nonzero correlation between changes in volatility and prices (Hull and White (2017)).
The minimum variance delta is the position in the underlying that minimizes the variance of the changes
in the value of the hedge portfolio.We adopt an empirically derivedminimumvariance delta proposed by
Hull and White (2017). Details and additional results are given in Section D.2 of the Supplementary
Material. Third, daily-delta hedgingmay lead tomomentum in factors if gains due to short-term reversals
of underlying stocks are asymmetric and persistent in the long and short legs of factors. To account for
this effect, we show results using initial delta-hedging in Section D.3 of the Supplementary Material.
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during the month-end to month-end investment period. Third, we only keep option
observations with an implied volatility estimate in the OptionMetrics data. Fourth,
we only keep options with positive outstanding open interest and a positive bid
quote, a bid price strictly smaller than the ask price, a mid-price between the ask and
bid quote of at least USD 0.125, and a proportional bid–ask spread below 50%.
Fifth, we exclude observations that violate clear no-arbitrage conditions for Amer-
ican call options such as S ≥C ≥ max 0,S�Ke�rtð Þ. Sixth, we exclude options with
a strike-to-spot ratio, K=S, lower than 0.8 or larger than 1.2. As most options at the
end of each month have the same maturity, we discard observations with different
expiration dates from most other options selected on that day. Finally, for the
remaining calls in our sample, we compute daily rebalanced delta-hedged returns
from the selection month’s end to the end of the following month using equations
(1) and (2).

Table A.1 in the Supplementary Material shows summary statistics for our
final pooled sample of monthly call option observations. In total, the sample
contains 379,165 option-month observations for 7015 unique underlyings. On
average, our sample consists of 1219 unique underlying stocks per month. The
average daily delta-hedged option return is �0.12%, in line with a negative vola-
tility risk (VR) premium inherent in delta-hedged option returns (Bakshi and
Kapadia (2003)).

C. Option Factors

We construct option factors using various stock and option contract-level
characteristics. In particular, we consider characteristics that exhibit explanatory
power for option returns in stand-alone academic papers. We provide details on 28
characteristics and their construction in Section B of the Supplementary Material.
These characteristics are, in some cases, based on option data such as the option
bid–ask spreads (OPTSPREAD, Christoffersen et al. (2018)) or the term structure
of at-the-money implied volatility (IVTERM, Vasquez (2017)). However, in most
cases, the sorting variables are based on stock data, such as the risks to market-
making introduced byTian andWu (2023). A characteristic based on both stock and
options data is the difference in the option’s implied volatility and the realized
volatility of the underlying stock (IVRV, Goyal and Saretto (2009)).

Based on these characteristics, we construct monthly option factors by sorting
all available options at the end of each month into equal-weighted deciles. To
determine the long and short deciles, we neither use the full-sample mean of the
factors nor rely on factor signs from previous studies, as this would introduce a
look-ahead bias. Instead, we use an expanding window with an initial burn-in
period from 1996 to 1998 to determine long and short deciles. To do so, we compare
the prevailing historical mean return of deciles 1 (low characteristic values) and
10 until factor construction at time t and use the decile with the higher (lower) return
as the long (short) leg.6 This approach allows real-time identification of the direc-
tion of decile sorts that have historically yielded positive returns. Consequently, our
main option factor sample in our empirical analyses spans 1999 to 2021.

6Our main results are robust to the choice of burn-in period lengths from 1 to 5 years.
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Table 1 presents an overview of the mean returns (E R½ �) of the 28 option
factors in percentages. t-statistics are based on standard errors robust to hetero-
skedasticity and autocorrelation in residuals up to the fourth lag following Newey
and West (1987). Overall, 21 of 28 mean factor returns display t-statistics above
2. In addition, the magnitude of returns is large, with up to 2.31% per month
(IVRV), highlighting the strong predictive power of certain sorting characteristics
for delta-hedged returns.

Additionally, we present factor autocorrelations in Figure 1. Significant auto-
correlation in factor returns is a main indicator and driver of factor momentum
effects. The gray bars in Figure 1 show the Pearson correlation coefficients ρ
between factor i’s return in month t, Fi,t, and the same factor’s average return over
the formation period�t,Fi,�t.We depict 3 different formation periods: t�1 (month-
on-month), t�2 to t�12 (year-on-month with the omission of the most recent
month), and t�13 to t�60 (long-term autocorrelation, potentially testing for long-
term reversal). 95% confidence intervals are depicted in black.

TABLE 1

Overview of Individual Factor Returns

Table 1 reports the mean (E F½ �), standard deviation (SD), and Sharpe ratio (SR) of monthly returns for each of our 28 option
factors. t-statistics ofmean returns account for heteroskedasticity andautocorrelation in residuals up to lag 4, followingNewey
andWest (1987). Factors are constructed bymonthly characteristic-based sorts of delta-hedged call options into deciles.We
determine the sorting direction of the characteristics-based long-short portfolio using an expanding window with a burn-in
period from 1996 to 1998. The sample period is from Jan. 1999 to Dec. 2021. Detailed descriptions of the characteristics used
for factor construction are documented in Section B of the Supplementary Material.

Factor Reference Paper E F½ � t E F½ �ð Þ SD SR

1. Embedded leverage (EMBEDLEV) Frazzini and Pedersen (2022) 0.47 7.42 0.77 0.61
2. Delta-hedging costs (HC) Tian and Wu (2023) 0.74 5.31 1.66 0.45
3. Volatility risk (VR) Tian and Wu (2023) 1.01 7.71 1.71 0.59
4. Historical jump risk (JR) Tian and Wu (2023) 0.92 11.56 1.20 0.77
5. Volatility of implied volatility (VOV) Ruan (2020) 0.40 4.59 1.22 0.32
6. Option illiquidity (OPTSPREAD) Christoffersen et al. (2018) 0.10 1.17 1.23 0.08
7. Historical stock volatility (HVOL) Hu and Jacobs (2020) 0.70 4.26 2.09 0.34
8. Systematic volatility (SYSVOL) Aretz, Lin, and Poon (2023) �0.05 �0.30 2.15 �0.02
9. Impl. ATM vol term struct. (IVTERM) Vasquez (2017) 0.91 6.80 1.71 0.53

10. Stock return autocorrelation (AC) Jeon, Kan, and Li (2025) 0.00 �0.08 0.91 �0.01
11. Average of 10 highest past returns

(MAX10)
Byun and Kim (2016) 0.52 3.11 2.22 0.23

12. Default risk (DEFRISK) Vasquez and Xiao (2024) 0.14 0.85 1.80 0.08
13. Idiosyncratic skewness (ISKEW) Byun and Kim (2016) 0.07 1.17 0.89 0.08
14. Total skewness (TSKEW) Byun and Kim (2016) 0.13 1.57 1.00 0.13
15. Idiosyncratic volatility (IVOL) Cao and Han (2013) 0.83 5.84 1.85 0.45
16. Implied minus realized volatility

(IVRV)
Goyal and Saretto (2009) 2.31 10.23 2.19 1.05

17. Stock illiquidity (AMIHUD) Zhan et al. (2022), Kanne, Korn, and
Uhrig-Homburg (2023)

0.43 3.10 1.59 0.27

18. Short interest (RSI) Ramachandran and Tayal (2021) 0.13 1.66 1.14 0.11
19. 1-year new stock issues (ISSUE_1Y) Zhan et al. (2022) 0.42 3.62 1.44 0.29
20. 5-year new stock issues (ISSUE_5Y) Zhan et al. (2022) 0.65 5.65 1.39 0.47
21. Analyst dispersion (DISP) Zhan et al. (2022) 0.29 3.34 1.14 0.25
22. Altman Z-score (ZSCORE) Zhan et al. (2022) 0.24 2.24 1.42 0.17
23. Cash-to-assets ratio (CASH_AT) Zhan et al. (2022) 0.79 5.95 1.67 0.47
24. Cash flow volatility

