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INTEGRAL EXTENSIONS OF COMMUTATIVE BANACH 
ALGEBRAS 

JOHN A. LINDBERG, JR. 

Dedication. This paper is dedicated to my father on the occasion of his 80th 
birthday. 

Introduction. In this paper, we continue the study of integral extensions 
begun in [7]. Whereas in the previous paper, we dealt exclusively with the 
extension A[x]/(a(x)), a(x) a monic polynomial over A, we now deal with 
arbitrary integral extensions. Applications of the results presented herein will 
be made in subsequent papers. 

To simplify our presentation, we make the following conventions. By an 
algebra, we will always mean a commutative complex algebra with an identity 
element, usually denoted by e. If A and B are algebras, then B will be called 
an extension of A if there is an isomorphism of A into B that carries the 
identity of A onto the identity of B. When convenient, we simply view A as 
a subalgebra of B that contains the identity of B. B is said to be integral over 
A if every element of B satisfies a monic polynomial over A. If {A, \\ • \\A) 
and (By || • \\B) are normed algebras with B an extension of A, then (B, || • \\B) 
is called a normed extension of (A} || • \\A) if the given isomorphism of A into 
B is also norm preserving. 

The paper has been divided into four sections. In section 1, we study the 
relationship between the carrier space $B of B and the carrier space $A of A. 
If TA

B denotes the natural mapping of $B into <£>A (irA
B(<p) = <p\A, <p £ $5), 

then TA
B is onto (Theorem 1.1). We further show that $B is compact if and 

only if <&A is compact. The Silov boundary dB of B always contains (TTA
B)~1 (dA), 

dÂ the Silov boundary of A, and examples can easily be given which show that 
the inclusion can be proper. A necessary and sufficient condition (Proposition 
1.4) that dB = (TrA

B)~l(dA) is given in terms of the Silov boundary of the 
simple extensions A[b] for b 6 B. The remainder of section 1 is given to the 
study of dA[bY, where b is an element integral over A. 

The second section is concerned with the application of analytic functions 
to integral extensions of Banach algebras. Specifically, we show that if B is 
either a normed or a semi-simple integral extension of a Banach algebra, then 
B is closed under the application of analytic functions of several variables in 
the usual sense, even though the algebras might not be complete under any 
norm. This allows us to conclude that many of the standard theorems for 
Banach algebras which rely on analytic functions remain valid for such integral 
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extensions of Banach algebras. (Perhaps it is worthwhile mentioning here that 
not every integral extension of a Banach algebra is normable as a normed 
extension of that algebra—an example will be given in [10].) 

In section 3, we study a class of integral extensions we have called standard 
extensions. This class includes the simple extensions Aa = A[x]/(a(x)), where 
a(x) is a monic polynomial over A. The extension Aa is known to be normable 
as a normed extension of A and is complete in this norm precisely when A is 
complete in its given norm (see [1] for details). Using this technique for 
norming Aa, a special class of norms || • ||B on standard extensions that render 
(5, || • | |s) a normed extension of (A, \\ • ||A) can be constructed. We have 
called such norms standard norms. In Theorem 3.2 we give a necessary and 
sufficient condition for a standard extension to be complete in a standard norm. 
However, under standard norms, standard extensions are always Ç-algebras; 
that is, the group of units is open in the norm topology on B. 

In the final section of the paper, we show that every Banach algebra possesses 
a normed extension (C, || • | | c) that is complete and integrally closed. This 
extends a theorem of B. Cole [3] who proved that every uniform algebra has a 
normed extension that is also a uniform algebra and closed under square roots. 
We also show that if A is indecomposable, then we can take C to be indecom­
posable. 

The main technique of the paper is to reflect the problem at hand back into 
the subalgebras of B that are singly or finitely generated over A, that is, the 
subalgebras A[bi, . . . , bk] of polynomials in the elements &i, . . . , bk £ B, 
coefficients in A. 

Portions of the research for this paper were carried out during the academic 
year 1968-1969 while the author was on Faculty Leave from Syracuse University 
and a Postdoctoral Research Fellow at Yale University. The author wishes to 
express his gratitude to both institutions. He also wishes to thank the referee 
for several useful suggestions for improving this paper. 

1. Carrier space of integral extensions. If B is an integral extension of A, 
then it is well-known that an ideal M in A is a maximal ideal in A if and only if 
there is a maximal ideal N in B such that M = N P\ A (see [14, Chapter V, 
Section 2]). From this it easily follows that R(A) = R(B) C\ A, where R(A) 
denotes the radical of A. In this section, we are interested only in those maxi­
mal ideals of A that are kernels of complex homomorphisms. For an algebra A, 
we denote the space of non-trivial complex homomorphisms on A by $A . 
Rickart in [13] calls §A the carrier space of A. As usual, for a (E A, a denotes 
the Gelfand transform on $A of a, and A the algebra of such functions. The 
weakest topology induced on 3>A by A will be called the Gelfand topology. The 
neighborhood 

{d e $A : \0(bi) - *>(&<)! < e, i = 1, 2, . . . , k} 

of <p G $A will be denoted by VA((p; &i, . . . , bk\ e), e > 0, bi, . . . , bk G A. 
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For an extension B of A, we set irA
B(<p) = <p\A, ç> £ $B. Clearly, TA

B is a 
continuous mapping with respect to the Gelfand topologies on $ 5 and $A. 

