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Dedication. This paper is dedicated to my father on the occasion of his 80th
birthday.

Introduction. In this paper, we continue the study of integral extensions
begun in [7]. Whereas in the previous paper, we dealt exclusively with the
extension A4[x]/(a(x)), a(x) a monic polynomial over 4, we now deal with
arbitrary integral extensions. Applications of the results presented herein will
be made in subsequent papers.

To simplify our presentation, we make the following conventions. By an
algebra, we will always mean a commutative complex algebra with an identity
element, usually denoted by e. If A and B are algebras, then B will be called
an extension of A if there is an isomorphism of 4 into B that carries the
identity of 4 onto the identity of B. When convenient, we simply view A as
a subalgebra of B that contains the identity of B. B is said to be integral over

4 if every element of B satisfies a monic polynomial over 4. If (4, || - |[4)
and (B, || - ||z) are normed algebras with B an extension of 4, then (B, || - || 5)
is called a normed extension of (4, || - ||4) if the given isomorphism of 4 into

B is also norm preserving.

The paper has been divided into four sections. In section 1, we study the
relationship between the carrier space ®5 of B and the carrier space ®, of 4.
If 7,7 denotes the natural mapping of ®p into &, (r,2(3) = 4|4, ¢ € &p),
then 7 4% is onto (Theorem 1.1). We further show that &5 is compact if and
only if &, is compact. The Silov boundary 8B of B always contains (r,2)~1(84),
94 the Silov boundary of 4, and examples can easily be given which show that
the inclusion can be proper. A necessary and sufficient condition (Proposition
1.4) that 8B = (r,8)~1(84) is given in terms of the Silov boundary of the
simple extensions A[b] for b € B. The remainder of section 1 is given to the
study of A4[b]", where b is an element integral over 4.

The second section is concerned with the application of analytic functions
to integral extensions of Banach algebras. Specifically, we show that if B is
either a normed or a semi-simple integral extension of a Banach algebra, then
B is closed under the application of analytic functions of several variables in
the usual sense, even though the algebras might not be complete under any
norm. This allows us to conclude that many of the standard theorems for
Banach algebras which rely on analytic functions remain valid for such integral
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extensions of Banach algebras. (Perhaps it is worthwhile mentioning here that
not every integral extension of a Banach algebra is normable as a normed
extension of that algebra—an example will be given in [10].)

In section 3, we study a class of integral extensions we have called standard
extensions. This class includes the simple extensions 4, = A[x]/(a(x)), where
a(x) is a monic polynomial over 4. The extension 4, is known to be normable
as a normed extension of 4 and is complete in this norm precisely when 4 is
complete in its given norm (see [1] for details). Using this technique for
norming 4., a special class of norms || - || 3 on standard extensions that render
(B, || - ||3) a normed extension of (4, ||-||4) can be constructed. We have
called such norms standard norms. In Theorem 3.2 we give a necessary and
sufficient condition for a standard extension to be complete in a standard norm.
However, under standard norms, standard extensions are always Q-algebras;
that is, the group of units is open in the norm topology on B.

In the final section of the paper, we show that every Banach algebra possesses
a normed extension (C, || - ||¢) that is complete and integrally closed. This
extends a theorem of B. Cole [3] who proved that every uniform algebra has a
normed extension that is also a uniform algebra and closed under square roots.
We also show that if 4 is indecomposable, then we can take C to be indecom-
posable.

The main technique of the paper is to reflect the problem at hand back into
the subalgebras of B that are singly or finitely generated over 4, that is, the
subalgebras A[by, ..., b;] of polynomials in the elements by, ..., b; € B,
coefficients in 4.

Portions of the research for this paper were carried out during the academic
year 1968-1969 while the author was on Faculty Leave from Syracuse University
and a Postdoctoral Research Fellow at Yale University. The author wishes to
express his gratitude to both institutions. He also wishes to thank the referee
for several useful suggestions for improving this paper.

1. Carrier space of integral extensions. If B is an integral extension of 4,
then it is well-known that an ideal M in 4 is a maximal ideal in 4 if and only if
there is a maximal ideal NV in B such that M = NN\ A (see [14, Chapter V,
Section 2]). From this it easily follows that R(4) = R(B) M A, where R(4)
denotes the radical of A. In this section, we are interested only in those maxi-
mal ideals of 4 that are kernels of complex homomorphisms. For an algebra 4,
we denote the space of non-trivial complex homomorphisms on 4 by &,.
Rickart in [13] calls &4 the carrier space of 4. As usual, for a € 4, @ denotes
the Gelfand transform on &, of @, and 4 the algebra of such functions. The
weakest topology induced on &, by 4 will be called the Gelfand topology. The
neighborhood

{0€ ®,:1000:) —eo)| <ei=1,2,...,F)
of o € &, will be denoted by V,(¢; b1, ..., bx; €), e >0, b1, ..., by € 4.
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For an extension B of A, we set 7,5(¢) = ¢|4, @ € ®p. Clearly, 7,2 is a
continuous mapping with respect to the Gelfand topologies on &5 and &,.