(OCFQ_SALEQ_STD)
Zhan et al. (2022) 0.91 8.52 1.47 0.62

25. Operating profits/book equity
(OPE_BE)

Zhan et al. (2022) 0.81 7.30 1.59 0.51

26. Profit margin (EBIT_SALE) Zhan et al. (2022) 0.90 7.76 1.57 0.57
27. Net total issuance (NETIS_AT) Zhan et al. (2022) 0.52 4.39 1.63 0.32
28. Stock price (LOG_PRICE) Zhan et al. (2022), Boulatov, Eisdorfer,

Goyal, and Zhdanov (2022)
1.00 6.16 1.77 0.56
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For the formation month t�1, we document significantly positive
ρ-coefficients for 24 out of 28 factors with a maximum correlation of above
50%, indicative of short-term momentum rather than reversal effects.

In the 1-year formation period, 23 of 28 factors still exhibit positive
autocorrelation.

Finally, as depicted in Graph C, there is mostly no evidence of long-term
autocorrelation or reversal for a 5-year formation period.

FIGURE 1

Autocorrelation of Individual Factor Returns

Figure 1 shows autocorrelation coefficients (gray bars) between factor returns and their past returns over various formation
periods. The black lines represent 95% confidence intervals. The sample period is from Jan. 1999 to Dec. 2021. Detailed
descriptions of the characteristics used for factor construction are documented in Section B of the Supplementary Material.

Graph A. Month-on-Month (Lag t-1)
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Graph B. Year-on-Month (Lag t-2 – t-12)
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Graph C. Long-Term (Lag t-13 – t-60)
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III. Baseline Strategies and Factor Momentum Performance

Using the 28 option factors, we construct TSFM and CSFM strategies with
monthly rebalancing. For the TSFM strategies, we assign long and short positions
based on the sign of each factor’s formation period return. For the CSFM strategy,
we assign a long position to a factor with an above-median return in the formation
period and a short position otherwise. We consider a holding period of 1 month and
4 formation periods ranging from the prior month up to 60 months minus the most
recent 12 months. Formally, the TSFM return in month t with the formation period
�t is defined as

RTSFM
t =

2

N

XN
i= 1

sign Fi,�tð ÞFi,t:(3)

For CSFM, the return is given by

RCSFM
t =

2

N

XN
i= 1

sign Fi,�t� ~F�t

� �
Fi,t,(4)

where ~F�t is the median formation period return. These strategies and formation
periods are standard in the literature (see, e.g., Arnott et al. (2023), Gupta and Kelly
(2019)). We consider both strategies because TSM strategies rely on performance
continuation, while cross-sectional strategies also bet on relative performance
continuation. Note that there are alwaysN=2 factors in the long and short portfolios
for the cross-sectional strategy. Long and short legs can be imbalanced in the time-
series strategy, conditional on the average formation period performance.

We report annualized mean returns and Sharpe ratios for both TSFM and
CSFM in Panel A of Table 2. We rely on GMM and the Delta Method to estimate
the standard errors of the Sharpe ratios. For TSFM, annualized mean returns are all
positive and significant, ranging from 10:51% (t-stat: 7.79) for the 1-month for-
mation period to 14:60% (t-stat: 10.65) for the 12-month formation period, exclud-
ing themost recent month. Sharpe ratios are exceptionally high and range from 2:05
to 3:18. The economic magnitude of these results is not surprising, as individual
factors already exhibit high Sharpe ratios (see Table 1). For CSFM, the raw
performance is marginally worse due to the net-zero weight in well-performing
factors. In contrast, TSFM is also long in below-median factors with positive
returns on average.

Figure 2 shows the cumulative sums of monthly returns of the long and short
legs of the TSFM and CSFM strategies.

Both strategies manage to identify factors with above-average subsequent
performance, even when formation periods are short. Higher returns of the long
legs compared to a long-only strategy that invests equally in all 28 option factors
(EW_FAC) illustrate this fact. Second, the performance of the long legs is
extremely high, with almost no drawdown periods and little volatility. TSFM
strategies successfully identify factors with subsequent negative returns. Finally,
for medium-term formation periods, the long and short legs of the CSFM strategies
achieve higher returns than those of the TSFM strategies. Because more factors are
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in the long leg for TSFM, the return attribution of high-performing factors is more
diluted. However, this does not automatically disadvantage TSFM strategies, as
their long leg is given higher overall weight.

Due to the long bias in the TSFM strategies, returns may likely be picking up
on the returns of the long-only equal-weighted factor investing strategy.We test this
by regressing TSFM and CSFM returns on EW_FAC. Additionally, we control the
factor momentum strategies for factors based on two prominent low-dimensional
option factor models. Following Zhan et al. (2022) (ZHCT), we control for risk

TABLE 2

Performance of Option Factor Momentum

Table 2 reports performance measures of both time-series factor momentum (TSFM) and cross-sectional factor momentum
(CSFM) strategies basedon 4 formation periods. All strategies are built froma set of 28 option factors withmonthly returns from
Jan. 1999 to Dec. 2021. TSFM strategies go long (short) in factors with positive (negative) formation period returns. CSFM
strategies go long (short) in factors with an above (below) median formation period return. The strategies are rebalanced
monthly, and the sum of absolute factor weights in both TSFM and CSFM strategies sum to 2. Panel B reports the results of
regressing both TSFM and CSFM strategies on an equal-weighted portfolio of the 28 option factors with monthly rebalancing
(EW_FAC). In Panel C, we use the factor model by Zhan et al. (2022) (ZHCT) consisting of factors based on liquidity (AMIHUD)
and the option underlyings’ idiosyncratic volatility (IVOL). In Panel D, we use a factor model based on Horenstein et al. (2022)
(HVX) which includes the equal-weighted return of 280 decile portfolios from characteristic sorts (EW_RET), the volatility of
implied volatility (VOV), and the difference in implied and realized volatility (IVRV). Mean returns (%), alphas (%), and Sharpe
and information ratios (IRs) are annualized. All t -statistics (in parentheses) account for heteroskedasticity and autocorrelation
in residuals up to lag 4, following Newey and West (1987).

