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Ramification of the Eigencurve at Classical
RM Points

Adel Betina

Abstract. ]. Bellaiche and M. Dimitrov showed that the p-adic eigencurve is smooth but not étale
over the weight space at p-regular theta series attached to a character of a real quadratic field F in
which p splits. In this paper we prove the existence of an isomorphism between the subring fixed
by the Atkin-Lehner involution of the completed local ring of the eigencurve at these points and a
universal ring representing a pseudo-deformation problem. Additionally, we give a precise criterion
for which the ramification index is exactly 2. We finish this paper by proving the smoothness of the
nearly ordinary and ordinary Hecke algebras for Hilbert modular forms over F at the overconvergent
cuspidal Eisenstein points, being the base change lift for GL(2) /r of these theta series. Our approach
uses deformations and pseudo-deformations of reducible Galois representations.

1 Introduction

Let p be a prime number and € be the p-adic eigencurve of tame level N constructed
using the Hecke operators U, and Ty, (£) for £ + Np. Recall that € is reduced and
there exists a flat and locally finite morphism x: ¢ — ‘W, called the weight map, where
W is the rigid space over Q, representing homomorphisms Zj x (Z/NZ)* — G.
The eigencurve C was introduced by R. Coleman and B. Mazur in the case where the
tame level is one [11], and by K. Buzzard and G. Chenevier for any tame level [6,7].

By construction of C, there exists a morphism Z[ T}, Up ey np = 0p5(€) such that
we can see the elements of Z[ T;, U, | e v as global sections of the sheaf Orelg, bounded
by 1 on C. Therefore, the canonical application “system of eigenvalues” 6(@1,) -
Hom(Z[T;, Uy ] ey NP’@p) is injective, and induces a correspondence between the
systems of eigenvalues for Hecke operators of normalised overconvergent modular
eigenforms with Fourier coefficients in C,, of tame level N and of weight k € W(C,),
having nonzero U,-eigenvalue and the set of C,-valued points of weight k on the
eigencurve C; moreover, since the image of Z[T;, Up]esn, is relatively compact in
0p%(€) and 0,%(C) is reduced, there exists a pseudo-character T: Gg,np > 0p5(€)
of dimension two such that T(Frob,) = Tp.

The weight map € — W is étale at non-critical p-regular points corresponding to
classical modular forms of weight > 2. It follows from the semi-simplicity of the action
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of the Hecke algebra, the classicality criterion of overconvergent modular forms and
the fact that the multiplicity of the operator U, is exactly one [11, 7.6.2], [10, 21, 27].
However, the étalness of the weight map can fail in weight one [3,9,17].

The locus of C, where |U,| = 1is open and closed in C, is called the ordinary locus
of € and denoted by €°™. The ordinary locus C°™ is isomorphic to the rigid space
given by the maximal spectrum of the generic fiber of the universal p-ordinary Hecke
algebra of tame level N generated by the Hecke operators T, for all primes £ + Np
and U,,.

Let f(z) = ¥ ,51a2€*™ be a cuspidal classical weight one newform corre-
sponding to a point of €°™4, According to a theorem of Deligne and Serre [14,
Proposition 4.1], there exists a continuous irreducible representation with finite image
p: Gg = GL,(Q) such that p(Frob,) = a, for all prime numbers £ + Np.

We fix an algebraic closure @p of Q, and an embedding 1,: Q- @p, which de-
termines an inclusion Gg, < Gg. Since the image of p is finite and f is ordinary at p,
PGy, = V1 ® Y2, where Y,y Gg, = Q  are characters and y; is unramified. We
say that f is regular at p if and only if y; # y».

Let T be the completed local ring of € at f and A be the completed local ring of W
at (f). The weight map « induces a finite flat local homomorphism x*: A — T of
local reduced complete rings.

We denote by € the category of complete noetherian local @p -algebras with residue

field isomorphic to @p and whose morphisms are local homomorphisms of @p-alge-
bras. Under the assumption that f is p-regular, the functor of p-ordinary deforma-
tions of p is representable by a universal 2-tuple (R, p°'%), where p°: Gg - GL,(R)
is the universal ordinary deformation of p [3, §2]. Under the assumption that p is
p-regular, M. Dimitrov and J. Bellaiche obtained in [3] the following crucial results to
which we will often refer.

Theorem (i) There exists an ordinary deformation py: Gonp = GL2(T) of p
such that Tr py (Frob,) = T, when € + Np, and the morphism k*: A — T sends the
universal deformation of det p to det po-.

(ii) R is a discrete valuation ring and the p-ordinary deformation ps induces an
isomorphism R ~ 7.

(iii) The morphism k*: A — T is ramified if and only if f has RM by a real quadratic
field in which p splits.

Let F be a quadratic real field in which p splits, er: Gg/Gr — {-1,1} the non trivial
character, and o a generator of Gal(F/Q). We say that f has RM by F if and only if

p = p ® ep. According to [18, Proposition 3.1], there exists a character ¢: Gp — @;

such that p ~ Indg ¢. The embedding ¢, singles out a place v of F above p; denote by
v¢ the other place above p. The hypothesis of f being p-regular implies that ¢c, *
¢\UGFV' Since p splits in F, it follows that Gf, = Gg,, ¢|6;;, = ¥1, and ¢|UGFV =Y,.

The map given by p°rd — pord

R+:-1 the sub-ring of R fixed by 7.

® e yields an automorphism 7: R — R. Denote by
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In Section 3, we introduce a local ring RP® representing a pseudo-deformation
functor of the reducible Galois representation pg, to the objects of the category &,
with some local condition at p, i.e., ordinary at v, and with invariant trace by the
action of 0 on Gp (see Definition 3.4). We write Rf: 4 for the quotient of RP® by its
nilradical.

Theorem 1.1  There exists an isomorphism R, ~ fRfes o and fRfeS 4 is a discrete valua-
tion ring.

Denote by H c Q the number field fixed by ker(adp). Let Hoo, (resp. Heoyo)
be the compositum of all Z,-extensions of H that are unramified outside v (resp. v?).
Let Ho, be the compositum of Ho, , and Heo,yo. Let Lo, be the maximal unramified
abelian p-extension of Ho., and let X, be the Galois group Gal(Ls./Ho ). Itisknown
that Gal(Heo /H) = Z3 acts by conjugation on X, and that X, is a finitely generated
Z,[[Gal(Ho /H)J]-module [20].

Theorem 1.2  Let F" be the maximal unramified extension of H contained in Ho,
and let Ly be the subfield of Lo such that Gal(Ly/H ) is the largest quotient of X
on which Gal(He [ F) acts trivially. Assume that Ly is an abelian extension of F"' or
Gal(Ly/Hw ) is a finite group; then the ramification index e of € over W at f is exactly
two.

When H is a biquadratic extension of QQ, the assumptions of Theorem 1.2 are related
to the semi-simplicity of some torsion Iwasawa Modules [26].

Our approach is inspired by S. Cho and V. Vatsal [9] and uses the results of Bellaiche
and Dimitrov [3]. More precisely, we prove in Lemma 2.4 that the ramification index
of R;.; = R is two. The key observation made in Section 3 is that the ring R,-; is
isomorphic to RP’,. Therefore, the ramification index of « at f is two if and only if
RP°, = A. Hence, it is sufficient to prove that the relative tangent space of R, over A
is trivial, which we will elaborate in Theorem 4.5.

Letp = Ind%@ denote the residual representation of p, where ¢: Gr — [y isa
character and IF,, is a finite field of characteristic p. Assume that ¢ is the Teichmuller
lift of an unramified character ¢ (in this case F = Q(+/N)). We denote by m the
maximal ideal of the universal p-ordinary Hecke algebra hg = hg(Np™) of tame
level N determined by the representation p, and by kg = hp(p™) (resp. h%-°9) the
reduced p-ordinary (resp. p-nearly ordinary) Hecke algebra arising from cuspidal
Hilbert modular forms of level p for the real quadratic field F.

R. Langlands [28] proved that any primitive elliptic cuspidal eigenform f; belong-
ing to Sg(T1(N),er) of weight k > 2 and of Neben type character ¢ has a base
change lift fk for GL(2)/p. More precisely, fk is a primitive Hilbert modular eigen-
form for GL(2)/r of weight k, level 1, with a trivial Neben type character and such
that L(fi,s) = L(p flGr> S)> Where pr, is the p-adic Galois representation attached to
fis i.es L(fk>s) = L(py,»s). Moreover, H. Hida [24, §2] constructed an involution
w on hg,m, and following the work of Langlands [28] and K. Doi, H. Hida, and H.
Ishii [18], there exists a base-change morphism f: hp — hq.
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These authors also constructed an action of A = Gal(F/Q) on h givenby o(T,) =
Tyo. Let 1y denote the inverse image of m under this base-change map.

