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Ramification of the Eigencurve at Classical
RM Points

Adel Betina

Abstract. J. Bellaïche and M. Dimitrov showed that the p-adic eigencurve is smooth but not étale
over the weight space at p-regular theta series attached to a character of a real quadratic ûeld F in
which p splits. In this paper we prove the existence of an isomorphism between the subring ûxed
by the Atkin–Lehner involution of the completed local ring of the eigencurve at these points and a
universal ring representing a pseudo-deformation problem. Additionally,we give a precise criterion
for which the ramiûcation index is exactly 2. We ûnish this paper by proving the smoothness of the
nearly ordinary and ordinaryHecke algebras forHilbertmodular forms over F at the overconvergent
cuspidalEisenstein points, being the base change li� forGL(2)

/F of these theta series. Our approach
uses deformations and pseudo-deformations of reducible Galois representations.

1 Introduction

Let p be a prime number and C be the p-adic eigencurve of tame level N constructed
using the Hecke operators Up and Tℓ , ⟨ℓ⟩ for ℓ ∤ Np. Recall that C is reduced and
there exists a �at and locally ûnitemorphism κ ∶ C→W, called theweightmap,where
W is the rigid space over Qp representing homomorphisms Z×p × (Z/NZ)× → Gm .
_e eigencurve C was introduced by R. Coleman and B. Mazur in the case where the
tame level is one [11], and by K. Buzzard and G. Chenevier for any tame level [6,7].
By construction of C, there exists amorphism Z[Tl ,Up]ℓ∤Np → O

rig
C

(C) such that
we can see the elements ofZ[Tl ,Up]ℓ∤Np as global sections of the sheafO

rig
C
, bounded

by 1 on C. _erefore, the canonical application “system of eigenvalues” C(Qp) →
Hom(Z[Tl ,Up]ℓ∤Np ,Qp) is injective, and induces a correspondence between the
systems of eigenvalues for Hecke operators of normalised overconvergent modular
eigenformswith Fourier coeõcients inCp , of tame level N and ofweight k ∈W(Cp),
having nonzero Up-eigenvalue and the set of Cp-valued points of weight k on the
eigencurve C; moreover, since the image of Z[Tl ,Up]ℓ∤Np is relatively compact in
O

rig
C

(C) andOrig
C

(C) is reduced, there exists a pseudo-character T ∶ GQ,Np → O
rig
C

(C)
of dimension two such that T(Frobℓ) = Tℓ .

_e weight map C →W is étale at non-critical p-regular points corresponding to
classical modular forms ofweight≥ 2. It follows from the semi-simplicity of the action
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of the Hecke algebra, the classicality criterion of overconvergent modular forms and
the fact that the multiplicity of the operator Up is exactly one [11, 7.6.2], [10, 21, 27].
However, the étalness of the weight map can fail in weight one [3,9, 17].

_e locus of C, where ∣Up ∣ = 1 is open and closed in C, is called the ordinary locus
of C and denoted by Cord. _e ordinary locus Cord is isomorphic to the rigid space
given by themaximal spectrumof the generic ûber of the universal p-ordinaryHecke
algebra of tame level N generated by the Hecke operators Tℓ for all primes ℓ ∤ Np
and Up .

Let f (z) = ∑n≥1 ane2iπnz be a cuspidal classical weight one newform corre-
sponding to a point of Cord. According to a theorem of Deligne and Serre [14,
Proposition 4.1], there exists a continuous irreducible representationwith ûnite image
ρ ∶ GQ → GL2(Q) such that ρ(Frobℓ) = aℓ for all prime numbers ℓ ∤ Np.

We ûx an algebraic closure Qp of Qp and an embedding ıp ∶ Q ↪ Qp , which de-
termines an inclusion GQp ↪ GQ. Since the image of ρ is ûnite and f is ordinary at p,
ρ∣GQp

= ψ1 ⊕ ψ2, where ψ1 ,ψ2 ∶ GQp → Q
×

p are characters and ψ2 is unramiûed. We
say that f is regular at p if and only if ψ1 ≠ ψ2.

Let T be the completed local ring of C at f and Λ be the completed local ring ofW
at κ( f ). _e weight map κ induces a ûnite �at local homomorphism κ# ∶ Λ → T of
local reduced complete rings.

We denote byC the category of completenoetherian localQp-algebraswith residue
ûeld isomorphic toQp andwhosemorphisms are local homomorphisms ofQp-alge-
bras. Under the assumption that f is p-regular, the functor of p-ordinary deforma-
tions of ρ is representable by a universal 2-tuple (R, ρord),where ρord ∶ GQ → GL2(R)
is the universal ordinary deformation of ρ [3, §2]. Under the assumption that ρ is
p-regular,M.Dimitrov and J. Bellaïche obtained in [3] the following crucial results to
which we will o�en refer.

_eorem (i) _ere exists an ordinary deformation ρT ∶ GQ,Np → GL2(T) of ρ
such that Tr ρT(Frobℓ) = Tℓ when ℓ ∤ Np, and the morphism κ# ∶ Λ → T sends the
universal deformation of det ρ to det ρT .

(ii) R is a discrete valuation ring and the p-ordinary deformation ρT induces an
isomorphism R ≃ T.

(iii) _emorphismκ# ∶ Λ → T is ramiûed if and only if f has RM by a real quadratic
ûeld in which p splits.

Let F be a quadratic real ûeld inwhich p splits, єF ∶ GQ/GF → {−1, 1} thenon trivial
character, and σ a generator of Gal(F/Q). We say that f has RM by F if and only if
ρ ≃ ρ ⊗ єF . According to [18, Proposition 3.1], there exists a character ϕ ∶ GF → Q

×
p

such that ρ ≃ IndQF ϕ. _e embedding ιp singles out a place v of F above p; denote by
vσ the other place above p. _e hypothesis of f being p-regular implies that ϕ∣GFv ≠
ϕσ
∣GFv . Since p splits in F, it follows that GFv = GQp , ϕ∣GFv = ψ1, and ϕσ

∣GFv = ψ2.
_emap given by ρord → ρord ⊗ єF yields an automorphism τ ∶ R→ R. Denote by

Rτ=1 the sub-ring of R ûxed by τ.
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In Section 3, we introduce a local ring Rps representing a pseudo-deformation
functor of the reducible Galois representation ρ∣GF to the objects of the category C,
with some local condition at p, i.e., ordinary at v, and with invariant trace by the
action of σ on GF (see Deûnition 3.4). We write Rps

red for the quotient of Rps by its
nilradical.

_eorem 1.1 _ere exists an isomorphism Rτ=1 ≃ R
ps
red, and R

ps
red is a discrete valua-

tion ring.

Denote by H ⊂ Q the number ûeld ûxed by ker(ad ρ). Let H∞,v (resp. H∞,vσ )
be the compositum of all Zp-extensions of H that are unramiûed outside v (resp. vσ ).
Let H∞ be the compositum of H∞,v and H∞,vσ . Let L∞ be themaximal unramiûed
abelian p-extension ofH∞, and let X∞ be theGalois groupGal(L∞/H∞). It is known
thatGal(H∞/H) ≃ Z2s

p acts by conjugation on X∞ and that X∞ is a ûnitely generated
Zp[[Gal(H∞/H)]]-module [20].

_eorem 1.2 Let F′′ be the maximal unramiûed extension of H contained in H∞
and let L0 be the subûeld of L∞ such that Gal(L0/H∞) is the largest quotient of X∞
on which Gal(H∞/F) acts trivially. Assume that L0 is an abelian extension of F′′ or
Gal(L0/H∞) is a ûnite group; then the ramiûcation index e of C overW at f is exactly
two.

WhenH is a biquadratic extension ofQ, the assumptions of_eorem1.2 are related
to the semi-simplicity of some torsion IwasawaModules [26].

Our approach is inspired by S.Cho andV.Vatsal [9] anduses the resultsof Bellaïche
and Dimitrov [3]. More precisely, we prove in Lemma 2.4 that the ramiûcation index
of Rτ=1 ↪ R is two. _e key observation made in Section 3 is that the ring Rτ=1 is
isomorphic to R

ps
red. _erefore, the ramiûcation index of κ at f is two if and only if

R
ps
red ≃ Λ. Hence, it is suõcient to prove that the relative tangent space ofRps

red over Λ
is trivial, which we will elaborate in _eorem 4.5.

Let ρ = IndQF ϕ denote the residual representation of ρ, where ϕ ∶ GF → F×p is a
character and Fp is a ûnite ûeld of characteristic p. Assume that ϕ is the Teichmuller
li� of an unramiûed character ϕ (in this case F = Q(

√
N)). We denote by m the

maximal ideal of the universal p-ordinary Hecke algebra hQ = hQ(Np∞) of tame
level N determined by the representation ρ, and by hF = hF(p∞) (resp. hn.ord

F ) the
reduced p-ordinary (resp. p-nearly ordinary) Hecke algebra arising from cuspidal
Hilbert modular forms of level p∞ for the real quadratic ûeld F.

R. Langlands [28] proved that any primitive elliptic cuspidal eigenform fk belong-
ing to Sk(Γ1(N), єF) of weight k ≥ 2 and of Neben type character єF has a base
change li� f̃k for GL(2)/F . More precisely, f̃k is a primitive Hilbert modular eigen-
form for GL(2)/F of weight k, level 1, with a trivial Neben type character and such
that L( f̃k , s) = L(ρ fk ∣GF , s), where ρ fk is the p-adic Galois representation attached to
fk , i.e., L( fk , s) = L(ρ fk , s). Moreover, H. Hida [24, §2] constructed an involution
ω on hQ,m, and following the work of Langlands [28] and K. Doi, H. Hida, and H.
Ishii [18], there exists a base-changemorphism β ∶ hF → hQ.
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_ese authors also constructed an action of ∆ = Gal(F/Q) on hF given by σ(Tq) =
Tqσ . Let y denote the inverse image ofm under this base-changemap.
Doi, Hida, and Ishi were interested by the congruence relations between Hilbert

modular forms and their re�ection in certain twisted adjoint L-values. _is question
led them to study the congruences between forms that arise via base change from Q
and those intrinsic to F. Subsequently, under suitable assumptions, they conjectured
that hF ,y/(∆−1)hF ,y ≃ hω=1

Q,m,where hω=1
Q,m is the ûxed part of hQ,m by the involutionw

[18, Conjecture 3.8].
Since the dihedral representation ρ becomes reducible upon restriction to GF , it

follows from the properties of the base-changemorphism β that the restriction of ρ to
GF is theGalois representation associatedwith anordinary p-adic cuspidalweightone
Hilbert Eisenstein series E1(ϕ, ϕσ) of level 1 [18, §3.4]. _e system ofHecke eigenval-
ues associatedwith E1(ϕ, ϕσ) gives a height one prime ideal n = β−1(p f ) of hF ,where
p f is the height one prime ideal of hQ corresponding to the system of Hecke eigen-
values associated with f . Denote by nn.ord the height one prime ideal of the nearly
ordinary Hecke algebra hn.ord

F given by the inverse image of n via the natural surjec-
tion hn.ord

F ↠ hF ; namely, nn.ord is the closed point of Spec hn.ord
F [1/p] associated

with the system ofHecke eigenvalues of E1(ϕ, ϕσ).
Let Tord be the completed local ring for the étale topology of Spec hF[1/p] at a

geometric point, i.e.,Qp-point, corresponding to n, i.e., Tord is the completion of the
strict local ring at n, and write Tord

∆ for the reduced quotient of Tord by the radical of
the ideal generated by elements of the form ∆(a) − a.

_eorem 1.3 _e base-change morphism β induces an isomorphism of local rings
β f ∶ Tord

∆ ≃ T+, where T+ is the subring of T ûxed by τ under the identiûcation R ≃ T.

_eorem 1.3 allows us to use the exact same arguments that were already given in
the proof of [9, _eorem B] to deduce the following variant of [18, Conjecture 3.8]
without assuming that ϕ2

∣Iv ≠ 1 as in [9,_eorem B].

Corollary 1.4 Assume that p > 2 and that the following conditions hold for ρ.

(i) _e character ϕ is everywhere unramiûed and ϕ∣GFv ≠ ϕσ
∣GFv .

(ii) _e restriction of ρ to Gal(Q/Q(
√

(−1)(p−1)/2p)) is absolutely irreducible.
_en the image of the base-changemorphism β ∶ hF → hω=1

Q,m has a ûnite index.

_eorem 1.5 Assume that ϕ is unramiûed everywhere and ϕ(Frobv) ≠ ϕσ(Frobv).
(i) _e aõne scheme Spec hn.ord

F is regular at the point nn.ord corresponding to the
system of Hecke eigenvalues associated with E1(ϕ, ϕσ).

