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Overthrusts due to easy-slip/poor-slip transitions at the bed: the

mathematical singularity with non-linear isotropic viscosity

Lours LLIBOUTRY
3 Avenue de la Foy, 38700 Corenc, France

ABSTRACT. There are several cases in which large overthrusts and sub-horizontal faults
appear to have occurred in temperate or cold glaciers. As a contribution to solving the
problem of their origin, the stress field when there 1s an abrupt change in the bottom boundary
conditions is determined, assuming ice to be isotropic, third-power-law viscous, Deviatoric
stresses vary with the distance 7 to the singularity as 7 '*, and strain rates as r *'*. They are
computed numerically to a multiplicative factor, which is determined by the conditions at a
large distance, but not computed here. Although the apparent viscosity varies as 7'~ times a
function of the polar angle, the stress field around the singularity is not essentially different
from that obtained assuming a constant viscosity. Some considerations on the apparition of
faults follow, but at the scale of the microrelief the adopted model becomes oversimplified.

1. INTRODUCTION

This paper examines how a glacier or ice sheet reacts when
there is a sharp change in the boundary conditions at the bed.
In particular, is it possible that a fault originates at the point of
discontinuity and that an overthrust ensues? (An overthrust is
a thrust fault with a low dip and large net slip of the hanging
wall) Documented cases of overthrusts and faults in glaciers
are reviewed below, but their mechanism remains a mystery.

The stress and strain-rate fields near an easy-slip/poor-
slip transition (or the reverse) will be calculated, assuming
the medium is perfectly continuous, without faults or thin
shear layers. Contrary to former investigations, a realistic
third-power law of viscosity will be adopted. Approximate
solutions can be obtained by considering the main terms of
these fields near the transition, which correspond to very
simple conditions at the bed: no friction on one side, and no
sliding on the other side. The possibility of faults or shear
layers originating at the bed will then be addressed.

This study should also be relevant to another topic, the pro-
cesses of glacial erosion and drift. Overthrusts should allow
drift to rise within the ice sheet (Hutter and Olunloyo, 198l;
Hambrey and others, 1999). Conversely, “downthrusts”, as I call
the reverse of an overthrust, may allow basal ice to reach the
bedrock. Also, as noted by Barcilon and McAyeal (1993), large
deviatoric stresses near an easy-slip/poor-slip singularity might
facilitate erosion. Glacial erosion is not dealt with in this paper,
however. The role of such sharp transitions is probably margin-
al. Too many other circumstances, such as past changes in the
climate and in the ice cover must be taken into account when
tackling the huge and controversial topic of glacier erosion.

2. FIELD OBSERVATIONS AND ADOPTED
RHEOLOGY

2.1. Overthrusts in temperate glaciers

Several cases of large overthrusts in temperate glaciers are
beyond doubt.
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At Safuna, Cordillera Blanca, Peru, an overthrust of the
glacier tongue that ends in the upper lake was inferred
from ice discharge, and from the existence of a body of
ice at the bottom of the lake. Boring in the glacier tongue
confirmed this fact by crossing a major discontinuity. At
depths of 135—138 m, the drill met a sheared zone, with a
gap 20 cm thick through which the borehole lost its water
(Lliboutry and others, 1977).

At Glaciar Torre, Fitz-Roy group, Patagonia, an over-
thrust of the upper part over the lower part was evident
on aerial pictures: it had produced an arcuate frontal
moraine crossing the latter (Lliboutry, 1993).

At Glacier des Bossons, Mont Blanc group, French Alps,
E. E. Viollet-le-Duc observed and drew in 1873 the reced-
ing glacier tongue, discovering an old mass of dead ice on
which it was lying. He believed that the dead ice had been
left after the 1770 advance and that an overthrust
occurred during the following 1835 advance. (Drawing
reproduced in Lliboutry and others, 1977,)

At Mer de Glace, below the cog railway station of Mont-
envers, the bed was visited in late March 1962, thanks to a
tunnel dug by Electricité de France for a hydroelectric
subglacial catchment (Lliboutry, 1965, p.613; Vallon, 1967:
pictures in Vivian, 1975, plates XXVI and XXIX). Ice
there was very transparent, with only some isolated verti-
cal ribbons of very large, centimetric, air bubbles. Some
ice crystals were larger than a fist, and a few small water
pockets of irregular shape, the size of a fig, were seen. It
was certainly almost unstressed ice, moving very slowly.
During these years the glacier surface there moved at a
rate of >20ma . Given the moderate thickness and sur-
face slope, only sub-horizontal overthrusting can explain
the difference in velocities between surface and bottom.
(As a matter of fact, a fault 10 years old ran along the
tunnel, but its throw was only 5—10 cm.) In a picture taken
by P. Veyret in 1958 and published by Vivian (1969) a
transverse cliff of ice is seen, which might be the front of
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an overthrust. Asin Safuna or GlaciarTorre, the hypothe-
sized overthrust was not due to a glacier advance: the sur-
face of Mer de Glace below Montenvers sank by 6lm
between 1944 and 1964.