Doi, Hida, and Ishi were interested by the congruence relations between Hilbert
modular forms and their reflection in certain twisted adjoint L-values. This question
led them to study the congruences between forms that arise via base change from Q
and those intrinsic to F. Subsequently, under suitable assumptions, they conjectured
that hp /(A-1)hp,y =~ h&i, where h{&; is the fixed part of hg,m by the involution w
[18, Conjecture 3.8].

Since the dihedral representation p becomes reducible upon restriction to Gg, it
follows from the properties of the base-change morphism f that the restriction of p to
Gr is the Galois representation associated with an ordinary p-adic cuspidal weight one
Hilbert Eisenstein series E; (¢, ¢7) of level 1 [18, §3.4]. The system of Hecke eigenval-
ues associated with E; (¢, ¢) gives a height one prime idealn = 87" (py) of hp, where
py is the height one prime ideal of hg corresponding to the system of Hecke eigen-
values associated with f. Denote by n™°™ the height one prime ideal of the nearly
ordinary Hecke algebra h2-°" given by the inverse image of n via the natural surjec-
tion h%°" —» hp; namely, n™°™ is the closed point of Spec h%-°"4[1/p] associated
with the system of Hecke eigenvalues of E; (¢, ¢7).

Let T be the completed local ring for the étale topology of Spec hg[1/p] at a
geometric point, i.e., @p -point, corresponding to n, i.e., T°™ is the completion of the
strict local ring at n, and write T$™ for the reduced quotient of T°™ by the radical of
the ideal generated by elements of the form A(a) — a.

Theorem 1.3  The base-change morphism [3 induces an isomorphism of local rings
Bs: T ~ T, where T, is the subring of T fixed by T under the identification R ~ 7.

Theorem 1.3 allows us to use the exact same arguments that were already given in
the proof of [9, Theorem B] to deduce the following variant of [18, Conjecture 3.8]

—2
without assuming that ¢,; #1as in [9, Theorem B].

Corollary 1.4  Assume that p > 2 and that the following conditions hold for p.

(i) The character § is everywhere unramified and $le # $|UGF .

(ii) The restriction of p to Gal(Q/Q(+/(~1)(P~D/2p)) is absolutely irreducible.

Then the image of the base-change morphism f3: hp — h&i; has a finite index.

Theorem 1.5  Assume that ¢ is unramified everywhere and ¢(Frob, ) # ¢?(Frob,).

n.ord

(i) The affine scheme Spec hx°™ is regular at the point n
system of Hecke eigenvalues associated with E;(¢, ¢7).

(ii) The affine scheme Spec hy is regular at the point n corresponding to the system
of Hecke eigenvalues associated with Ey (¢, ¢°), and in this case T°™d ~ TS ~ T,

corresponding to the

Hida [22] proved that an ordinary Hilbert cuspform of cohomological weight is
a specialization of a unique, up to Galois conjugacy, primitive p-ordinary Hida fam-
ily. Geometrically, this translates into the smoothness of the nearly ordinary Hecke
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algebra at the height one prime ideal corresponding to that cuspform. In fact, Hida
proves even more, namely the nearly ordinary Hecke algebra being étale at that prime
ideal over the Iwasawa algebra Z,[[ Ty, T>, T3 ]]. On the other hand, the criterion for
classicality of Hilbert overconvergent modular forms of [5,31] generalizes the result of
Hida and implies that the Hilbert eigenvarieties are étale over the weight space at the
points corresponding to classical non-critical p-regular Hilbert cuspforms (see [1] for
the construction of the Hilbert eigenvarieties).

However, there are examples where the étaleness of the Hilbert eigenvarieties (resp.
parallel Hilbert eigencurves) over the weight space fails in weight one. More precisely,
while the Hilbert eigenvariety is smooth at some classical weight one points with real
multiplication, the parallel weight Hilbert eigencurve is singular at those points, con-
trasting with the famous Hida’s control theorem [4,15].

The purely quantitive question of how many Hida families specialize to a given
classical p-stabilized weight one eigenform can be reformulated geometrically to de-
scribe the local structure of the ordinary locus of the Hilbert eigenvarieties at the
corresponding point.

Now let T*°™ be the completed local ring for the étale topology of Spec h%-°™
at a geometric point, i.e., @P-point, corresponding to n™°™ and let § (resp. F°¢)
be any nearly ordinary (resp. cuspidal ordinary of parallel weight) p-adic family that
specializes to the ordinary p-adic cuspidal Eisenstein series E; (¢, ¢7) in weight one. It
follows from Theorem 1.5 that § (resp. F°™¢) is unique up to a Galois conjugation, since
there is only one irreducible component of Spec h1°™ (resp. Spec hr) specializing to
the point n™°™ (resp. n), and it follows from the fact that T™°*¢ and T°" are regular
rings (hence integral domains). Moreover, §°¢ is the base change lift of a p-ordinary
Hida family passing through f.

In the following, the main ideas behind the proof of Theorem 1.5 will be explained.

First we construct in Proposition 6.3 a p nearly ordinary deformation

Pn.ord : GF e GL2 (Tn.ord)

of a reducible but indecomposable representation p with trace ¢ + ¢ (this construc-
tion was inspired by [2]).

Subsequently, we introduce a deformation problem, D™ °¢, of 5 with some local
conditions at p; as such, D™°™ is representable by an R™°" that surjects to the local
ring T™°™ of dimension three. The computation of the tangent space ¢3;°¢ of D"-ord
represents an important part of the proof and, using Galois cohomology, shows that
tfb"rd is of dimension three (see Theorem 6.8). Hence, the surjection Rn-ord _,, n-ord
is an isomorphism of complete local regular rings of dimension three.

Finally, a direct computation shows that the tangent space of the p-ordinary quo-
tient T of T2-°'4 ig of dimension one, and hence T° a discrete valuation ring.

Remarks 1.6 (i) Suppose that the residual representation p of p satisfies the as-

sumptions of the theorems of R. Taylor and A. Wiles [36,38], 5‘21 #1,and p > 3. Then
Cho and Vatsal proved Theorem 1.1 under these additional assumptions.

(ii) H.Darmon, A. Lauder, and V. Rotger [13] stated a formula for the g-expansion
of a generalised overconvergent form f' in the generalized space associated with f
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(which is not classical). The coefficients of the generalised eigenform fT are expressed
as p-adic logarithms of algebraic numbers.

(iii) S. Cho provided several examples of the ramification index e of C over W
at f being exactly 2 [8, §7]. More precisely, he presented examples where h(g:r:1 is
unramified over the Iwasawa algebra Z,[[ T]].

(iv) M. Dimitrov and E.I Ghate provided several examples emphasising that T is
of rank two over A [17, §7.3]. As such, the index e is also 2 in their examples.

(v) V.Pilloni gave a geometric definition of overconvergent modular forms of any
p-adic weight and reconstructede the eigencurve C without using the Eisenstein fam-
ily [30].

Notations 1.7 If L is a number field and S the places of L above Np, we denote by
Gp,s the Galois group of the maximal extension of L, unramified except at the places
belonging to S and at infinite places.

Throughout this paper, O will denote the ring of integers of a p-adic field contain-
ing the image of the character ¢.

Let I, denote the residue field of O.

Let CNLo denote the category of complete, local, Noetherian O-algebras with
residue field IFj,, and whose morphisms are the local morphisms of local rings in-
ducing the identity on their residue fields.

For any commutative local ring A, write M4 for the free A-module A @ A, and my4
for the maximal ideal of A.

Let Ao denote the Iwasawa algebra O[[ T]].

If W is a representation of G and {G; } ;¢; are subgroups of G, we will write

H'(G, W)g, =ker(H' (G, W) — @ H'(G;, W))
iel

Let H be a normal subgroup of G. Then we denote by H' (H, W)G/H the elements
of H'(H, W) that are invariant under the action of G/H.

We assume throughout this paper that p splits into two places v, v’ of F, and let p
(resp. p?) denote the prime ideal over p of the ring of integers of F corresponding to
the place v (resp. v).

Let A be the Galois group of the real quadratic extension F/Q.

2 Preliminaries and Some Properties of R and R,

For A any local ring with maximal ideal m 4 and belonging to the category €, let D(A)
be the set of strict equivalence classes of representations p: Gg - GL(A) such that
pa mod my = p and which are ordinary at p in the sense that

(Padige, = (Y o)

where v/} is an unramified character lifting y,. According to Schlesinger’s criteria, the
functor D is representable by (R, p°4) [3, §2] and denotes its tangent space by to.
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2.1 Some Properties of p°¢ and the Ring R,

Let H ¢ Q be the number field fixed by ker(ad p) and G be the Galois group of the
finite Galois extension H/Q. Since the projective image of p is dihedral, G contains
elements of order two and with non trivial restriction to F; with a slight abuse of
notation we will denote one of them by 0. Let (ey, e, ) be abasis in which p|, = ¢@¢7.
By rescaling this basis, one can assume that p(c0) = (9 }) in PGL,(Q)

We will exhibit a suitable basis of the free R-module Mx, where the diagonal en-
tries of the realization of p°™® in this basis depend only on the trace of Tr p°™d. The
existence of this basis will be crucial to define the functor of p-ordinary pseudo-
deformations in Section 3, since the line of My, which is stable under the action of
G, is not necessarily stable under the action of the complex conjugation c.