ProprosITION 1.1. Let B be an integral extension of A. Then
(1) w48 is onto; and
(1) & — @& o w4® is an isomorphism of A into B; thus, B is an integral exten-
sion of A.

Proof. (i) Suppose M = ¢~1(0), ¢ € ®4. Then there exists a maximal ideal
N in B such that NN A4 = M (see [14, p. 259]). Let ¢ denote the natural
mapping of B onto B/N. Then, fora € 4, a = ¢(a)e + m, m € M, we have
Y(a) = ¢(a)y¥(e). Hence, ¢(4) = Cy¢(e). Since B is integral over 4, B/N is
integral over Y (4) so that B/N = ¢(4) = Cy(e). If we set 3(b) = Ny,
where ¢ (b) = N (e), we have that § € &5, g|4 = ¢ and $1(0) = N. Hence,
w42 is onto.

(ii) follows immediately from (i).

It follows from the proof of part (i) of the above proposition that if every
maximal ideal of A4 is the kernel of a complex homomorphism, then the same
is true for every maximal ideal in B.

For a polynomial 8(x) = > Bx? € A[x], set B,(x) = > o(B,)x"

THEOREM 1.2. Let B be an integral extension of A. Then ®p is compact if and
only if ®4 1is compact.

Proof. Since 7 48 is continuous and onto, 5 compact forces ® 4 to be compact.

Conversely, suppose &, is compact. Let || - ||, denote the uniform norm
over ®4. Then ||d||, < + oo for each @ € A. We now show that every element
of B has a bounded transform. Let b € B, and 8(x) = & + 375 8,4 be any
monic polynomial over 4 such that 8(b) = 0. If £ > 0 is any positive number
satisfying £ = 3020|18,/|ot7, then for ¢ € @5, |3(b)] < ¢ since B,(¢(0)) = 0.
Thus, |l;(<,2)| < tforall $ € ®p, and B is a normed algebra with respect to the
uniform norm (over ®5) so that ®p is compact in the Gelfand topology.

By a natural algebra, we shall mean an algebra in which every maximal ideal
is the kernel of a complex homomorphism and for which &, is compact. Com-
bining the comments following Proposition 1.1 and Theorem 1.2 we have

CoroLLARY 1.3. If B is an integral extension of A, then B is a natural algebra
if and only if A is a natural algebra.

Before we continue, we introduce the following notation: If 4 is an algebra
and a(x) € A[x] is monic, then 4, will denote A[x]/(a(x)). Aay ... ap will
denote the repeated extension (... ((Aay)as) - - - )ay, Where a;(x) is a monic
polynomial over (... (Aai)ag:-- Jas_;- For an ideal I in 4, H() =
{6 € &,:0(3) =0,17¢€ I} will be called the hull of I. For a subset F C ®,,
K(F) ={a € A4:¢(a) =0, ¢ € F} will be called the kernel of F. K(®,) will
be simply denoted by K(4). For 4, a Banach algebra, K(4) is the usual
radical.
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We conclude this section with a discussion of the Silov boundary of integral
extensions. Let 94 denote the Silov boundary of 4 when ®, is compact. For
the extension B = A[x]/(a(x)), a(x) monic, and ®, compact, it is known that
B = (7,48)~1(34) (see [7, Theorem 3.1]). For general integral extensions, we
have

PROPOASITION 1.4. Let }3 be an integral extension of A, with &4 compact. Then
(i) 9B 2 (m,%)7(04); )
(ii) 8B = (w4P)"1(04) if and only if dA[D]" = (wr,2P1)~1(dA) for every

b € B.

Proof. To prove the first assertion of the proposition, suppose
B0 € (wa®)(po), where ¢y € 4. Let V = Vg(&o; b1, ..., by; €) denote any
basic neighborhood of &g, and let B’ = A[by, ..., by]. We will show that there

exists b € B such that || maximizes on V and is less than that maximum on
®5\V. Let B; denote a repeated extension of the form A, ...« for which
there is a homomorphism u; of B; onto B’. (To construct By, simply take
a;(x) € Alx] monic such that a;(b;) = 0.) We will view ®5 and H (4, 1(0))
as the same set. Then B’ = BkIH(,uk"I(O)), and 8B’ D 9B, N H(u;~1(0)).
By Theorem 3.1 (loc. cit.), we have that dB; = (r48%)~1(34), and it follows
that if ¢o € 04, then

(m4%) (o) = (w4P%)" (o) N H(u~*(0)) S 9B'.