(ii) _e aõne scheme Spec hF is regular at the point n corresponding to the system
of Hecke eigenvalues associated with E1(ϕ, ϕσ), and in this case Tord ≃ Tord

∆ ≃ T+.

Hida [22] proved that an ordinary Hilbert cuspform of cohomological weight is
a specialization of a unique, up to Galois conjugacy, primitive p-ordinary Hida fam-
ily. Geometrically, this translates into the smoothness of the nearly ordinary Hecke
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algebra at the height one prime ideal corresponding to that cuspform. In fact, Hida
proves evenmore, namely the nearly ordinaryHecke algebra being étale at that prime
ideal over the Iwasawa algebra Zp[[T1 , T2 , T3]]. On the other hand, the criterion for
classicality ofHilbert overconvergentmodular forms of [5,31] generalizes the result of
Hida and implies that theHilbert eigenvarieties are étale over the weight space at the
points corresponding to classical non-critical p-regular Hilbert cuspforms (see [1] for
the construction of theHilbert eigenvarieties).

However, there are exampleswhere the étaleness of theHilbert eigenvarieties (resp.
parallel Hilbert eigencurves) over theweight space fails inweight one. More precisely,
while theHilbert eigenvariety is smooth at some classical weight one points with real
multiplication, the parallelweight Hilbert eigencurve is singular at those points, con-
trasting with the famous Hida’s control theorem [4, 15].

_e purely quantitive question of how many Hida families specialize to a given
classical p-stabilized weight one eigenform can be reformulated geometrically to de-
scribe the local structure of the ordinary locus of the Hilbert eigenvarieties at the
corresponding point.

Now let Tn.ord be the completed local ring for the étale topology of Spec hn.ord
F

at a geometric point, i.e., Qp-point, corresponding to nn.ord and let F (resp. Ford)
be any nearly ordinary (resp. cuspidal ordinary of parallel weight) p-adic family that
specializes to theordinary p-adic cuspidalEisenstein series E1(ϕ, ϕσ) inweightone. It
follows from_eorem1.5 thatF (resp. Ford) is uniqueup to aGalois conjugation, since
there is only one irreducible component of Spec hn.ord

F (resp. Spec hF) specializing to
the point nn.ord (resp. n), and it follows from the fact that Tn.ord and Tord are regular
rings (hence integral domains). Moreover, Ford is the base change li� of a p-ordinary
Hida family passing through f .

In the following, themain ideas behind the proof of_eorem 1.5will be explained.
First we construct in Proposition 6.3 a p nearly ordinary deformation

ρTn.ord ∶ GF Ð→ GL2(Tn.ord)

of a reducible but indecomposable representation ρ̃ with trace ϕ + ϕσ (this construc-
tion was inspired by [2]).

Subsequently, we introduce a deformation problem, Dn.ord, of ρ̃ with some local
conditions at p; as such,Dn.ord is representable by an Rn.ord that surjects to the local
ring Tn.ord of dimension three. _e computation of the tangent space tn.ord

D ofDn.ord

represents an important part of the proof and, using Galois cohomology, shows that
tn.ord
D is of dimension three (see_eorem 6.8). Hence, the surjectionRn.ord ↠ Tn.ord

is an isomorphism of complete local regular rings of dimension three.
Finally, a direct computation shows that the tangent space of the p-ordinary quo-

tient Tord of Tn.ord is of dimension one, and hence Tord a discrete valuation ring.

Remarks 1.6 (i) Suppose that the residual representation ρ of ρ satisûes the as-
sumptions of the theorems of R. Taylor and A.Wiles [36,38], ϕ2

∣Iv ≠ 1, and p ≥ 3. _en
Cho and Vatsal proved_eorem 1.1 under these additional assumptions.

(ii) H.Darmon, A. Lauder, andV.Rotger [13] stated a formula for the q-expansion
of a generalised overconvergent form f † in the generalized space associated with f
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(which is not classical). _e coeõcients of the generalised eigenform f † are expressed
as p-adic logarithms of algebraic numbers.

(iii) S. Cho provided several examples of the ramiûcation index e of C over W
at f being exactly 2 [8, §7]. More precisely, he presented examples where hω=1

Q,m is
unramiûed over the Iwasawa algebra Zp[[T]].

(iv) M. Dimitrov and E.l Ghate provided several examples emphasising that T is
of rank two over Λ [17, §7.3]. As such, the index e is also 2 in their examples.

(v) V. Pilloni gave a geometric deûnition of overconvergent modular forms of any
p-adicweight and reconstructede the eigencurve Cwithout using the Eisenstein fam-
ily [30].

Notations 1.7 If L is a number ûeld and S the places of L above Np, we denote by
GL ,S the Galois group of themaximal extension of L, unramiûed except at the places
belonging to S and at inûnite places.

_roughout this paper, O will denote the ring of integers of a p-adic ûeld contain-
ing the image of the character ϕ.

Let Fp denote the residue ûeld of O.
Let CNLO denote the category of complete, local, Noetherian O-algebras with

residue ûeld Fp , and whose morphisms are the local morphisms of local rings in-
ducing the identity on their residue ûelds.
For any commutative local ring A, writeMA for the free A-module A⊕A, andmA

for themaximal ideal of A.
Let ΛO denote the Iwasawa algebra O[[T]].
IfW is a representation of G and {G i}i∈I are subgroups of G, we will write

Hi(G ,W)G i = ker(Hi(G ,W)Ð→⊕
i∈I

Hi(G i ,W))

Let H be a normal subgroup of G. _en we denote byHi(H,W)G/H the elements
ofHi(H,W) that are invariant under the action of G/H.

We assume throughout this paper that p splits into two places v , vσ of F, and let p
(resp. pσ ) denote the prime ideal over p of the ring of integers of F corresponding to
the place v (resp. vσ ).

Let ∆ be the Galois group of the real quadratic extension F/Q.

2 Preliminaries and Some Properties of R and Rτ=1

For A any local ringwithmaximal idealmA and belonging to the categoryC, letD(A)
be the set of strict equivalence classes of representations ρA ∶ GQ → GL2(A) such that
ρA mod mA = ρ and which are ordinary at p in the sense that

(ρA)∣GQp
≃ ( ψ′A ∗

0 ψ′′A
) ,

whereψ′′A is an unramiûed character li�ingψ2. According to Schlesinger’s criteria, the
functor D is representable by (R, ρord) [3, §2] and denotes its tangent space by tD.
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2.1 Some Properties of ρord and the Ring Rτ=1

Let H ⊂ Q be the number ûeld ûxed by ker(ad ρ) and G be the Galois group of the
ûnite Galois extension H/Q. Since the projective image of ρ is dihedral, G contains
elements of order two and with non trivial restriction to F; with a slight abuse of
notationwewill denote one of them by σ . Let (e1 , e2) be a basis inwhich ρ∣GF = ϕ⊕ϕσ .
By rescaling this basis, one can assume that ρ(σ) = ( 0 1

1 0 ) in PGL2(Q)
We will exhibit a suitable basis of the free R-module MR, where the diagonal en-

tries of the realization of ρord in this basis depend only on the trace of Tr ρord. _e
existence of this basis will be crucial to deûne the functor of p-ordinary pseudo-
deformations in Section 3, since the line of MR, which is stable under the action of
GQp , is not necessarily stable under the action of the complex conjugation c.

Lemma 2.1 Let γ0 be a ûxed element of GFv that li�s Frobv (ιp ∶ GFv
≃Ð→ GQp ) and

satisûes ϕ(γ0) ≠ ϕσ(γ0). _en there exists a basis Bord
R of MR, such that ρord(γ0) =

( ∗ 0
0 ∗ ) and ρord

∣GFv = ( ∗ ∗
0 ∗ ) in this basis.

Proof Let K be the ûeld of fractions ofR,which is a discrete valuation ring. SinceR
is Henselian (even complete) and ϕ(γ) ≠ ϕσ(γ0), there exists a basis ofMR⊗K such
that ρord ⊗K(γ0) = ( ∗ 0

0 ∗ ) and ρord
∣GFv ⊗K = ( ∗ ∗

0 ∗ ). Moreover,R is a discrete valuation
ring; hence we can rescale this basis with the aim of getting a basis ofMR that fulûlls
the desired conditions.

Remark 2.2 Since ϕ(γ0) ≠ ϕσ(γ0), any other basis satisfying the same assumptions
of Lemma 2.1 is obtained by conjugating the chosen basis by a diagonal matrix. Such
conjugation does not change a(g), d(g) and the product b(g).c(g),where ρord(g) =
( a(g) b(g)
c(g) d(g) ) .

As ρ is dihedral, N(ρ ⊗ єF)N = ρ, where N = ( −1 0
0 1 ) in (e1 , e2).

Deûnition 2.3 Let g → ( ã(g) b̃(g)
c̃(g) d̃(g) ) be the realization of ρord in a basis Bord

R sat-

isfying the assumption of Lemma 2.1. Consider the automorphism Ñ of EndR(MR)
given by ( −1 0

0 1 ) in the basis Bord
R . _en the map ρord → Ñ(ρord ⊗ єF)Ñ induces an

automorphism t of the deformation functor D, hence an automorphism τ ∶ R → R

with τ2 = 1.

Since Tr t(ρord) = Tr(ρord ⊗ єF), a theorem ofNyssen [29] and Rouquier [32] im-
plied that the deformation t(ρord) is isomorphic to ρord⊗єF . _erefore, the involution
τ is independent of the choice of a basis of MR in which Ñ = ( −1 0

0 1 ).
Let A be a ring in the category C. _en any deformation φA ∶ GQ,Np → A× of

det(ρord) is equivalent to a continuous homomorphism h ∶ GQ,Np → 1 + mA. Using
class ûeld theory, we obtain an isomorphism

Hom(Gab
QNp , 1 +mA) ≃ Hom((Z/NZ)× ×Z×p , 1 +mA) = Hom(1 + qZp , 1 +mA),

where q = p if p > 2, and q = 4 if p = 2.
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Since 1 + mA does not contain elements of ûnite order and Λ ≃ Qp[[1 + qZp]],
any deformation of det ρ to the ring A is obtained via a unique morphism Λ → A.
By an abuse of notation, we will write κ# ∶ Λ → R for the morphism induced by the
deformation det ρord of det ρ, i.e., we identify R and T.

Lemma 2.4 (i) _e involution τ is an automorphism of Λ-algebras.
(ii) LetRτ=1 denote the subring ofR ûxed by τ. _enRτ=1 is an object of the category

C and has Krull dimension equal to one.
(iii) Rτ=1 is a discrete valuation ring.
(iv) Let L denote the ûeld of fractions ofRτ=1 and recall that K is the ûeld of fractions

of R. _en L is equal to the set of elements of K ûxed by τ.
(v) _e involution τ ∶ R → R is not trivial and the injection ι ∶ Rτ=1 → R has rami-

ûcation index equal to two.

Proof (i) Since det(ρord) = det(Ñ(ρord ⊗ єF)Ñ), τ ○ κ# = κ#.
(ii) Since κ# ∶ Λ → T is a ûnite �at homomorphism and R ≃ T, Rτ=1 is ûnite over

Λ. _e fact that Λ is aHenselian ring of dimension one (even complete), implies that
Rτ=1 is a ûnite product of local ringswith Krull dimension equal to one. However, the
ring Rτ=1 is a domain (Rτ=1 ⊂ R), so Rτ=1 is a complete local ring of dimension one.

(iii) Since Rτ=1 is a local domain, Noetherian, and has Krull dimension equal to
one, it is suõcient to show that it is integrally closed. Let α be any element of the ûeld
of fractions of Rτ=1 such that α is integral over Rτ=1; write α = x/y, where x ∈ Rτ=1
and y ∈ Rτ=1 − {0}. Since Rτ=1 is a subring of R, α is integral over R, and it follows
that α ∈ R (as R is integrally closed). However, τ(α) = τ(x)/τ(y) = x/y = α, hence
τ(α) = α and α ∈ Rτ=1.

(iv) Let a ∈ K and assume that τ(a) = a. Since R is a valuation ring, a ∈ R or
a−1 ∈ R, so a ∈ Rτ=1 or a−1 ∈ Rτ=1, hence a ∈ L.