Lemma 2.1 Let y be a fixed element of Gp, that lifts Frob, (1,: GF, > Gq,) and
satisfies ¢(yo) # ¢°(yo). Then there exists a basis BYF* of M, such that p°™4(y,) =
5 9)and p“’G’i = (§ ¥) in this basis.
Proof Let K be the field of fractions of R, which is a discrete valuation ring. Since R
is Henselian (even complete) and ¢(y) # ¢ (yo), there exists a basis of My ® K such
that p>d @ K(y,) = (% 9) and PIOGriV ® K = (§ ). Moreover, R is a discrete valuation
ring; hence we can rescale this basis with the aim of getting a basis of M that fulfills
the desired conditions. ]

Remark 2.2 Since ¢(yo) # ¢° (o), any other basis satisfying the same assumptions
of Lemma 2.1 is obtained by conjugating the chosen basis by a diagonal matrix. Such

conjugation does not change a(g), d(g) and the product b(g).c(g), where p°¢(g) =
( a(g) b(g) )
c(g) d(®) /-

As p is dihedral, N(p ® eg)N = p, where N = (1 9) in (e, e;).

Definition 2.3 Letg — ( zg; ;Eg) be the realization of p°¢ in a basis B¢ sat-

isfying the assumption of Lemma 2.1. Consider the automorphism N of Endg (M=)
given by (' 9) in the basis B34, Then the map p°™ — N(p°? ® ex)N induces an
automorphism t of the deformation functor D, hence an automorphism 7: R - R
with 7% = 1.

Since Trt(p°™®) = Tr(p°™ ® € ), a theorem of Nyssen [29] and Rouquier [32] im-
plied that the deformation t(p°™®) is isomorphic to p°*d®e. Therefore, the involution
7 is independent of the choice of a basis of M in which N = (3 9).

Let A be a ring in the category €. Then any deformation ¢4: Gg,np = A* of
det(p°) is equivalent to a continuous homomorphism h: Gg,yp — 1+ my4. Using
class field theory, we obtain an isomorphism

Hom(Gg), ,1+m,) = Hom((Z/NZ)* x Zjy,1+my) = Hom(1 + qZp,1+my),
where g =pifp>2,andg=4if p=2.
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Since 1+ my4 does not contain elements of finite order and A = Q,[[1 + qZ,]],
any deformation of det p to the ring A is obtained via a unique morphism A — A.
By an abuse of notation, we will write «*: A — R for the morphism induced by the
deformation det p°™® of det p, i.e., we identify R and 7.

Lemma 2.4 (i) The involution T is an automorphism of A-algebras.

(ii) Let R,-; denote the subring of R fixed by T. Then R, is an object of the category
¢ and has Krull dimension equal to one.

(iii) R,y is a discrete valuation ring.

(iv) Let L denote the field of fractions of R,-1 and recall that K is the field of fractions
of R. Then L is equal to the set of elements of K fixed by .

(v) The involution T: R — R is not trivial and the injection 1: R;-y — R has rami-
fication index equal to two.

Proof (i) Since det(p°¢) = det(N(p°™d ® ex)N), 7o &* = «*.

(ii) Since x*: A — T is a finite flat homomorphism and R ~ T, R.., is finite over
A. The fact that A is a Henselian ring of dimension one (even complete), implies that
R+ is a finite product of local rings with Krull dimension equal to one. However, the
ring R, is a domain (R,-; c R), so R, is a complete local ring of dimension one.

(iii) Since R,-; is a local domain, Noetherian, and has Krull dimension equal to
one, it is sufficient to show that it is integrally closed. Let « be any element of the field
of fractions of R;_; such that « is integral over R,_; write a = x/y, where x € R,;
and y € R,_; — {0}. Since R,_; is a subring of R, « is integral over R, and it follows
that a € R (as R is integrally closed). However, 7(«) = 7(x)/7(y) = x/y = «, hence
7(a) =aand a € R,

(iv) Let a € K and assume that 7(a) = a. Since R is a valuation ring, a € R or
aleR soaecR,.;orateR, i, henceacL.

(v) Assume that 7 is trivial. Then p‘"d ~ pOrd ® ep. According to [18, Proposi-
tion 3.1], p°¢ =~ Ind% ¢°™, where ¢°"4: Gp — R* a character. Since R =~ T, p°d
is a representation associated with a primitive Hida family containing f, i.e., corre-
sponding to the unique irreducible component of SpecT. Thus, p° is a dihedral
representation with real multiplication by F. Therefore, any specialization to weight
k > 2 of a Hida family passing through f is a classical modular form of weight k > 2
having a real multiplication by F. However, it is well known that there are no RM
modular forms of weight at least two, resulting in a contradiction. Therefore, 7 is not
trivial. Since K = L™ and 7% = 1, L/K is an extension of degree two. ]

In the following proposition, we will compute the valuation of any generator of the
ideal of reducibility of pr'f, i.e. the ideal generated by {b(g)c(¢’) | . &' € Gr}.
a(g) b(g)
<(g) d(g)
p°d in the basis B that lifts (e, e;); let v : R - N U {0} be the discrete valuation
of R, and let wg (resp. w{) be the place of H over v (resp. v°) singled out by 1,. Then we
have the following.

Proposition 2.5 Letg — ( ) be the realization of the universal deformation
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(i) There exist elements go, ho, of Gy such that the orders of both E(go) and ¢(hy)
in R are one, and the image of Gy, under b is contained in m3,.
0

(ii) One always has dim@P H'(F,¢°/¢)c,, =1

Proof (i) Note that t is also the tangent space of the local ring R representing D.
Since p splits in F, i.e., Gg, = GF,, [3, Proposition 2.3] implies the following iso-
morphism:

21) tp = ker(H'(Gg,adp) — H'(Gg,,¢/¢7) ® H'(1;,Q,)).

We have the following decomposition of ad p: adp ~ 1@ er ® Indg((p/ ¢?), given by
: a Z) )=(29)+(%%) and inducing the following decomposition:

2.2

H'(Gr,adp) ~ H'(Gr, ¢/¢) @ H'(Gr, ¢/¢°) @ H'(Gr, ¢7/¢) ® H' (G, ¢°/¢°)
givenby (9 %) — (a,b,c,d), where the action of o € Gal(F/Q) exchanges a, d and
b, c.

After applying the restriction-inflation exact sequence to the isomorphism (2.1),

we deduce from (2.2) and [3, Proposition 4.2] that

H!(Gg,ad p) = H'(Gr,ad p)®(F/D),

anda=d=0,b=cceH(F¢°/$)g, if (?4) e tp c H(Gp,adp)SF/D,
According to [3, Theorem 2.2], dim tp = 1, so ¢ is not trivial; the same holds for b,

since b = c°.
On the other hand, ¢ = b“, s0 b € H'(F, ¢/¢°) g, . . The restriction-inflation exact
sequence yields bjg,, € H'(H, @P gZI(H/F), where H' (H, @P g:l(H/F) is the subspace
"5 5

of H'(H, @P) given by the homomorphisms that are unramified at w§ and invariant
under the action of Gal(H/F).

Let pe € D(Q,[€]) be the deformation of p induced by the composition of perd

with the canonical projection R - R/m% =~ @p [€]. Therefore,

pe(g) = (1+epi(g))p(g)

where the cohomology class of the cocycle p; = (4 }) is a generator of tp. Let g —

( a'(g) ¥'(g)

(&) d'(g) ~

¢y # 0,and big,, , = 0. Then big, * 0. ¢lg, * 0:and bj; = 0. Hence bjg, # 0,
0 "o

) be the realization of p. by a matrix. Since p|g, is diagonal, b, # 0,

€6, * 0 modulo m3, and we also have EIGHW., = 0 modulo m%, since Gy = ker(ad p).
0

(ii) This is a direct result of the isomorphism t1, ~ H'(F, ¢?/¢)c;, and [3, Theo-
rem 2.2], i.e., dim@ tp =1. |
P

2.2 Criterion to Extend a Gp-representation to Gg.

In this subsection, we give a sufficient condition for extending a representation
px: Gp = GL,(K) to all Gg, which will be crucial in the proof of Theorem 1.1.
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Definition 2.6 Let K be aring and px: Gr — GL,(K) be a representation. Write
pi(g) for px(tgt™), where t is an element of Gg with a non trivial restriction to F.
Consider the following condition on pg.

(C)  Foreach t € Gg, there exists r(t) € GL, (K) such that px = r(t) " pkr(t).

Proposition 2.7 Let px: Gg - GL,(K) be a representation, where K is a ring. As-
sume that the only matrices in M,,(K) that commute with the image of px are the scalar
matrices, and py satisfies condition (C). Then we have the following.