Time-Series Factor Momentum (TSFM) Cross-Sectional Factor Momentum (CSFM)

t�1 t�6 t�2 to t-12 t�13 to t�60 t�1 t�6 t�2 to t�12 t�13 to t�60

Panel A. Performance of Factor Momentum

Mean Return 10.51 14.18 14.60 12.12 6.46 9.18 9.51 6.95
(7.79) (10.79) (10.65) (9.12) (7.07) (10.59) (10.31) (10.65)

Sharpe Ratio 2.05 3.09 3.18 2.67 1.72 2.74 2.95 2.37
(9.96) (11.31) (12.11) (7.77) (8.49) (11.00) (14.66) (8.73)

Panel B. Factor Momentum Versus Equal-Weighted Factors

α 3.65 5.19 4.63 1.22 4.29 6.99 6.39 2.79
(2.37) (3.40) (3.64) (1.44) (3.15) (4.84) (4.77) (3.00)

EW_FAC 0.98 1.29 1.43 1.70 0.31 0.31 0.45 0.65
(5.13) (6.51) (10.05) (14.42) (2.54) (2.31) (3.05) (3.92)

R2 0.24 0.51 0.63 0.85 0.04 0.06 0.12 0.30
IR 0.82 1.61 1.66 0.69 1.17 2.15 2.12 1.14

Panel C. Factor Momentum Versus ZHCT Factors

α 7.96 10.30 10.27 5.68 6.33 9.23 8.87 4.21
(5.71) (7.83) (7.82) (4.77) (4.94) (8.20) (8.60) (7.14)

AMIHUD 0.36 0.30 0.30 0.10 0.20 0.17 0.16 0.03
(4.29) (4.68) (4.49) (1.21) (2.75) (3.09) (2.85) (0.53)

IVOL 0.07 0.23 0.28 0.59 �0.09 �0.09 �0.02 0.25
(0.60) (1.90) (2.65) (5.89) (�0.94) (�1.04) (�0.30) (4.84)

R2 0.17 0.30 0.36 0.64 0.08 0.08 0.07 0.27
IR 1.71 2.69 2.81 2.08 1.76 2.88 2.85 1.69

Panel D. Factor Momentum Versus HVX Factors

α 6.59 8.50 6.51 5.88 3.96 4.78 3.78 4.32
(4.86) (6.38) (5.25) (3.82) (3.88) (5.12) (4.11) (3.37)

EW_RET �0.03 �0.13 �0.11 �0.21 0.09 0.09 0.13 �0.05
(�0.31) (�1.26) (�0.82) (�1.08) (1.34) (1.67) (2.27) (�0.48)

VOV 0.01 0.23 0.23 0.23 �0.06 0.06 0.05 �0.08
(0.09) (1.50) (1.68) (1.70) (�0.92) (1.00) (0.85) (�1.12)

IVRV 0.14 0.16 0.25 0.21 0.11 0.15 0.21 0.13
(2.98) (3.92) (6.46) (2.26) (2.96) (6.24) (7.92) (2.31)

R2 0.04 0.18 0.28 0.24 0.07 0.16 0.30 0.08
IR 1.31 2.04 1.67 1.49 1.09 1.56 1.40 1.54
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captured by factors based on the liquidity of the options’ underlying (AMIHUD)
and the underlyings’ idiosyncratic volatility (IVOL). Following Horenstein et al.
(2022) (HVX), we control for option market risk with an equal-weighted portfolio
of all 280 decile portfolios used in the factor construction (EW_RET), as well as for
two factors based on the volatility of implied volatility and the difference between
implied and realized volatility (IVRV).

As reported in Panel B of Table 2, all but the long-term TSFM strategy yield
positive and statistically significant alphas at the 1% level after controlling for the
equal-weighted factor portfolio, EW_FAC. Even though alphas decrease relative to
mean returns, high annualized IRs provide evidence that option factor momentum
increases the investment opportunity set as these ratios are equal to Sharpe ratios
after orthogonalizing TSFM and CSFM returns to the control factors (Haddad,
Kozak, and Santosh (2020)). TSFM strategies converge to static factor investing the

FIGURE 2

Cumulative Returns of Factor Momentum Legs

Figure 2 plots the cumulative sum of monthly returns of both time-series factor momentum (TSFM) and cross-sectional factor
momentum (CSFM) strategies based on 4 formation periods as defined in equations (3) and (4). All strategies are built from a
set of 28 option factors withmonthly returns from Jan. 1999 toDec. 2021. EW_FACdenotes a strategy that equally invests in all
28 factors with monthly rebalancing.
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longer the formation period with a high R2 of 0.63 for the t�2 to t�12 strategy and
0.85 for the t�13 to t�60 strategy. This is not the case for CSFM with R2 ranging
from 0.06 to 0.30.

Alphas are positive and statistically significant when controlling for the ZHCT
factors, with t-statistics ranging from 4.77 to 8.60. The annualized IRs are highest
for the medium-term formation periods, reaching 2.88 for the t�6 CSFM strategy.
Similar results arise when controlling for the HVX factors in Panel D. Although the
CSFM alphas decrease by more than controlling for the equal-weighted factor
portfolio or the ZHCT factors, all alphas remain significant at the 1% level, and
IRs remain large. Noteworthy is the significant loading of the strategies on the
IVRV factor. This factor is among the strongest in the sample and, therefore, in the
long leg of the CSFM strategies for most months. For example, IVRV is assigned a
long position for 95% of months, even with only a 6-month formation period.

Overall, both TSFM and CSFM strategies yield positive and statistically
significant returns and present novel investment opportunities that expand on a
static, equal-weighted option factor portfolio and prominent low-dimensional
option factor models. In addition, we can verify these baseline results for various
subsamples of our sample period from 1999 to 2021. We obtain significantly
positive HVX-alphas for the largemajority of formation period specifications when
splitting the sample period into 2 halves, distinguishing between NBER recessions
and expansions, as well as assessing periods of high and low investor sentiment
(Baker and Wurgler (2006)) and intermediary capital constraints (He, Kelly, and
Manela (2017)).7 We provide details on the subsample analysis in Table E.1 in the
Supplementary Material.

IV. The Drivers of Option Factor Momentum

After having demonstrated the significant performance of option factor
momentum strategies in the previous analyses, we turn to investigate the underlying
sources of momentum effects inherent in option factors more closely.

As alluded to in Section II.C, autocorrelation in factor returns can drive factor
momentum. Although the strong autocorrelation displayed in our option factor
returns indicates momentum, it is not the only potential source of positive momen-
tum returns. Conrad and Kaul (1998) stress that profitable momentum strategies do
not solely arise from serial correlation in asset returns, but also from variation across
unconditional mean returns of individual assets. Consequently, differences in mean
returns result in CSM effects due to purchasing permanent winners and selling
permanent losers. Moreover, consistently low or high asset returns can drive TSM
effects as assets that were profitable (unprofitable) in the past will continue to be
profitable (unprofitable) in the future. Hence, despite evidence of considerable
autocorrelation in option factors up to 1 year, as depicted in Figure 1, the high
mean returns and the substantial differences in mean returns of our factor set
reported in Table 1 might likewise explain positive returns of option factor

7We obtain the sentiment index data from Jeffrey Wurgler’s website (https://pages.stern.nyu.edu/
~jwurgler/) and intermediary capital ratios from Zhiguo He’s website (https://zhiguohe.net/data-and-
empirical-patterns/intermediary-capital-ratio-and-risk-factor/).
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momentum strategies. Consequently, both return autocorrelation and mean returns
might a priori cause positive factor momentum returns in the options market.

If mean returns are the dominant drivers of option factor momentum, factors
with absolute high (low) mean returns would be permanent or at least frequent
constituents of the momentum strategies’ long (short) leg.We show that this pattern
largely holds for our option factors.

Figure 3 depicts the percentage of months within our sample period during
which a factor is included in the long leg of a factor momentum strategy. Red (blue)
indicates factors frequently in the long (short) leg.

For the TSFM strategy in Panel a, most factors across different formation
periods are in the long leg during more than 50% of the months in our sample
period. Importantly, high-mean factors such as IVRVor the VR factor tend to be
assigned to the TSFM long leg during almost all months, especially for longer
formation periods. Therefore, the high performance of the TSFM strategymight not
exclusively be due to autocorrelation in factor returns but due to the highly positive
returns of factors included in the strategy’s long leg.