PROPOSITION 1.1. Let B be an integral extension of A. Then 
(i) irA

B is onto\ and 
{ii) à—^âo irA

B is an isomorphism of A into B; thus, B is an integral exten­
sion of A. 

Proof, (i) Suppose M = <p_1(0), <p 6 $A. Then there exists a maximal ideal 
N in B such that N Pi A = M (see [14, p. 259]). Let x// denote the natural 
mapping of B onto B/N. Then, for a Ç A, a = <p(a)e + m, m £ M, we have 
\[/(a) = <p(a)\[s(e). Hence, \f/(A) = C\//(e). Since B is integral over A, B/N is 
integral over \p{A) so that JS/iNT = \f/(A) = G\f/(e). If we set £(&) = X6f 

where \p(b) = \b\[/(e), we have that £ 6 <£5, <p\A = cp and <?-1(0) = ^ - Hence, 
7r4

s is onto. 
(ii) follows immediately from (i). 

It follows from the proof of part (i) of the above proposition that if every 
maximal ideal of A is the kernel of a complex homomorphism, then the same 
is true for every maximal ideal in B. 

For a polynomial p(x) = JjSitf* £ A[x], set P<p(x) = ^2<p(fii)xi. 

THEOREM 1.2. Let B be an integral extension of A. Then $B is compact if and 
only if QA is compact. 

Proof. Since TA
B is continuous and onto, <£5 compact forces $A to be compact. 

Conversely, suppose $A is compact. Let || • ||œ denote the uniform norm 
over <£A. Then ||a||œ < + oo for each a £ A. We now show that every element 
of B has a bounded transform. Let b £ B, and fi(x) = xn + 2Y=O ft7x

y be any 
monic polynomial over A such that (3(b) = 0. If t > 0 is any positive number 
satisfying T ^ Z£o||j§y||aA then for̂  £ £ $ 5 , |£(6)| ^ / since &(£(&)) = 0. 
Thus, |5(<£)| ^ / for all <£ £ <£#, and J§ is a normed algebra with respect to the 
uniform norm (over $B) so that <£>B is compact in the Gelfand topology. 

By a natural algebra, we shall mean an algebra in which every maximal ideal 
is the kernel of a complex homomorphism and for which <É>A is compact. Com­
bining the comments following Proposition 1.1 and Theorem 1.2 we have 

COROLLARY 1.3. If B is an integral extension of A, then B is a natural algebra 
if and only if A is a natural algebra. 

Before we continue, we introduce the following notation: If A is an algebra 
and a(x) £ A[x] is monic, then Aa will denote A[x]/(a(x)). Aai . . . ak will 
denote the repeated extension (. . . ((Aai)a2) . . . ) a k , where at(x) is a monic 
polynomial over (. . . (Aai)a2 • • • )<*;-!• For an ideal 7 in i , H (I) = 
{6 £ $A'-0(i) = 0, i £ I) will be called the hull of I. For a subset F C $A, 
K(F) = {a £ A : <p(a) = 0, <p £ F} will be called the kernel of F. K($A) will 
be simply denoted by K(A). For A, a Banach algebra, K(A) is the usual 
radical. 

https://doi.org/10.4153/CJM-1973-068-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-068-2


676 JOHN A. LINDBERG, JR. 

We conclude this section with a discussion of the Silov boundary of integral 
extensions. Let dA denote the Silov boundary of A when $A is compact. For 
the extension B = A[x]/(a(x)),a(x) monic, and $A compact, it is known that 
dB = (jA

B)~l{dA) (see [7, Theorem 3.1]). For general integral extensions, we 
have 

PROPOSITION 1.4. Let B be an integral extension of A, with $A compact. Then 
(i) dB^ (wA

B)-'(dÂ); 
(ii) dB = {irA

B)~l(dÂ) if and only if dA[bY = (jA
AW)-l(dÂ) for every 

b e B. 

Proof. To prove the first assertion of the proposition, suppose 
<?o € (TTAB)_1(^O), where <p0 G dÂ. Let V = VB(<Po] bi, . . . , bk; e) denote any 
basic neighborhood of <£0, and let B' — A\b\, . . . , bk]. We will show that there 
exists b 6 B such that \b\ maximizes on V and is less than that maximum on 
$B\V. Let Bk denote a repeated extension of the form Aai . . . «* for which 
there is a homomorphism iik of Bk onto B'. (To construct Bk, simply take 
at(x) G A[x] monic such that a*(&0 = 0.) We will view $B> and H(HJT1 (0)) 
as the same set. Then B' = Ê^H^r^O)), and dB' 2 dBk C\ H(MJTHO)). 
By Theorem 3.1 (loc. cit.), we have that dBk = {irA

Bk)~1{dÂ), and it follows 
that if <po G dÂ, then 

^AB')-1M = (TTABk)-H<Po) H H O i r H O ) ) £ a # . 