Conversely, the advance of a temperate glacier seldom
causes an overthrust. During the dramatic surge of Varie-
gated Glacier, Alaska, U.S.A., by mid-1983 the surge front
reached the terminal lobe, which was 40 m thick and moved
at 0.1md " or less. Although the surging part was moving at
20 md ' or more, and was 90 m thick at the surge front, it did
not overthrust the terminal lobe. The surge front was a ramp
200 m long, “including thrust faults, buckle folds, and longi-
tudinally oriented crevasses” (Raymond and others, 1987).

2.2. Overthrusts in cold glaciers

Surging cold glaciers, unlike Variegated Glacier, often over-
thrust their lower part. This may be the case for Trapridge
Glacier, Canada (Clarke and Blake, 1991), and is undoubtedly
the case for Glaciar Grande del Nevado, central Argentinian
Andes (Lliboutry, 1998a).

At the very edge of polar ice sheets, outside fast ice
streams, overthrusts allow the multiplication of so-called
shear moraines (Bishop, 1957; Swinzow, 1962).

Coring to the bottom of the Greenland ice sheet (Green-
land Ice Sheet Project 2 and Greenland Icecore Project) has
revealed some shear layers of centimetric thickness, and
undulations of decimetric wavelength below 500 m from the
bottom. In the last 200 m, in ice deposited during the last
interglacial (Eemian), some recumbent folds may cause per-
turbations in the ice stratigraphy (Alley and others, 1997
Gow and others, 1997; Johnsen and others, 1997). The vertical
profiles of atmospheric 'O and CH, are quite different from
those measured at Vostok, East Antarctica, where Eemian ice
is distant from the bed. According to Johnsen and others
(1997), the stratigraphic sequence may be disturbed by fold-
ing, intrusions or both. This may suggest an overthrust in
the bottom layers. However, the profiles for NH,", Ca*",
dust content, total gas content and ’Be do not confirm this
perturbation of the sequence, and, for the time being, an
overthrust must be considered an unproven hypothesis.

2.3. Faulting near surface or at shallow depth

Some unpublished fieldwork by the staff of Laboratoire de
Glaciologie et Géophysique de I'Environnement, Grenoble,
France, appearing in internal reports only, is of interest here.
In 1970 a mechanical coring was carried out in the lowest part
of the accumulation zone of Glacier de Saint-Sorlin, Grandes
Rousses, French Alps, just below Col des Quirlies, where ice is
temperate, the flow i1s mildly compressive and the firn was
water-soaked at the time of boring. The corer was often
jammed by the thrust of some faults which did not appear at
the surface. For one, at 13 m depth, it was necessary to meltice
with a steam-jet borer for 3 days to recover the drill.

In 1973, a project began to study, by inclinometry, the
strain in a temperate valley glacier, at the hectometric scale.
The centre of Glacier duTacul (the upper part of the ablation
zone of Mer de Glace) was chosen. The thickness there is
400 m, and the glacier width 800 m; the surface slope is quite
uniform (about 6%) and there are no crevasses. Six vertical
holes 130 m deep were bored, and electrical copper wires left
in the boreholes. Vertical stretching of the glacier, of the order
of 0.3% a 'at most, could not break them. Two years later, as
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expected, all the boreholes had closed. Three of them were
redrilled with a hot-water jet. The nozzle followed the copper
wires, but, surprisingly, the three wires were cut at about the
same depth, 65—85 m. We thought that some sub-horizontal
fault, or thin shear layer, was active at this depth, but could
not explain its origin.

With smaller thicknesses and a compressive flow, faults
dipping from the surface at 50—67° are often observed
(Lliboutry, 1965 (p.607-609), 2002; Goldthwait, 1973). They
have also been observed on cold glaciers of Spitsbergen, Sval-
bard (Gripp, 1929). The most plausible explanation is that
they are the outcrops of faults or shear layers originating at
the not too distant bed. They should form along surfaces of
maximum shear, which reach the free surface at about 45°.
Larger dips should come from subsequent horizontal com-
pression. The detailed and conclusive observations by Gripp
(1929) on 20 glaciers of Spitsbergen, and by Philipp (1932) on
13 glaciers of the eastern Alps, are reported in Klebelsberg’s
(1948-1949) and Shumskii’s (1955) textbooks, but not in
recent ones in English.

2.4. Glacier ice rheology

Mechanical tests are done on ice samples of decimetric size,
without shear bands or faults. To what extent they are pertin-
ent to glacier ice deformation at the metric scale remains an
open question (Colbeck and Evans, 1971; Tyulana, 1976). It will
be assumed that they are pertinent to the hectometric or deca-
metric scales considered in the first part of this paper.

Well below melting point (say, below —15°C), with a con-
stant load, after a stage of decreasing transient creep, a con-
stant strain rate is observed during some days (secondary
creep). When the total strain since loading exceeds a critical
value, about 1%, kinematic recrystallization (also called
dynamic recrystallization, and syntectonic recrystallization
by geologists) appears. Above —15°C, the critical strain for
recrystallization is reached before the end of transient creep,
and steady secondary creep cannot be observed (Duval,
1981). Recrystallization creep leads to the formation of a
peculiar fabric, in which individual crystals are not oriented
optimally for deformation, but which is very stable against
perturbations in the stress regime (Duval, 198]; Azuma and
Higashi, 1985). The ¢ axes cluster into four maxima, and the
rheology is macroscopically isotropic. This case is assumed
in the mathematical model considered in this paper.