(i) IfGg = Gp U GE.t for a fixed t € G, then r can be selected to guarantee that the
following conditions are satisfied: for allh € G, r(ht) = px(h)r(t) andr(h) = px(h).

(ii) The function p: Gg x Gg — K* defined by p(t',t) = r(t')r(t)r ' (t't) is an
element of H*(Gg, K*) for the trivial action of Gg. Moreover, p factors through A =
Gal(F/Q).

(iil) If the cohomology class of p € H*(A, K*) vanishes, then there exists a repre-
sentation r: Gg - GL,(K) extending px, and if ' is another extension of pg, then
' =rQ®er.

Proof See [25, A 11]. [ |

Corollary 2.8 (i) Let px: Gg - GL,(K) be a representation where K is a field.
If px satisfies the hypothesis of Proposition 2.7, there exists a finite extension L/K and a
representation pr,: Gg - GL, (L) extending px.

(ii) Let A be a ring in the category € and y,: Gg — A be a character invariant
under the action of Gg. Then there exists a character vy : Gg — A* extending y 4.

Proof (i) We have a functorial isomorphism H*(A, K*) ~ K*/(K*)?. Choose an
element x € K* corresponding to the cohomology class of [p] in H*(A, K*). Let L be
a finite extension of K containing v/x. Then the cohomology class of [p] in H*(A, L)
vanishes. Hence, we may conclude by Proposition 2.7.

(ii) The residue field of A is @P and it is algebraically closed. Consequently, Hensel’s
lemma implies that the group H?(A, A*) = A*/(A*)? is trivial, and as such the de-
sired result follows from Proposition 2.7. ]

3 Pseudo-deformation and the Ring R

3.1 Pseudo-character and Pseudo-representation

The first occurrence of pseudo-representation appeared in the work of Wiles [37,
pp. 563-564]. But his definition requires the presence of a complex conjugation ¢
that forces the pseudo-representation to depend only on its trace. In our case, the
complex conjugation ¢ will be replaced by y,, which is a fixed lift of Frob, to Gp,. In
Lemma 3.3, we will illustrate through the presence of yo how a pseudo-representation
depends only on its trace and determinant.

Definition 3.1 Let A be a commutative ring and y, be a fixed lift of Frob, to Gy,
such that ¢(yo) # ¢ (y0)-
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Let @,d: Gy — A, X: Gp x Gp — A be three continuous functions satisfying the
following conditions for all g, h, t,s,w, n € Gg:
a(st) =a(s).a(t) +x(s,t),
d(st) = d(s).d(t) + %(t,s),
X(s,t).x(w,n) =x(s,n).X(w, t),
X(st,wn) = @.(s).a(n).X(t,w) + a(n).d(t).3(s,w)
+a(s).d(w)z(t,n) +d(t).d(w).x(s,n),
a1)=d(1) =1, x(h,1)=%(1,2)=0, X(y0,g) =%(h,yo) =0.

We say that 4 = (@,d,X) is a pseudo-representation (see [37, §2.2.3] for more
details). The trace and determinant of 774 are the functions Tr(74)(g) = a(g) +d(g),

and detm(g) = a(g)d(g) - %(g g)-

Let 7 = (¢, $?,0) be the pseudo-representation associated with the representa-
tion p|g,-

Definition 3.2 Let Abearingin € and 74 = (@4, da,%4) be a continuous pseudo-
representation in A; we say that 74 is a pseudo-deformation if and only if 74 mod
my =71,

Meanwhile, [34] is a reference for pseudo-deformations.

Lemma 3.3 (i) Let A be aringin €, and let my = (HA,JA,EEA) be a pseudo-
deformation. Then 14 depends only on Tr 4 and det w4 by the following formula:

~ T -1, T ~ T -MT
(1) dalg) = rﬂA(Voi)l_/\z rﬂA(g), da(g) = 1’7TA()’0§)2_)L11 r”A(g))

where My = @(yo) and A5 = d(yo) are the unique roots of the polynomial
(3.2) X2~ Trma(ye)X +detma(yo).

(ii) If Aisadomain, then s depends only on its trace, i.e., det w4 depends on Tr m4.

Proof (i) Since X(yo, o) = 0, and det 74 (yo) = @(y0)d(yo), then @(yo) and d(yo)
are solutions of (3.2). By assumption ¢(yo) # ¢°(yo), so Hensel’s lemma implies that
@(yo) and d(y,) are the unique solution of (3.2). Finally, (3.1) follows directly from
relations defining pseudo-deformations.

(ii) Let K be the fraction field of A and K its algebraic closure. The function
Trma: G — K is a pseudo-character. According to [35, Theorem.1.1], there exists a
unique semi-simple Galois representation px: Gg — GL,(K) such that Tr px = Tr 4
and det pg = det 4. [ |
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3.2 Ordinary Pseudo-deformation

In this subsection, we will define a sub-functor of the pseudo-deformation functor of
7 that is representable by a ring RP* belonging to the objects of the category €.

Definition 3.4 Let &: € — SETS be the functor of all pseudo-deformations 4 =
(da, da, X4) of 7 that satisfy the following conditions.

(i) Forall h e Gg,, h' € Gg, X4(h', h) = 0.

(ii) du(g) =1ifgel,.
(iii) Trma(t™'gt) = Trma(g) for each t in Gg and g € Gr.

Proposition 3.5 (i) Letm, = (a',d’,x") bean element onS(@p [€]). Then for any

. x'(h, - x'(+,h .

hin G, ¢U(£)¢()_) (resp. ¢5((. )¢()h)) is an element of Z'(F, ¢/ ¢°) (resp. Z'(F, $° | ¢)).
(i) The functor & is representable by (RP®, nP*).
(iii) The determinant det nP° is invariant under the action of 0.

Proof (i) This results from the defining properties of a pseudo-deformation.

(ii) The functor & satisfies Schlesinger’s criteria. The only non-trivial point is the
finiteness of the dimension of the tangent space ts of &. This follows from [34,
Lemma.2.10] and the fact that H'(F, ¢/¢?) has a finite dimension.

(iii) A direct computation shows that Tr 7P*(g?) = (TrnP*(g))* - 2det 7P5(g),
so the assertion follows from the fact that for all t € Gg,g € Gg, TraPs(t'gt) =
Trn?*(g). [ |

Lemma 3.6  There exists a natural morphism A — RP* induced by the deformation
det P of det 7.

Proof According to Proposition 3.5 (iii) and Corollary 2.8, we can extend det 7P*

into a character ¢: G&{’NP — (RP*)* and we choose one whose reduction modulo

maes is equal to det p. Therefore, there exists a unique morphism A — RP® that sends

the universal deformation of det p to ¢. ]
3.3 Proof of the Isomorphism RY* ~ R,

red ©

Lemma 3.7 Letg — ( Zg ?) be the realization of p°™% in a basis BLY = {vy, v}
(Lemma 2.1). Then we have the following.

(i) The3-tuple nx,_, = (|G, E‘GF,E‘G@GF) is a pseudo-deformation of m.
(ii) There exists a unique local homomorphism g: RPS — R._; inducing the pseudo-
deformation mg__,.

Proof (i) This is a direct result of the relations defining a pseudo-representation.

(ii) Since the representation pI"Gri is ordinary at G, , there exists a unique morphism

g: RPS - R such that g o 7P = ¢ _,. Moreover, the action of T on Tr p°™ (resp. on
det p°4) is given by Tr p°™d — Tr p° @ ¢f (resp. det p° — det p° ® €r), so 7 acts

trivially on Tr pl"é? (resp. on det p°9).
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Since R,-; is henselian (and in fact complete), ¢(yo) # ¢°(yo), Tr p°(yo) and
det p"rd(yo) are elements of the ring R.-; (yo € Gp, ¢ Gp); then the eigenvalues 1,
and A, ofp"rd(yo) are in R,-;.

Tr p” (yog)—A2 Tr p™ (g)
A=Ay >

d(g) = T h ") anqG(gh) = a(g)a(h) +F(g, h). Therefore, 7(dg, ) =

|G, T(;ZVK,-P) = c'i]GF, and T(EGF Cgp) = E\Gp Clg, since, g factors through R,-;. MW

On the other hand, a direct computation shows that a(g) =

Lemma 3.8 The morphism g: RPS — R, is surjective.

Proof According to Proposition 2.5, there exist go, hp in G such that the order of
both b(go) and (ko) in R are one, so (g0, ho) = b(go)e(ho) is of order 2 in R.
However, R, is a discrete valuation ring and the injection 1: R,-; — R is ramified
with a ramification index equal to two, so b(go)Z(ho) = X(go» ho) has order one in
Rr=1. On the other hand, since RP* is the universal ring representing the functor &,
X(go> ho) is contained in the image of the maximal ideal of RP* under the morphism g.