Since V = 7rB^B(F) = F 5 ' W ; &i, . . . , &*; 0» where p0 ' = TTB^B(<PO), is an 
open neighborhood in <£>S' of «po', there exists b ^ B' such that |6| assumes its 
maximum \\b\\^ on V and |6| < \\b\\œ on $ B \ F ' (see [13, p. 138 ]). When 6 is 
viewed as a transform on $B (actually, we are considering b o 7rB'5), we have 
that \b\ maximizes only on V = (TrB

B)-l(V). Hence, V C\ dB ^ 0. It follows 
that îpo G ô-S since dB is closed in $ B . Thus, dB Z) 0TA B ) - 1 (CL^)- (For use in 
the remainder of the proof of the theorem, note that dB = (irA

B)~l(dÂ) if 
and only if irA

B(dB) = dA. This follows immediately from the above.) 
To prove the second assertion, suppose first that dB = {irA

B)~1{dÂ), and 
that b £ B. Then, by part (i), we have that dA[b]~ 2 {^AA[1)])~l{dÂ)1 and 
dB 3 (TM^y^dAibY). Therefore, 

dÂ = irA
B(dB) 3 (vA

Aib])(dA[bY) 2 dÂ 

so that equality holds, and dA [by = (irA
A[b])-l(dÂ) for every b £ B. 

Next, suppose that dA[bY = (TA*™)-1^) holds for every b <E B. Let 
<p Ç dB and let F be any neighborhood in <£># of $. Then there exists b £ B 
such that |6| assumes its maximum modulus on V, say ||&||œ = 1, and \b\ < 1/2 
on $ B \ F . The set 

w = {ef e *A [ M : TOI > 1/2} 
is a neighborhood in $A[&] of <p' = TTA[1)]B(<P) and 7rA[&]S(F) D W. When |&| is 
viewed as a function on $A[&]> \O\ maximizes only on the set W, and hence there 
is a 6' £ W C\ dA[bY. By hypothesis, 6 = 7rA

A^(0') £ dÂ so that 
(TTA*)- 1 ^) H V 9* 0 forces F H ( T T A

S ) - 1 ( ^ ) ^ 0, and since V is an arbi-
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trary neighborhood of <p G dB, the fact that (irA
B)-x{dÂ) is closed forces 

The preceding proposition suggests that we consider conditions under which 
dB = (irA

B)~l(dA), when B is the simple integral extension A[b]. For a 
Banach algebras! a n d / G C($A) , / integral over ^4, Bjôrk in [2] has shown that 
dÂ[f] = (irX^[f])-1{dÂ) whenever the mapping irXA[f] is open. His proof 
can be used to show 

1.5. If A is a Banach algebra and B = A[b] is a simple integral extension such 
that TTA

B is open, then dB = {irA
B)-l(dA). 

We now use 1.5 to prove 

THEOREM 1.6. Let B be an integral extension of A, with $A compact. If TA
B is 

open, then dB = {irA
B)-l{dA). 

Proof. Since irA
A[b] (V) = -KA

B'((IT^[6]
B)_1(V)) and since irA[b]

B is continuous, 
the assumption that irA

B is open forces irA
A[b] to be open for each b £ B. 

Without loss of generality, we can assume Â is a Banach algebra under some 
norm. (For otherwise, we can replace A by its uniform closure Â~ in C($A) 
and A[bY by A'[b].) Then 1.5 implies dA[bY = (r^^-^dÂ). Since b £ B 
is arbitrary, the theorem follows from Proposition 1.4. 

We should note that TTA
B open is not a necessary condition for dB to coincide 

with {irA
B)-l(dÂ). Observe that if ÔÂ = $A, then dB = (irA

B)-l(dA), with­
out any conditions on irA

B. 

2. Analytic functions. For an algebra B, let <rB(bi, . . . , bk) denote the set 
{(<p(bi), . . . , <p(bk)) G Ck : <p G $B}, where bx, . . . , bk G B. Of course, if B is 
a Banach algebra, then crB(bi, . . . , bk) is the usual joint spectrum of the ele­
ments b±, . . . , bk. If D is an open set in C*, let ÛD denote the algebra of all 
functions analytic on D, let l(x) = 1, x G D, and let z\, . . . , zk denote the 
coordinate functions. If B is a (normed) algebra, we say that B is closed under 
the (continuous) application of analytic functions if for each b±, . . . , bk G B 
and for each open set D D vB{b\, . . . , bk), there is a (continuous) homomor-
phism ^ : 0D —> B such that ^(1) = e, V(zi) = bu i = 1, 2, . . . , k and 
<p(*(f )) = f(<p(bi), • • • , <?(W) for <? G $ B a n d / G &'D. (By ^ continuous, 
we mean that if fn —>/ uniformly on the compact subsets of Z>, \fn} C ^z>, 
then ^r(fn) —» SP(/ ) i n the norm on £.) If B is a Banach algebra, then it is 
well-known that B is closed under the continuous application of analytic 
functions (see, for example, [4, pp. 76-84]). If B is assumed to be an integral 
extension of A such that for each finite set b\, . . . , bk G B, A[bi, . . . , bk] is a 
Banach algebra under some norm, then B is closed under the application of 
analytic functions. This follows immediately from the Banach algebra case 
and the fact that aB(bi, . . . , bk) = aB'(b\, . . . , bk), where B' = A[b\, . . . , bk]. 
We now prove 
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THEOREM 2.1. Let B be an integral extension of A, a Banach algebra. If B is 
semi-simple, then B is closed under the application of analytic functions, and if B 
is a normed extension of A, then B is closed under the continuous application of 
analytic functions. 