Since V' = w5 8(V) = Vg (ed; b1, ..., by; €), where ¢ = 7s.(3), is an
open neighborhood in @5 of ¢, there exists b € B’ such that |Z;| assumes its
maximum ||0||,, on V’ and || < ||b]|., on ®5\V’ (see [13, p. 138 ]). When b is
viewed as a transform on ®p (actually, we are considering b omp?), we have
that |5| maximizes only on V = (75 3)~1(V’). Hence, V N 48 # @. It follows
that @, € B since 8B is closed in ®p. Thus, 0B D (r,8)~1(d4). (For use in
the remainder of the proof of the theorem, note that 9B = (r,%)~1(94) if
and only if 7,2(8B) = 9A. This follows immediately from the above.)

To prove the second assertion, suppose first that B = (r,%)~1(d4), and
that b € B. Then, by part (i), we have that d4[b]" D (w,4"1)~1(84), and
0B D (map®)~1(9A[b]"). Therefore,

94 = 74P (3B) D (w4*11)(34[0]") 2 04

so that equality holds, and 9A4[b]" = (r,411)~1(84) for every b € B.

Next, suppose that d4[b]" = (r4411)~1(d4) holds for every b € B. Let
@ € 3B and let V be any neighborhood in &5 of @. Then there exists b € B
such that || assumes its maximum modulus on V, say ||6||, = 1, and |5 < 1/2
on ®z\V. The set

W={0 € ®an : |0'(0)| > 1/2}
is a neighborhood in ® 4 of ¢’ = 74,%(¢) and w415 %(V) D W. When |5l is
viewed as a function on ® 43, |5| maximizes only on the set W, and hence there
is a 6 € WM 9A[b]". By hypothesis, 6 = 7,401(¢') € 94 so that
(m4B)~1(0) N\ V 5 @ forces VN (r48)~1(d4) # 0, and since V is an arbi-
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trary neighborhood of ¢ € 8B, the fact that (w,2)~1(84) is closed forces
¢ € (r4%)71(34).

The preceding proposition suggests that we consider conditions under which
9B = (w,B)~1(34), when B is the simple integral extension A[b]. For a
Banach algebra 4 and f € C(®,), f integral over 4, Bjork in [2] has shown that
dA[f] = (r3411)~1(34) whenever the mapping 7321 is open. His proof
can be used to show

1.5. If A is a Banach qlgebm and B = A[b] is a simple integral extension such
that w 4B is open, then 0B = (m,8)~1(34).

We now use 1.5 to prove

THEOREM 1.6. Let B be an iniegral extension of A, with ® 4 compact. If w 4" is
open, then 0B = (m,B)~1(84).

Proof. Since 74401 (V) = 7,48 ((w415%)~1(V)) and since 7 452 is continuous,
the assumption that 4% is open forces 744! to be open for each b € B.
Without loss of generality, we can assume 4 is a Banach algebra under some
norm. (For otherwise, we can replace 4 by its uniform closure A~ in C(®,4)
and A[b]" by fI"[I;].) Then 1.5 implies d4[0]" = (w4411)~1(dA4). Since b € B
is arbitrary, the theorem follows from Proposition 1.4.

We should note that = 4 open is not a necessary condition for 4B to coincide
with (r,8)~1(84). Observe that if 04 = &,, then 0B = (w,5)~1(d4), with-
out any conditions on m45.

2. Analytic functions. For an algebra B, let o5(by, . . ., b;) denote the set
{(o(®1), ..., o(br)) € C*: ¢ € &g}, where by, ..., b, € B. Of course, if B is
a Banach algebra, then o5(by, . . ., b;) is the usual joint spectrum of the ele-
ments by, . .., be. If D is an open set in C*, let &5, denote the algebra of all
functions analytic on D, let 1(x) = 1, x € D, and let 21, ..., 2 denote the
coordinate functions. If B is a (normed) algebra, we say that B is closed under
the (continuous) application of analytic functions if for each by,..., by € B
and for each open set D D o(by, ..., bi), there is a (continuous) homomor-
phism ¥: &, — B such that ¥(1) = ¢, ¥(z;) =b, 2=1,2, ..., k and
e(¥(f)) = fle®r), ..., o)) for ¢ € &z and f € Op. (By ¥ continuous,
we mean that if f, — f uniformly on the compact subsets of D, {f,} C Op,
then ¥(f,) = ¥(f) in the norm on B.) If B is a Banach algebra, then it is
well-known that B is closed under the continuous application of analytic
functions (see, for example, [4, pp. 76-84]). If B is assumed to be an integral
extension of A such that for each finite set by, ..., b € B, A[b1, ..., bi] isa
Banach algebra under some norm, then B is closed under the application of
analytic functions. This follows immediately from the Banach algebra case
and the fact that o5 (b1, ..., b:) = o5 (b1, ..., D), where B = A[by, ..., byl
We now prove
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TuroreM 2.1. Let B be an integral extension of A, a Banach algebra. If B is
semi-simple, then B is closed under the application of analytic functions, and if B
is a normed extension of A, then B is closed under the continuous application of
analytic functions.