A material, whether it be a solid or a liquid in common
language, is viscous when zero strain rates require zero
deviatoric stresses and vice versa. In mechanics, pure viscos-
ity also requires that the relationship between strain rates and
deviatoric stresses (the rheology) be independent of time.
This is more or less true for a real material that is flowing,
because of transient creep following the continuous changes
in load, and because of the possible development of a fabric.
The former effect, which is very poorly known (see Lliboutry,
1987h, ch. 15), is ignored in this paper. The latter is introduced
in the final discussion only.

Deviatoric stresses are denoted 7;5, and strain rates €;;
(i,j==2,y,2 or 7,,y). A body (isotropic or not) is nth-
power-law viscous when, if all the deviatoric stresses are
multiplied by the same factor A, all the strain rates are multi-
plied by A™ The behaviour is isotropic when, at any point, the
€i; arc proportional to the 7;;. The factor of proportionality is
practically independent of the mean pressure (first stress
invariant), and must be a function only of the effective shear
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stress T (or of the effective strain rate € = /2 ). These invari-
ants (when the frame of reference is changed) are defined like
the length of a vector in a three-dimensional space (stresses
and strain rates may be considered as vectors in a six-dimen-
sional space):

1
2 2
RIS
]
1
. N2 . 2
4% = (2¢) ::5253(2€M) .

]

For an isotropic viscous body we then have:

2, 4 1
=== (2)

Tij T n

(no summation on repeated subscripts). The ratio 7 is the
viscosity (often called apparent viscosity when it is a func-
tion of stress). For an isotropic power-law viscosity, B denot-
ing a parameter which depends on temperature, but not on
the stress:

26,1 = B’Tnil’ri’j 5 ’Y = B7". (3)
Paterson (1994) uses A = B/2 and A =1/(21). Whenn =1 the
viscosity is said to be Newtonian, even if the temperature,
and hence 7, are not uniform in the medium. Then B = 1/n.

Correct values of B for macroscopically isotropic ice
near melting temperature were obtained by Duval (1981)
and Meyssonnier (1989). Measurements in situ, by
inclinometry in boreholes or by the closure of tunnels, have
been performed in temperate glaciers, where ice presents a
typical four-maxima fabric (orientation of the ¢ axes). This
curious fabric was obtained in the laboratory by both Duval
(1981) and Meyssonnier (1989). It does not modify the rheol-
ogy consistently. For 0.2 < 7 < 7 bar, the flow can always be
described by an isotropic power-law viscosity, with n = 3.

The value of B depends on the temperature below melting
point, being halved each time that this relative temperature
lowers by 5.4 K. This temperature dependence is ignored in
this paper. At the melting point, i.e. for temperate ice, B
increases with the water content (Duval, 1977). The year will
be used as unit of time throughout this paper (la =
81557 x 10" s). The recommended value for temperate glaciers
is B~ 430kPa ®a ', and when ice is dry and close to melting
point B = 200kPaa ' (Lliboutry, 1987h, section 5.15). These
values hold for pure ice. Some acid ions increase the value of B
(Jones and Glen, 1969), whereas other impurities as found in
Wisconsinan ice decrease it by a factor 2-3 (Dahl-Jensen and
others, 1997). Therefore, in the case of polar ice sheets at least,
the error in predicted strain rates may be important.

3. STRESS AND VELOCITY FIELDS
3.1. Historical

When the flow of cold ice sheets is modelled, two possible
boundary conditions at the bed are considered (Lliboutry,
1987a, 1998b). Ice may be at a sub-freezing temperature and
stick to the bedrock or the permafrost below, and the condi-
tion 1s a zero velocity, the shear stress against the bed, 7,
(henceforth called the friction) resulting from the calculation
and not determined in advance. Alternatively, the lower limit
of the ice sheet may be at melting point and the ice sheet slips
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over its bed, the required local boundary condition being
some sliding law that links 73, and the sliding velocity U. At
any transition between these two boundary conditions,
whichever the value of n, the mechanics of continuous media
yield an infinite stress.

For a numerical computation, the singularity has to be
smoothed out. Hutter (1983, p. 141) assumes that the function
Th(U) is continuous at the melting point. Although some
sliding of ice at sub-freezing temperatures may be possible
(Echelmeyer and Wang, 1987, Dash and others, 1995), the
continuity of this function at the melting point does not fol-
low (Shreve, 1984). Other workers (e.g. Herterich, 1987, who
assumes isotropic third-power-law viscosity) use an artifi-
cial smoothing to obtain convergent algorithms.

Lestringant (1994) has tried to improve upon Herterich’s
calculation. Contrary to the latter, he finds that no singular-
ity exists at an ice-cap/ice-shelf transition. Lestringant attrib-
utes this discrepancy to his better calculation of the surface
profile. In fact, the singularity disappears because Lestrin-
gant adopts a rheology that rules out infinite stresses, namely:

T = ¢q arctan(myy) + co arctan(ma) . (4)

With this creep law, for a very large effective shear strain
rate the effective shear stress tends towards a finite value
(c1 + ¢2)(m/2), and thus all deviatoric stresses remain finite.