Let B be the image of the morphism g. Then B is a sub-algebra of R,_;. Let v;
denote the discrete valuation of the ring R..; and mg denote the maximal ideal of
B. The discussion above further implies that my contains a uniformizing element of
Rr=1. Write a for the ideal mgR.-;, so a = mg,_, since mg contains a uniformizing
element of R,;.

According to Lemma 3.6, the ring RP® has a natural structure of a A-algebra. Since
detmg,_, = godetnP®, gisa morphism of A-algebras. Moreover, R,_; is a finite A-
module, thus the morphism g: RP* — R, is finite. Now apply Nakayama’s lemma
to the RP*-module R,-;, and it will become apparent that 1 is a generator of R, as
RP*-module. Hence, the morphism g is surjective. ]

=12

Proof of Theorem 1.1

We will show that the morphism g: RP* — R,_; rises to an isomorphism RP$/9 ~
Rr=1, where D1 is the radical of RPS. Let £ denote the kernel of the morphism g; since
g is surjective (see Lemma 3.8), the statement is equivalent to £ c 91, meaning that
Spec R.-; = Spec RF*.

Let P be a prime ideal of RP*, and let 7”’: RP* — RP* /P be the canonical surjec-
tion. Let K denote the field of fractions of RP* /3 and mqs = (ays, E«p, Xq ) denote the
pseudo-deformation obtained by the composition 7’ o 7P*.

If X = 0, then px(g) = ( a‘po(g) Zi“mo(g) ) is the unique semi-simple representation
associated with .

By assumption, Tr(px) = Tr(pg), so ag, = J«p (since the action of ¢ exchanges ¢
with ¢? and ¢ # ¢7). In these terms, Indg ags is a representation extending px to Gg.

If there exist g1, 11 € Gr such that X3 (g1, 1) # 0, [37, Proposition 2.2.1] implies
the existence of a Galois representation

(T Fa(eh) /(o)
PK:8 ( Xy (81,8) dy (g) )

with Tr pg = Tr 7.
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As pk(yo) is diagonal with distinct eigenvalues, Xq3 (g1, 1) # 0 implies that px
is absolutely irreducible. Moreover, Tr e is invariant under the action of o, i.e.,
Tr s = Trpk = Tr p%, so [35, Theorem 1] yields an isomorphism px ® K ~ p% ® K.
Therefore, there exists (o) € GLy(L"), where L' is a finite extension of K such that
r(0)pxr'(o) = p%. Thus, the representation px satisfies the hypothesis of Corol-
lary 2.8, and hence there exist a finite extension L/L’ and a representation pr: Gg —
GL, (L) extending pk.

Let A be the integral closure of RP*/9 in L. Since RP*/ is a local Nagata ring
(even complete), A is finite over RP*/P; by using similar arguments to those already
used to prove Lemma 2.4 (ii), we may deduce that A € €.

On the other hand, Tr pr(0?) = Trpy(0))* - 2detpr(0), so Tr(pL(Gg)) < A.
Thus, Trpr: Gg — A is a pseudo-character such that the restriction to G of its re-
duction modulo m 4 is equal to Tr p|g,.

According to Proposition 2.7, the restriction of p to Gy extends uniquely to Gg,
since p ~ p ® €p, hence [35, Theorem 1] implies that the reduction of the pseudo-
character Tr p;, modulo my is equal to Tr(p).

According to theorems of L. Nyssen [29] and R. Rouquier [32], there exists a defor-
mation p4: Gg - GLy(A) of p such that Trp4 = Tr py. In addition, we have Gf, =

Gq, (since p splits in F) and by construction (PK)\GQP ~ (pa® L)\G”p o (Ig; 1;’ ),
- 2

where y5: Gg, — A” is an unramified character lifting iy, » i-€» v, = (dm)‘GQp'

Therefore, by using arguments similar to those already used to prove [3, Proposition

5.1], we deduce that the representation p 4 is ordinary at p.
Thus, there exists a unique morphism h: R - A inducing p 4.

UL S SN G )
i"" /
RPS JPC————> A

The morphisms horogand 7" induce two pseudo-deformations of 77 with the same
trace and determinant. Thanks to Lemma 3.3, we know that a pseudo-deformation
depends only on its trace and determinant, so h o 1 o g = 7", Therefore, the dia-
gram above is commutative and implies immediately the inclusion £ c 3. Finally, we
conclude that the ideal £ is included in the radical of RP®.

4 Proof of the Main Theorem 1.2

Recall that H c @Q is the number field fixed by ker(ad p), Heo,, (resp. Heo,yo) is
the compositum of all Z,-extensions of H that are unramified outside v (resp. v?),
H, is the compositum of Heo,, and Heo,ye, Lo is the maximal unramified abelian
p-extension of Heo, and X is the Galois group Gal(Leo/Ho ). The Galois group
Gal(Ho /H) = Zj acts by conjugation on Xo,, and R. Greenberg [20] proved that
X is a finitely generated torsion Z,[[Gal(Ho /H) ]]-module .
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Let F” be the maximal unramified extension of H contained in Ho, and let L,
be the subfield of Lo, such that Gal(Ly/H. ) is the largest quotient of X., on which
Gal(Ho /F) acts trivially.

Hypothesis

Q) Assume that Gal(Ly/F") is abelian.

In this section, we prove that R,.; is isomorphic to A when (G) holds, and it is
equivalent to proving that the tangent space of R /(m4, m3, _ ) is trivial when (G)
holds.

4.1 Tangent Space of R,

Denote by tx,_, the tangent space of R,;. Since R.-; is a discrete valuation ring (see
Lemma 2.4), the dimension of tx__, is one.

Write t5, _ for the sub-space of t,_, of pseudo-deformations with determinant
equal to det 77 = det p|g, . It follows from Theorem 1.1 that t, < tx,, = @(@p [e])-
One can see that the tangent space of R, /(m, m%, ) is isomorphic to tf, .

In the following lemma, we introduce a representation p,-;: Gg - GL,(R,;) that
is conjugate to pl"é‘: by a matrix with coeficients in the field of fractions of R and such
that Tr p,—; = mx,_,. The introduction of p,_; is necessary in order to produce a non

e . . 1 o
trivial extension in Ext@P[ Gr] (6%, ¢).

Lemma 4.1 (i) There exists a representation p,—1: Gg - GLy(R.o1) such that
the pseudo-representation associated with p,-y is Tx._,.

(i) The residual representation of p,-; modulo mx__, has the following form p(g) =
( 2‘: 47" ), where /¢ is a non trivial element of H'(F, ¢/¢ ), . -

(iii) There exists a basis (ej, e5) of M@P such that pig, , splits in this basis. Moreover,

pr=1 is ordinary at v° and the line stabilized by Gg,, lifts e},.

Proof (i) According to Proposition 2.5, there exist gy, iy € Gy such that the order
of both b(gy) and ¢(ho) in R is one. By [37, Proposition 2.2.1]

(a9 ®(gho)/F(goho)
”T=1(g)‘(z<go,g> ag) )

is a representation of Gp. Since b(Gr) c mg and the order of b(go) in R is one, the

Heh) _ b8 Frac(R) is non-negative. Hence, ;(;’};"0)) = 28 jsan

%(go-ho) Z(g0)~ )
element of R. However, }’f((;;f;loo))

(ii) Since for all g € Gr, X(go, g) € mx,_,, the residual representation of p,—; has the
follOWing form g~ ( ¢(0g) n(g) ), where ;7/(/5” is a non trivial element Ole (F, ¢/¢0)

¢°(2)
. N 7 2 - T(gho) _ b(g)
Proposition 2.5 implies that b(Gng ) € m%. Thus, forall gin GHW:), Rk = T

order of

is invariant by 7, so it belongs to R;-;.
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T(gho) _ b(8) ioi ;
Tlaohe) = T(ey 1§ invariant by 7, so that it belongs to mx__,. Hence,

E(go)
= \Gal(H/F
185, =050 n/¢, < H'(H.Qy) .

On the other hand, the restriction inflation exact-sequence yields the isomorphism
ray 1 o o a
H(H,Q,) 807 = H'(F, /¢, hence 1/9° < H'(F.9/¢")a,,,.

0

mg. Moreover,

I

(iii) Observe that p,-; is conjugate to P|OG;1 by the matrix ( 1/'bvggoi<1> ), so the rep-
resentation p,-; ® K is ordinary at v°. Since the representation p|, . splits (i.e.,
n/¢° e H'(F,$/¢")G; , )» Re-1 contains the eigenvalues of p_; (0 7'yo0) and p,-1 ® L
is ordinary at v?. Then by using similar arguments to those already used to prove [3,
Proposition 5.1], we deduce that p._; is ordinary at v7. ]

Lemma 4.2  Let 7. = (@, d., €x. ) be an element of ty__, and w be a place of H above
v°. Then we have the following.

(i) Forany g in G, the restriction of the function h — X.(h, g) to the decomposition
group Gy, is trivial.
(i) The function X (-, x) is trivial when one of its components belongs to

Gal(Q/H.. ).