Proof. Let {61, . . . , bk} be an arbitrary finite subset of B. Let Bk denote a 
repeated extension of the form Aai...ak for which there is a homomorphism 
}xk of Bk onto B' = Albi, . . . , bk] such that ixk{a) = a, a G A. Bk can be made 
into a Banach algebra, and a normed extension of A, by the repeated applica­
tion of the technique of Arens and Hoffman (see [1]). Now, assume B is semi-
simple. Then B' = A[bh . . . , bk] is semi-simple since R(B') = R(B) Pi B' = 
(0) P\ B' = (0). The semi-simplicity of B' in turn implies that \xk~~x(f$) — 
K (H(MAT1 (0))), which is closed with respect to any complete norm on Bk. 
Hence, Bk/ixk~

l(f)) is a Banach algebra under the induced quotient norm. 
Since B' = Bk/nk~

l(0), so is B' a Banach algebra. By the observation made 
earlier, B is closed under the application of analytic functions. 

Suppose, next, that B is a normed extension of A, say with respect to the 
norm || • \\B. Let B', \xk and Bk be as in the opening of the above paragraph. A 
complete norm || • ||fc can be selected for Bk in such a way that \\a\\k = \\a\\ for 
all a G A and /xfc is a norm decreasing homomorphism of Bk onto Br, the latter 
being given the norm || • | | s . For b G B', set 

11*110 — inf H&'+Jll*, 
; € ! " * - x ( 0 ) 

where idk(b') = b. Then || • ||Q is a complete norm on B' satisfying 
| |6 | |B S II^HQ» b Ç B', since \xk is norm decreasing. This shows that B' is a 
Banach algebra under || • || Q so that (Br, \\ • || Q) is closed under the continuous 
application of analytic functions. Since || • || Q ^ || • \\B on B', the same is 
true for the normed algebra (B\ \\ • \\B). Since 61, . . . , bk Ç B was arbitrary, 
(B, || • ||B) is closed under the continuous application of analytic functions. 

As we pointed out in the introduction, the significance of the above theorem 
is that many of the standard theorems for Banach algebras hold for certain 
integral extensions of Banach algebras. For example, if B is either a semi-
simple, or a normed, integral extension of a Banach algebra, then the Silov 
Idempotent Theorem holds for such B's. Furthermore, the factorization 
theorems in [9] and [11] also hold. For later use, we record two specific results. 

2.2. Suppose B is either a semi-simple, or a normed, integral extension of a 
Banach algebra. If a(x) is a monic polynomial over B and if B is indecomposable, 
then there exists a monic polynomial a\(x) Ç B[x] such that ai(x) is a factor of 
a(x) and B[x]/(ai(x)) is indecomposable. 

The proof of 2.2 follows from Theorem 2.1 and the proof of Corollary 5.2 
in [11]. 
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2.3. Let (B, || • \\B) be a normed integral extension of a Banach algebra, and let 
/ G C($B) such that exp / = a (convergence in the uniform norm), a G B. Then 
there exists b G B such that exp b = a (convergence in || • | | s ) . 

See Corollary 6.2 in [4] for the Banach algebra version of 2.3. 

3. Standard extensions. The type of extension embodied in the following 
définition (3.1) can be viewed as a natural generalization of the extension 
Aa = A[x]/(a(x)). If Bi and B2 are both extensions of A and if there is an 
isomorphism \p of B\ onto B2 such that \p(a) — a, for all a G A, then we write 
B,^AB2. 

Definition 3.1. An extension B of A is called a standard extension of A if there 
exists a well-ordered set 2t and a family { 7 ^ } ^ of intermediate subalgebras 
such that B = \JiBt and 

(i) i, j G 21 and i ^ 7 implies Bt C i^ , and 
(ii) i G 21 implies i ^ ~Bi Bi[x]/(at(x)), where Bt = \Jj<iBj, at(x) is a 

monic polynomial over Bu and for the first element i0 G 21, 5Z o = ^4. 