By using highly sophisticated mathematics, Barcilon
and MacAyeal (1993) have rigorously dealt with the two-
dimensional no-slip/free slip transition, assuming isotropic
and uniform linear viscosity. The surface profile that they
find 1s questionable, however, because in fact ice viscosity is
temperature- and stress-dependent. Consequently, the
upper layers of the ice sheet should behave as an almost
rigid plate, and this should smooth the predicted changes
in the surface slope. As for the flow near the singularity,
our approach below is simpler, yet more realistic because a
power-law viscosity is used.

3.2. Simplest problem coping with the singularity

On the large scale considered, any microrelief of the bed is
smoothed out. Near the singularity, the bed may be consid-
ered as a plane, which is taken as the zy-plane. Plane flow is
assumed, with motion in the x direction and with variables
independent of y. Cylindrical coordinates (7, ¢, y) reduce to
polar coordinates (7, @), with ¢ = 0 corresponding to the
positive z axis and ¢ = 7/2 corresponding to the z axis.

The following approach will be adopted. It would be rigor-
ous if ice rheology were linear, and if the boundary conditions
were either a given force acting on the boundary, or a given
velocity. The stress and velocity fields are considered as the
sum of fields that correspond to two distinct problems, 1 and
2, the forces of gravity and the given forces or velocities at the
boundaries being shared between both problems. Problem 1
1s the simplest one that can cope with most of the singularity at
the origin. Gravity forces are excluded from it. Problem 2
yields stresses and strain rates that are continuous and remain
finite at the origin. In the case of transitions from easy slip up-
stream to limited slip (or no slip) downstream, problems 1 and
2 read as follows.

Problem 1

Gravity forces are zero. Ice is driven by forces that, at infi-
nite distance from the origin, tend toward a simple shear.
The boundary conditions on the bed are:
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The bed is a streamline.

The normal stress on the bed (not the deviatoric one) is
ZEro.

For ¢ = 0 the sliding velocity, Uy, is zero. For ¢ = 7 the
friction, 7y,1, is zero.

This abrupt change in the shear stress against the bed
yields a singularity at the origin, where all deviatoric stres-
ses become infinite. (Of course infinite values are a mathe-
matical artifact of the model. What happens really in nature
will be examined later, on a detailed scale.) Strain rates also
become infinite at the origin. Nevertheless, U; is continuous
when crossing the origin: on the free-slip side it decreases
progressively to zero.

The boundary conditions at the upper limit of the domain
are such that the total work of the driving force on any bound-
ary 7 = R, per unit width and unit time, is proportional to R,
as would be the case in simple shear. The advantage of this
choice will appear below.

Problem 2

Ice sheet subject to gravity, limited upwards by some free sur-
face. The boundary conditions on the bed, besides the bed
being a streamline, differ according to the global problem
considered, but in any case they remain the same on both
sides of the singularity. At an easy-slip/poor-slip transition,
it is some uniform friction law relating the friction and the
sliding velocity. Thus, when the boundary conditions are
added for both problems, on one side of the bed the total fric-
tion will be larger than predicted by this law, and on the
other side the total sliding velocity will be larger.

Unfortunately, since ice rheology is not linear, problems 1
and 2 cannot be solved separately in a rigorous way. At each
point of the medium, the effective shear stress to be intro-
duced in Equation (3) is the one corresponding to the sum of
both deviatoric stress fields. Nevertheless, in the vicinity of
the singularity, problem 2 yields much smaller deviatoric
stresses than problem 1, which can be ignored. Our solution
of the first problem will be approximate only, becoming
asymptotically rigorous at the singularity.

3.3. Dependence of the stress and strain-rate fields
on radius r

In the two-dimensional problem, the conservation of mass,
hence of volume, is satisfied by introducing a stream function
g, defined to an arbitrary additive constant. In polar coordin-
ates, the velocities and strain rates read (Lliboutry, 1987b,
p.478; the signs have been changed to have a volumetric dis-
charge per unit width between the bed and the streamline
¢ = a constant equal to g, not to —q):

_lo __ %

v T o

. . 1 0% 1dq

T T T o 20, (5)
_ (1% g, 10g

v Ty r2op? or: ror)’

Stress equations (which express equilibrium, when inertia
force and Coriolis force are negligible, as is always the case in
glaciology) are satisfied by introducing an Airy’s stress func-
tion X, also defined to an arbitrary additive constant. When
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body forces of gravity are zero, total stresses (for which von
Karman’s notations are used) read (Lliboutry, 1987h, p.478):

_1&x  10x
T2 op? T or
82
%= ©
_ 1o 1o
e = rordp 1200

In the two-dimensional problem the only non-zero strain
rates are €, and &, and the only non-zero deviatoric stres-
ses are T, and 7, = (0, — 0,) /2. It follows:

A2 = (260,)° + (28,4)

_ 7)
9 (Or =0\, (
= ()

As 1s always done in continuum mechanics, we assume
that stresses and strain rates are continuous functions of the
space variables which can be indefinitely derived, except
along some singular lines, like the bed in our case. Thus, for
any fixed value of ¢ included in the open intervals ]0, 7[ and
]—m, 0[ they are continuous functions of 7 that can be indefi-
nitely derived, except at 7 = 0. We assume that this single sin-
gularity at the origin is regular. It means that stresses and
strain rates can be expanded about the origin as:

Plag +arr+ ... +art .., (8)

the k being positive integers, and p being not necessarily an
integer nor necessarily positive. The a;, are functions of ¢
which are indefinitely derivable within the mentioned open
intervals. With this assumption or regularity, stress and
strain-rate fields obeying all the equations and boundary
conditions will be found. Therefore, if a non-regular singu-
larity were possible, it would imply that the solution is not
unique, contrary to what can be demonstrated when faults
within the medium are excluded.