(v) Assume that τ is trivial. _en ρord ≃ ρord ⊗ єF . According to [18, Proposi-
tion 3.1], ρord ≃ IndQF ϕord, where ϕord ∶ GF → R× a character. Since R ≃ T, ρord

is a representation associated with a primitive Hida family containing f , i.e., corre-
sponding to the unique irreducible component of SpecT. _us, ρord is a dihedral
representation with real multiplication by F. _erefore, any specialization to weight
k ≥ 2 of a Hida family passing through f is a classical modular form of weight k ≥ 2
having a real multiplication by F. However, it is well known that there are no RM
modular forms of weight at least two, resulting in a contradiction. _erefore, τ is not
trivial. Since K = Lτ=1 and τ2 = 1, L/K is an extension of degree two.

In the following proposition,wewill compute the valuation of any generator of the
ideal of reducibility of ρord

∣GF , i.e. the ideal generated by {b̃(g)c̃(g′) ∣ g , g′ ∈ GF}.

Proposition 2.5 Let g → ( ã(g) b̃(g)
c̃(g) d̃(g) ) be the realization of the universal deformation

ρord in the basisBord
R that li�s (e1 , e2); let νR ∶ R→ N∪ {∞} be the discrete valuation

ofR, and let w0 (resp. wσ
0 ) be the place of H over v (resp. vσ ) singled out by ιp . _en we

have the following.

64

https://doi.org/10.4153/CJM-2018-029-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-029-4


Ramiûcation of the Eigencurve at Classical RM Points

(i) _ere exist elements g0, h0, of GH such that the orders of both b̃(g0) and c̃(h0)
in R are one, and the image of GHwσ

0
under b̃ is contained in m2

R.
(ii) One always has dimQp

H1(F , ϕσ/ϕ)GFv = 1.

Proof (i) Note that tD is also the tangent space of the local ring R representing D.
Since p splits in F, i.e., GQp = GFv , [3, Proposition 2.3] implies the following iso-

morphism:

(2.1) tD = ker(H1(GQ , ad ρ)Ð→ H1(GQp , ϕ/ϕσ)⊕H1(Ip ,Qp)) .

We have the following decomposition of ad ρ: ad ρ ≃ 1 ⊕ єF ⊕ IndQF (ϕ/ϕσ), given by
( a bc d ) = ( a 0

0 d ) + ( 0 b
c 0 ) and inducing the following decomposition:

(2.2)
H1(GF , ad ρ) ≃ H1(GF , ϕ/ϕ)⊕H1(GF , ϕ/ϕσ)⊕H1(GF , ϕσ/ϕ)⊕H1(GF , ϕσ/ϕσ)

given by ( a bc d ) → (a, b, c, d), where the action of σ ∈ Gal(F/Q) exchanges a, d and
b, c.
A�er applying the restriction-in�ation exact sequence to the isomorphism (2.1),

we deduce from (2.2) and [3, Proposition 4.2] that

H1(GQ , ad ρ) = H1(GF , ad ρ)Gal(F/Q) ,

and a = d = 0, b = cσ , c ∈ H1(F , ϕσ/ϕ)GFv if ( a bc d ) ∈ tD ⊂ H1(GF , ad ρ)Gal(F/Q) .
According to [3, _eorem 2.2], dim tD = 1, so c is not trivial; the same holds for b,
since b = cσ .

On the other hand, c = bσ , so b ∈ H1(F , ϕ/ϕσ)GFvσ . _e restriction-in�ation exact

sequence yields b∣GH ∈ H1(H,Qp)
Gal(H/F)
GHwσ

0

, whereH1(H,Qp)
Gal(H/F)
GHwσ

0

is the subspace

of H1(H,Qp) given by the homomorphisms that are unramiûed at wσ
0 and invariant

under the action of Gal(H/F).
Let ρє ∈ D(Qp[є]) be the deformation of ρ induced by the composition of ρord

with the canonical projection R↠ R/m2
R ≃ Qp[є]. _erefore,

ρє(g) = (1 + єρ1(g))ρ(g),

where the cohomology class of the cocycle ρ1 = ( a bc d ) is a generator of tD. Let g →
( a′(g) b′(g)
c′(g) d′(g) ) be the realization of ρє by a matrix. Since ρ∣GF is diagonal, b∣GH ≠ 0,

c∣GH ≠ 0, and b∣GHwσ
0
= 0. _en b′∣GH

≠ 0, c′∣GH
≠ 0, and b′∣GHwσ

0

= 0. Hence b̃∣GH ≠ 0,

c̃∣GH ≠ 0modulom2
R, andwe also have b̃∣GHwσ

0
= 0modulom2

R, sinceGH = ker(ad ρ).
(ii) _is is a direct result of the isomorphism tD ≃ H1(F , ϕσ/ϕ)GFv and [3,_eo-

rem 2.2], i.e., dimQp
tD = 1.

2.2 Criterion to Extend a GF-representation to GQ.

In this subsection, we give a suõcient condition for extending a representation
ρK ∶ GF → GL2(K) to all GQ, which will be crucial in the proof of_eorem 1.1.
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Deûnition 2.6 Let K be a ring and ρK ∶ GF → GLn(K) be a representation. Write
ρt
K(g) for ρK(tg t−1), where t is an element of GQ with a non trivial restriction to F.
Consider the following condition on ρK .

(C) For each t ∈ GQ , there exists r(t) ∈ GLn(K) such that ρK = r(t)−1ρt
Kr(t).

Proposition 2.7 Let ρK ∶ GF → GLn(K) be a representation, where K is a ring. As-
sume that the onlymatrices in Mn(K) that commutewith the image of ρK are the scalar
matrices, and ρK satisûes condition (C). _en we have the following.

(i) If GQ = GF ⊔GF .t for a ûxed t ∈ GQ, then r can be selected to guarantee that the
following conditions are satisûed: for all h ∈ GF , r(ht) = ρK(h)r(t) and r(h) = ρK(h).

(ii) _e function ρ ∶ GQ × GQ → K× deûned by ρ(t′ , t) = r(t′)r(t)r−1(t′t) is an
element of H2(GQ ,K×) for the trivial action of GQ. Moreover, ρ factors through ∆ =
Gal(F/Q).

(iii) If the cohomology class of ρ ∈ H2(∆,K×) vanishes, then there exists a repre-
sentation r ∶ GQ → GLn(K) extending ρK , and if r′ is another extension of ρK , then
r′ = r ⊗ єF .

Proof See [25, A 1.1].

Corollary 2.8 (i) Let ρK ∶ GF → GLn(K) be a representation where K is a ûeld.
If ρK satisûes the hypothesis of Proposition 2.7, there exists a ûnite extension L/K and a
representation ρL ∶ GQ → GLn(L) extending ρK .

(ii) Let A be a ring in the category C and ψA ∶ GF → A× be a character invariant
under the action of GQ. _en there exists a character ψ′A ∶ GQ → A× extending ψA.

Proof (i) We have a functorial isomorphism H2(∆,K×) ≃ K×/(K×)2. Choose an
element x ∈ K× corresponding to the cohomology class of [ρ] in H2(∆,K×). Let L be
a ûnite extension ofK containing

√
x. _en the cohomology class of [ρ] inH2(∆, L×)

vanishes. Hence, wemay conclude by Proposition 2.7.
(ii)_e residue ûeld ofA isQp and it is algebraically closed. Consequently,Hensel’s

lemma implies that the group H2(∆,A×) = A×/(A×)2 is trivial, and as such the de-
sired result follows from Proposition 2.7.

3 Pseudo-deformation and the Ring Rps

3.1 Pseudo-character and Pseudo-representation

_e ûrst occurrence of pseudo-representation appeared in the work of Wiles [37,
pp. 563–564]. But his deûnition requires the presence of a complex conjugation c
that forces the pseudo-representation to depend only on its trace. In our case, the
complex conjugation c will be replaced by γ0, which is a ûxed li� of Frobv to GFv . In
Lemma 3.3,wewill illustrate through the presence of γ0 how a pseudo-representation
depends only on its trace and determinant.

Deûnition 3.1 Let A be a commutative ring and γ0 be a ûxed li� of Frobv to GFv
such that ϕ(γ0) ≠ ϕσ(γ0).

66

https://doi.org/10.4153/CJM-2018-029-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-029-4


Ramiûcation of the Eigencurve at Classical RM Points

Let ã, d̃ ∶ GF → A, x̃ ∶ GF × GF → A be three continuous functions satisfying the
following conditions for all g , h, t, s,w , n ∈ GF :

ã(st) = ã(s).ã(t) + x̃(s, t),
d̃(st) = d̃(s).d̃(t) + x̃(t, s),

x̃(s, t).x̃(w , n) = x̃(s, n).x̃(w , t),
x̃(st,wn) = ã.(s).ã(n).x̃(t,w) + ã(n).d̃(t).x̃(s,w)

+ ã(s).d̃(w).x̃(t, n) + d̃(t).d̃(w).x̃(s, n),
ã(1) = d̃(1) = 1, x̃(h, 1) = x̃(1, g) = 0, x̃(γ0 , g) = x̃(h, γ0) = 0.

We say that πA = (ã, d̃ , x̃) is a pseudo-representation (see [37, §2.2.3] for more
details). _e trace and determinant of πA are the functions Tr(πA)(g) = ã(g)+ d̃(g),
and det πA(g) = ã(g)d̃(g) − x̃(g , g).

Let π = (ϕ, ϕσ , 0) be the pseudo-representation associated with the representa-
tion ρ∣GF .

Deûnition 3.2 Let A be a ring in C and πA = (ãA, d̃A, x̃A) be a continuous pseudo-
representation in A; we say that πA is a pseudo-deformation if and only if πA mod
mA = π.

Meanwhile, [34] is a reference for pseudo-deformations.

Lemma 3.3 (i) Let A be a ring in C, and let πA = (ãA, d̃A, x̃A) be a pseudo-
deformation. _en πA depends only on Tr πA and det πA by the following formula:

(3.1) ãA(g) =
Tr πA(γ0g) − λ2 Tr πA(g)

λ1 − λ2
, d̃A(g) =

Tr πA(γ0g) − λ1 Tr πA(g)
λ2 − λ1

,

where λ1 = ã(γ0) and λ2 = d̃(γ0) are the unique roots of the polynomial

(3.2) X2 − Tr πA(γ0)X + det πA(γ0).

(ii) If A is a domain, then πA depends only on its trace, i.e., det πA depends onTr πA.

Proof (i) Since x̃(γ0 , γ0) = 0, and det πA(γ0) = ã(γ0)d̃(γ0), then ã(γ0) and d̃(γ0)
are solutions of (3.2). By assumption ϕ(γ0) ≠ ϕσ(γ0), so Hensel’s lemma implies that
ã(γ0) and d̃(γ0) are the unique solution of (3.2). Finally, (3.1) follows directly from
relations deûning pseudo-deformations.

(ii) Let K be the fraction ûeld of A and K its algebraic closure. _e function
Tr πA ∶ GF → K is a pseudo-character. According to [35, _eorem.1.1], there exists a
unique semi-simpleGalois representation ρK ∶ GF → GL2(K) such that Tr ρK = Tr πA
and det ρK = det πA.
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3.2 Ordinary Pseudo-deformation

In this subsection, we will deûne a sub-functor of the pseudo-deformation functor of
π that is representable by a ring Rps belonging to the objects of the category C.

Deûnition 3.4 Let G ∶ C → SETS be the functor of all pseudo-deformations πA =
(ãA, d̃A, x̃A) of π that satisfy the following conditions.
(i) For all h ∈ GFv , h′ ∈ GF , x̃A(h′ , h) = 0.
(ii) d̃A(g) = 1 if g ∈ Iv .
(iii) Tr πA(t−1g t) = Tr πA(g) for each t in GQ and g ∈ GF .

Proposition 3.5 (i) Let π′є = (a′ , d′ , x′) be an element ofG(Qp[є]). _en for any
h in GF , x′(h , ⋅ )

ϕσ(h)ϕ( ⋅ ) (resp. x′( ⋅ ,h)
ϕσ( ⋅ )ϕ(h) ) is an element of Z

1(F , ϕ/ϕσ) (resp. Z1(F , ϕσ/ϕ)).
(ii) _e functor G is representable by (Rps , πps).
(iii) _e determinant det πps is invariant under the action of σ .

Proof (i) _is results from the deûning properties of a pseudo-deformation.
(ii) _e functor G satisûes Schlesinger’s criteria. _e only non-trivial point is the

ûniteness of the dimension of the tangent space tG of G. _is follows from [34,
Lemma.2.10] and the fact that H1(F , ϕ/ϕσ) has a ûnite dimension.

(iii) A direct computation shows that Tr πps(g2) = (Tr πps(g))2 − 2det πps(g),
so the assertion follows from the fact that for all t ∈ GQ , g ∈ GF , Tr πps(t−1g t) =
Tr πps(g).