Standard extensions are easily seen to exist. For example, repeated exten­
sions Aai...ak are standard extensions. We next describe a "construction" for 
infinitely generated standard extensions. This is modelled after the proof 
given in [5] for the existence of an algebraic closure of a field. Let A C A [x] 
be a set of monic polynomials and suppose that A is well-ordered by ^ . When 
a(x) G A is used as an index, we will simply write a instead of a (x). Now, let X 
be any set with cardinality greater than that of A and containing A as a subset. 
Let SS denote the set of all mappings/ of initial intervals of A (with respect to 
^ ) into the set of subsets of X such that 

(i) f(a) D A and is an integral extension of A, a G dom ( / ); 
(ii) f(/3) contains f(a) and is an integral extension of the latter for a ^ /3, 

a, 13 G dom ( / ); and 
(iii) for/3 £ dom ( / ) , 

where f(fi) = U«<^/(a) (if a0 G A is the first element with respect to ^ , then 
f(a0) = A) and pp(x) G f(fi)[x] is a monic factor of least degree of P(x). 

If we write / < g, f, g G Se, if and only if dom ( / ) C dom (g) and 
/ = g|dom(g), then there exists f0 G Se which is maximal with respect to < and 
satisfying (i), (ii) and (iii); this follows from Zorn's Lemma. Thus, each 
a(x) G A has a zero in J3A = Uaeiomc/o) /o(«)» since assuming otherwise con­
tradicts the maximality of /0 . (Note that since we are indexing by a subset of 
A[x], the cardinality/(/3) is always the same as the cardinality of A.) 

The condition of pp(x) in (iii) above was introduced in the interest of 
economy. It has the further implication that if A is an indecomposable Banach 
algebra, then BA is also indecomposable, as we will show in the next section. 
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Suppose that B is a standard extension of A relative to {Bt}ie^ and that 
(A, || • \\A) is a normed algebra. Then 11 • 11A can be extended to a norm 11 • 11B 

on B in such a way that the isomorphism of Bt onto Bi[x]/(ai(x)) is an iso-
metry, the latter being given a norm of the Arens-Hoffman type extending the 
norm on B^ A norm || • \\B with this property will be called a standard norm 
and (B, || • \\B) is called a standard normed extension of {A, || • \\A). 

THEOREM 3.2. Let (B, \\ • \\B) be a standard normed extension of (A, \\ - \\A) 
with respect to the family {Bi}ie%. If (A, \\ • \\A) is a Banach algebra, then 
(J3, || • \\B) is complete if and only if there exists l G 31 such that Bx = B and 
{Bj'.j S 1} is a finite set of intermediate subalgebr as. 

Proof. Suppose l G 21 has the property in the statement of the theorem. Then 
B = Bi =A Aai...ak for some collection of polynomials ai(x), . . . , ak{x). Since 
|| • \\B is a standard norm on B, (B, \\ • \\B) will be complete if and only if 
Stl is complete with respect to || • \\Bl where h is the largest index in 21 less 
than / and Bix £ Bi. This follows from the form of the Arens-Hoffman type 
norm (see [1]). Hence, by repeating the argument a finite number of times, 
we obtain Z, Zi, . . . , lk in 21 such that Btk = A £ Bik_1 £ . . . £ Bt = B and 
(Bij, || • \\B) is complete if and only if (Sij+1, \\ • \\B) is complete. Since 
(A, || • 11A) is complete and || • ||A = || • \\B restricted to A, it follows that 
(B, || • \\B) is complete. 

Suppose next that the condition of the theorem fails. Then there exists a 
least co 6 21 such that Ba is a standard extension with respect to \Ba}a<c* and 
{Ba : a < co} is a countable set. Now, restrict || • \\B to Bœ, using the same 
notation for the restriction. Then (Bœi || • \\B) is a standard normed extension 
of {A, || • ||A) with respect to {Ba : a < co}. Now, enumerate the distinct 
elements in {Ba : a < co} by the positive integers: A = BQ £ Bi £ B2 £ . . . , 
and Bœ = U^=iBn. For each positive integer n} Bn+i^Bn Bn[x]/(an(x))y 

an(x) G Bn[x], the isomorphism being an isometry when the latter is given an 
Arens-Hoffman type norm. Thus, if 

Bn
f = {ht + . . . + &*_if*-\ &i 6*-i G Bn], 

k = degree of an(x), then Bn+i = Bn 0 Bn'', the direct sum being topological; 
indeed, for b G Bn+h \\b\\B = ||&o||s + \\b — b0\\B where b0 G Bn,b — b0 G 5 / . 
Now, for each positive integer n, let ^ G JBW', \\bn\\B = 1/2W. Thus, the sequence 

is a || • lls-Cauchy sequence. Suppose X^=A converges to b in Bœ. Let nQ be 
a positive integer such that b G i?wo. Now, by the requirement that bn G Bn

r 

and by the norm condition on the direct sum Bn+i = Bn 0 Bn
f, we have that 

2V no—I I 

r " -s &n = \b -- E 6. 
n = l Is 1 n=l 1 
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for N > no. Hence, X ^ U 0 | | ^ I U "^ 0 and consequently, bn = 0, for all n > n0. 
This is a contradiction, so t h a t Yln=ibn does not converge in Bu. We will show 
t h a t this series does not converge in B by showing t ha t Bt is || • H^-closed in B 
for every i Ç 31. Firs t note t h a t Bt is || • | |B-closed in Bf. Hence, suppose Bt is 
|| • | |B-closed in Bj for all j < j 0 . Then Bt remains || • | ^-closed in BJo, and by 
the above, || • ||j3-closed in BjQ as well. By transfinite induction, Bt is closed in 
Bj for all j ^ i. Hence, Bt is || • H^-closed in B = \J^%Bj. Thus , the same 
is t rue for Bt. By combining this with the fact t ha t (SU1 || • | | f i) is incomplete, 
we have t h a t (B, || • | |B) is necessarily incomplete. 