To obtain the form of Equation (8) for strain rates and
for stresses, one must start from:

q=r"(apg+... +aprt+..))

. (9)
X :T‘S+2<b0+...+bkrk+...).

Then the prefactor before the Taylor expansion is 7™ for
the velocities, ¢ for the strain rates and for 4, and 7° for the
stresses. Now, problem 1 has been chosen such that the work
per unit time and unit length along » = R is independent of
R.This work 1s:

U0y + upTrp = 7T (g At 400, (10)

the ¢, being functions of ¢. To be independent of 7, the Taylor
expansion must reduce to its first term, which is independent
of r, and moreover we must have:

e+s=-1 (11)

(note that the viscous dissipation of energy per unit width
within a semicircle r < rj is proportional to the power
(e + s+2) of r1, and thus vanishes with 7).
To obey Equation (3), e = nsis required. Thus:
1 n

= - = — . 12
5 n+1’ € n+1 (12)

The master functions ¢ and x can be written as follows
(multiplicative factors K and BK", with K having the
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g 1. Infinite third-power viscous medium, with a cut and a
zero shear stress along the half-plane ¢ = m. For z — Fo00
the state of stress is assumed to tend towards simple shear.
Streamlines are drawn. The half-space 0 < @ < T may rep-
resent ice flowing over a free-slyp/no-slip transition. Turning
the figure upside down, the half-space —m < @ < 0may rep-
resent ice flowing over a no-slip/free-slip transition. Therefore
the solution calculated for the former problem is also valid for
the latter, with some changes of sign.

dimension of a stress, are introduced to make X () and
Q(¢) non-dimensional ):

Y = Krz_l/("H)X(go) (13)
q= BKWLT277L/(7L+1)Q(SD) )

3.4. Boundary conditions for X(¢) and Q(y)

Comparing Equations (6), (7) and (11) it is found (with primes
denoting derivatives in ¢):
Uy = BK?I,Tl/(n-‘rl)Ql
~n(2n+1)

o, = 7KT71/(H+1)X
¢ (n+1) (14)

__ " V) gt
n+1

The conditions at the bed will be written for a free-slip/
no-slip transition. They are:

Trp =

The bed is a stream function: Q(0) = Q(w) =0
The normal pressure against the bed is zero:
X(0)=X(r)=0
Zero velocity on the half-plane o =0: Q'(0) =0
Free slip on the half-plane ¢ = m:  X'(7) =0.

(15)
Another condition is needed to determine completely X
and @, because the multiplicative factor K has introduced
one degree of freedom. Some non-null value of X or of ) must
be arbitrarily fixed. (Recall that X and @) are dimensionless.)
To find again notations used in the elastic problem equivalent
to the linear viscous problem, this choice will be that on the
no-slip side ¢ = 0 the shear stress is 7,, = K7 /""" and
thus X’(0) = —(n+1)/n
The mechanical problem may be extended to the lower
half-plane —7 < ¢ < 0, keeping the same boundary condi-
tions. Consequently, stresses and strain rates are continuous
when crossing the no-slip half-plane ¢ = 0. The free-slip
half-plane ¢ = mis a cut in the medium, and velocity changes
signwhen it is crossed. Q(¢) and X (¢) are then defined in the
range —m < ¢ < 7, ) is an even function and X an odd one.
In the lower half-plane the streamlines are symmetrical
about the z axis to the ones in the upper half-plane, but the
flow is in the opposite direction, as sketched in Figure L.
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Therefore, the solution for —m < ¢ < 0 corresponds to a no-

slip/free-slip transition, and a single calculation is needed for
both cases.

3.5. Solution for Newtonian viscosity

When n =1, Equations (13) read:
x = Er'X(y)

K . (16)
g =—r""Q(p).
Yl
From Equations (6) and (7) it follows:
u = 574/2@/’ = _§5T1/2Q
n 21
%, =—r V2Q, 2,,=—r1? (Q" + %Q)
3 3 (17)
0-7> == KT71/2 (X// +§X> bl 0—99 = KT71/2 (ZX)
_ 1 3 _ 1
7'7"7-:K’I” 1/2<2X”+8X)’ T’I‘L,/:KT 1/2<—2X,).
The creep law (Equation (3)) reads:
1
Q/ — §XU + §X
° (18)

3 1
o2 - _ X
@ +4Q 2

Both X and @) obey the linear differential equation of fourth
order:

a5 & 9

R N = 0 . 19

<d<p4+2d<p?+16>(X’Q) (19)

With the boundary conditions above, the solution is found to be:

3
X = —(Sinf—i— sin—(p)

2 2
1 3
Q= 3 (cos% — cos%)
3cos 1
Tor = 20, = Kr™'/?sin g (%) (20)

3 -1
Tro = 27757“4,0 = KT71/2 Ccos % <4COS;0 )

1/2
e () g OO0
This solution might have been drawn from the equiva-
lent problem in elasticity, by making Poisson’s ratio equal
to 1/2, and replacing the elastic shear modulus by nd/0t.
This equivalent elastic problem is the stress field at the tip

of a crack, in the sliding mode of fracture (mode II), which
occurs when the state of stress tends, for y infinite, towards a
simple shear. It has been solved by methods that apply to
linear problems only, and the results are given in several
textbooks (e.g. Lliboutry, 1987, p. 308-310).