Proof. Let {b1, ..., b;} be an arbitrary finite subset of B. Let B; denote a
repeated extension of the form A,,..., for which there is a homomorphism
u of Byonto B’ = Alby, ..., b] such that uz(a) = @, a € A. By can be made

into a Banach algebra, and a normed extension of 4, by the repeated applica-
tion of the technique of Arens and Hoffman (see [1]). Now, assume B is semi-
simple. Then B’ = A[by, ..., b;] is semi-simple since R(B’') = R(B) N\ B’ =
(0) Y B’ = (0). The semi-simplicity of B’ in turn implies that w,1(0) =
K (H (u1(0))), which is closed with respect to any complete norm on By.
Hence, Bi/u:~'(0) is a Banach algebra under the induced quotient norm.
Since B’ = B;/u1(0), so is B’ a Banach algebra. By the observation made
earlier, B is closed under the application of analytic functions.

Suppose, next, that B is a normed extension of 4, say with respect to the
norm || - || 3. Let B, uy and By be as in the opening of the above paragraph. A
complete norm || - ||; can be selected for B; in such a way that ||a||, = ||a|| for
alla € A and p; is a norm decreasing homomorphism of B onto B’, the latter
being given the norm || - ||5. For b € B’, set

ol = inf [I0" =+ jlls,
jerk=1(0)

where ui(b’) = b. Then || -||o is a complete norm on B’ satisfying
[16]lz < ||blle, & € B’, since py is norm decreasing. This shows that B’ is a
Banach algebra under || - || ¢ so that (B’, || - ||¢) is closed under the continuous
application of analytic functions. Since || - ||¢ = || - ||s on B’, the same is

true for the normed algebra (B, || - ||5). Since by, . . ., by € B was arbitrary,
(B, || - ||8) is closed under the continuous application of analytic functions.

As we pointed out in the introduction, the significance of the above theorem
is that many of the standard theorems for Banach algebras hold for certain
integral extensions of Banach algebras. For example, if B is either a semi-
simple, or a normed, integral extension of a Banach algebra, then the Silov
Idempotent Theorem holds for such B’s. Furthermore, the factorization
theorems in [9] and [11] also hold. For later use, we record two specific results.

2.2. Suppose B is either a semi-simple, or a normed, integral extension of a
Banach algebra. If a(x) 1s a monic polynomial over B and if B is indecomposable,
then there exists a monic polynomial a1(x) € Blx] such that ai(x) is a factor of
a(x) and Blx]/(a1(x)) s indecomposable.

The proof of 2.2 follows from Theorem 2.1 and the proof of Corollary 5.2
in [11].

https://doi.org/10.4153/CJM-1973-068-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-068-2

INTEGRAL EXTENSIONS 679

2.3. Let (B, || - ||) be a normed integral extension of a Banach algebra, and let
f € C(®p) such that exp f = & (convergence in the uniform norm), a € B. Then
there exists b € B such that exp b = a (convergence in || - ||5).

See Corollary 6.2 in [4] for the Banach algebra version of 2.3.

3. Standard extensions. The type of extension embodied in the following
definition (3.1) can be viewed as a natural generalization of the extension
Ae = Alx]/(e(x)). If B; and B; are both extensions of 4 and if there is an
isomorphism ¢ of B; onto B, such that ¢ (a) = a, for all a € A, then we write
B2, B,.

Definition 3.1. An extension B of A is called a standard extension of 4 if there
exists a well-ordered set 9 and a family {B,} ;cx of intermediate subalgebras
such that B = U ;B;and

(i) 4,7 € A and ¢z £ j implies B; C B;, and

(i) 4 € ¥ implies B, =5, B[x]/(a:(x)), where B, = U,;<:B;, a;(x) is a

monic polynomial over B, and for the first element ¢, € U, B,, = 4.