Turning to CSFM in Panel B of Figure 3, note that there is no constructional
long bias as the strategy’s setup ensures that the same number of factors are always
in the long and short leg. Nevertheless, we observe that a handful of factors, such as
IVRV, are predominantly part of the CSFM long leg. This insight highlights that

FIGURE 3

Factors’ Percentage Share of Being Included in Momentum Long Legs

Figure 3 shows the percentage of months during which individual factors are part of the long leg in option factor momentum
strategies over various formation periods. Detailed descriptions of the characteristics used for factor construction are
documented in Section B of the Supplementary Material.
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certain factors tend to consistently outperform relative to their peers and are thus
frequently included in the strategy’s long leg. Thus, option factor momentum in the
cross-section might also be considerably attributable to strong variation in mean
factor returns and not solely autocorrelation.

Although the insights from Figure 3 provide tentative evidence of the impor-
tance of mean factor returns for factor momentum strategies, it is still difficult to
rule out the role of return autocorrelation. The distinction between these two
return drivers is relevant within our option setting as some high-mean factors,
such as IVRV, are also among the factors whose returns are among the most
serially correlated (see Figure 1). Therefore, to more formally examine the extent
to which option factor momentum is driven by serial correlation or factor premia,
we employ several formal momentum return decompositions proposed in the
literature.

A. Theoretical Factor Momentum Decompositions

Consider a hypothetical cross-sectional (factor) momentum strategy defined as

RLM
t =

1

N

XN
i = 1

Fi,�t�F�t

� �
Fi,t:(5)

For this strategy, at the end of each month t, we weigh individual factor returns Fi,t

by the difference between the respective factor’s return during the formation period
�t and the cross-sectional mean factor return F�t in�t. Note that this strategy does
not correspond to our CSFM strategy defined in equation (4), and we solely
consider it to apply the corresponding return decomposition presented below.
Taking the expectation of the strategy in equation (5), Lo and MacKinlay
(1990)8 show that the following equation holds:

E RLM
t

� �
=
N �1

N2 Tr Ωð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Autocovariance

� 1

N2 1
!0
Ω1

!�Tr Ωð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cross‐serial covariance

+ Var μF
� �

|fflfflfflffl{zfflfflfflffl}
Variation in means

,(6)

where μF is the vector of unconditional mean factor returns, Var μF½ � is the cross-
sectional variance of mean returns, Ω=E Fi,t�μFð Þ0 Fi,t��μFð Þ

h i
is the autoco-

variance matrix of option factor returns, 1
!
is a vector of ones, and Tr Ωð Þ is the trace

of Ω. As highlighted in equation (6), the Lo–MacKinlay decomposition splits the
expected return of the LM strategy into 3 distinct components. First, positive
autocovariance in individual factor returns indicates a high (low) return following
a positive (negative) past return signal. Second, negative cross-serial correlations
between different factor returns positively contribute to momentum profits as a
positive (negative) past return on one factor signals low (high) returns on other

8Henceforth, the abbreviation “LM” refers to the decomposition of cross-sectional momentum
proposed by Lo and MacKinlay (1990) and its underlying strategy in equation (5).
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factors. Third, as represented by the cross-sectional variance of mean factor returns,
some factors with high (low) expected returns persistently earn higher (lower)
returns than others.

Analogously, Moskowitz et al. (2012)9 propose a decomposition of a
(hypothetical) TSM strategy that linearly weighs individual asset returns by their
average return over the formation period,

RMOP
t =

1

N

XN
i = 1

Fi,�tFi,t:(7)

After taking expectations, the strategy in equation (7) decomposes into

E RMOP
t

� �
=

Tr Ωð Þ
N|fflffl{zfflffl}

Autocovariance

+
μF0μF

N|fflffl{zfflffl}
Squared mean effect

:(8)

The first term of the MOP decomposition again captures the autocorrelation of
individual factors. The second term represents the dependency of the TSM strategy
onmean returns. If absolute factor returns are persistently high, TSM is profitable as
the strategy’s long (short) positions tend to be long (short) in factors with persis-
tently high (low) returns.

We provide details on the empirical implementation of both decompositions
and computation of bootstrapped standard errors in Section C.1 of the Supplemen-
tary Material. Table 3 depicts the results.

Up to a formation period of 1 year and in line with Ehsani and Linnainmaa
(2022) and Arnott et al. (2023) for stock factor momentum, we observe positive
cross-serial covariance terms that negatively influence the cross-sectional LM
strategy in Panel A. The statistical significance of these terms remains modest with
t-statistics between �2 and �3.

The autocovariance terms of both decompositions are the same and only
scaled differently. The t-statistics of the autocovariance estimates range
between 3.60 and 4.96 for the formation periods up to 1 year. The autocovariance
term is only a borderline significant contributor (t-stat: 1.95) to the strategy returns
for the long-term horizon of t�13 to t�60. The economic magnitudes of the
decomposition terms suggest similar insights.

Importantly, mean factor returns are a key component of momentum strat-
egies next to the autocovariance in factor returns.With longer formation periods,
the variation and sum of squared returns increase in magnitude and statistical
significance. This observation is unsurprising, considering that the formation
period returns more closely resemble the respective unconditional means for
longer periods. However, the decomposition terms related to mean factor returns
also significantly contribute to momentum strategies for short-term formation
periods. Only the estimate of variation in mean returns for the t�1 LM strategy

9Henceforth, the abbreviation “MOP” refers to the decomposition of time-series momentum pro-
posed by Moskowitz, Ooi, and Pedersen (2012) and its underlying strategy in equation (7).
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exhibits a low t-statistic of 1.97. Also, compared to the LM decomposition,
mean returns are generally a stronger contributor to momentum for the time-
series MOP strategies, where their significance is at least as high as for the
autocovariance term.

Overall, we conclude that high mean factor returns are a dominant driver of
option factor momentum strategies. Autocorrelation still plays a considerable role
in explaining option factor momentum, especially for the CSM strategy. The fact
that both mean returns and autocorrelation are essential in explaining the origin of
momentum in option factors is a stark contrast to analogous analyses for the stock
market. For example, Ehsani and Linnainmaa (2022) find that for formation periods
of 1 year, the factor return autocovariance is predominantly responsible for positive
stock factor momentum strategies. Option factormomentum, especially in the time-
series dimension, stems from high and persistent mean factor returns for the same
formation period.

B. Factor Timing Versus Factor Persistence

As the time-series option MOP strategy, in particular, sets itself apart from its
stock factor counterpart in terms of reliance on mean factor returns, we consider an
additional analysis of time-series option factor momentum proposed by Leippold
and Yang (2021). Importantly, the authors point out that the MOP strategy under-
estimates the true impact of mean factor returns. Instead of breaking down the
hypothetical MOP strategy, Leippold and Yang (2021) derive a decomposition of
the baseline TSFM strategy from equation (3) into a factor timing (FT),

TABLE 3

Decompositions of Option Factor Momentum Strategies

Table 3 reports empirical estimates for the cross-sectional and time-series momentum decompositions as proposed by Lo
and MacKinlay (1990) (LM, Panel A) and Moskowitz et al. (2012) (MOP, Panel B). We apply block bootstrapping with a block
length of 4 to mimic the autocorrelation-robust Newey–West standard errors with 4 lags. Details on the empirical
implementation are in Section C.1 of the Supplementary Material. The sample period is from Jan. 1999 to Dec. 2021. All
returns are annualized and in percentages.

t�1 t�6 t�2 to t�12 t�13 to t�60

Panel A. Cross-Sectional Factor Momentum

Autocovariance 5.37 7.86 7.92 2.29
(3.60) (4.96) (4.76) (1.95)

� Cross-serial covariance �1.62 �2.28 �2.27 0.36
(�2.10) (�2.65) (�2.54) (0.66)