Lemma 3.6 _ere exists a natural morphism Λ → Rps induced by the deformation
det πps of det π.

Proof According to Proposition 3.5 (iii) and Corollary 2.8, we can extend det πps

into a character φ ∶ Gab
Q,Np → (Rps)× and we choose one whose reduction modulo

mRps is equal to det ρ. _erefore, there exists a uniquemorphism Λ → Rps that sends
the universal deformation of det ρ to φ.

3.3 Proof of the Isomorphism R
ps
red ≃ Rτ=1

Lemma 3.7 Let g → ( ãg b̃g

c̃g d̃g
) be the realization of ρord in a basis Bord

R = {v1 , v2}
(Lemma 2.1). _en we have the following.

(i) _e 3-tuple πRτ=1 = (ã∣GF , d̃∣GF , b̃∣GF c̃∣GF ) is a pseudo-deformation of π.
(ii) _ere exists a unique local homomorphism g ∶ Rps → Rτ=1 inducing the pseudo-

deformation πRτ=1 .

Proof (i) _is is a direct result of the relations deûning a pseudo-representation.
(ii) Since the representation ρord

∣GF is ordinary atGFv , there exists auniquemorphism
g ∶ Rps → R such that g ○ πps = πRτ=1 . Moreover, the action of τ on Tr ρord (resp. on
det ρord) is given by Tr ρord → Tr ρord ⊗ єF (resp. det ρord → det ρord ⊗ єF), so τ acts
trivially on Tr ρord

∣GF (resp. on det ρord).
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Since Rτ=1 is henselian (and in fact complete), ϕ(γ0) ≠ ϕσ(γ0), Tr ρord(γ0) and
det ρord(γ0) are elements of the ring Rτ=1 (γ0 ∈ GFv ⊂ GF); then the eigenvalues λ1
and λ2 of ρord(γ0) are in Rτ=1.

On the other hand, a direct computation shows that ã(g) = Tr ρord(γ0 g)−λ2 Tr ρord(g)
λ1−λ2

,

d̃(g) = Tr ρord(γ0 g)−λ1 Tr ρord(g)
λ2−λ1

, and ã(gh) = ã(g)ã(h)+ x̃(g , h). _erefore, τ(ã∣GF ) =
ã∣GF , τ(d̃∣GF ) = d̃∣GF , and τ(b̃∣GF .c̃∣GF ) = b̃∣GF .c̃∣GF since, g factors through Rτ=1.

Lemma 3.8 _emorphism g ∶ Rps → Rτ=1 is surjective.

Proof According to Proposition 2.5, there exist g0 , h0 in GF such that the order of
both b̃(g0) and c̃(h0) in R are one, so x̃(g0 , h0) = b̃(g0)c̃(h0) is of order 2 in R.
However, Rτ=1 is a discrete valuation ring and the injection ι ∶ Rτ=1 ↪ R is ramiûed
with a ramiûcation index equal to two, so b̃(g0)c̃(h0) = x̃(g0 , h0) has order one in
Rτ=1. On the other hand, since Rps is the universal ring representing the functor G,
x̃(g0 , h0) is contained in the image of themaximal ideal ofRps under themorphism g.

Let B be the image of the morphism g. _en B is a sub-algebra of Rτ=1. Let ντ
denote the discrete valuation of the ring Rτ=1 and mB denote the maximal ideal of
B. _e discussion above further implies that mB contains a uniformizing element of
Rτ=1. Write a for the ideal mBRτ=1, so a = mRτ=1 , since mB contains a uniformizing
element of Rτ=1.
According to Lemma 3.6, the ringRps has a natural structure of a Λ-algebra. Since

det πRτ=1 = g ○ det πps, g is a morphism of Λ-algebras. Moreover, Rτ=1 is a ûnite Λ-
module, thus the morphism g ∶ Rps → Rτ=1 is ûnite. Now apply Nakayama’s lemma
to the Rps-module Rτ=1, and it will become apparent that 1 is a generator of Rτ=1 as
Rps-module. Hence, themorphism g is surjective.

Proof of Theorem 1.1

We will show that the morphism g ∶ Rps → Rτ=1 rises to an isomorphism Rps/N ≃
Rτ=1, whereN is the radical ofRps. Let L denote the kernel of themorphism g; since
g is surjective (see Lemma 3.8), the statement is equivalent to L ⊂ N, meaning that
SpecRτ=1 = SpecRps.

Let P be a prime ideal of Rps, and let π′′ ∶ Rps ↠ Rps/P be the canonical surjec-
tion. Let K denote the ûeld of fractions of Rps/P and πP = (ãP , d̃P , x̃P) denote the
pseudo-deformation obtained by the composition π′′ ○ πps.

If x̃P = 0, then ρK(g) = ( ãP(g) 0
0 d̃P(g) ) is the unique semi-simple representation

associated with πP.
By assumption, Tr(ρK) = Tr(ρσ

K), so ãσ
P = d̃P (since the action of σ exchanges ϕ

with ϕσ and ϕ ≠ ϕσ ). In these terms, IndQF ãP is a representation extending ρK toGQ.
If there exist g1 , h1 ∈ GF such that x̃P(g1 , h1) ≠ 0, [37, Proposition 2.2.1] implies

the existence of a Galois representation

ρK ∶ g → ( ãP(g) x̃P(g ,h1)/x̃P(g1 ,h1)
x̃P(g1 ,g) d̃P(g) )

with Tr ρK = Tr πP.
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As ρK(γ0) is diagonal with distinct eigenvalues, x̃P(g1 , h1) ≠ 0 implies that ρK
is absolutely irreducible. Moreover, Tr πB is invariant under the action of σ , i.e.,
Tr πB = Tr ρK = Tr ρσ

K , so [35,_eorem 1] yields an isomorphism ρK ⊗ K ≃ ρσ
K ⊗ K.

_erefore, there exists r(σ) ∈ GL2(L′), where L′ is a ûnite extension of K such that
r(σ)ρKr−1(σ) = ρσ

K . _us, the representation ρK satisûes the hypothesis of Corol-
lary 2.8, and hence there exist a ûnite extension L/L′ and a representation ρL ∶ GQ →
GL2(L) extending ρK .

Let A be the integral closure of Rps/P in L. Since Rps/P is a local Nagata ring
(even complete), A is ûnite over Rps/P; by using similar arguments to those already
used to prove Lemma 2.4 (ii), wemay deduce that A ∈ C.

On the other hand, Tr ρL(σ 2) = Tr ρL(σ))2 − 2det ρL(σ), so Tr(ρL(GQ)) ⊂ A.
_us, Tr ρL ∶ GQ → A is a pseudo-character such that the restriction to GF of its re-
duction modulo mA is equal to Tr ρ∣GF .
According to Proposition 2.7, the restriction of ρ to GF extends uniquely to GQ,

since ρ ≃ ρ ⊗ єF , hence [35, _eorem 1] implies that the reduction of the pseudo-
character Tr ρL modulo mA is equal to Tr(ρ).
According to theorems of L. Nyssen [29] andR.Rouquier [32], there exists a defor-

mation ρA ∶ GQ → GL2(A) of ρ such that Tr ρA = Tr ρL . In addition, we have GFv =
GQp (since p splits in F) and by construction (ρK)∣GQp

≃ (ρA ⊗ L)∣GQp
≃ ( ψ′1 ∗

0 ψ′2
),

where ψ′2 ∶ GQp → A× is an unramiûed character li�ing ϕσ
∣GFv , i.e., ψ

′
2 = (d̃P)∣GQp

.
_erefore, by using arguments similar to those already used to prove [3, Proposition
5.1], we deduce that the representation ρA is ordinary at p.

_us, there exists a uniquemorphism h ∶ R→ A inducing ρA.

Rps

π′′
����

g // Rτ=1
� � ι // R

h
{{

Rps/P �
� // A

_emorphisms h○ι○g and π′′ induce two pseudo-deformations of πwith the same
trace and determinant. _anks to Lemma 3.3, we know that a pseudo-deformation
depends only on its trace and determinant, so h ○ ι ○ g = π′′. _erefore, the dia-
gram above is commutative and implies immediately the inclusionL ⊂P. Finally,we
conclude that the ideal L is included in the radical of Rps.

4 Proof of the Main Theorem 1.2

Recall that H ⊂ Q is the number ûeld ûxed by ker(ad ρ), H∞,v (resp. H∞,vσ ) is
the compositum of all Zp-extensions of H that are unramiûed outside v (resp. vσ ),
H∞ is the compositum of H∞,v and H∞,vσ , L∞ is the maximal unramiûed abelian
p-extension of H∞, and X∞ is the Galois group Gal(L∞/H∞). _e Galois group
Gal(H∞/H) ≃ Z2s

p acts by conjugation on X∞, and R. Greenberg [20] proved that
X∞ is a ûnitely generated torsion Zp[[Gal(H∞/H)]]-module .
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Let F′′ be the maximal unramiûed extension of H contained in H∞ and let L0
be the subûeld of L∞ such that Gal(L0/H∞) is the largest quotient of X∞ on which
Gal(H∞/F) acts trivially.

Hypothesis

(GGG) Assume that Gal(L0/F′′) is abelian.

In this section, we prove that Rτ=1 is isomorphic to Λ when (GGG) holds, and it is
equivalent to proving that the tangent space of Rτ=1/(mΛ ,m2

Rτ=1) is trivial when (GGG)
holds.

4.1 Tangent Space of Rτ=1

Denote by tRτ=1 the tangent space of Rτ=1. Since Rτ=1 is a discrete valuation ring (see
Lemma 2.4), the dimension of tRτ=1 is one.

Write t′Rτ=1 for the sub-space of tRτ=1 of pseudo-deformations with determinant
equal to det π = det ρ∣GF . It follows from _eorem 1.1 that t′Rτ=1 ↪ tRτ=1 ↪ G(Qp[є]).
One can see that the tangent space of Rτ=1/(mΛ ,m2

Rτ=1) is isomorphic to t′Rτ=1 .
In the following lemma,we introduce a representation ρτ=1 ∶ GF → GL2(Rτ=1) that

is conjugate to ρord
∣GF by amatrix with coeõcients in the ûeld of fractions ofR and such

that Tr ρτ=1 = πRτ=1 . _e introduction of ρτ=1 is necessary in order to produce a non
trivial extension in Ext1Qp[GF](ϕ

σ , ϕ).

Lemma 4.1 (i) _ere exists a representation ρτ=1 ∶ GF → GL2(Rτ=1) such that
the pseudo-representation associated with ρτ=1 is πRτ=1 .

(ii) _e residual representation of ρτ=1 modulomRτ=1 has the following form ρ̃(g) =
( ϕ η
0 ϕσ ), where η/ϕσ is a non trivial element ofH1(F , ϕ/ϕσ)GFvσ .
(iii) _ere exists a basis (e′1 , e′2) ofMQp

such that ρ̃∣GFvσ splits in this basis. Moreover,
ρτ=1 is ordinary at vσ and the line stabilized by GFvσ li�s e′2.

Proof (i) According to Proposition 2.5, there exist g0 , h0 ∈ GH such that the order
of both b̃(g0) and c̃(h0) in R is one. By [37, Proposition 2.2.1]

ρτ=1(g) = ( ã(g) x̃(g ,h0)/x̃(g0 ,h0)
x̃(g0 ,g) d̃(g) )

is a representation of GF . Since b̃(GF) ⊂ mR and the order of b̃(g0) in R is one, the
order of x̃(g ,h0)

x̃(g0 ,h0) = b̃(g)
b̃(g0) in Frac(R) is non-negative. Hence, x̃(g ,h0)

x̃(g0 ,h0) = b̃(g)
b̃(g0) is an

element of R. However, x̃(g ,h0)
x̃(g0 ,h0) is invariant by τ, so it belongs to Rτ=1.

(ii) Since for all g ∈ GF , x̃(g0 , g) ∈ mRτ=1 , the residual representation of ρτ=1 has the
following form g → ( ϕ(g) η(g)

0 ϕσ(g) ),where η/ϕσ is a non trivial element ofH1(F , ϕ/ϕσ).
Proposition 2.5 implies that b̃(GHwσ

0
) ⊂ m2

R. _us, for all g inGHwσ
0
, x̃(g ,h0)
x̃(g0 ,h0) =

b̃(g)
b̃(g0) ∈
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mR. Moreover, x̃(g ,h0)
x̃(g0 ,h0) = b̃(g)

b̃(g0) is invariant by τ, so that it belongs to mRτ=1 . Hence,

η/ϕσ
∣GHwσ

0

= 0, so η/ϕσ
∣GH

∈ H1(H,Qp)
Gal(H/F)
GHwσ

0

.