If B is a s tandard extension of A and incomplete with respect to a s tandard 
norm || • \\B, then it is plausible t h a t B is complete with respect to some other 
norm (not a s tandard norm!) . For separable extensions, this can not happen. 
(B is called a separable extension of A if B is a s tandard extension with respect 
to {Bj} j£%, where the polynomial as{x) generating Bj over Bj has an invertible 
discriminant in Bj.) If infinitely many of the B/s are distinct, then it is easily 
seen t h a t (TTA

B)~1((P) is an infinite subset of $B, and it follows from the next 
result t h a t such a B can never be a Banach algebra under any norm. 

T H E O R E M 3.3. Let A be an algebra and B an integral extension of A. If (TTA3)"1 (<p) 
is an infinite subset of $B for some <p (Z$A, then B is incomplete under any norm. 

Proof. Set X = (TA
B)~X(<P). Since X is hull-kernel closed in <£>#, $BIK{X) can 

be identified with X. I t is easily seen t h a t B/K(X) is an integral extension of 
A/(K(X) H A) ~ C, the complex numbers. Hence, for b £ B, b\X has finite 
range. Suppose, now, t h a t B is a Banach algebra under some norm. T h e n 
K(X) is closed in this norm and B/K(X) is a Banach algebra under the in­
duced quot ient norm. Since $B/K(X) = X is infinite by assumption, 
B/K(XY = B\X is infinite dimensional and hence B/K(X) contains an 
element b + K(X) with infinite spectrum <TBiK(x){b + K(X)) (see [6, Lemma 
7, p . 376]). Since the lat ter set coincides with the range of b\X, we have a 
contradiction. Thus , B can never be a Banach algebra if the condition of the 
theorem holds. 

When A is a Banach algebra, the s tandard normed extensions (B, || • \\B) 
are Q-algebras, a proper ty enjoyed by all Banach algebras. A normed algebra 
is called a Q-algebra if the group of units is open; this is equivalent to every 
maximal ideal being closed. Thus , a na tura l normed algebra is a Ç-algebra if 
and only if every complex homomorphism is continuous. 

T H E O R E M 3.4. Let A be a Banach algebra and let (B, || • \\B) be a standard 
normed extension of A. Then (B, \\ • \\B) is a Q-algebra. 

Proof. Since B is a natura l algebra by Corollary 1.3, we need only show t h a t 
<p G $B is || • | | 5-cont inuous. If f> is || • | ^-discont inuous, then there is a least 
k G SI such tha t <p is || • | ^-discont inuous on Bk. Since A is a Banach algebra 
and || • | |B extends || • \\Ay <p is || • | ^ -cont inuous on A. Thus , it follows t ha t 
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A £ Bk. Since Bk ~ BkBk\x]/(ak(x)), <p mus t also be || • ^ - d i s c o n t i n u o u s on 
Bk because of the form of the norm || • \\B on Bk[x]/(ak(x)) (see comments on 
bot tom of [7, p . 582]). This implies there exists b G Bk such t h a t \<p(b)\ > \\b\\B 

and consequently <p is || • ^ - d i s c o n t i n u o u s on Bj for some j < k, where 
b G Bj. This is a contradict ion to the assumption concerning k so t h a t <jp is 
|| • | ^ -con t inuous on Bt for all i G 31; hence, $ is || • | | f î-continuous on B itself. 

Wi thou t the assumption t h a t || • \\B is a s tandard norm, the above theorem 
does not necessarily hold. 

T h e next theorem is mot iva ted by the work of B. Cole in [3]. 

T H E O R E M 3.5. Let B be a standard extension of A, A a complex algebra with 
$A compact. Then the following hold: 

(i) TCA
B is an open mapping; 

(ii) dB = ( i r A 3 ) ' 1 U ) ; and 

(iii) B is || • W^-dense in C($B) if and only if A is || • \\œ-dense in C ( $ A ) . 