Standard extensions are easily seen to exist. For example, repeated exten-
sions Ag,...q; are standard extensions. We next describe a ‘‘construction’’ for
infinitely generated standard extensions. This is modelled after the proof
given in [5] for the existence of an algebraic closure of a field. Let A C A[x]
be a set of monic polynomials and suppose that A is well-ordered by <. When
a(x) € Ais used as an index, we will simply write « instead of a(x). Now, let X
be any set with cardinality greater than that of 4 and containing 4 as a subset.
Let & denote the set of all mappings f of initial intervals of A (with respect to
<) into the set of subsets of X such that

(i) fla) D A and is an integral extension of 4, @« € dom (f);
(i1) f(B) contains f(a) and is an integral extension of the latter for a < 8,
a, B € dom (f); and
(ii1) for B € dom (f),

F®8) = 5] B)[x]/ (s (x)),

where f(8) = Ua<sf(@) (if @ € A is the first element with respect to <, then
Flao) = A) and pg(x) € F(B)[x] is a monic factor of least degree of 8(x).

If we write f < g, f, g ¢ &, if and only if dom (f) C dom (g) and
f = gldom (g), then there exists f, ¢ % which is maximal with respect to < and
satisfying (i), (ii) and (iii); this follows from Zorn’s Lemma. Thus, each
a(x) € A has a zero in By = Uascaom(soy fo(@), since assuming otherwise con-
tradicts the maximality of f,. (Note that since we are indexing by a subset of
Afx], the cardinality f(8) is always the same as the cardinality of 4.)

The condition of pg(x) in (iii) above was introduced in the interest of
economy. It has the further implication that if 4 is an indecomposable Banach
algebra, then B, is also indecomposable, as we will show in the next section.
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Suppose that B is a standard extension of A relative to {B;}q and that
(4, 1] - ||4) is a normed algebra. Then || - || 4 can be extended to a norm || - ||
on B in such a way that the isomorphism of B; onto B;[x]/(a;(x)) is an iso-
metry, the latter being given a norm of the Arens-Hoffman type extending the
norm on B;. A norm || - || 5 with this property will be called a standard norm
and (B, || - ||) is called a standard normed extension of (4, || - ||4)-

THEOREM 3.2. Let (B, || - ||5) be a standard normed extension of (A, || - ||4)
with respect to the family {B;}ien. If (4, || - |l4) 95 a Banach algebra, then
B, || - |l8) s complete if and only if there exists | € U such that B, = B and
{B;: 7 = I} is a finite set of intermediate subalgebras.

Proof. Suppose [ € U has the property in the statement of the theorem. Then

B = B; =, A,,...« for some collection of polynomials a3 (%), . . ., ax(x). Since
|| - ||z is a standard norm on B, (B, || -||z) will be complete if and only if
B, is complete with respect to || - ||z, where [, is the largest index in U less

than ! and B;, & B,. This follows from the form of the Arens-Hoffman type
norm (see [1]). Hence, by repeating the argument a finite number of times,

we obtain 7, Iy, ..., Iy in A suchthat B,, =4 ©C B, , S ... & B, = B and
(B, || - 1ls) is complete if and only if (By;,,, || -||s) is complete. Since
(4, || - ||4) is complete and || - ||a = || - || s restricted to 4, it follows that
(B, || - || ) is complete.

Suppose next that the condition of the theorem fails. Then there exists a
least w € U such that B, is a standard extension with respect to {B,}a<, and

{Bs: @ < w} is a countable set. Now, restrict || - ||z to B,, using the same
notation for the restriction. Then (B, || - ||5) is a standard normed extension
of (4, || -||a) with respect to {B.:a < w}. Now, enumerate the distinct

elementsin {B, : @ < w} by the positive integers: 4 = By S B, S B, & ...,
and B, = UZ1B,. For each positive integer #, B, =35, Bu[x]/ (o (%)),
a,(x) € B,[x], the isomorphism being an isometry when the latter is given an
Arens-Hoffman type norm. Thus, if

Bn’ = {bﬁ + e —|— b,c_lg""l, b1, ey bk—l c Bn},

k = degree of a,(x), then B,y1 = B, @ B,/, the direct sum being topological;
indeed, for b € B,i1, ||0|ls = ||0ollz + ||& — bo||s where by € B,, b — by € B,'.
Now, for each positive integer n, let b, € B,/, ||b.||z = 1/2". Thus, the sequence

is a || + || s-Cauchy sequence. Suppose Y se1b, converges to b in B,. Let ny be
a positive integer such that b ¢ B,,. Now, by the requirement that b, € B,’
and by the norm condition on the direct sum B,,1 = B, @ B,’, we have that

N no—1
b~ %ol -l-%

n=1

N
3 iballs

n=np

https://doi.org/10.4153/CJM-1973-068-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-068-2

INTEGRAL EXTENSIONS 681

for N > n,. Hence, > n—,||ba|| 5 — 0 and consequently, b, = 0, for all # > n,.
This is a contradiction, so that 3.2 1, does not converge in B,. We will show
that this series does not converge in B by showing that B, is || - || s-closed in B
for every 4 € . First note that B, is || - || s-closed in B,. Hence, suppose B; is
[| - || z-closed in B; for all j < j,. Then B, remains || - || s-closed in B;,, and by
the above, || - || z-closed in B, as well. By transfinite induction, B; is closed in
B, for all j = 4. Hence, B; is || - ||p-closed in B = U eaB;. Thus, the same
is true for B,. By combining this with the fact that (B., || - || z) is incomplete,
we have that (B, || - ||z) is necessarily incomplete.