On the other hand, the restriction in�ation exact-sequence yields the isomorphism
H1(H,Qp)

Gal(H/F)
GHwσ

0

≃ H1(F , ϕ/ϕσ)GFvσ , hence η/ϕ
σ ∈ H1(F , ϕ/ϕσ)GFvσ .

(iii) Observe that ρτ=1 is conjugate to ρord
∣GF by the matrix ( 1/b̃(g0) 0

0 1
) , so the rep-

resentation ρτ=1 ⊗ K is ordinary at vσ . Since the representation ρ̃∣GFvσ splits (i.e.,
η/ϕσ ∈ H1(F , ϕ/ϕσ)GFvσ ),Rτ=1 contains the eigenvalues of ρτ=1(σ−1γ0σ) and ρτ=1⊗L
is ordinary at vσ . _en by using similar arguments to those already used to prove [3,
Proposition 5.1], we deduce that ρτ=1 is ordinary at vσ .

Lemma 4.2 Let πє = (ãє , d̃є , єx̃є) be an element of tRτ=1 andw be a place ofH above
vσ . _en we have the following.

(i) For any g in GF , the restriction of the function h → x̃є(h, g) to the decomposition
group GHw is trivial.

(ii) _e function x̃є( ⋅ , ∗) is trivial when one of its components belongs to

Gal(Q/H∞).

Proof (i) Let g be any element of GF and w be any place of H above vσ . _en
Lemma 4.1 (iii) implies that x̃(h, g) ∈ m2

Rτ=1 when h ∈ GHw , since η∣GHw
= 0. Hence,

the function h → x̃є(h, g) is necessarily trivial on the decomposition group GHw .
(ii) Let Mv (resp. Mvσ ) be the maximal abelian unramiûed outside v (resp. vσ )

pro-p extension of H. By class ûeld theory, H∞,v (resp. H∞,vσ ) is the ûxed ûeld by
the torsion part of Gal(Mv/H) (resp. Gal(Mvσ /H)). Since x̃є( ⋅ , ∗) is bilinear on
GH ×GH , the assertion follows immediately from the fact that any homomorphismof
Hom(GH ,Qp) unramiûed outside v (resp. vσ ) factors through Gal(H∞,v/H) (resp.
Gal(H∞,vσ /H)).

_e purpose of the following two lemmas is to explain the ordinariness of the ele-
ments of tRτ=1 at all prime places of H lying over vσ and v.

Lemma 4.3 Let α ∶ Rτ=1 ↠ Rτ=1/m2
Rτ=1 be the canonical projection; π

′
є = (a′ , d′ , x′)

the pseudo-deformation obtained by the composition α ○ πRτ=1 ; w′ a place of H above
vσ ; and Iw′ the inertia group at the place w′. _en for any h′ in Iw′ ∩ Gal(Q/H∞),
a′(h′) = 1.

Proof Let ρτ
є be the representation obtained by the composition α ○ ρτ=1 and let

ρτ
є (g) = ( a′(g) b′(g)

c′(g) d′(g) ) be the realization of ρτ
є in a basis (u1 , u2) of MQp[є].

We have b′(g) = α(x̃(g , h0)/x̃(g0 , h0)) and x′(g0 , g) = c′(g).
On the other hand, as a result of Lemma 4.1 (iii), ρ̃∣GFvσ = ϕ⊕ϕσ in the basis (e′1 , e′2)

of MQp
, and that ρτ

є is ordinary at vσ in a basis (u1 , v2) of MQp
[є] li�ing (e′1 , e′2).

72

https://doi.org/10.4153/CJM-2018-029-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-029-4


Ramiûcation of the Eigencurve at Classical RM Points

Let h be an element of Iwσ
0
∩Gal(Q/H∞) and ( a′′(h) b′′(h)

c′′(h) d′′(h) ) the realization of ρτ
є

in the basis (u1 , v2). _en a′′(h) = 1 and b′′(h) = 0. According to Lemma 4.2, we
have c′(h) = 0, and hence a direct computation shows that a′′(h) = a′(h) = 1.

Now if w′ is another place above vσ such that g(wσ
0 ) = w′ for g ∈ Gal(H/F), then

the assertion follows by using a similar argument for the basis (u1 , (ρτ
є )−1(g)v2).

Lemma 4.4 Let w be a place of H above v and π′є = (a′ , d′ , x′) an element of tRτ=1 .
_en for any g in Gal(H∞/F) and h′ in Gal(Q/H∞), d′(gh′g−1) = d′(h′) and d′ is
trivial on Iw ∩Gal(Q/H∞), where Iw is the inertia group at the place w.

Proof Let h denote the element gh′g−1. Since x′( ⋅ , ⋅ ) is trivial when one of its
components belongs to Gal(Q/H∞) (see Lemma 4.2), we obtain

d′(h) = d′(gh′g−1) = d′(g)d′(h′g−1) + x′(h′g−1 , g)
= d′(g)d′(h′)d′(g−1) + ϕ(h′)x′(g−1 , g).

A direct computation shows that d′(g g−1) = 1 = d′(g)d′(g−1) + x′(g−1 , g) and
ϕ(h′) = ϕσ(h′). Hence, d′(h) = d′(h′)(1 − x′(g−1 , g)) + ϕ(h′)x′(g−1 , g) = d′(h′).
As the Galois group Gal(H/F) acts transitively on the places of H above v, the

assertion stems directly from the above discussion and the fact that d′∣Iw0
= 1.

4.2 Tangent Space of Rτ=1/mΛ and Proof of Theorem 1.2

Let πє = (ãє , d̃є , x̃є) be the pseudo-deformation induced by the canonical projec-
tion π′ ∶ Rτ=1 ↠ Rτ=1/(mΛ ,m2

Rτ=1).
We have seen in Lemma 4.2 that x̃є is trivial when one of its components belongs

to Gal(Q/H∞), so on Gal(Q/H∞) the pseudo-deformation πє is equal to (ãє , d̃є , 0),
where ãє , d̃є are characters on Gal(Q/H∞). Let N∞ denote the splitting ûeld over
Gal(Q/H∞) of ãє ⊕ d̃є .

_eorem 4.5 Let πє = (ãє , d̃є , x̃є) be the pseudo-deformation induced by the projec-
tion π′ ∶ Rτ=1 ↠ Rτ=1/(mΛ ,m2

Rτ=1).
(i) N∞ is an unramiûed abelian p-extension of H∞ and the action by conjugation

of Gal(H∞/F) on Gal(N∞/H∞) is trivial.
(ii) Assume that (GGG) holds. _en the pseudo-deformation πє = (ãє , d̃є , x̃є) is trivial.
(iii) Assume that the rank of the ûnite type Zp-module Gal(L0/H∞) is zero, i.e.,

Gal(L0/H∞) is a ûnite group. _en the pseudo-deformation πє = (ãє , d̃є , x̃є) is trivial.
(iv) Assume that (GGG) holds or Gal(L0/H∞) is a ûnite group. _en the morphism

κ# ∶ Λ → Rτ=1 is an isomorphism and the ramiûcation index e of C over W at f is
exactly two.

Proof (i) Let g be an element ofGal(H∞/F) and h an element ofGal(Q/H∞). Since
det πє = det π and x̃є is trivial when one of its components belongs to Gal(Q/H∞),
Lemma 4.4 implies that ãє(ghg−1) = ãє(h) and d̃є(ghg−1) = d̃є(h). Hence the ac-
tion of the Galois group Gal(H∞/F) on Gal(N∞/H∞) is also trivial.
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Since det πє = det π, it follows fromLemmas 4.3 and 4.4 that the restriction of both
ãє and d̃є to Iw ∩Gal(Q/H∞) is necessarily trivial, where w is any place of H above
p. _us, the algebraic extension N∞/H∞ is unramiûed at the primes above p.

In addition, [3, Proposition 7.1] implies that the image of Iℓ ∩Gal(Q/H∞) by ãє is
ûnite (so trivial), where ℓ ≠ p is a prime number. _erefore, the extension N∞/H∞
is everywhere unramiûed.

(ii) Since the abelian p-extension N∞/H∞ is everywhere unramiûed, N∞ is a sub-
ûeld of L∞, and since Gal(H∞/F) acts trivially on Gal(N∞/H∞), N∞ is contained
in the subûeld L0. Moreover, by assumption, L0 is an abelian extension of F′′, hence
N∞ is an abelian extension of F′′.

It follows that (πє)∣Gal(Q/F′′) factors through Gal(N∞/F′′), which is an abelian
group. _us, ãє(gh) = ãє(hg) implying that x̃є is symmetric bilinear and is trivial if
one of its components belongs to any inertia group Iw (w is any place of H above p).

Since the Galois group Gal(H∞/F′′) can be expressed as the product of all its in-
ertia subgroups for the places of H above p, the function x̃є is necessarily trivial on
Gal(H∞/F′′) ×Gal(H∞/F′′).

In addition, the number ûeld F′′ is a ûnite abelian extension of H. _en x̃є is
trivial on GH ×GH . If the pseudo-deformation πє is not trivial, then πє is a generator
of the tangent space of Rτ=1 (since the tangent space of a discrete valuation ring is
always of dimension one). However, this contradicts the fact that x̃є deûnes a nonzero
bilinear map of GH × GH (see Proposition 2.5 (i)), since there exist two elements g0
and h0 such that x̃є(g0 , h0) is non zero and (x̃(g0 , h0) has order 1 in the discrete
valuation associated with Rτ=1). Hence, πє is necessarily trivial, and the assertion
follows immediately.

(iii) By assumption and referring to the discussion above, N∞ is a ûnite extension
of H∞, so N∞ = H∞ (since Qp is a torsion-free group). _erefore, we complete the
proof with a similar argument as above.

(iv) Since the tangent space of Rτ=1/(mΛ) is trivial, the local homomorphism

κ# ∶ Λ Ð→ Rτ=1

is unramiûed. On the other hand, the local homomorphism κ# ∶ Λ → Rτ=1 is �at, and
hence it is an étale morphism between complete local rings having the same residue
ûeld. _erefore, it is necessarily an isomorphism.

5 Pseudo-deformations of ρ and Base-change F/Q
Let hQ be the p-ordinaryHecke algebra of tame level N constructed byHida [21], and
let p f be the closed point of Spec hQ[1/p] corresponding to the system of eigenvalues
for Hecke operators associated with f . Denote by hQ,p f the completed local ring for
the étale topology of Spec hQ[1/p] at a geometric point corresponding to p f . Let h′Q
be the sub-algebra of hQ generated by theHecke operators Up , Tℓ , and ⟨ℓ⟩ for primes
ℓ not dividing Np.

Proposition 5.1 _ere exists an isomorphism between T and hQ,p f .
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Proof _e weight one form f corresponds to a point x ∈ Cord,0, where Cord,0 is the
cuspidal locus of the ordinary locus of Cord (Cord,0 is a Zariski closed subset of Cord).
It is known that h′Q is an integral model of Cord,0, i.e., Cord,0 = Spm h′Q[1/p]. Denote
by h′Q,p f for the completed local ring for the étale topology of Spec h′Q at a geometric
point corresponding to p f ∩ h′Q. Hence, the results of [16, §7] and [3, Proposition 7.2]
imply that there exist isomorphisms h′Q,p f ≃ T and h′Q,p f ≃ hQ,p f .

Remark 5.2 If A is a Noetherian complete local ring, then A is a Nagata ring, and
hence any localization of A is also a Nagata ring. Moreover, the completion of a re-
duced Noetherian local Nagata ring with respect to its maximal ideal is always re-
duced. On the other hand, if A is reduced (resp. Nagata), then the strict henselization
Ash of A is reduced (resp. Nagata). Hence, hQ,p f , h′Q,p f , T

n.ord, and Tord are reduced
local rings.

Proof of_eorem 1.3 _e representation ρ associated with f is dihedral, so the in-
volution ω ûxes the height one primes p f of hQ,m associated with f . In addition,
a�er the identiûcation R ≃ T, the action of ω on T coincides with the involution
τ [18, §3], [24, §2].

_ere exists a pseudo-character PshQ ∶ GQ,Np → hQ such that PshQ(Frobℓ) = Tℓ
for all primes ℓ ∤ Np [21]. Let q ∤ Np be a prime ideal of OF . _en the base-change
morphism β ∶ hF → hQ sends theHecke operator Tq to PshQ(Frobq).

Let n denote the height one prime ideal β−1(p f ) of hF , so that the morphism β
induces amorphism of complete local rings β f ∶ Tord → T and the values of β f are in
T+, where T+ is the subring of T ûxed by τ.