3.6. Solution for isotropic third-power-law viscosity
When n # 1, the apparent viscosity 7 is:

T 1 1
4 Bl (B,-j/nfl)l/” ’

n (21)

where 7 and 7y are given by Equations (8). The two rheologi-
cal equations corresponding to Equations (18) are no longer
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linear, and must be solved numerically. Only the case n = 3
1s dealt with below:

Uy = BK3T1/4(Q') . Uy = BEK3p/* (ZQ)
: 3,.—3/4 L : 3,.—3/4 w1
QETT:BKT §Q s 25T¢:BKT Q +EQ

21
o, = Kr~'/4 (X” + £X> , o, = Kr /A (EX>

7

1
Top = K/ <2X” +X> . T =K <—iX’> :

32
(22)

To allow a computation by successive approximations it
1s convenient to use the two different expressions of 77 given
by Equations (21):

{ 26, = BTQTW;

7 = (B?) " (2210) >

15 I, TN 3\ / 3.,
Q +EQ_ KQX +32X) +<—4X> ](—4X>

Loy 7o (LN (0 15\
b g [(ho) (o4 20)

At each successive step in the computation, the right-
hand side is drawn from the previous approximation, and
one has a linear differential equation of second order to
solve. The conditions at the limits are:

Q(0)=0, Q"(0)=1,

X(0) =0, X(0)=—2 0. (25)

3 K
As starting values, X () for a Newtonian viscosity has

been adopted, multiplied by 2/3 to obey X’(0) = —4/3:

9 3
XU = _ 3 (sin% + sin%p) . (26)

The result of the computation is displayed in Figure 2.

3.7. Longitudinal compression, streamlines and slip-
lines

The inverse of the (apparent) viscosity, termed the (appar-
ent) fluidity, is found to be:

N
16

r

0.6 No

22"

~T

-1

Fig. 2. Functions Q() and X () whenn = 3.

1 BK®F(p)
,7_ rl/2
(Lo, TN 3.\°
F(cp)— (§X +§X) + —ZX (27)

1 / 2 " 15 ? v
= [(562) +<Q +1—6Q> ]

F(p) decreases from F'(0) =1 to a minimum near 7/2 =
90°, F'(90°) = 0.309; has a broad maximum around 150°,
F(150°) = 0.578; and next decreases to F'(180°) = 0.535.
Lines of equal viscosity, obeying r = F? x a constant, are
given in Figure 3. For a given 7, viscosity is lower against
the no-slip side than against the free-slip side by a factor
0.535. It reaches a maximum over the singularity, where ice
rotates much more than deforms and the effective shear
stress is low. In part due to this fact, for a given r, the normal
stress parallel to the bed, which is o, when ¢ = 90° and o,
when ¢ = 180°, is larger just above the singularity than on
the free-slip bed by a factor 1.273. With linear, constant vis-
cosity, it would be the reverse, with a factor 0.530.

Streamlines are given by ¢(r,¢) = a constant, i.e. for
any n:

T(n+2)/("+1)Q(@) = a constant
aQ (28)
0

Since streamlines are similar (more precisely, homothetic

(n+2)%:—(n+l)

about the origin), a single one for n = 3 and a single one
for n =1 are displayed in Figure 4, both crossing the 2 axis
at the same point. Near the origin they are almost identical,

1870

1.4 Mo

No

X

Fig. 3. Lines of equal apparent viscosity, for values in arithmetic progression. Since viscosity is proportional to K °, which has not
been determined, the scale of the figure is arbitrary, and the unit of viscosity ng s not specified.
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Iug. 4. Streamline when n = 3, and duirection of “sub-horizontal”slip-lines crossing it. Dashed line is the streamline whenn =1

crossing the z axus at the same point. The scale is not specified: all streamlines and slip-lines are homothetic about the origin.
Above: values of the effective shear stress along the streamline, to factor K. In the plane problem, principal deviatoric stresses

(normal ones and shear ones ) equal it.

and some values of their slopes must be given to show the
difference. The slope of a streamline is:

dz drsing +rcospdyp

do drcosp — rsinpdp
(n+1)Q'sinp — (n+2)Qcos ¢

(29)

(n+1)Q cosp+ (n+2)Qsinp

Since @Q(0) = 0 and Q”(0) = 1, when ¢ is very small,
~ ¢? /2. Comparing with Equation (29):
dz n
dz ~ 2(n+1) v (30)

In the case n =1 there is an inflexion point at ¢ = @
= arccos (—1/3) = 10947°. This is exactly where @ = 0 and
where the streamline is closest to the origin. The slope of the
streamline there i1s 0.3536. Next, following ice flow, the slope
lowers to 1/3 at ¢ = 90°. In the case n= 3, @' = 0 at
@ =@y = 1082°, and the slope of the streamline is then
0.329. The inflexion point is at ¢ = 101.6°, with a slope 0.332,
and at ¢ = 90° the slope has lowered to 0.320.