+ Variation in mean returns 2.28 4.32 5.40 10.63
(1.97) (3.65) (4.30) (10.31)

= Cross-sectional option factor momentum (LM) 6.03 9.89 11.05 13.28
(4.49) (6.02) (5.93) (8.41)

Panel B. Time-Series Factor Momentum

Autocovariance 3.63 4.96 4.66 1.19
(3.60) (4.96) (4.76) (1.95)

+ Sum of squared mean returns 3.84 6.70 7.70 13.81
(3.80) (6.70) (7.86) (22.61)

= Time-series option factor momentum (MOP) 7.47 11.66 12.36 15.00
(5.02) (6.09) (6.23) (9.92)
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RFT
t =

2

N

XN
i = 1

sign Fi,�t�Fi,t�1

� �
Fi,t,(9)

and a buy-and-hold (BH) strategy,

RBH
t =

2

N

XN
i = 1

sign Fi,t�1

� �
Fi,t,(10)

where Fi,t�1 is the prevailing historical mean factor return up to month t�1.
FT is long (short) in factors that outperform (underperform) their prevailing

mean return during the formation period. BH is long (short) in factors that have a
positive (negative) prevailing mean return. Notably, BH tends to perform well if
factor returns are persistently positive or negative, corresponding to large absolute
mean factor returns. In this sense, BH is strongly related to the second term of the
MOP decomposition in equation (8). Moreover, as our expanding window
approach to determine factor sorting directions leads to factors with positive
prevailing mean until momentum strategies are constructed, note that BH is a
long-only portfolio and equivalent to the equal-weighted factor portfolio,
EW_FAC, introduced in Section III. In contrast, FT represents the continuation
of factor returns over time and is, therefore, conceptually more closely related to
the autocovariance term in equation (8). Leippold and Yang (2021) show that
expected TSM returns of individual factors can be expressed as a linear combi-
nation of individual FT and BH returns (i.e., the terms within the summations for
factor i).

In Panel A of Table 4, we separately depict the returns and Sharpe ratios of the
BH and FT strategies over different formation periods.

The annualized mean returns of the BH strategy are positive with 13.95%
(t-stat: 9.28). The FT strategies based on formation periods up to 1 year display
mean returns ranging from 3.52% to 4.05%with t-statistics up to 2.72. Only for the
formation period t�13 to t�60, FTyields a negative mean return. The Sharpe ratios
of option FT strategies are still sizeable for the formation periods up to 1 year,
ranging from 0.67 to 0.8.

We regress TSFM returns on either strategy’s return in Panel B of Table 4.
Judging by the significance of the regression alphas, we find that TSFM is
largely explained by BH. The alpha coefficient remains statistically significant
and decreases noticeably in terms of economic magnitude and statistical signif-
icance compared to the strategy’s mean returns presented in Table 2. Nonethe-
less, as BH does not fully subsume the returns of the TSFM strategy, and
analogous to the results in Panel B of Table 2 for EW_FAC, we can conclude
that TSFM remains a distinct strategy from a mere buy-and-hold approach. On
the other hand, after regressing TSFM on FT returns, alphas only decrease
slightly, and significance levels even increase compared to our baseline results
in Table 2.

It must be noted that even the pure factor timing strategy FT might not always
successfully profit from existing autocorrelation. Consider again the definition of
FT in equation (9). One precondition for FT to capture return innovations is that the
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prevailing historical mean, Fi,t�1, is stable over time. In this context, it is necessary
to point out that some high-mean factors, such as IVRV, display highermean returns
in the earlier parts of our sample periods until the early 2000s.10 For the factors with
the highest full-sample mean returns in Panel A, most prominently IVRV, we
document that these factors yield higher returns during earlier periods. Thus, for
large parts of the sample period, the FT strategy tends to be short in high-mean
factors that can no longer beat their Fi,t�1 benchmark but would otherwise have
positively contributed to FT returns based on their displayed autocorrelation.
Moreover, as option factors tend to display rather low return volatility, it is unlikely
that strong return fluctuations can overcome the changes in mean returns, leading to
prevailing historical means dominating the formation signal.

Nevertheless, the stronger performance and higher explanatory power of BH
over FT point to a dominant role or high mean factor returns for TSFM, especially
for longer formation periods.

V. Option Momentum and Option Factor Momentum

In this section, we investigate the relation between factor momentum and
momentum in single-name option returns. Heston et al. (2023) document strong
momentum effects in returns of at-the-money straddles on individual equities. We
construct time-series and cross-sectional option momentum strategies in delta-
hedged call options analogous to our baseline strategies outlined in equations (3)

TABLE 4

Buy-and-Hold and Factor Timing Strategies with Option Factors

Table 4 Panel A reports mean and Sharpe ratios (SR) for buy-and-hold (BH) and factor timing (FT) strategies over different
formation periods using option factors. BH is the return of a strategy that is long (short) in factors with a positive (negative)
prevailing mean return. FT is a strategy that is long (short) in factors that have outperformed their prevailing mean return up to
t �1 during the respective formation period. To assess whether either BH or FT can subsume TSFM, we regress TSFM returns
on either BH or FT returns (as denoted by the superscript k) in Panel B. t -statistics (in parentheses) account for
heteroskedasticity and autocorrelation in residuals up to lag 4, following Newey and West (1987). We estimate SR
standard errors using GMM. The sample period is from Jan. 1999 to Dec. 2021. All returns are annualized and in
percentages. (*) indicates that we only report the summary statistics for the BH returns beginning after the years 1996–
1998 consistent with our expanding window approach that utilizes the first 3 years as a burn-in period to determine factor
signs.

k =BH (Buy-and-Hold) k = FT (Factor Timing)

t�1 t�6 t�2 to t�12 t�13 to t�60 t�1 t�6 t�2 to t�12 t�13 to t�60

Panel A. Summary

Mean return 13.95* 3.59 4.05 3.52 �1.70
(9.28) (2.72) (2.57) (2.27) (�1.75)

Sharpe ratio 2.74 0.67 0.80 0.77 �0.53
(9.83) (3.35) (3.22) (2.66) (�1.78)

Panel B. Regression RTSFM
t = α+ βRk

t + εt

α 3.65 5.19 4.63 1.22 7.46 11.86 12.76 12.62
(2.37) (3.40) (3.64) (1.44) (12.87) (15.31) (13.40) (10.11)

β 0.49 0.64 0.72 0.85 0.85 0.57 0.52 0.31
(5.13) (6.51) (10.05) (14.42) (28.55) (6.32) (4.40) (1.48)

R2 0.24 0.51 0.63 0.85 0.79 0.40 0.27 0.05

10We plot 36-month rolling mean factor returns in Figure E.1 in the Supplementary Material.
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and (4). Following Heston et al. (2023), we require return observations for two-
thirds of the months during a formation period. Using delta-hedged call returns
instead of straddles deviates from the construction of option momentum in Heston
et al. (2023). However, we do not expect a vastly different return behavior, as both
straddles and delta-hedged calls are roughly delta-neutral and a bet on future
realized versus implied volatility of the underlying.

Panel A of Table 5 summarizes the performance of option momentum
(OM) in daily delta-hedged call positions. Except for the long-term horizon
time-series strategy, both time-series option momentum (TSM) and cross-
sectional option momentum (CSM) strategies yield, on average, positive returns,
albeit smaller in economic magnitude and statistical significance than our factor
momentum strategies. We obtain insignificant mean returns for the longer-term
horizon momentum strategies when performing a risk adjustment using the HVX
factor model, depicted in Panel B of Table 5. However, despite decreases in
magnitude and significance, the alphas of strategies with shorter formation
periods remain largely positive and statistically significant. Notably, the alphas
of the TSM strategies are larger than the corresponding CSM alphas. The CSM
strategy for the 6-month formation period with a t-statistic of 3.22 exhibits the
most statistically significant alpha.