On the other hand, there exists a pseudo-character PshF ∶ GF → hF of dimension
two such that PshF (Frobq) = Tq for all prime ideals q ∤ p of OF [23]. Let

PsTord ∶ GF Ð→ Tord

be the pseudo-character, given the composition of PshF with the localization homo-
morphism hF → Tord. It is apparent that PsTord li�s the pseudo-character ϕ + ϕσ and
β f (PsTord) = Tr(ρT)∣GF , since β(PshF ) = (PshQ)∣GF .

Let S be the total quotient ring of the reduced local ring Tord ( Tord ⊂ S). _en
S = ∏Tord

pi , where pi runs over the set of minimal prime ideals of Tord, and it is
known that each pi corresponds to a Hida family passing through E1(ϕ, ϕσ). Since
Tord is a noetherian ring, Tord has a ûnite number ofminimal prime ideals.
A result ofWiles [37] indicates the existence of a unique semi-simple Galois rep-

resentation ρS ∶ GF → GL2(S) ordinary at v and vσ , and such that Tr(ρS) = PsTord .
Since ϕ(γ0) ≠ ϕσ(γ0),Hensel’s lemma implies that the eigenvalues of ρS(γ0) are dis-
tinct (they belong to Tord). _us, we can ûnd a basis BS of MS in which ρS(γ0) is
diagonal and (ρS)∣GFv is upper triangular with an unramiûed quotient.

In fact, Lemma 3.3 implies that the coeõcients of thematrix of the realization of ρS
in the basisBS rise to an ordinary pseudo-deformation πTord = (a, d , bc) ∶ GF → Tord

of π. Note that the action of ∆ ûxes n and denote by πTord
∆

the push-forward of πTord via
the canonical surjection Tord ↠ Tord

∆ . Subsequently, the trace of πTord
∆

is invariant by
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the action of ∆ and πTord
∆

is a point ofG(Tord
∆ ). _us, there exists a uniquemorphism

h ∶ Rps
red → Tord

∆ inducing the pseudo-deformation πTord
∆

.
By construction,we have h(Tr πps(Frobq)) = Tq for q ∤ p, so the homomorphism

h is surjective, since the topological generator {Tq}q∤p , Up and Upσ over Λ of Tord
∆

are in the image of h (the fact that ϕ∣GFv ≠ ϕσ
∣GFv implies that Up ,Upσ ∈ im h).

According to_eorem 1.1,we have the isomorphisms T+ ≃ Rτ=1 ≃ R
ps
red . Moreover,

according to Lemma 3.3, Rps is topologically generated over Λ by Tr πps(g), where g
runs over the elements of GF . _erefore, the morphism β f ∶ Tord → T+ is surjective,
since themorphism β f sends Tq to Tr ρT(Frobq).

Since the trace of (ρT)∣GF is invariant by the action of σ , β f factors through Tord
∆ ,

so the Krull dimension of Tord
∆ is at least one. In addition, the Krull dimension of the

Hecke algebra hF is two, henceTord is of dimension one andTord
∆ is also of dimension

one.
It follows from _eorem 1.1 that the tangent space of Rps

red is of dimension one,
and since Tord

∆ is equidimensional of dimension 1, the surjection h ∶ Rps
red ↠ Tord

∆ is
necessarily an isomorphism of regular local rings of dimension one.

Let O be the ring of integers of a p-adic ûeld containing the image of ϕ. A�er an
extension of scalars, one can assume that the p-ordinaryHecke algebra hQ,m contains
O, and hence hQ,m is an object of the category CNLO.
Assume until the end of this section that the following hold.

● p > 2 and the restriction of ρ to Gal(Q/Q(
√

(−1)(p−1)/2p)) is absolutely irre-
ducible;

● there exists an element γ0 ∈ GFv such that ϕ(γ0) ≠ ϕσ(γ0);
● the character ϕ is everywhere unramiûed.

_us, we are able to use the results of Taylor andWiles [38] to claim that the p-or-
dinary Hecke algebra hQ,m is isomorphic to a universal ring Rord, representing the
p-ordinary minimally ramiûed deformations of ρ to the objects of CNLO.

Deûnition 5.3 Let A be a ring in CNLO, let Σ be the set of primes of F lying over p
and ã, and let d̃ ∶ GF ,Σ → A and x̃ ∶ GF ,Σ ×GF ,Σ → A be continuous functions forming
a pseudo-representation. We say that πA is a pseudo-deformation of π = (ϕ, ϕσ

, 0) if
and only if πA mod mA = π. Let GO ∶ CNLO → Set denote the functor of all pseudo-
deformations πA = (ãA, d̃A, x̃A) of π that satisfy the following conditions.

(i) For all h ∈ GFv and h′ ∈ GF ,Σ , x̃A(h′ , h) = 0.
(ii) d̃A(g) = 1 if g ∈ Iv .
(iii) Tr πA(t−1g t) = Tr πA(g) for each t in GQ and g ∈ GF ,Σ .

Lemma 5.4 (i) Let A be an object of CNLO, and πA = (ãA, d̃A, x̃A) a pseudo-
deformation of π. _en πA depends only on the trace Tr πA = ã(g) + d̃(g) and the
determinant det πA = ã(g)d̃(g) − x̃(g , g), as follows:

ãA(g) =
Tr πA(γ0g) − λ2 Tr πA(g)

λ1 − λ2
, d̃A(g) =

Tr πA(γ0g) − λ1 Tr πA(g)
λ2 − λ1

,
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where λ1 = ã(γ0) and λ2 = d̃(γ0) are the unique roots of the polynomial

X2 − Tr πA(γ0)X + det πA(γ0).

(ii) _e functor GO is representable by (Rps , πRps).

Proof (i) _e same proof as in Lemma 3.3.
(ii) _e functorGO satisûes Schlesinger’s criteria. _e only non-trivial point is the

ûniteness of the dimension of the tangent space of GO, and this is provided by the
same argument as in [34, Lemma 2.10], since H1(GF ,Σ , ϕ/ϕ

σ) has ûnite dimension.

Hensel’s lemma implies that there exists a basis BRord of MRord such that the uni-
versal p-ordinary deformation satisûes ρRord(γ0) = ( ∗ 0

0 ∗ ) and (ρRord)∣GQp
= ( ∗ ∗

0 ∗ ) in
this basis.

_erefore, byusing similar arguments to those already applied to proveLemma 3.7,
there exists a morphism α ∶ Rps → hQ,m that factors through hω=1

Q,m and induces the
pseudo-deformation of π associated with (ρRord)∣GF in the basis BRord .

_e local ring Rps is isomorphic to the completed local ring for the étale topology
of SpecRps at aQp-point corresponding to the pseudo-deformation π of π.

Remark 5.5 It follows directly from Lemma 5.4 that Rps is generated over the Iwa-
sawa algebra ΛO ≃ O[[T]] by the trace of the universal pseudo-deformation (see [37,
p. 564] for more details).

Now by _eorem 1.3 and the exact same arguments that were used to prove [9,
_eorem 3.10], we deduce that the morphism α ∶ Rps → hω=1

Q,m is unramiûed at non
maximal prime ideals. Hence we obtain the following corollary without assuming
that ϕ2

∣Iv ≠ 1 as in [9,_eorem B].

Corollary 5.6 Assume that the following conditions hold for ρ.
(i) _e character ϕ is everywhere unramiûed.
(ii) ρ is p-distinguished and the restriction of ρ to Gal(Q/Q(

√
(−1)(p−1)/2p)) is ab-

solutely irreducible.
_en the image of the base-changemorphism β ∶ hF → hω=1

Q,m has a ûnite index, and the
image of the morphism α ∶ Rps → hω=1

Q,m is contained in im β and has also a ûnite index
in hω=1

Q,m.

6 Deformation of a Reducible Galois Representation and Proof of
Theorem 1.5

_eHecke algebra hF is reduced, since it specializes to level oneHecke algebras (which
are reduced) for inûnitely many weights k ≥ 3 (see [24, p. 279] for more details).

Lemma 6.1 _e ring Tn.ord is equidimensional of dimension three.
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Proof Since the reduced nearly ordinaryHecke algebra hn.ord
F is a ûnite torsion-free

module over the Iwasawa algebra of three variablesΛn.ord
O = O[[T1 , T2 , T3]] [23, p. 119],

every irreducible component of Spec hn.ord
F has Krull dimension equal to four. _us,

Tn.ord is an equidimensional ring of dimension three.

Let A be an object of the category C and ρA ∶ GF → GL2(A) be a deformation of ρ̃.
_en we state that ρA is a nearly-ordinary deformation at p, if

(ρA)∣GFv ≃ ( ψ′v ,A ∗
0 ψ′′v ,A

) and (ρA)∣GFvσ ≃ ( ψ′′vσ ,A 0
∗ ψ′vσ ,A

) ,

where ψ′′v ,A is a character li�ing ϕσ
∣GFv and ψ′′vσ ,A is a character li�ing ϕ∣GFvσ . Moreover,

if ψ′′v ,A and ψ′′vσ ,A are unramiûed, then we say that ρA is ordinary at p.

Deûnition 6.2 LetDn.ord ∶ C→ SETS be the functor of strict equivalence classes of
deformation of ρ̃ = ( ϕ η

0 ϕσ ) that arenearly ordinary at p, and letDord be the subfunctor
ofDn.ord of deformations that are ordinary at p.

Since ρ̃ is not semi-simple and ϕ(Frobv) ≠ ϕσ(Frobv), Schlesinger’s criteria imply
thatDn.ord (resp. Dord) is representable by (Rn.ord , ρRn.ord) (resp. (Rord , ρRord)). _e
determinant det ρRord is a deformation of the determinant det π, so Rord is endowed
naturally with a structure of Λ-algebra (since the quadratic real ûeld F has a unique
Zp-extension).

6.1 Nearly Ordinary Deformation of a Reducible Representation

_ere exits a pseudo-character Pshn.ord
F

∶ GF → hn.ord
F of dimension two such that for

all prime ideals q ∤ p of OF , Pshn.ord
F

(Frobq) is the Hecke operator Tq and Pshn.ord
F

is
the trace of a representation of dimension two with coeõcients in the total quotient
ring of hn.ord

F (see [23] for more details). Let PsTn.ord ∶ GF → Tn.ord be the pseudo-
character of dimension two obtained by composing Pshn.ord

F
with the localizationmor-

phism hn.ord
F → Tn.ord. It appears that PsTn.ord li�s the pseudo-character Tr ρ̃ = ϕ⊕ϕσ .

Let Q(Tn.ord) ∶= ∏ S′i be the total quotient ring of the reduced noethrian ring
Tn.ord( Tn.ord ⊂ Q(Tn.ord)), so Q(Tn.ord) = ∏Tn.ord

Fi
, where Fi runs over the mini-

mal prime ideals of Tn.ord. It is known that each Fi corresponds to a nearly ordinary
p-adic family passing through the weight one form E1(ϕ, ϕσ).

Moreover, there exists a unique semi-simple Galois representation

ρQ(Tn.ord) ∶ GF Ð→ GL2(Q(Tn.ord))

satisfying Tr(ρQ(Tn.ord)) = PsTn.ord .
Since

Up(E1(ϕ, ϕσ)) = ϕσ(Frobp).E1(ϕ, ϕσ), Upσ (E1(ϕ, ϕσ)) = ϕ(Frobpσ ).E1(ϕ, ϕσ)

(see Lemma 4.1), it follows from the results of Hida [23] that (ρQ(Tn.ord))∣GFv (resp.
(ρQ(Tn.ord))∣GFσv ) is the extension of a character ψ′′Tn.ord ,v (resp. ψ′′Tn.ord ,vσ ) li�ing ϕσ

∣GFv
(resp. ϕ∣GFvσ ) by a character ψ

′
Tn.ord ,v (resp. ψ′Tn.ord ,vσ ).
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Let γ′0 ∈ GFvσ such that ϕ(γ′0) ≠ ϕσ(γ′0). Hensel’s lemma implies that the eigen-
values of ρQ(Tn.ord)(γ′0) are distinct and belong in Tn.ord. Hence there exists a basis
(e′′1 , e′′2 ) of MQ(Tn.ord) such that ρord

Q(Tn.ord)(γ
′
0) = ( ∗ 0

0 ∗ ) and (ρQ(Tn.ord))∣GFvσ = ( ∗ 0∗ ∗ )
in this basis.

Let a, b, c, d be the coeõcients of the realization of ρQ(Tn.ord) by thematrix in the
basis (e′′1 , e′′2 ) of MQ(Tn.ord), and let B and C be the Tn.ord-submodules of Q(Tn.ord)
generated respectively by the coeõcients b(g) and c(g′),where g and g′ run over the
elements of GF .