Significant differences appear at large distances from the
origin, linked to the fact that with n = 3 the apparent viscos-
ity is lower above the no-slip bed than above the free-slip bed.
It is easily shown that far downstream y varies as z'/* when

n = 1, and faster, as z/%

|x‘71 2

when n = 3. Far upstream gy varies as
when n =1, and slower, as |£E|71/4, whenn = 3.

From general theory, for a plane problem the effective
shear stress is the absolute value of both principal deviatoric
stresses, and it equals maximum shear stresses. These max-
imum shear stresses are found on planes at 45° from the
principal directions, and they make an angle  with the ra-

dius which is given by:
1 7 1
- EX//—’__QX _Q/
tan20 = — - = 3 2 ___ 2 5 (31)
T?"Ap _Xl i -
4 @ 16Q

In particular, when n = 3, for ¢ — 0, from Equations
(25), Q ~ ¢*/2 and thus § —1 —¢ /4. Equations (22) and
(31) allow the intensity and direction of maximum shear
stresses to be calculated. The one whose direction is the clo-
sest to that of the streamline is drawn in Figure 4. The vari-
ation of its intensity 7 is also shown in this figure.

Slip-lines are tangent to a maximum shear stress at any
point. They form two families, orthogonal to each other,

https://doi.org/10.3189/172756502781831700 Published online by Cambridge University Press

which are referred to as sub-horizontal slip-lines or sub-verti-
cal slip-lines, according to whether their angle with the bed
remains smaller or larger than 45° (Fig. 5). When crossing the
free-slip bed, they change family. The following description
holds for the half-plane 0 < ¢ < 180°.

Sub-horizontal slip-lines start from the free-slip bed at 45°
forward, are tangent to a streamline at ¢ = ¢y, and, far
downstream, cross the streamlines at an angle 3¢/8. (With
n = lit would be ¢/4.) The no-slip bed (the half-straight line
@ = 0) is a singular slip-line to be added to this family.

Sub-vertical slip-lines start from the free-slip bed at 45°
backward, or from the no-slip bed perpendicularly to it.
They tend to be parallel to ¢ = 9 at a large distance from
the bed. This family includes the half-straight lines
¢ = £s. They form a single slip-line, with an infinite cur-
vature at the origin. Because of this singularity, the two
half-straight lines can be not perpendicular to the other
slip-line reaching the origin, the no-slip bed ¢ = 0.

3.8. Estimation of the parameter K, and domain of
validity of the solution above

The value of the multiplicative factor K must be inferred
from the dynamics of the whole ice sheet, which is not
modelled in the present study. Essential factors to be consid-
ered would be the temperature field (which modifies B), the
ice discharge, and the friction law on the sliding side of the
singularity. Another important parameter is the radius R
up to which the solution above of problem 1 remains more
or less valid for the global problem (1 + 2) (a lithostatic pres-
sure having been added, however).

Rough estimations of K and R can be obtained by
assuming that, at distance R from the singularity, the slid-
ing velocity on the free-slip side and the friction on the no-
slip side have the values commonly found in glaciers and ice
sheets. The given solution of problem 1 yields:

U = —u,(1) = —BK*RY*Q'(r) = 0.780BK*R'/*

32
7, = 7,(0) = KR1/4(—3X’(0)> = KR Y%, (32)

For a temperate mountain glacier (B =430 MPa *a ), a
radius of validity R = 50m is acceptable. It is found, for
instance, with the realistic values U =~ 17m a'and 7~
0.10 MPa. For a cold ice sheet (B =200 MPa *a "), an accept-
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Fig. 5. Slip-lines in the complete space—180° < o < 180°.

able radius of validity is R = 500 m. It is found, for instance,
with the realistic values U ~ 10 ma ' and 7, ~ 0.05 MPa.

4. PROCESSES AT THE DISCONTINUITY THAT KEEP
STRESSES FINITE

4.1. Existence of a microrelief

The mathematical model yields infinite stresses and strain
rates at 7 = 0, which cannot exist in nature. They may be
avoided either because the discontinuity is blurred on a suf-
ficiently detailed scale, or because other processes, not con-
sidered in the model, become important. These two
possibilities will be examined successively.

The model assumes a plane bed. Recall that the concept
of a friction on the bed and a corresponding sliding velocity is
pertinent to a bed from which all the microrelief has been
smoothed out. Sliding theories consider separately, on a finer
scale, the flow of a bottom boundary layer on this microrelief.
Therefore a no-friction condition is sound only if the bumps
of the real bed are much smaller than R.