If B is a standard extension of 4 and incomplete with respect to a standard
norm || - || 5, then it is plausible that B is complete with respect to some other
norm (not a standard norm!). For separable extensions, this can not happen.
(B is called a separable extension of 4 if B is a standard extension with respect
to {B;} jesr, where the polynomial a;(x) generating B, over B, has an invertible
discriminant in B,.) If infinitely many of the B,’s are distinct, then it is easily
seen that (7,Z2)~1(¢) is an infinite subset of ®z, and it follows from the next
result that such a B can never be a Banach algebra under any norm.

THEOREM 3.3. Let A be an algebra and B an integral extension of A. If (m 4B)~1(¢)
15 an infinite subset of ®p for some ¢ € D4, then B is incomplete under any norm.

Proof. Set X = (w48)~(¢). Since X is hull-kernel closed in ®5, ®5/xx) can
be identified with X. It is easily seen that B/K (X) is an integral extension of
A/(K(X) N A) = C, the complex numbers. Hence, for b € B, I;IX has finite
range. Suppose, now, that B is a Banach algebra under some norm. Then
K (X) is closed in this norm and B/K (X) is a Banach algebra under the in-
duced quotient norm. Since ®p;xxy = X is infinite by assumption,
B/K(X)" = B|X is infinite dimensional and hence B/K(X) contains an
element b + K (X) with infinite spectrum op,xx) (b + K (X)) (see [6, Lemma
7, p. 376]). Since the latter set coincides with the range of Z;[X, we have a
contradiction. Thus, B can never be a Banach algebra if the condition of the
theorem holds.

When 4 is a Banach algebra, the standard normed extensions (B, || - ||)
are Q-algebras, a property enjoyed by all Banach algebras. A normed algebra
is called a Q-algebra if the group of units is open; this is equivalent to every
maximal ideal being closed. Thus, a natural normed algebra is a Q-algebra if
and only if every complex homomorphism is continuous.

TuEOREM 3.4. Let A be a Banach algebra and let (B, || - ||z) be a standard
normed extension of A. Then (B, || - ||5) s a Q-algebra.

Proof. Since B is a natural algebra by Corollary 1.3, we need only show that

@ € ®pis || - ||z-continuous. If @ is || - || s-discontinuous, then there is a least
k € U such that @ is || - || p-discontinuous on By. Since A is a Banach algebra
and || - ||z extends || - ||4, @ is || - || s-continuous on 4. Thus, it follows that

https://doi.org/10.4153/CJM-1973-068-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-068-2

682 JOHN A. LINDBERG, JR.

A € B;. Since By = 3,Bi[x]/(ax(x)), & must also be || - || z-discontinuous on
B, because of the form of the norm || - || 5 on Bi[x]/ (@ (x)) (see comments on
bottom of [7, p. 582]). This implies there exists b € By such that [¢(0)| > ||b||
and consequently & is || - ||z-discontinuous on B; for some j < k, where
b € B;. This is a contradiction to the assumption concerning £ so that ¢ is
|| - || s-continuous on B, for all € A; hence, ¢ is || - || s-continuous on B itself.

Without the assumption that || - || 5 is a standard norm, the above theorem
does not necessarily hold.
The next theorem is motivated by the work of B. Cole in [3].

THEOREM 3.5. Let B be a standard extension of A, A a complex algebra with
&, compact. Then the following hold:
(1) w4 is an open mapping,
(i) 9B = (w4®)~1(4); and
(iii) Bis|| - ||o-dense in C(®5) if and only if A is || - ||o-dense in C(,).

Proof. (i) Let B be a standard extension with respect to { B} ;cy. Let V; =
V(@;ba,...,0by; €) be abasic neighborhood of gin ®5,and let by, .. ., by € B,
i € . Then 75,2 (V1) = Vg, (ws,2(@); b1, ..., by; € so that w5, %(V;) is a
neighborhood of 75,%($) in ®5,. Since 75,5 is an open mapping (see [9, 1.2,
p. 358]), 75,2 (V1) is a neighborhood of 75,%(¢) in ®5,. By repeating the argu-
ment, we can find a j € A, j < ¢ such that 75,;#(V;) is a neighborhood of
75,2(¢). Clearly, there is a least I such that =5?%(V;) is a neighborhood of
75,%(¢). By the above arguments, / is the least element of ¥, thatis, B, = 4,
and 7,%(V,) is a neighborhood of 7,%(%). Thus, 7% is an open mapping.