Proof (i) Let g be any element of Gr and w be any place of H above v°. Then
Lemma 4.1 (iii) implies that X(h, g) € m3, _ when h € Gy,, since 1|, = 0. Hence,
the function h — X, (h, g) is necessarily trivial on the decomposition group G, .

(ii) Let M, (resp. M,s) be the maximal abelian unramified outside v (resp. v9)
pro-p extension of H. By class field theory, Hoo,, (resp. Heo,yo) is the fixed field by
the torsion part of Gal(M,/H) (resp. Gal(M,+/H)). Since X( -, *) is bilinear on
Gu x Gy, the assertion follows immediately from the fact that any homomorphism of

Hom(Gp, Q,) unramified outside v (resp. v?) factors through Gal(He,,/H) (resp.
Gal(Hoo,ye [H)). [ |

The purpose of the following two lemmas is to explain the ordinariness of the ele-
ments of t¢__, at all prime places of H lying over v and v.

Lemma 4.3 Let a: Ry - Rooy /w3, be the canonical projection; n, = (a',d’, x")
the pseudo-deformation obtained by the composition a o x,_,; w' a place of H above
v%; and I, the inertia group at the place w'. Then for any h' in I, N Gal(Q/Hc ),
a'(h')=1

Proof Let p] be the representation obtained by the composition & o p,-; and let
= (¥ () ot ; ; _
pi(g) = ( (e) d'(2) ) lie the reagzatlon of p! in a basis (u1, u3) ofMQP[E].
We have b/(g) = a(R(g, ho) [7(g0, ho)) and (g0, £) = ¢'(g).
On the other hand, as a result of Lemma 4.1 (iii), p|g, , = ¢®¢° in the basis (e}, )

of M@p, and that p! is ordinary at v° in a basis (1, v,) of M@F [¢] lifting (e, €3).
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Let h be an element of I,,c N Gal(Q/H..) and ( j::g:; ZZE:;

in the basis (41, v2). Then a”(h) = 1and b"(h) = 0. According to Lemma 4.2, we
have ¢’(h) = 0, and hence a direct computation shows that a”’ (h) = a’(h) = 1.

Now if w' is another place above v such that g(w{) = w' for g € Gal(H/F), then
the assertion follows by using a similar argument for the basis (u1, (p7) ' (g)v2). W

) the realization of p{

Lemma 4.4 Let w be a place of H above v and nl. = (a’,d’, x") an element of tn__,.
Then for any g in Gal(Hos/F) and h' in Gal(Q/H.. ), d'(gh’g™") = d'(h') and d' is
trivial on I, N Gal(Q/H., ), where I,, is the inertia group at the place w.

Proof Let h denote the element gh’g™!. Since x'(-, -) is trivial when one of its
components belongs to Gal(Q/H ) (see Lemma 4.2), we obtain

d'(h)=d'(gh'g™) =d'(g)d'(W'g™") +x'(h'g ™", g)
=d'(g)d'(h)d' (™) + ¢(W)x'(g7.8).
A direct computation shows that d’(gg™) =1 = d'(g)d’'(g”") + x'(g"', g) and
¢(h') = ¢°(h'). Hence, d'(h) = d'(R')(1-x"(g7', ) + ¢(h')x'(g ™", g) = d'(K").
As the Galois group Gal(H/F) acts transitively on the places of H above v, the
assertion stems directly from the above discussion and the fact that dl’ . =1L ]

4.2 Tangent Space of R,_;/m, and Proof of Theorem 1.2

Let 7, = (@, de, %, ) be the pseudo-deformation induced by the canonical projec-
tion 7’: Roop > Ry /(my, mﬁzpl).

We have seen in Lemma 4.2 that X, is trivial when one of its components belongs
to Gal(Q/Ho ), s0 on Gal(Q/H., ) the pseudo-deformation . is equal to (., ., 0),
where @, d, are characters on Gal(Q/Ho,). Let N, denote the splitting field over
Gal(Q/Ho,) of 4. ® d..

Theorem 4.5 Let 1, = (@, d., %.) be the pseudo-deformation induced by the projec-
tion 7': Ryoy > Reey/(mg, m3, ).

(i) No is an unramified abelian p-extension of Ho, and the action by conjugation
of Gal(He /F) on Gal(Neo /Hoo ) is trivial.

(i) Assume that (G) holds. Then the pseudo-deformation n. = (4, d., X ) is trivial.

(iii) Assume that the rank of the finite type Z,-module Gal(Lo/Ho) is zero, i.e.,
Gal(Lo/Ho, ) is a finite group. Then the pseudo-deformation m, = (@, de, %. ) is trivial.

(iv) Assume that (G) holds or Gal(Lo/Hoo ) is a finite group. Then the morphism
k*: A - R, is an isomorphism and the ramification index e of C over W at f is
exactly two.

Proof (i) Let gbean element of Gal(Ho, /F) and h an element of Gal(Q/H.. ). Since
det 7, = det 7 and X, is trivial when one of its components belongs to Gal(Q/H., ),
Lemma 4.4 implies that 7.(ghg™") = @.(h) and d.(ghg™") = d.(h). Hence the ac-
tion of the Galois group Gal(Ho/F) on Gal(Ne/Ho ) is also trivial.
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Since det 7, = det 7, it follows from Lemmas 4.3 and 4.4 that the restriction of both
@ and d, to I,, N Gal(Q/H.,) is necessarily trivial, where w is any place of H above
p. Thus, the algebraic extension No, /Hoo is unramified at the primes above p.

In addition, [3, Proposition 7.1] implies that the image of I, N Gal(Q/H., ) by @ is
finite (so trivial), where £ # p is a prime number. Therefore, the extension N /Heo
is everywhere unramified.

(ii) Since the abelian p-extension N /Ho, is everywhere unramified, N is a sub-
field of Lo, and since Gal(Heo /F) acts trivially on Gal(Neo/Ho ), Noo is contained
in the subfield Lo. Moreover, by assumption, Ly is an abelian extension of F”’, hence
N is an abelian extension of F”'.

It follows that (77c )| (@) factors through Gal(No/F"), which is an abelian
group. Thus, a.(gh) = d.(hg) implying that X, is symmetric bilinear and is trivial if
one of its components belongs to any inertia group I,, (w is any place of H above p).

Since the Galois group Gal(H.,/F") can be expressed as the product of all its in-
ertia subgroups for the places of H above p, the function X, is necessarily trivial on
Gal(Ho /F") x Gal(Ho /F").

In addition, the number field F” is a finite abelian extension of H. Then X, is
trivial on Gy x Gp. If the pseudo-deformation 7, is not trivial, then 7, is a generator
of the tangent space of R,_; (since the tangent space of a discrete valuation ring is
always of dimension one). However, this contradicts the fact that X defines a nonzero
bilinear map of Gy x Gy (see Proposition 2.5 (i)), since there exist two elements go
and hg such that X.(go, ko) is non zero and (X(go, ho) has order 1 in the discrete
valuation associated with R,-;). Hence, 7, is necessarily trivial, and the assertion
follows immediately.

(iii) By assumption and referring to the discussion above, N is a finite extension
of Hoo, 0 Noo = Hoo (since @p is a torsion-free group). Therefore, we complete the
proof with a similar argument as above.

(iv) Since the tangent space of R,_;/(m, ) is trivial, the local homomorphism

KA — Ry

is unramified. On the other hand, the local homomorphism k*: A > R, is flat, and
hence it is an étale morphism between complete local rings having the same residue
field. Therefore, it is necessarily an isomorphism. ]

5 Pseudo-deformations of p and Base-change F/Q

Let hg be the p-ordinary Hecke algebra of tame level N constructed by Hida [21], and
let p ¢ be the closed point of Spec hg[1/p] corresponding to the system of eigenvalues
for Hecke operators associated with f. Denote by hq,,, the completed local ring for
the étale topology of Spec hg[1/p] at a geometric point corresponding to pr. Let hg
be the sub-algebra of hq generated by the Hecke operators Uy, T, and (£) for primes
¢ not dividing Np.

Proposition 5.1  There exists an isomorphism between J and hq,y .
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Proof The weight one form f corresponds to a point x € €°"%%, where C°*¢* is the
cuspidal locus of the ordinary locus of @ord (@ord:0 js a Zariski closed subset of €°™%).
It is known that h{, is an integral model of €, i.e., €>*** = Spm h{[1/p]. Denote
by h{@,pf for the completed local ring for the étale topology of Spec hg, at a geometric
point corresponding to ps N hb. Hence, the results of [16, §7] and [3, Proposition 7.2]
imply that there exist isomorphisms h(’@’pf ~ T and h(’@,pf ~ hg,p,- [ |

Remark 5.2 If A is a Noetherian complete local ring, then A is a Nagata ring, and
hence any localization of A is also a Nagata ring. Moreover, the completion of a re-
duced Noetherian local Nagata ring with respect to its maximal ideal is always re-
duced. On the other hand, if A is reduced (resp. Nagata), then the strict henselization
AP of A is reduced (resp. Nagata). Hence, hq, n h@,pf’ To-0rd and T are reduced
local rings.