Consider cold ice sheets, where melting point is reached
at the bottom, on the easy-slip side. A flat bed is possible if it
consists of flattened sediments, as in the case of the fast ice
streams flowing from West Antarctica into the Ross Ice Shelf
(Engelhardt and Kamb, 1998). Only the upper 3cm are
deformed, and (according to the interpretation of raw data
that they favour) account for only 17% of the sliding velocity.
A free-slip/no-slip transition on flat sediments must come
from a melting-point isotherm leaving the interface and
entering the sediments with a very small dip. Consequently,
over some distance there is a thin layer of frozen sediments,
which should be caught and carried downstream as a moving
bottom moraine (as geologists say) or a debris-rich bottom
layer (as glaciologists say). This important case is excluded
from the present study.

When the glacier bed consists of sound rock, the melting-
point isotherm cuts many bumps of the microrelief. There
should be a stripe of bed with intermingled temperate and
cold patches. The temperature fluctuations caused by sliding
modify their limits, but do not suppress them. When cold
patches predominate, they should prevent any sliding on
the temperate ones. When temperate patches predominate,
they should enforce sliding by local faults on the cold ones.
Coming back to the hectometric scale, the temperate—cold
boundary is blurred and not well defined, but the boundary
between slip and no-slip is sharp and well defined.
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4.2. Faults and shear layers

When the flow is from a no-slip side to an easy-slip side, a
fracture may start from the bed if the acting stress is large
enough. It may be in the opening mode and perpendicular
to the bed, producing a “bottom crack”, or in the sliding mode
and at 45° from the bed, producing a normal fault. Fracture
in the opening mode may always start, but the crack should
extend upwards only if the superimposed lithostatic pressure
1s low enough. (A particular case is when the bottom crack
reaches the surface, the sliding part goes downstream and
the no-sliding one remains as a hanging glacier)

A normal fault (or a reverse fault, in the case of a trans-
ition from easy slip to poor slip) may start from the bed at 45°,
very close to the origin. It follows more or less a sub-horizon-
tal slip-line, which at some distance from the bed becomes
close to streamlines. This fact should allow the fracture to
extend over a long distance from the origin as a thin shear
layer, because the shear stress acting on it remains high for a
long time. In this case, a strain-induced fabric that favours
shear should form and make the process self-enforcing. The
computed stress field would be modified, however.

The theoretical value of the acting shear stress at start
given by our solution is not exact, because of the microrelief
which provides locally, on its scale, higher deviatoric stresses.
Therefore, when an overthrust is observed, the precise value
of the stress at the point of departure cannot be reached,
even if the global problem has been solved.

4.3. Necessity of a water input

The formation in the ice of a shear layer or a fault starting
from the bed creates a gap at the ice—bed interface on one
side. It must be infilled with water to balance the lithostatic
pressure. A realistic possibility for an abrupt change in the
conditions at the bottom is one side of the bed at melting tem-
perature, the other one at sub-freezing temperatures. The
required water must then come from the easy-slip side, and
probably from upstream. This should have been the case
during the quoted overthrusting and surge of Glaciar Grande
del Nevado Plomo. Another possibility is, with all the bed at
melting point, a subglacial water storage over some area that
makes the friction drop almost to zero. This should have been
the case for the quoted overthrusting of GlaciarTorre. A third
possibility, not examined here, is when the abrupt discon-
tinuity at the bed comes from a change in its nature: rock on
one side, flat sediments on the other.

5. CONCLUSION

This theoretical paper is a contribution to the study of a
poorly known process which deserves more attention in the
field. The topic is of interest not only in glacial geology.
Overthrusts in the tongues of glaciers may well invalidate
many analyses of monitored advances and retreats.

I do not claim to have “explained” completely this well-
proven process, which contradicts the usual assumption of a
perfectly continuous medium. I have only removed a risk
for investigators. The stress and strain-rate fields produced
by an abrupt change from easy slip to poor slip (or no slip
at all) with a realistic third-power viscosity might be quite
different from the well-studied case of constant viscosity. For
instance, in another problem, the flow over a perfectly
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smooth hemisphere, extrusion flow appears when n > 2
(Lliboutry, 1987b, section 13.5).

The mathematical singularity cannot be studied directly
by the usual finite-element method. It has been shown that
the stream function and the Airy stress function, from which
strain rates and stresses can be drawn, are, respectively, ¢ =
BK’1* 3 Q(p) and x = K7* " X(ip). Deviatoric stresses
vary as 7 /", For a given ¢, when 7 is 16 times smaller they
are doubled, whereas with a constant viscosity they vary as
7~1/2 and increase fourfold. This is the main change, since
the solution becomes illusory because of the ignored micro-
relief and must not be used when r < R/16 or R/50.

Functions Q(p) and X () obey two coupled differential
equations of second order, where the lefthand side is linear
and involves a single function, while the righthand side is
not linear (as when n = 1), but involves only the other func-
tion. Therefore this set is readily solved numerically, by suc-
cessive approximations. Streamlines and slip-lines have
been drawn. Their slopes differ from the linear viscous case,
but, qualitatively, no essential differences appear.

The computed solution is no longer valid at the metric
scale of the microrelief, moreover, in the case of cold ice
sheets, frozen subglacial ground may be caught and dragged
on the poor-slip side. Therefore, at this minute scale, just one
essential fact has been pointed out: faulting or cracking may
start from the sole of the glacier only if water at the over-
burden pressure is available to infill immediately the gap
that appears. As for temperate glacier dynamics, subglacial
hydraulics must be introduced to improve the model.
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