(ii) This part follows immediately from Theorem 1.6 and (i) above.

(iii) Assume that A is || - ||,-dense in C(®,). Then By is || - ||,-dense in
C(®p,) where k € 9 is the least index such that B, £ A. This follows from
Corollary 4.2 in [7]. Now, assume that B; is || - ||.-dense in C(®,) for all
i < j. When B, is viewed as a subalgebra of B,", the uniform closure B;~ of B,
in C(®z;) is conjugate closed as well as contained in the uniform closure

.’B’j'\ of BjA. Thus,

B, C UB; CB/
i<j
Since B;" is separating on ®3; and U i<; B, is conjugate closed, it follows from
the Stone-Weierstrass Theorem that B," = C(@B,) But B;" dense in C(®3,)

implies the same is true for B;. Thus, B; is || - ||,-dense in C(®5,) for all
j € U. By another application of the preceding argument, B is || - ||..-dense
in C(®5).

Now, suppose that B is || - ||,-dense in C(®3). It suffices to show that if

f € C(®,)and e > Oaregiven, then thereexistsg € A such that || f — g]]m < e
Since C(®,4) can be viewed as a subalgebra of C(®5), there exists g € B such
that || f — gllo < e. Now, there exists a least / € U such that there exists
g € B, satisfying || f — g||l. < e. We will show that B, = 4. Let a(x) = a;(x)
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be the monic polynomial generating B; over B, and assume B; # A. Then

-1 N
g= (ZO bjI]) , bj€ By,
=

where & = degree a(x) over B; Now, consider the system of equations:

k=1

g(e, \i) = Z ‘F(bj))\ify

7=0
where ¢ € &3, and \; runs through all the roots of a,(x) = 0, each repeated
according to its multiplicity. Set

k

2e) = 2 2(o,\y), o€ @3,

=1
Thus ¢ as defined is a function on ®3, and moreover, g € B;". Now, for ¢ € &3,

k

12(0) — kf (0)| = ; g(e, Ni) — kf (o)
= ; lg(e, Ni) — f (0)]
< ke.

Since &z, is compact, |lg — kf||l. < ke, or ||(1/R)F — fll. < e But
(1/k)g € B,” implies there exists j < I such that (1/k)g € B,". This contra-
dicts the assumption that [ is the least index such that there exists g € B,
and ||lg — f |l < e Thus, B; = A.Thisestablishes the denseness of 4 in C(®,).

4. Integral closure of a Banach algebra. Part of the motivation for the
preceding section is that we wish to extend a result of B. Cole. In [3], he
showed that if 4 is a uniform algebra, then there exists a uniform algebra C
that is a normed extension of 4 and closed under square roots. The same
techniques show that there is such a C that is also integrally closed. For Banach
algebras, we have

THEOREM 4.1. Let (4, || - ||4) be a Banach algebra. Then there exists a compleie
normed extension (C, || - ||¢) of A such that
(1) C 1is integrally closed;
(i1) w4 € s onto and an open mapping;
(iii) 0C = (m,)7(34);
(iv) C isdensein C(®¢) if and only if A is dense in C(®,); and
(v) if A is indecomposable, then C can also be taken indecomposable.

Proof. Let Cy denote the standard extension B, of 4 constructed in the last
section, where A is the set of all monic polynomials in A[x] and let || - ||; be a
standard norm on C;. Properties (ii)-(iv) hold for C; by Theorem 3.5. We
next show that C; is indecomposable when 4 is indecomposable. To this end,
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let {B,} be the family of intermediate extensions satisfying conditions (i) and
(ii) of the construction of C;. Suppose that for 8, B, is indecomposable for all
a < B. Then clearly Bj is indecomposable. Let pg(x) be the monic factor of
least degree of 8(x) such that Bs = gﬁB,g[x] /(pg(x)). Then, by 2.2, there exists
a monic factor g(x) of pg(x) such that Bs[x]/(q(x)) is indecomposable. If deg
g(x) < deg pg(x), then pg(x) is not a monic factor of B(x) of least degree, which
contradicts our assumption concerning pg(x). Therefore, deg ¢(x) = deg ps(x),
so that q(x) = pg(x). Hence, Bg is also indecomposable. Thus, by transfinite
induction, Bg is indecomposable for all 8 so that C; itself is indecomposable.
Now, let C; denote the || - ||;-completion of Ci. Since (Cy, || - ||1) is a Q-algebra
by Theorem 3.4, &z, = ®¢,, and it follows that C; is also indecomposable
whenever C; is indecomposable. Thus, properties (ii)-(v) hold for the
extension C;. We may and do consider A4 as a subset of C;.