LetmTn.ord be themaximal ideal ofTn.ord andExt1Qp[GF](ϕ
σ , ϕ)GFvσ be the subspace

of Ext1Qp[GF](ϕ
σ , ϕ) given by the extensions of ϕσ by ϕ which are trivial at GFvσ .

_e following proposition is a generalization of [2, Proposition 2].

Proposition 6.3 One always has
(i) HomTn.ord(B,Qp) injects Tn.ord-linearly in Ext1Qp[GF](ϕ

σ , ϕ)GFvσ ;

(ii) B is a Tn.ord-module of ûnite type and the annihilator of B is zero.

Proof (i) SinceTn.ord is a complete local ring and ϕ(γ′0) ≠ ϕσ(γ′0), a(γ′0), and d(γ′0)
are the unique roots of the polynomial X2 − Tr ρQ(Tn.ord)(γ′0)X + det ρQ(Tn.ord)(γ′0).
Hence, a(γ′0) and d(γ′0) belong toTn.ord. _us, as in Lemma 3.3, the coeõcients a, d,
and b(g).c(g′) can be obtained exclusively from the tracePsTn.ord and the determinant
det ρQ(Tn.ord). Moreover, the reduction of PsTn.ord is ϕ + ϕσ . Hence, (a, d , bc) ∶ GF →
Tn.ord is a pseudo-deformation of π = (ϕ, ϕσ , 0), and a−ϕ, d −ϕσ and b(g)c(g′) are
in mTn.ord .
Denote by b the image of b in B = B/mTn.ordB. We have a group homomorphism

G → ( Qp B
0 Qp

) , given by g → ( ϕ b(g)
0 ϕσ ) .

Since the restriction of b to GFvσ is trivial in our basis, we obtain amorphism

j ∶ HomTn.ord(B/mTn.ordB,Qp)Ð→ Ext1Qp[GF](ϕ
σ , ϕ)GFvσ

that associates a homomorphism f ∶ B/mTn.ordB → Qp with the cohomology class of
the cocycle g → f (b(g)) (since b(g)c(g′) ∈ mTn.ord ). _e choice of the basis (e′′1 , e′′2 )
of MQ(Tn.ord) implies that the cocycle g → f (b(g)) is trivial on GFvσ .

Subsequently, we will prove that j is injective. First a direct computation demon-
strates that

b(γ′0gγ
′−1
0 g−1) = b(g)

ϕσ(g)(
ϕ(γ′0)
ϕσ(γ′0)

− 1) ,

which implies that B/mTn.ordB is generated over Tn.ord by the elements b(g), when g
runs over GH = ker ϕ/ϕσ (γ′0gγ

′−1
0 g−1 ∈ GH since H/F is cyclic).

Now let f be an element of HomTn.ord(B/mTn.ordB,Qp) such that f (b) is equal to
zero in Ext1Qp[GF](ϕ

σ , ϕ)GFvσ . _en f (b) is a coboundary and the restriction of f (b)
toGH is trivial, sinceH is the splitting ûeld of ϕ/ϕσ . However, B/mTn.ordB is generated
by {b(g), g ∈ GH}, therefore f is necessarily trivial.
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(ii) Since the representation ρQ(Tn.ord) is semi-simple, [2, Lemma 4] implies that B
is a ûnite type Tn.ord-module.

_e pseudo-character Pshn.ord
F

rises to a totally odd representation

ρhn.ord
F

∶ GF → GL2(Q(hn.ord
F )),

whereQ(hn.ord
F ) is the total fraction ûeld of hn.ord

F . We haveQ(hn.ord
F ) =∏Ii ,where

Ii runs over the ûelds given by the localization of hn.ord
F at theminimal prime ideals of

hn.ord
F (each Ii corresponds to a nearly ordinary Hida family). _ere exists a basis of

MQ(hn.ord
F ) inwhich ρhn.ord

F
(c) = ( ∗ 0

0 ∗ ). Let a′ , b′ , c′ , d′ be the entries of the realization
of ρhn.ord

F
by a matrix in this basis. _e functions a′ , d′, and b′c′ depend only on the

trace Pshn.ord
F

and the determinant det ρhn.ord
F

, and the values of the functions a′ , d′, and
b′c′ are in hn.ord

F .
Since the non critical classical cuspidal Hilbert modular forms are Zariski dense

on each irreducible component of Spec hn.ord
F , for each ûeld Ii there exist g i , g′i in

GF , such that the image by projection of b′(g i)c′(g′i) is not trivial in Ii . _us, all the
representations ρS′i given by composing ρQ(Tn.ord) with the projections ∏Tn.ord

F j
→

S′i = Tn.ord
Fi

are absolutely irreducible, so the image of B in each S′i is non zero. Hence,
we can conclude that the annihilator of B in Tn.ord is zero.

Corollary 6.4
(i) _eTn.ord-module B is free of rank one and there exists an adapted basis (e′′1 , e′′2 )

ofMQ(Tn.ord) such that B is generated over Tn.ord by 1.
(ii) In the basis (e′′1 , e′′2 ), the realization ρQ(Tn.ord)(γ′0) is diagonal and the represen-

tation ρQ(Tn.ord) ∶ GF → GL2(Tn.ord) is a nearly ordinary deformation of ρ̃.

Proof (i) Since

Ext1Qp[GF](ϕ
σ , ϕ)GFvσ ≃ H1(F , ϕ/ϕσ)GFvσ ,

Propositions 2.5 and 6.3 (or [4, Proposition 5.1]) attest that the dimension of

Ext1Qp[GF](ϕ
σ , ϕ)GFvσ

is one and dimQp
B ⊗Qp ≤ 1.

Since we proved in Proposition 6.3 that B is a non zero ûnite type Tn.ord-module,
Nakayama’s lemma implies that B is amonogenic Tn.ord-module. Moreover, the fact
that the annihilator of B in Tn.ord is zero yields that B is a free Tn.ord-module of rank
one. _us, by rescaling the basis (e′′1 , e′′2 ), the representation ρQ(Tn.ord) takes values in
GL2(Tn.ord).

(ii) Since any representation isomorphic to an extension of ϕσ by ϕ trivial on GFvσ
is necessarily isomorphic to ρ̃, i.e.,

dimQp
Ext1Qp[GF](ϕ

σ , ϕ)GFvσ = 1,

(i) implies that ρQ(Tn.ord) ∶ GF → GL2(Tn.ord) is a deformation of ρ̃, and by construc-
tion ρQ(Tn.ord) is nearly ordinary at vσ .
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On the other hand, the deformation ρQ(Tn.ord) ∶ GF → GL2(Q(Tn.ord)) is nearly
ordinary at v and ϕ(Frobv) ≠ ϕσ(Frobv). _us, by using the same arguments already
applied to prove [3, Proposition 5.1], we deduce that ρQ(Tn.ord) ∶ GF → GL2(Tn.ord) is
ordinary at v.

6.2 Tangent Space of Dn.ord

Let tDn.ord (resp. tDord ) denote the tangent space ofDn.ord (resp. Dord). _e choice of
the basis (e′1 , e′2) ofMQp

deûned in Lemma 4.1 identiûes EndQp
(MQp

)with M2(Qp).
Since ρ̃∣GFvσ splits completely in the basis (e′1 , e′2), we obtain the following decompo-
sition ofQp[GFvσ ]-modules

(6.1) (ad ρ̃)∣GFvσ = Qp ⊕ ϕ/ϕσ ⊕ ϕσ/ϕ ⊕Qp , ( a bc d )z→ (a, b, c, d).

Let Wρ̃ be the subspace of ad ρ̃ given by the following elements

Wρ̃ = { g ∈ EndQp
(MQp

) ∣ g(e1) ⊂ (e1)} .

By composing the restriction morphism H1(F , ad ρ̃) → H1(Fvσ , ad ρ̃) and the
morphism b∗ ∶ H1(Fvσ , ad ρ̃)→ H1(Fvσ , ϕ/ϕσ) (obtained by functoriality from (6.1)),
we obtain the natural map

H1(F , ad ρ̃) B∗Ð→ H1(Fvσ , ϕ/ϕσ).
Let P = Qp[ϕσ/ϕ] be theQp[GF]-module of dimension one overQp and onwhich

GF acts by ϕσ/ϕ. Since ρ̃ is reducible, Wρ̃ is preserved by the action of ad ρ̃ and we
have a natural GF-equivariant map given by the quotient of ad ρ̃ byWρ̃ :

(6.2) ad ρ̃ CÐ→ Qp[ϕσ/ϕ], ( a bc d )z→ c.

Let r ∶ H1(F , ϕσ/ϕ) → H1(Fv , ϕσ/ϕ) denote the natural morphism given by the

restriction of the cocycles to GFv , and C∗ ∶ H1(F , ad ρ̃) C∗Ð→ H1(F , ϕσ/ϕ) be themor-
phism obtained by functoriality from (6.2). By using a standard argument of the de-
formation theory, we achieve the following result.

Lemma 6.5 We have the following isomorphism:

tDn.ord = ker(H1(F , ad ρ̃) (r○C∗ ,B∗)ÐÐÐÐÐ→ (H1(Fv , ϕσ/ϕ)⊕H1(Fvσ , ϕ/ϕσ))) .

We have an exact sequence of Qp[GF]-modules: 0 →Wρ̃ → ad ρ̃ → P → 0. Since
ϕσ/ϕ ≠ 1, H0(GF , P) = {0}, we have the following long exact sequence of group
cohomology:

(6.3) 0Ð→ H1(F ,Wρ̃)Ð→ H1(F , ad ρ̃)Ð→ H1(F , P)Ð→ H2(F ,Wρ̃).
We will show that H2(F ,Wρ̃) is trivial. First, we start by computing the dimension
of H1(F ,Wρ̃) in order to use the global Euler characteristic formula to deduce that
H2(F ,Wρ̃) vanishes.
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Under the identiûcation EndQp
(MQp

) ≃ M2(Qp),Wρ̃ is the subspace of the upper

triangular matrices of M2(Qp). Since ρ̃ is reducible, the space

W0
ρ̃ ∶= { g ∈ EndQp

(MQp
) ∣ g(e1) = 0, g(e2) ⊂ (e1)} ⊂Wρ̃

is stable by the action ofGF , and the adjoint action on this sub-space is given by ϕ/ϕσ .
Under the identiûcation EndQp

(MQp
) ≃ M2(Qp),W0

ρ̃ is the subspace ofM2(Qp)
givenby the strict upper triangularmatrices, and it is isomorphic as aQp[GF]-module
toQp[ϕ/ϕσ]. _erefore,we obtain the following exact sequence ofQp[GF]-modules:

0 → Qp[ϕ/ϕσ] → Wρ̃ → Q
2
p → 0. Hence, there exists a long exact cohomology

sequence

(6.4) 0Ð→ H0(F ,Wρ̃)Ð→ H0(F ,Q2
p)

δÐ→ H1(F , ϕ/ϕσ)Ð→ H1(F ,Wρ̃)

Ð→ H1(F ,Q2
p)Ð→ H2(F , ϕ/ϕσ).

Lemma 6.6 (i) _e cohomology group H2(F , ϕ/ϕσ) is trivial.
(ii) One always has dimQp

H1(F ,Wρ̃) = 3.

Proof It follows from the global Euler characteristic formula that

dimH0(F , ϕ/ϕσ) − dimH1(F , ϕ/ϕσ) + dimH2(F , ϕ/ϕσ)
= ∑

v∣∞
dim(Qp)GFv − [F ∶Q].

Since ϕ/ϕσ is a totally odd character, the relation above yields that

−dimQp
H1(F , ϕ/ϕσ) + dimQp

H2(F , ϕ/ϕσ) = −2.

It follows from [4, Proposition 5.2 (ii)] that dimQp
H1(F , ϕ/ϕσ) = 2, and hence

H2(F , ϕ/ϕσ) is trivial. Finally, F is a real quadratic ûeld, so F has a unique Zp-ex-
tension and dimQp

H1(F ,Q2
p) = 2, dimQp

Hom(GF ,Qp) = 2. _us, the long exact
sequence (6.4) implies that dimQp

H1(F ,Wρ̃) = 3.

Corollary 6.7 (i) _e cohomology group H2(F ,Wρ̃) is trivial.
(ii) _ere exists an exact sequence

0Ð→ H1(F ,Wρ̃)Ð→ H1(F , ad ρ̃) C∗Ð→ H1(F , ϕσ/ϕ)Ð→ 0.