Having extended the findings of Heston et al. (2023) to delta-hedged call
returns instead of straddles, we next investigate whether option factor momentum
spans option momentum.

TABLE 5

Option Momentum Returns

Table 5 reports performance measures of both time-series momentum (TSM) and cross-sectional momentum (CSM)
strategies based on 8 formation periods. All strategies are built from daily delta-hedged call option returns from Jan. 1999
to Dec. 2021. TSM strategies go long (short) in options with positive (negative) formation period returns. CSM strategies go
long (short) in options with an above (below) median return in the formation period. For each underlying company, we require
return observations for at least two-thirds of the months of the formation period. Panel A provides a summary of Option
Momentum strategies. Panel B reports the results of regressing TSMandCSMon factors based on themodel by Horenstein et
al. (2022) (HVX): the equal-weighted return of 280portfolios that arise from thedecile sorts onour 28 characteristics (EW_RET),
the long-short factor based on the volatility of implied volatility (VOV), and the long-short factor based on the difference in
implied and realized volatility (IVRV). Mean returns, Sharpe ratios, and alphas are annualized and given in percentages. t-
statistics (in parentheses) account for heteroskedasticity and autocorrelation in residuals up to lag 4, following Newey and
West (1987).

Time-Series Momentum Cross-Sectional Momentum

t�1 t�6 t�2 to t�12 t�13 to t�60 t�1 t�6 t�2 to t�12 t�13 to t�60

Panel A. Performance of Option Momentum

Mean return 6.27 4.90 4.45 0.74 2.88 3.92 4.57 1.85
(4.70) (5.47) (4.04) (0.84) (4.46) (7.07) (6.98) (4.60)

Sharpe ratio 0.99 1.22 1.02 0.19 1.32 2.03 2.03 1.08
(6.32) (5.17) (3.84) (0.80) (6.55) (10.28) (10.79) (5.03)

Panel B. Option Momentum Versus HVX Factors

α 4.45 5.05 3.34 �1.93 1.41 1.95 1.27 0.30
(2.97) (3.12) (1.96) (�1.23) (2.22) (3.22) (1.82) (0.52)

EW_RET 0.28 0.01 �0.01 �0.03 0.07 0.10 0.10 0.10
(1.22) (0.07) (�0.10) (�0.21) (1.70) (2.46) (2.55) (5.00)

VOV �0.30 �0.09 �0.08 �0.08 �0.08 �0.03 0.00 �0.04
(�2.38) (�1.06) (�1.07) (�0.98) (�2.35) (�0.91) (�0.07) (�1.55)

IVRV 0.13 0.01 0.05 0.13 0.07 0.08 0.13 0.08
(2.67) (0.22) (1.02) (2.43) (2.57) (3.63) (4.68) (4.31)

R2 0.13 0.01 0.01 0.04 0.10 0.19 0.25 0.19
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In Panel A of Table 6, we show the results of regressing option momentum
returns on the corresponding option factor momentum returns. Regression alphas
tend to become insignificant and, in 3 cases, even negative, except for CSMwith the
formation periods t�6 and t�2 to t�12. However, all alphas turn insignificant after
additionally controlling for the HVX factors in Panel B. On the other hand, when
controlling for option momentum in Panel C and for option momentum plus the
HVX factors in Panel D, option factor momentum alphas remain significantly

TABLE 6

Option Momentum Versus Option Factor Momentum

Panel A and Panel B of Table 6 report the results regressing optionmomentum (OM) on the factor momentum strategy with the
same formation period and on theHorenstein et al. (2022)model augmented by factormomentum strategy. Panel C and Panel
D report results of identical regressions but switching factor momentum (FM) and option momentum (OM). The respective
regression equations are stated above the results. Regression intercepts (α) are annualized and given in percentages. t -
statistics (in parentheses) account for heteroskedasticity and autocorrelation in residuals up to lag 4, following Newey and
West (1987).The sample period is from Jan. 1999 to Dec. 2021.

Time-Series Momentum Cross-Sectional Momentum

t�1 t�6 t�2 to t�12 t�13 to t�60 t�1 t�6 t�2 to t�12 t�13 to t�60

Panel A. Regression ROM
t = α + βRFM

t + εt

α �0.54 �0.33 2.10 �2.35 0.69 1.20 1.01 0.65
(�0.49) (�0.33) (1.31) (�1.30) (1.45) (2.37) (1.97) (1.18)

RFM 0.65 0.37 0.16 0.26 0.34 0.30 0.37 0.17
(4.80) (5.86) (1.69) (1.98) (6.98) (4.52) (5.12) (3.39)

R2 0.28 0.18 0.03 0.09 0.34 0.26 0.29 0.09

Panel B. Regression ROM
t = α + β1R

FM
t + β2EW_RETt + β3VOVt + β4 IVRVt + εt

α 0.07 1.03 2.06 �3.53 0.17 0.76 0.26 �0.38
(0.06) (0.85) (1.23) (�2.07) (0.27) (1.28) (0.39) (�0.67)

RFM 0.66 0.47 0.20 0.27 0.31 0.25 0.27 0.16
(6.99) (6.08) (1.32) (2.39) (7.13) (3.91) (3.94) (4.44)

EW_RET 0.30 0.07 0.01 0.02 0.04 0.07 0.07 0.10
(1.68) (0.72) (0.06) (0.16) (0.85) (2.00) (1.58) (6.50)

VOV �0.31 �0.20 �0.12 �0.14 �0.06 �0.05 �0.02 �0.03
(�3.61) (�3.06) (�1.15) (�1.72) (�1.89) (�1.32) (�0.41) (�1.31)

IVRV 0.04 �0.06 0.00 0.07 0.04 0.04 0.07 0.06
(1.21) (�1.42) (0.08) (1.32) (1.80) (2.21) (3.29) (2.73)

R2 0.41 0.25 0.04 0.12 0.38 0.35 0.35 0.26

Panel C. Regression RFM
t = α+ βROM

t + εt

α 7.83 11.81 13.81 11.87 3.54 5.68 5.97 6.01
(7.34) (10.06) (9.15) (8.95) (4.71) (7.82) (8.31) (11.04)

ROM 0.43 0.48 0.18 0.34 1.01 0.89 0.77 0.51
(4.12) (4.63) (1.76) (2.56) (5.81) (7.51) (8.46) (3.16)

R2 0.28 0.18 0.03 0.09 0.34 0.26 0.29 0.09

Panel D. Regression RFM
t = α+ β1R

OM
t + β2EW_RETt + β3VOVt + β4 IVRVt + εt

α 4.44 5.90 5.98 6.44 2.59 3.27 3.13 4.16
(4.22) (5.18) (4.59) (4.53) (2.90) (3.66) (3.96) (3.43)

ROM 0.48 0.51 0.16 0.29 0.97 0.78 0.52 0.53
(5.49) (6.80) (1.46) (1.96) (5.19) (5.19) (4.42) (4.12)

EW_RET �0.17 �0.13 �0.11 �0.20 0.03 0.02 0.07 �0.10
(�3.00) (�1.53) (�0.76) (�1.19) (0.37) (0.33) (1.08) (�0.99)

VOV 0.16 0.28 0.24 0.26 0.01 0.09 0.05 �0.06
(1.29) (2.12) (1.68) (2.07) (0.16) (1.46) (0.87) (�0.95)

IVRV 0.07 0.15 0.24 0.17 0.04 0.09 0.14 0.08
(1.97) (3.94) (5.60) (2.27) (1.12) (3.05) (4.40) (1.39)

R2 0.35 0.38 0.30 0.30 0.35 0.32 0.40 0.16
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positive at high confidence levels. Contrary to Heston et al. (2023) but in line with
findings of Ehsani and Linnainmaa (2022) for the stockmarket, we show that factor
momentum based on our 28 option factors subsumes option momentum.11 More-
over, Tian and Wu (2023) interpret CSM in single options as a historical risk
premium that reflects persistence in the risk magnitude variations of risk sources
that drive option returns. Similarly, TSM indicates persistent risk magnitude levels
in the options market. As option factor momentum tends to subsume single-option
momentum and mean factor returns play a relevant role in the factor momentum
strategies according to the decompositions in the previous section, our findings fall
in line with the view of single-option momentum as a historical risk premium
captured by option factor momentum.