If w; denotes the first uncountable ordinal, then by the Principle of Trans-
finite Recussion we can find a family

{(Cay [ - [le)}ace,

of Banach algebras such that (C, || - |lo) = (4, || - ||+) and

(i)’ for a < B, Co S Cg and (C, || - ||s) @ normed extension of (G, || |la)
with respect to the identity mapping of C, into Cg;

(ii)’ every monic polynomial over the closure Dg (in Cs) of Dg = UacsCa
has a zero in Cg;

(iii)’ Cpg satisfies properties (ii)—(iv) with respect to Dg; and

(iv)’ C4 are taken indecomposable when 4 is indecomposable. Now, let
C = Ua<w,Cs and introduce the obvious definitions of the algebraic operations
into C. For a norm on C, we take ||b||¢ = ||b||a, if & € Cu. Clearly (C, || - ||¢)
is a normed algebra, and is complete by a theorem of Pym (see [12]). It is
easily seen that C is integrally closed. To prove property (ii), we first show
that 7, ¢ is an open mapping. Suppose 8 < w; and 74 is open for all & < 8.
Then 7,78 is open (see the proof of Theorem 3.5). Now, let Ds denote the
[| - ||c-closure of Dy in C. Clearly, Dy C Cp, and 75, is open by (iii)’ above.
But Dg is a Q-algebra under || - ||¢ (restricted to it) since ¢ € ®p, implies that
le@)| = |[blla = ||b||c whenever b € Co C Dj,a < B. Hence ®p, = ®p,so that
w428 = 7,08, Since

4% =m0 Tpﬂc",

748 is also an open mapping. Thus, by the Principle of Transfinite Induction,
74 % is open for all @ < w1. Thus, it follows that =4 € is an open mapping. Now,
to show 74 ¢ is onto, consider X = 7,4 ¢(®). Since w4 ° is continuous, X is both
open and closed. By Theorem 3.3.25 in [13], 44 C X so that X = &,. This
shows that (ii) holds for the C we constructed. It follows also that r,¢ and
Tpe ¢ are also onto, open mappings.

We next establish property (iii). First note that dC; = (r4°1)~1(d4). Next
assume that 8 < w; has the property that 9C, = (r,%)~1(34) for all & < B.
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To show that the same property holds for 8, begin by assuming ¢ ¢ 8Ds.
Then there exists @ < § and an open set W C ®p, containing ¢ such that

(re 28) Y we 6(W)) = W and W N 3aDs = 4.

Since 70,28 is onto, m¢,2#(3Ds) D 0C, so that 7, 28(W) N dC, = @. Thus,
mc,”#(@) ¢ 9C, and since a < B, we have that ,”5(5) ¢ 94. Hence, we have
that dDg DO (w,P8)~1(8A). On the other hand,

(74”71 (04) = Y (c,”8) " (3C)

and the latter set is a closed maximizing set for Dg. Thus, (7,28)~1(04) D 0Ds
so that we can coIlclude that 9Ds = (w,28)~1(34).Since 8Cs = (mpg©e)~1 (8Dy),
we have that Cs = (r,)~1(84). By the Principle of Transfinite Induction,
this equality must hold for all 8 < w;, and a repetition of the above proof with
B replaced by w; and Dg replaced by C yields the conclusion in part (iii) of the
theorem.

Property (iv) is established as in the proof of the corresponding statement of
Theorem 3.5 and property (v) follows immediately from (iv)’.

By a proper extension C of 4, we mean an extension such that every idem-
potent in C must be in 4.

COROLLARY 4.2. If A is a Banach algebra, and if A = 3 i1 @ A4, 4 in-
decomposable for each 1, then there exists a complete normed extension (C, || - ||¢)
of A satisfying (1)—(iv) of the theorem and C is a proper extension of A.

Proof. Let ey, . . . , ¢ be mutually orthogonal idempotents such that ¢;4 =
Ay1=1,2,...,n Foreach 1, there is an extension (C, || - [|/) of (44, || - ||4),
lleal|: = |le«a||s, satisfying the properties (i)—(v) of the theorem. Let C =

=1 @ C; with || - ||’ defined by

161 ® ... @b = ; 16414

Then the algebra C is an extension of A satisfying properties (i)—(iv). Further-
more, C is a proper extension since # € C an idempotent implies that # is
a sum of idempotents in 4 (note: ue; = e; or 0). Since

llalla = ;1 llewalla = llallc" = (11'2?; HeiHA)HaHAr
there is a norm || - ||¢ equivalent to || - [|¢" such that (C, || - [|¢) is a complete

normed extension of 4 (see [8, Lemma 1]).
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