Proof of Theorem 1.3  The representation p associated with f is dihedral, so the in-
volution w fixes the height one primes ps of hqg,w associated with f. In addition,
after the identification R ~ T, the action of w on T coincides with the involution
T [18, §3], [24, §2].

There exists a pseudo-character Ps,: Gg,np — hg such that PshQ(Frobg) =T,
for all primes € + Np [21]. Let q + Np be a prime ideal of Of. Then the base-change
morphism f3: hr — hq sends the Hecke operator T to Ps,, (Frob, ).

Let n denote the height one prime ideal f7'(ps) of hp, so that the morphism f
induces a morphism of complete local rings f: T°" — T and the values of 3 are in
T+, where T, is the subring of T fixed by 7.

On the other hand, there exists a pseudo-character Ps,,: Gr - hp of dimension
two such that Psy,, (Frobg) = Ty for all prime ideals q + p of O [23]. Let

PSTord : GF —_— Tord

be the pseudo-character, given the composition of Psj, with the localization homo-
morphism hp — T, It is apparent that Psyo lifts the pseudo-character ¢ + ¢° and
B (Pstora) = Tr(pa)|g,» since B(Psy,) = (Psig ), -

Let S be the total quotient ring of the reduced local ring T ( T°*¢ c S). Then
S=1I ']I‘gfd, where p; runs over the set of minimal prime ideals of T°", and it is
known that each p; corresponds to a Hida family passing through E; (¢, ¢°). Since
T is a noetherian ring, T* has a finite number of minimal prime ideals.

A result of Wiles [37] indicates the existence of a unique semi-simple Galois rep-
resentation ps: Gr - GL,(S) ordinary at v and v°, and such that Tr(ps) = PSor.
Since ¢(yo) # ¢?(yo), Hensel's lemma implies that the eigenvalues of ps(y) are dis-
tinct (they belong to T°™). Thus, we can find a basis B of Mg in which pg(y,) is
diagonal and (ps ) g, is upper triangular with an unramified quotient.

In fact, Lemma 3.3 implies that the coefficients of the matrix of the realization of p
in the basis B rise to an ordinary pseudo-deformation 7tpea = (a, d, bc): Gp — T
of 1. Note that the action of A fixes n and denote by Toora the push-forward of 7o via

the canonical surjection T°™® — T, Subsequently, the trace of Topera is invariant by
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the action of A and Topera is @ point of &(TS"Y). Thus, there exists a unique morphism
h: RYy — T3 inducing the pseudo-deformation 7.

By construction, we have h(Tr 77 (Frobg)) = T, for q + p, so the homomorphism
h is surjective, since the topological generator {T}q4p, Up and Upe over A of T3
are in the image of h (the fact that ¢|g,, # gbl"GFV implies that Uy, Upe € im h).

According to Theorem 1.1, we have the isomorphisms T, ~ R,y =~ erP: 4+ Moreover,
according to Lemma 3.3, RP* is topologically generated over A by Tr nP°(g), where g
runs over the elements of Gr. Therefore, the morphism f: To¢ — T, is surjective,
since the morphism f37 sends T to Tr p5(Frob,).

Since the trace of (ps)|g, is invariant by the action of o, 35 factors through TS,
so the Krull dimension of T3 is at least one. In addition, the Krull dimension of the
Hecke algebra hy. is two, hence T°™ is of dimension one and TS is also of dimension
one.

It follows from Theorem 1.1 that the tangent space of RP’, is of dimension one,
and since TS is equidimensional of dimension 1, the surjection hi: RFS, - T3 is
necessarily an isomorphism of regular local rings of dimension one. ]

Let O be the ring of integers of a p-adic field containing the image of ¢. After an
extension of scalars, one can assume that the p-ordinary Hecke algebra hq,, contains
O, and hence hg,  is an object of the category CNLp.

Assume until the end of this section that the following hold.

« p > 2 and the restriction of p to Gal(Q/Q(y/(-1)(?=D/2p)) is absolutely irre-
ducible;

« there exists an element y, € G, such that ¢(y0) = ¢ (y0);

« the character ¢ is everywhere unramified.

Thus, we are able to use the results of Taylor and Wiles [38] to claim that the p-or-
dinary Hecke algebra hg,  is isomorphic to a universal ring R°™, representing the
p-ordinary minimally ramified deformations of p to the objects of CNL.

Definition 5.3 Let Abearingin CNLg, let £ be the set of primes of F lying over p
and @, andletd: G rx > AandX: Gp 3z x Gp,z — A be continuous functions forming
a pseudo-representation. We say that 74 is a pseudo-deformation of @ = (¢, EU, 0) if
and only if 74 mod my = 7. Let &9: CNLy — Set denote the functor of all pseudo-
deformations 74 = (a4, da, X4) of 7 that satisfy the following conditions.

(i) Forall h e Gp, and h' € Gg .z, xa(h', h) = 0.

(ii) da(g) =1ifgel,.
(iii) Trma(t™'gt) = Trma(g) for each tin Gg and g € Gr 5.

Lemma 5.4 (i) Let A be an object of CNLo, and ms = (aa, ds, X4) a pseudo-
deformation of . Then m, depends only on the trace Trmy = d(g) + d(g) and the

determinant detmy = a(g)d(g) — X(g. g), as follows:

~ T - AT ~ T -MT
aa(g) = rﬂA(in)l—Az D), Gy - W(yoga)z—)tll s,
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where Ay = @(yo) and A5 = d(yo) are the unique roots of the polynomial
X? —Trma(yo)X +detma(yo).

(i) The functor ¢ is representable by (RP®, mrges ).

Proof (i) The same proof as in Lemma 3.3.

(ii) The functor B satisfies Schlesinger’s criteria. The only non-trivial point is the
finiteness of the dimension of the tangent space of &, and this is provided by the
same argument as in [34, Lemma 2.10], since HI(GF,;,a/EU) has finite dimension.

|

Hensel’s lemma implies that there exists a basis B pora of Mpora such that the uni-
versal p-ordinary deformation satisfies prora (y0) = (3 2) and (p Rord)‘GQP =(g%)in
this basis.

Therefore, by using similar arguments to those already applied to prove Lemma 3.7,
there exists a morphism a: RP® — hg,,, that factors through haﬁ; and induces the
pseudo-deformation of 77 associated with (pgera )|, in the basis B pora.

The local ring RP* is isomorphic to the completed local ring for the étale topology
of Spec RP* ata @P—point corresponding to the pseudo-deformation 7 of 7.

Remark 5.5 It follows directly from Lemma 5.4 that RP*® is generated over the Iwa-
sawa algebra Ao ~ O[[ T]] by the trace of the universal pseudo-deformation (see [37,
p. 564] for more details).

Now by Theorem 1.3 and the exact same arguments that were used to prove [9,
Theorem 3.10], we deduce that the morphism a: RP* — hg™, ! is unramified at non
max1ma1 prime ideals. Hence we obtain the following corollary without assuming
that ¢|1 # lasin [9, Theorem B].

Corollary 5.6  Assume that the following conditions hold for p.

(i) The character ¢ is everywhere unramified.

(ii) p is p-distinguished and the restriction of p to Gal(Q/Q(~/(-1)(»~D/2p)) is ab-

solutely irreducible.

Then the image of the base-change morphism f3: hgp — h“’=l has a finite index, and the
image of the morphism a: RP® — hg™y ! is contained in 1mﬁ and has also a finite index
inh ).

6 Deformation of a Reducible Galois Representation and Proof of
Theorem 1.5

The Hecke algebra hp is reduced, since it specializes to level one Hecke algebras (which
are reduced) for infinitely many weights k > 3 (see [24, p. 279] for more details).

Lemma 6.1 The ring T™°™ is equidimensional of dimension three.
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Proof Since the reduced nearly ordinary Hecke algebra %™ is a finite torsion-free
module over the Iwasawa algebra of three variables A%°™ = O[Ty, T3, T3 ]] [23, p. 119],
every irreducible component of Spec #°™ has Krull dimension equal to four. Thus,
T"-°rd i5 an equidimensional ring of dimension three. u

Let A be an object of the category € and p4: Gr — GL,(A) be a deformation of p.
Then we state that p4 is a nearly-ordinary deformation at p, if

o Vya * ~ Vo, O
(PA)\GFV _( 0 V/:/’A) and (pA)‘GFV,, - ( * W:UA)’
where v  isa character lifting ¢, and yy, , isa character lifting ¢/, , . Moreover,
if y; 4 and y, , are unramified, then we say that p4 is ordinary at p.

Definition 6.2 Let D™°™: ¢ — SETS be the functor of strict equivalence classes of
deformation of p = ( f: ¢'15 ) that are nearly ordinary at p, and let D™ be the subfunctor

of D04 of deformations that are ordinary at p.