Proof, (i) Le t B be a s tandard extension with respect to {Bt} ie%. Le t F i = 
VB(<p'i bij . . . , bk; e) be a basic neighborhood of £ in <£#, and letfri, . . . , bk G Bu 

i G 21. Then irBi
B(Vi) = VBi(irBi

B(<p); bu . . . , 6*; e) so t h a t 7 ^ ( 7 0 is a 
neighborhood of TBi

B(cp) in « ï^ . Since wBi
Bi is an open mapping (see [9, 1.2, 

p. 358]), irBi
B(Vi) is a neighborhood of irBi

B{(p) in $ ê r By repeat ing the argu­
ment , we can find a j G 21, j < i such t h a t 7r#/*(Fi) is a neighborhood of 
TTBj

B(cp). Clearly, there is a least I such t h a t 7 r^ B (F i ) is a neighborhood of 
^Bt

B{i>)' By the above arguments , / is the least element of 21, t h a t is, Bt = A, 
and TTA

B(VI) is a neighborhood of irA
B{ip). Thus , 7rA

B is an open mapping . 
(ii) This pa r t follows immediately from Theorem 1.6 and (i) above. 
(iii) Assume t h a t A is || • | |œ-dense in C($A). T h e n Bk is || • | |œ-dense in 

C(^Bk) where k G 21 is the least index such t h a t Bk ^ A. This follows from 
Corollary 4.2 in [7]. Now, assume t h a t Bt is || • | |œ-dense in C($Bi) for all 
i < j . When Bt is viewed as a subalgebra of Bf, the uniform closure Bf~ of Bt 

in C($Bj) is conjugate closed as well as contained in the uniform closure 
Bf of Bf. Thus , 

Bf ç U B~ C 5 / . 

Since 5 ^ is separat ing on $#,, and U i<jB~ is conjugate closed, it follows from 
the Stone-Weierstrass Theorem t h a t B f = C($Bj). B u t Bf dense in C($Bj) 
implies the same is t rue for Bj. Thus , Bj is || • | |œ-dense in C($Bj) for all 
j G 21. By another application of the preceding argument , B is || • | |œ-dense 
in C ( $ f l ) . 

Now, suppose t h a t B is || • | |œ-dense in C($B). I t suffices to show t h a t if 
/ G C ( $ A ) and e > 0 are given, then there exists g (z A such t h a t 11 / — g\ \œ < e. 
Since C ( $ A ) can be viewed as a subalgebra of C ( $ 5 ) , there exists g £ B such 
t ha t | | / — g i b < €. Now, there exists a least / G 2Ï such t h a t there exists 
g £ Bi satisfying 11 / — g\ |œ < e. W e will show t h a t B t = A. Le t a (x) = a * (x) 
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be the monic polynomial generating Bx over Bh and assume B{ ^ A. Then 

g = \L *iA - h € Bu 

where k = degree a(x) over Bh Now, consider the system of equations: 

* - i 

where 9? G <i>£j and X* runs through all the roots of av(x) = 0, each repeated 
according to its multiplicity. Set 

Thus g as defined is a function on $£z and moreover, g G 5 / \ Now, for <p G $&, 

\2(<p)-kf(<p)\ = X) gO, x<) -kf(<p) 

Since $ B , is compact, ||g — kf \\œ < ke, or | | ( l /£)g — f\\œ < e. But 
(l/k)g G J5JA implies there exists j < I such that (l/fe)g G - S / . This contra­
dicts the assumption that I is the least index such that there exists g G Bt 

and||g —/H» < €.Thus,I?z = ^4. This establishes the denseness of 4̂ in C($A). 

4. Integral closure of a Banach algebra. Part of the motivation for the 
preceding section is that we wish to extend a result of B. Cole. In [3], he 
showed that if A is a uniform algebra, then there exists a uniform algebra C 
that is a normed extension of A and closed under square roots. The same 
techniques show that there is such a C that is also integrally closed. For Banach 
algebras, we have 

THEOREM 4.1. Let (A,\\ -\\A)bea Banach algebra. Then there exists a complete 
normed extension (C, || • ||c) of A such that 

(i) C is integrally closed] 
(ii) wA

c is onto and an open mapping; 
(hi) dC= (wA

c)-i(dÂ); 
(iv) C is dense in C($c) if and only if A is dense in C($A); and 
(v) if A is indecomposable, then C can also be taken indecomposable. 

Proof. Let G denote the standard extension B& of A constructed in the last 
section, where A is the set of all monic polynomials in A[x] and let || • ||i be a 
standard norm on C\. Properties (ii)-(iv) hold for G by Theorem 3.5. We 
next show that C\ is indecomposable when A is indecomposable. To this end, 
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let {Ba} be the family of intermediate extensions satisfying conditions (i) and 
(ii) of the construction of C\. Suppose that for /3, Ba is indecomposable for all 
a < p. Then clearly Bp is indecomposable. Let pp(x) be the monic factor of 
least degree of /3(x) such that Bp = ëpBp[x]/(pp(x)). Then, by 2.2, there exists 
a monic factor q(x) of pp(x) such that Bp[x]/(q(x)) is indecomposable. If deg 
q (x) < deg pp (x), then pp (x) is not a monic factor of 13 (x) of least degree, which 
contradicts our assumption concerning pp(x). Therefore, deg q(x) = deg pp(x), 
so that q{x) = pp(x). Hence, Bp is also indecomposable. Thus, by transfinite 
induction, Bp is indecomposable for all /3 so that C\ itself is indecomposable. 
Now, let C\ denote the || • ||i-completion of C\. Since (Ci, || • ||i) is a Q-algebra 
by Theorem 3.4, <ï>ci = $ci, and it follows that C\ is also indecomposable 
whenever C\ is indecomposable. Thus, properties (ii)-(v) hold for the 
extension C\. We may and do consider A as a subset of C\. 