Proof (i) _is follows from the global Euler characteristic formula that

dimQp
H0(F ,Wρ̃) − dimQp

H1(F ,Wρ̃) + dimQp
H2(F ,Wρ̃)

= ∑
v∣∞

dimQp
(Wρ̃)GFv − [F ∶Q]dimQp

Wρ̃ .

_us, the assertion results directly from the fact that ρ̃ is a totally odd representa-
tion and dimQp

H1(F ,Wρ̃) = 3.
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(ii) SinceH2(F ,Wρ̃) = 0, the long exact sequence (6.3) is unobstructed.

_eorem 6.8 One always has dimQp
tDn.ord ≤ 3 and dimQp

tDord ≤ 1.

Proof Proposition 6.6 and the long exact sequence (6.4) generate the following exact
sequence:

(6.5) H0(F ,Q2
p)

δÐ→ H1(F , ϕ/ϕσ)Ð→ H1(F ,Wρ̃)
iÐ→ H1(F ,Q2

p)Ð→ 0.

A direct computation shows that the image of δ is of dimension one over Qp .
Now we will add the local conditions at v and vσ arising from nearly ordinary

deformations to (6.5):

H0(F ,Q2
p)

δ // H1(F , ϕ/ϕσ)

r′

��

i // H1(F ,Wρ̃)

B∗

��

i // H1(F ,Q2
p) // 0

H1(Fvσ , ϕ/ϕσ) = // H1(Fvσ , ϕ/ϕσ)

where r′ is themap given by restriction of the cocycles to GFvσ .
First, we will prove that the composition of B∗ with i is not trivial by proceeding

by the absurd.
Let ρ1 be a cocycle representing a cohomology class ofH1(F ,Wρ̃) lying in the im-

age of i. Subsequently, we can modify ρ1 by a coboundary with the aim that ρ1(g) =
( 0 b
0 0 ). _e function b → b(g) is a cocycle and its cohomology class belongs to

H1(F , ϕ/ϕσ). Suppose that cohomology class of ( 0 b
0 0 ) is non trivial, i.e., ( 0 b

0 0 ) is

not a coboundary, and belongs to ker(H1(F ,Wρ̃)
B∗→ H1(Fvσ , ϕ/ϕσ)). Following this

scenario, b can be modiûed by a coboundary so that b = λη/ϕσ , where λ ∈ Q
×
p

(see Lemma 4.1). A direct computation demonstrates that the cocycle ρ1(g) is the
coboundary given by g → ρ̃(g)Aρ̃(g)−1 − Awhere A ∶= ( −λ 0

0 0 ).
As a consequence, there is a contradiction, since we had assumed that ρ1 is not a

coboundary. _erefore, we obtain that

dimQp
ker(H1(F ,Wρ̃)

B∗Ð→ H1(Fvσ , ϕ/ϕσ)) = 2.

_e exact sequence presented below follows from Corollary 6.7, Lemma 6.5, and
the above discussion:
(6.6)

0Ð→ (ker(H1(F ,Wρ̃)
B∗Ð→ H1(Fvσ , ϕ/ϕσ))) iÐ→ tDn.ord

C∗Ð→ H1(F , ϕσ/ϕ)GFv .

Since dimH1(F , ϕσ/ϕ)GFv = 1, it follows from (6.6) that dimQp
tDn.ord ≤ 3.

To compute the dimension of tDord , the extra conditions of ordinariness at p need
to be added to tDn.ord , which appear in the ûltration Wρ̃ as follows. We have a natural
map ofQp[GFvσ ]-modules. (See (6.1).)

ad ρ̃ Ð→ Qp , ( a bc d )z→ a,

and inducing by functoriality amap A∗ ∶ H1(F , ad ρ̃)→ Hom(GFvσ ,Qp).
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We have the following inclusion:

tDord ⊂W = ker(H1(F , ad ρ̃) (r○C∗ ,B∗ ,A∗)ÐÐÐÐÐÐÐ→

(H1(Fv , ϕσ/ϕ)⊕H1(Fvσ , ϕ/ϕσ)⊕Hom(GFvσ ,Qp)))

Let W0 denote ker(H1(F ,Wρ̃)
(B∗ ,A∗)ÐÐÐÐ→ H1(Fvσ , ϕ/ϕσ) ⊕Hom(GFvσ ,Qp)). _e fol-

lowing exact sequence emerges:

(6.7) 0→W0
i→W C∗Ð→ H1(F , ϕσ/ϕ)GFv

_erefore, the isomorphism ker(H1(F ,Wρ̃)
B∗Ð→ H1(Fvσ , ϕ/ϕσ)) ≃ H1(F ,Q2

p) (com-
ing from the above discussion) implies that W0 is of dimension one over Qp and
dimQp

W ≤ 2.
Any cocycle ρ1 ∈ W0 satisfying the condition of ordinariness at p is necessarily

a homomorphism in H1(F ,Qp) that is unramiûed at v, so trivial (since F is a real
quadratic extension of Q, F has a unique Zp-extension). _us, the exact sequence
(6.7) yields that dimQp

tDord = dimQp
W − 1 ≤ 1.

Proof of Theorem 1.5

_e p-nearly ordinary deformation ρQ(Tn.ord) ∶ GF → GL2(Tn.ord) of ρ̃ yields a
canonical morphism:

(6.8) Rn.ord → Tn.ord .

Let n1 ∶= nn.ord ∩ Λn.ord
O and Λ̂n.ord

(1) be the completed local ring for the étale topology
of SpecΛn.ord

O at a geometric point corresponding to n1. Since hn.ord
F is a torsion-free

Λn.ord
O -module of ûnite type, we gain (a�er localization) a ûnite torsion-free mor-

phism w ∶ Λ̂n.ord
(1) → Tn.ord. On the other hand, the local ring Tord is endowed nat-

urally with the structure of a Λ-algebra originating from the ûnite �at morphism
ΛO → hF (see [23]).

_e ring Rn.ord has a canonical structure of Λ̂n.ord
(1) -algebra (see [4, §6.2]), and

the morphism (6.8) is a morphism of Λ̂n.ord
(1) -algebras. Moreover, the ring Rord

det ρ ∶=
Rn.ord/mΛ̂n.ord

(1)
Rn.ord represents the largest p-ordinary quotient of Rn.ord of determi-

nant equal to det ρ̃ [4, §6.2].

Proposition 6.9 (i) _e morphism (6.8) yields an isomorphism of regular rings
Rn.ord ≃ Tn.ord.

(ii) _ere exists an isomorphism between local regular rings Rord ≃ Tord.
(iii) _ere exists an isomorphism Rord ≃ Rτ=1.
(iv) _ere exists an isomorphism Rord

det ρ ≃ Tord/mΛTord ≃ Tn.ord/mΛ̂n.ord
(1)

Tn.ord.

Proof (i) First , it needs to be demonstrated that themorphism(6.8) is surjective. By
construction, the Hecke algebra Tn.ord is generated of Λ̂n.ord

(1) by the Hecke operators
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Tq with q ∤ p, Up, and Upσ . _emorphism (6.8) sends the trace of ρRn.ord(Frobq) to
Tq when q ∤ p. Otherwise, the restriction of ρRn.ord to GFpi

for all primes pi ∣ p of F
is an extension of the character ψ′′i ,Rn.ord by the character ψ′i ,Rn.ord , where the image of
the character ψ′′i ,Rn.ord in Tn.ord is just the character δpi sending [y, Fpi ] to the Hecke
operator T(y),where [ ⋅ , Fpi ] ∶ F̂×pi → Gab

Fpi
is the Artin symbol. _us,Upi = [πpi , Fpi ]

in the image of themorphism (6.8) for some uniformizing parameter πpi of the local
ûeld Fpi . Hence, the morphism (6.8) is surjective and the Krull dimension of Rn.ord

is at least three, since the Krull dimension of Tn.ord is three.
Finally, _eorem 6.8 implies that Rn.ord is a regular ring of dimension three, be-

cause the Krull dimension of a local ring is less than or equal to the dimension of its
tangent space. _erefore, the surjection (6.8) is necessarily an isomorphismof regular
local rings of dimension three, since the Krull dimension of Tn.ord is three.

(ii) _is derives from (i) and the relation [4, (20)] that Rord ≃ Tord. On the other
hand,_eorem 6.8 implies that the dimension ofmRord/m2

Rord is one over Qp . More-
over, the Krull dimension of Tord is equal to one and the tangent space of Tord is of
dimension one, hence Tord is a regular local ring of dimension one.

(iii) _e deformation ρτ=1 of ρ̃ (see Lemma 4.1) induces by functoriality a ho-
momorphism Rord → Rτ=1. Since Rτ=1 is generated over Λ by the trace of ρτ=1
(Rps

red ≃ Rτ=1), this homomorphism Rord → Rτ=1 is necessarily surjective. Finally,
since both Rord and Rτ=1 are discrete valuation rings, then this surjection rises to an
isomorphism.

(iv) _is follows from (i), (ii), and the relations of [4, §6.2].

Let S†1 (1, Id)/F denote the space of p-ordinary p-adic cuspidal Hilbert modular
forms over F of weight one, tame level one, of trivial Nybentypus character, and with
coeõcients in Qp and let S†1 (1, Id)/F[[E1(ϕ, ϕσ)]] be the generalised eigenspace at-
tached to E1(ϕ, ϕσ) inside S†1 (1, Id)/F . By construction of the universal p-ordinary
Hecke algebra hF and the Hida duality between cuspidal p-adic modular forms and
Hecke algebras, the following isomorphism is a generalization of [12, Proposition 1.1]:

HomQp
(Tord/mΛTord ,Qp) ≃ S†1 (1, Id)/F[[E1(ϕ, ϕσ)]].

We have the following consequence of Proposition 6.9, summarizing the overall
results of this paper.

Corollary 6.10 Assume that ϕ is unramiûed everywhere and ϕ(Frobv) ≠ ϕσ(Frobv).
_en the following conditions are equivalent.

(i) Tn.ord is étale over Λ̂n.ord
(1) .

(ii) Tord is étale over Λ.
(iii) T+ is étale over Λ.
(iv) _e ramiûcation index e of C over W is exactly two.
(v) _e Qp-vector space S†1 (1, Id)/F[[E1(ϕ, ϕσ)]] is of dimension one and it is gener-

ated by E1(ϕ, ϕσ).
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Remark 6.11 If hypothesis (GGG) holds, the equivalences of the above corollary hold
as well, and every overconvergent form of S†1 (1, Id)/F[[E1(ϕ, ϕσ)]] is necessarily clas-
sical.

7 Examples Where the Ramification Index e of C
Over W at f Is Two

Cho, Dimitrov, and Ghate provided several examples for Hida families F containing
a classical RM cuspform and such that the ûeld generated by the coeõcients of F is
a quadratic extension of the fraction ûeld of the Iwasawa algebra ΛO. _us, we have
several numerical examples forwhich the ramiûcation index e ofC overW at f is two.

7.1 Examples provided by Dimitrov and Ghate

Denote byTnew
N ,ρ theN-New-quotient of hQ,m acting on the space ofΛO-adic ordinary

cuspforms of tame level N that are N-New. Dimitrov and Ghate [17, §7.3] studied the
Hida families specializing to classical RM forms, and they gave some examples for
which the rank ofTnew

N ,ρ over the Iwasawa algebraΛO is two. In this case, ifF denotes a
p-adicHida family specializing to the classicalRM form f , then the ûeld generated by
the coeõcients ofF is obtained by adjoining to Frac(ΛO) a square-root of an element
in ΛO.

_eirmethod of computation is based on the study of the specializations inweights
of two or more; speciûcally, they showed that the p-adic completions of the Hecke
ûelds of modular forms fk for the ûrst few weights k are all quadratic extensions of
Qp (see [17, §7.3, Tables 1 and 2]).

7.2 Examples Provided by Cho

_e method of computation of S. Cho [8, §7] includes the study of the unramiûed
specializations of hω=1

Q,m of higher weight in the aim to prove that hω=1
Q,m ≃ ΛO in many

examples.
Let Hk be the Hecke algebra over Q for the space of cusp forms of weight k, Ny-

bentypus character єF , and level N ; let H+
k be themaximal real sub-algebra ofHk and,

moreover, let D+ be the discriminant of H+
k .

A direct computation illustrates that the Atkin–Lehner involution acts on Hk as
the complex conjugation. _erefore, when p ∤ D+, the specialization of hω=1

Q,m at the
weight k is unramiûed over O, and hence hω=1

Q,m ≃ ΛO by [19, Proposition 8].
_us, it is suõcient todetect examples such that the specialization of hω=1

Q,m athigher
weight k is unramiûed over O; Cho checked this unramiûedness using the discrimi-
nant table from [18, Table 1].
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