VI. Additional Analyses and Robustness Checks

In this section, we discuss the results of various additional analyses. We
investigate if time-series factor momentum spans CSFM and vice versa, document
PC momentum, and construct momentum strategies according to Gupta and Kelly
(2019). We conclude with additional robustness checks.

A. Time-Series Versus Cross-Sectional Factor Momentum

First, we compare the performance of our TSFM and CSFM strategies by
conducting spanning tests. TSMwas proposed byMoskowitz et al. (2012) as a purer
bet on assets’ autocorrelation compared to CSM. Suffering from positive cross-serial
correlation,Moskowitz et al. (2012) find that TSMsubsumesCSMbut not vice versa.
Following Leippold and Yang (2021), we treat both our TSFM and CSFM as zero-
cost strategies because the underlying factors are by construction zero-cost strategies.
Thus we do not enhance CSFM with a time-varying long position in an equal-
weighted (factor) portfolio as proposed by Goyal and Jegadeesh (2018).

We present the results of pairwise spanning regressions in Table 7, with TSFM
returns being the dependent variable on the left-hand panel. Our strategies are
strongly related, as indicated by high t-statistics on the slope coefficients and high
R2 of up to 0.71 for the 1-month formation period strategies. Nevertheless, 6 out of 8
strategies produce positive alphas at the 5% significance level, providing evidence
that TSFM andCSFMare partly distinct phenomena in the optionsmarket. Only for
the 1-month and 5-year formation periods is CSFM fully subsumed by TSFM. As
shown in Table 3, CSFM is adversely impacted by positive cross-serial correlation,
introducing noise and reducing its ability to capture returns based on factors’ own
return continuation. Consequently, TSFM demonstrates a more robust and reliable
approach for shorter formation periods. Our findings contrast Arnott et al. (2023),
who show that their stock CSFM strategy is distinct from the stock TSFM strategy
by Ehsani and Linnainmaa (2022). However, the stock TSFM strategy is based on a
1-year formation period, while the stock CSFM strategy is based on a 1-month
formation period. Instead, we compare strategies with identical formation periods

11Heston et al. (2023) rely on a time-series momentum strategy built from seven option straddle
factors. On the contrary, we consider time-series and cross-sectional option momentum strategies and a
set of 28 option factors.
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to accurately compare the performances, leading to higher mutual explanatory
power.

B. PC Momentum

Following a model by Kozak, Nagel, and Santosh (2018), Ehsani and Lin-
nainmaa (2022) show that persistent sentiment-driven excess demand of investors
can lead to positive autocovariance in factor returns. The authors argue that in the
absence of near arbitrage, rational arbitrageurs will only trade against sentiment
demand in low-eigenvalue PCs as trading in high-eigenvalue PCs carries high
systematic risks. Therefore, momentum effects should only remain in high-
eigenvalue PCs. In line with the model, Ehsani and Linnainmaa (2022) find that
a TSFM strategy trading the factors’ largest 10 PCs ordered by eigenvalues sub-
sumes most momentum in the other subset of PCs and can explain momentum in
stocks. We extend these tests to our option factor sample. The empirical implemen-
tation is detailed in Section C.2 of the Supplementary Material.

In Panel A of Table 8, we report the mean returns of both the TSFM and the
CSFM strategies based on subsets of 7 PCs. In line with the findings for equity
market factors, profits are the highest and most statistically significant in the 7
largest PCs, with t-statistics ranging from 5.38 to 11.93. Nevertheless, all other
subsets also yield positive and significant momentum profits for most or all for-
mation periods. This result does not immediately contradict the results of Ehsani
and Linnainmaa (2022) and Arnott et al. (2023), who find momentum in lower-
eigenvalue PCs as well. However, momentum in high-eigenvalue PCs fully
explains lower-eigenvalue PC momentum in these studies. We test for this effect
by regressing returns of lower PC subset strategies on their respective PC1�7

counterpart. Alphas are reported in Panel B of Table 8. Some positive and signif-
icant returns remain. This suggests that there are momentum effects in lower
eigenvalue PCs, which are distinct from the momentum effects of the largest 7
PCs. Nevertheless, for the lowest eigenvalue PC subset, no significant alphas
remain, and for the others, significance and magnitude drop substantially. Overall,
our results suggest that the highest-eigenvalue PCs exhibit the strongest factor

TABLE 7

Time-Series Versus Cross-Sectional Factor Momentum

Table 7 reports the results of regressing TSFM and CSFM strategies (with identical formation periods) on each other. TSFM
strategy returns are the dependent variable on the left-hand side of the table. Regression intercepts (α) are annualized and
given in percentages. t -statistics (in parentheses) account for heteroskedasticity and autocorrelation in residuals up to lag 4,
following Newey and West (1987). The sample period is from Jan. 1999 to Dec. 2021.

Time-Series Factor Momentum Cross-Sectional Factor Momentum

t�1 t�6 t�2 to t�12 t�13 to t�60 t�1 t�6 t�2 to t�12 t�13 to t�60

α 3.09 5.17 4.48 4.11 �0.02 1.78 1.81 1.16
(4.77) (5.47) (4.39) (3.08) (�0.03) (1.93) (2.14) (1.59)

CSFM 1.15 0.98 1.06 1.15
(12.63) (7.76) (9.44) (8.79)

TSFM 0.62 0.52 0.53 0.48
(7.62) (7.24) (8.24) (6.73)

R2 0.71 0.51 0.56 0.55 0.71 0.51 0.56 0.55
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momentum, and are thus largely in line with Ehsani and Linnainmaa (2022) and
Arnott et al. (2023).

Finally, we test the ability of momentum effects in high and low-eigenvalue
PCs to explain single-option momentum. To do so, we follow Arnott et al. (2023)
and construct PCmomentum strategies, first built from only 2 PCs and then adding
PCs until the full sample of 28 PCs is reached. We then regress option momentum
returns on these various PC momentum strategies and report t-statistics of the
regression intercepts in Figure 4.

For the black lines, we start constructing momentum strategies with the 2
highest eigenvalue PCs and consequentially add further PCs ordered from high to
low eigenvalues. For the red lines, we start with the 2 lowest eigenvalue PCs. We
show t-statistics of time-series and cross-sectional option momentum alphas for 2
formation periods: 1month and 1 year, excluding themost recent month. Generally,
we see that t-statistics decrease much faster when starting with the highest eigen-
value PCs. The red lines show that t-statistics decrease very little when controlling
for momentum effects in the lowest eigenvalue PCs. This observation provides
evidence that momentum effects in PCs lie in high-eigenvalue rather than low-
eigenvalue PCs.