If coi denotes the first uncountable ordinal, then by the Principle of Trans-
finite Recussion we can find a family 

of Banach algebras such that (Co, || • ||o) = (A, || • \\A) and 
(i)' for a < j8, C« ^ Cp and {Cp, || • ||/0 a normed extension of (Ca, || • ||a) 

with respect to the identity mapping of C« into Cp; 
(ii)' every monic polynomial over the closure Dp (in Cp) of Dp = \Ja<pCa 

has a zero in Cp] 
(iii)' Cp satisfies properties (ii)-(iv) with respect to Dp] and 
(iv)' Ca are taken indecomposable when A is indecomposable. Now, let 

C = Ua<WlC« and introduce the obvious definitions of the algebraic operations 
into C. For a norm on C, we take ||6||c = IHU if & £ Ca. Clearly (C, || • | | c) 
is a normed algebra, and is complete by a theorem of Pym (see [12]). It is 
easily seen that C is integrally closed. To prove property (ii), we first show 
that irA c is an open mapping. Suppose p < coi and wA

 Ca is open for all a < 0. 
Then TA

D^ is open (see the proof of Theorem 3.5). Now, let Dp denote the 
|| • ||c-closure of Dp in C. Clearly, Dp C Cp, and TTDpC$ is open by (in)' above. 
But Dp is a Q-algebra under || • | | c (restricted to it) since ç> £ $Dp implies that 
\<p(b)\ ^ ||6||a = ||6||c whenever b 6 Ca C Dp, a < 0. Hence $5^ = ^ ^ so that 
TTA5* = 7rA

D0. Since 

7 ^ C * = TA
D' O TDp

C', 

irA
cP is also an open mapping. Thus, by the Principle of Transfinite Induction, 

TA
Ca is open for all a < coi. Thus, it follows that irA

c is an open mapping. Now, 
to show irA

c is onto, consider X = TTA
C($C)- Since wA

c is continuous, X is both 
open and closed. By Theorem 3.3.25 in [13], dA C X so that X = 3>A. This 
shows that (ii) holds for the C we constructed. I t follows also that 7rCa

c and 
TrDa

c are also onto, open mappings. 
We next establish property (iii). First note that dCi = {irA

Cl)~l{dÂ). Next 
assume that ($ < o>i has the property that dCa = (7rA

c«)-1(d^l) for all a < p. 
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To show that the same property holds for fi, begin by assuming <£ $ dDp. 
Then there exists a < fi and an open set W C $D$ containing <p such that 

(*caDfi)-1(*caDfi(W)) = w and w n aD, = 0. 

Since T T ^ iŝ  onto, TCa
De(dDp) 2 dCa so that 7rCa^(^7) n ^C« = 0. Thus, 

nca
Dfi(<p) & dCa and since a < 0, we have that irA

Dfi{<p) (2 5-4. Hence, we have 
that dÔfi 3 O I A * ' ) - 1 ^ ) . On the other hand, 

(TA
Der\dÂ) = u (*oo-W«) 

a</3 

and the latter set is a closed maximizing set for Dp. Thus, (wA
DP)~1(dÂ) Z) dDp 

so t h a t we can conclude tha t dDp = (w A
D^)~1(dÂ). Since dCp = (TTDpC(i)~l(dDp), 

we have that dC% = ( ^ ^ ^ ( d ^ î ) . By the Principle of Transfinite Induction, 
this equality must hold for all /3 < coi, and a repetition of the above proof with 
£ replaced by coi and Z^ replaced by C yields the conclusion in part (iii) of the 
theorem. 

Property (iv) is established as in the proof of the corresponding statement of 
Theorem 3.5 and property (v) follows immediately from (iv)'. 

By a proper extension C of 4 , we mean an extension such that every idem-
potent in C must be in 4 . 

COROLLARY 4.2. If A is a Banach algebra, and if A = X*=i © 4 *, At in­
decomposable for each i, then there exists a complete normed extension (C, || • \\c) 
of A satisfying (i)-(iv) of the theorem and C is a proper extension of A. 

Proof. Let e\, . . . , ek be mutually orthogonal idempotents such that etA = 
Aui = 1, 2, . . . , n. For each i, there is an extension (d, | | • 11 / ) of (4 u \ \ • \ \ t ) , 
Iki^lh = II^^IUi satisfying the properties (i)-(v) of the theorem. Let C = 
L" - i © Ci with || - | | c ' defined by 

| | 6 i©. . . e6» | | c '= E \MW. 

Then the algebra C is an extension of 4 satisfying properties (i)-(iv). Further­
more, C is a proper extension since u £ C an idempotent implies that u is 
a sum of idempotents in 4 (note: uet = gj or 0). Since 

IHU ^ Z) Ik^lU = IMIc' ^ (max INU)(|a|L, 
i=l \l^i^n / 

there is a norm || • | | c equivalent to || • He' such that (C, || • | | c) is a complete 
normed extension of 4 (see [8, Lemma 1]). 
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