C. Alternative Momentum Construction

One shortcoming of our baseline momentum strategies is that some factors are
almost always assigned the same ± 2=N portfolio weight because these factors are

TABLE 8

Momentum in Option Factors’ Principal Components

Table 8 reports themean returns of TSFMandCSFM strategies based on the principal components (PCs) of 28 option factors.
The empirical construction of PC portfolios is detailed in Section C.2 of the Supplementary Material. We construct TSFM and
CSFM strategies using subsets of 7 PCs and save returns for month t . We take 120months of factor returns to perform the first
PC analysis. Therefore, the PCmomentum returns range from Feb. 2006 to Dec. 2021. In Panel A, we report annualizedmean
momentum returns in percentages for different subsets of PCs. For example, PC1�7 denotes the subset of the largest 7 PCs
ordered by eigenvalue. In Panel B, we report the annualized alphas after controlling for the returns of the PC1�7 subset with the
identical formation period. t-statistics of mean returns and alphas account for heteroskedasticity and autocorrelation in
residuals up to lag 4, following Newey and West (1987).

Time-Series Factor Momentum Cross-Sectional Factor Momentum

t�1 t�6 t�2 to t�12 t�13 to t�60 t�1 t�6 t�2 to t�12 t�13 to t�60

Panel A. Mean PC Momentum Returns

PC1�7 9.47 12.17 10.48 9.19 7.80 8.90 7.46 6.03
(8.05) (11.93) (9.05) (7.60) (5.99) (8.43) (6.93) (5.38)

PC8�14 1.60 6.11 5.07 3.18 3.02 6.91 5.12 4.26
(1.72) (4.79) (4.64) (2.56) (2.76) (5.57) (4.89) (3.80)

PC15�21 2.10 4.65 5.39 2.94 1.57 4.76 4.33 3.42
(2.15) (3.91) (5.37) (2.66) (1.87) (4.44) (4.22) (3.42)

PC22�28 3.32 5.38 3.48 1.35 2.95 4.51 3.40 1.21
(2.81) (4.24) (2.80) (0.84) (2.17) (3.42) (2.24) (0.79)

Panel B. Alphas After Adjusting for PC1�7 Momentum

PC8�14 0.63 2.56 2.49 0.39 2.55 3.95 3.42 2.14
(0.60) (1.75) (1.88) (0.20) (2.07) (3.28) (2.87) (1.30)

PC15�21 1.41 1.29 2.76 1.51 2.09 5.28 2.85 3.12
(1.02) (0.79) (2.23) (0.80) (2.20) (3.46) (1.62) (2.82)

PC22�28 0.10 �0.36 2.44 �0.96 �0.06 0.94 2.69 2.13
(0.08) (�0.19) (1.59) (�0.48) (�0.04) (0.51) (1.72) (1.57)
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persistently strong (weak). In such cases, a factor’s autocorrelation does not play a
role and is not reflected in the TSFM and CSFM strategies. We follow Gupta and
Kelly (2019) to address these issues and construct alternative factor momentum
strategies. For time-series factor momentum, we calculate a z-score factor weight
defined by

zi,t = min max
1

σi,t
Fi,�t,�2

� �
2

� �
,(11)

where Fi,�t denotes the average monthly return of factor i for formation period�t.
σi,t denotes the monthly factor volatility over the previous 3 years for formation
periods t�1, t�6, and t�2 to t�12. Following Gupta and Kelly (2019) we calculate
σi,t over 10 years for the t�13 to t�60 formation period. For cross-sectional factor

FIGURE 4

Significance of Option Momentum After Controlling for PC Momentum

Figure 4 shows t -statistics of regression alphas estimated from regressing time-series (TSM) and cross-sectional (CSM)
option momentum returns on the returns of PC momentum strategies. For the black lines, we construct PC momentum
strategies from the highest-eigenvalue PCs of our set of 28 option factors and add lower-eigenvalue PCs going from left to
right. For the red lines, we start with the lowest-eigenvalue PCs. The number of PCs from which the PC momentum strategies
are built is shown on the x -axis. For x = 0, we depict t -statistics of the raw mean option momentum returns. All t-statistics
account for heteroskedasticity and autocorrelation in residuals up to lag 4, following Newey and West (1987).

Graph A. TSM: t-1 Graph B. TSM: t-2 – t-12
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momentum, we subtract the median formation period return ~F�t from Fi,�t when
calculating the z-scores which are capped between�2 and 2.Weweigh the long and
short legs by the respective positive and negative z-scores. These factor momentum
strategies differ from the original strategies proposed in Section III. First, factor
weights are linearly proportional to past factor performance. Thus, these strategies
are more effective in capturing the autocorrelation of extremely high (low) per-
forming factors. Second, the time-series strategy does not have a long bias, as the
strategy is invested equally with $1 in both the long and the short leg.

Baseline results for the alternative factor momentum strategies are reported in
Table E.2 in the Supplementary Material. Again, we find highly significant annu-
alized mean returns ranging from 8.76% to 14.84%, high Sharpe ratios, and high
alphas after controlling for the factors of Horenstein et al. (2022).

Additionally, we construct option momentum strategy in the same way as
outlined in equation (11), but using options instead of factor returns. Table E.3 in the
Supplementary Material shows that, especially for CSM strategies, significant
alphas remain even after controlling for the HVX factors. However, after augment-
ing the model by Horenstein et al. (2022) with the alternative factor momentum
strategies, the majority of alphas turn insignificant for the formation periods below
5 years. On the other hand, optionmomentum again does not subsume option factor
momentum, providing further evidence that option factor momentum explains
option momentum, but not vice versa.

D. Robustness Checks

We conduct robustness checks for our baseline strategies with detailed results
presented in Section E of the Supplementary Material. First, we use daily delta-
hedged put options instead of call options to test for both option factor momentum
and optionmomentum (Section E.4 of the SupplementaryMaterial). Second, for the
factor construction, we weigh options within each decile portfolio by the option’s
underlying market capitalization (Section E.5 of the Supplementary Material).
Additionally, we cut our option sample by keeping only the most liquid 50% of
options each month, measuring liquidity by the options’ proportional bid–ask
spreads (Section E.6 of the Supplementary Material). The construction of option
momentum strategies and the HVX factors are adjusted accordingly for each
robustness test. In all settings, option factor momentum yields high mean returns,
high Sharpe ratios, and significant alphas after controlling for theHVX factors. This
holds for both TSFM and CSFM strategies and across all formation periods.
Moreover, option factor momentum continues to be distinct from option momen-
tum, while the latter is subsumed by option factor momentum.

VII. Conclusion

Factors that describe the cross-section of stock returns exhibit momentum, and
through stocks’ and industries’ factor exposure, this momentum causes stock and
industry momentum (Ehsani and Linnainmaa (2022), Arnott et al. (2023)). In this
article, we extend the tests for factor momentum to the equity options market
relying on a set of 28 option factors. We find corroborating evidence for both the
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existence of factor momentum and its explanatory power for momentum in the
factors’ underlying assets.

First, time-series and cross-sectional option factor momentum strategies are
highly profitable. Moreover, their returns are distinct from returns of an equal-
weighted factor portfolio and yield significant alphas after accounting for option
factor models. Second, strategies relying on a 1-month formation period are con-
siderably driven by factor autocorrelation. However, the longer the formation
period, the more important high mean factor returns and their persistent variation
as momentum drivers, especially for time-series factor momentum. This resembles
a remarkable difference to stock markets. Third, spanning tests suggest that option
factor momentum subsumes option momentum and not vice versa.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109025000225.
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