Since p'is not semi-simple and ¢ (Frob, ) # ¢ (Frob, ), Schlesinger’s criteria imply
that D™rd (resp. D) is representable by (R™°™, ppaona ) (resp. (R, pgora)). The
determinant det pgora is a deformation of the determinant det 77, so R°¢ is endowed
naturally with a structure of A-algebra (since the quadratic real field F has a unique
Z,-extension).

6.1 Nearly Ordinary Deformation of a Reducible Representation

There exits a pseudo-character Ps;noa: Gp — h°rd of dimension two such that for
all prime ideals q + p of Op, Psh:.ord(FrObq) is the Hecke operator T; and Psnoma is
the trace of a representation of dimension two with coefficients in the total quotient
ring of hl‘é"”d (see [23] for more details). Let Pspuoa: Gp — T™° be the pseudo-
character of dimension two obtained by composing Ps,»...a with the localization mor-
phism A0 — T™-rd_ Tt appears that Psyn.o lifts the pseudo-character Trp = ¢ @ ¢°.

Let Q(T™°') := ]S/ be the total quotient ring of the reduced noethrian ring
Toord(rord ¢ Q(T™0rd)), so Q(T™¢) = [T ’]I‘%‘i"rd, where §; runs over the mini-
mal prime ideals of T™°™, It is known that each §; corresponds to a nearly ordinary
p-adic family passing through the weight one form E; (¢, ¢7).

Moreover, there exists a unique semi-simple Galois representation

po(rnerty: Gp —> GLy(Q(T™'))
satisfying Tr(p g rn.ora)) = Pspn.ora.

Since

Up(Er(¢,¢°)) = ¢° (Froby).Er(¢, ¢°),  Upe (Er(, ¢°)) = ¢(Frobye ).Er(6, ¢)

(see Lemma 4.1), it follows from the results of Hida [23] that (pq(pnor))|g,, (resp.

(Po(rnor))|G,, ) is the extension of a character Y, oa , (1€SP. Yoo o) lifting (pl‘TGF

(resp. @G, , ) by a character Y/, ora ,, (T€SP. Yl ora 0 )-
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Let y; € G, such that ¢(y;) # ¢°(yg). Hensel's lemma implies that the eigen-
values of po(rnea)(yg) are distinct and belong in T™°™. Hence there exists a basis
(e1', e5) of M (rnoray such that p‘g(dT,,‘o,d)(y(']) =(§9%)and (PQ(Tn.ord))lGFvu = (0
in this basis.

Let a, b, c, d be the coefficients of the realization of p(yneray by the matrix in the
basis (ej’, ) of Mg(gneray, and let B and C be the T™°™-submodules of Q(T™")
generated respectively by the coefficients b(g) and ¢(g’), where g and g’ run over the
elements of Gr.

Let Myn.ora be the maximal ideal of T*°"4 and Ext}@ (Ge] (¢°,¢)c, , bethesubspace

pLYFE v

of Ext}@ (G ](gb", ¢) given by the extensions of ¢ by ¢ which are trivial at Gg , .
P F

The following proposition is a generalization of [2, Proposition 2].

Proposition 6.3  One always has
(i) Hompn.ora (B, @p) injects T™°"linearly in Ext}@ G ](gb", A 3
pLOF ve
(i) Bisa T™°"-module of finite type and the annihilator of B is zero.

Proof (i) Since T™°™ is a complete local ringand ¢(y5) # ¢°(y5), a(ys),and d(y})
are the unique roots of the polynomial X* — Tr pg (raray (o)X + det p(pmoray (¥5)-
Hence, a(y})) and d(y}) belong to T™°*4, Thus, as in Lemma 3.3, the coefficients a, d,
and b(g).c(g") canbe obtained exclusively from the trace Pspn.ora and the determinant
det pq(n.oray. Moreover, the reduction of Pspn.oa is ¢ + ¢°. Hence, (a,d, bc): G —
T™-°r4 js a pseudo-deformation of 77 = (¢, ¢°,0),and a — ¢, d — ¢° and b(g)c(g’) are
in Mn.ord.

Denote by b the image of b in B = B/t n.ora B. We have a group homomorphism
G- ( Q;" gp),givenbyge ( ﬁ bq(s?,')).

Since the restriction of b to G,, is trivial in our basis, we obtain a morphism

j: Hompaoa (B/MpaeaB, Q,) —> Ext}@p[ (8% ®ar,

that associates a homomorphism f: B/MpnoaB — @p with the cohomology class of
"

the cocycle g — f(b(g)) (since b(g)c(g’) € Mraoa). The choice of the basis e/, e
of M (n.oray implies that the cocycle g — f (b(g)) is trivial on Gp,, .

Subsequently, we will prove that j is injective. First a direct computation demon-
strates that

‘-1

b(yogy,'g ™) =

be) (908)
gV oo (ve)

which implies that B/m . B is generated over T™°™ by the elements b(g), when g
runs over Gy = ker ¢/¢7 (yhgys'g™" € Gy since H/F is cyclic).

Now let f be an element of Homrpu.ora (B/tpnea B, Q) such that f (b) is equal to
zero in Ext}@P[ Gr] (¢°.¢)c;,, - Then f (b) is a coboundary and the restriction of f(b)
to Gy is trivial, since H is the splitting field of ¢/¢?. However, B/t pn.oa B is generated
by {b(g), g € G}, therefore f is necessarily trivial.
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(ii) Since the representation p g (n.oray is semi-simple, [2, Lemma 4] implies that B
is a finite type T™°"4-module.

The pseudo-character Ps pnora TisES tO totally odd representation

prgont Gr ~ GLy(Q(RE)),

where Q(hfé"’rd) is the total fraction field of h%“’rd. We have Q(hg'ord) =[13;, where
J; runs over the fields given by the localization of A%°" at the minimal prime ideals of
h°rd (each J; corresponds to a nearly ordinary Hida family). There exists a basis of
Mg (pnoray in which pynea(c) = (§ 9). Leta’,b’, ¢, d’ be the entries of the realization
of pyn.ora by @ matrix in this basis. The functions a’,d’,and b’c’ depend only on the
trace Ps nord and the determinant det p pnord and the values of the functions a’, d’, and
b'c’ are in hi-ord,

Since the non critical classical cuspidal Hilbert modular forms are Zariski dense
on each irreducible component of Spec h-°"4, for each field J; there exist g;, g} in
Gp, such that the image by projection of b’(g;)c’(g}) is not trivial in J;. Thus, all the
representations pg; given by composing pq(rneay with the projections [] T%}ord -
Si= T%‘iord are absolutely irreducible, so the image of B in each S/ is non zero. Hence,

Tmord

we can conclude that the annihilator of B in is zero. [ |

Corollary 6.4
12

(i) The T™°"Y-module B is free of rank one and there exists an adapted basis (e, e}
of M (paoray such that B is generated over T™°™ by 1.

(ii) In the basis (e;’, ), the realization p o (pnoray(y ) is diagonal and the represen-
tation po(nemay: Gp = GLy(T™°™) is a nearly ordinary deformation of p.

Proof (i) Since
Extg 16,1(9%)ar,, = H' (F.¢/¢")cx,
Propositions 2.5 and 6.3 (or [4, Proposition 5.1]) attest that the dimension of
1 o
Ext@p[GF] ((/) 5 ¢)GFV"

is one and dim= B® Q, < 1.
q, »

Since we proved in Proposition 6.3 that B is a non zero finite type T™°"4-module,

Nakayama’s lemma implies that B is a monogenic T™°"-module. Moreover, the fact
that the annihilator of B in T"°"¢ is zero yields that B is a free T*°"¢-module of rank
one. Thus, by rescaling the basis (e;’, €;), the representation p g (pn.ora) takes values in
GLz(Tn'Ord).

(ii) Since any representation isomorphic to an extension of ¢ by ¢ trivial on Gg,,
is necessarily isomorphic to p; i.e.,

. 1 _
dlm@P Ext@p[GF] (% ¢)6r, =1

(i) implies that pg(neray: Gr = GL (T“"’rd) is a deformation of p, and by construc-
tion pg(noray is nearly ordinary at v7.
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On the other hand, the deformation pq(pnoy: Gr — GL,(Q(T™°r)) is nearly
ordinary at v and ¢(Frob, ) # ¢°(Frob, ). Thus, by using the same arguments already
applied to prove [3, Proposition 5.1], we deduce that pg(pnoay: Gr = GL, (Tord) js
ordinary at v. [ |

6.2 Tangent Space of D™°rd

Let tpnoa (resp. tpora) denote the tangent space of pn-ord (resp. Dord) The choiie of
the basis (e, e5) of M@p defined in Lemma 4.1 identifies End@p (M@,, ) with M»(Q,).
Since pjg, , splits completely in the basis (], €3 ), we obtain the following decompo-

sition of Q,[Gr,, ]-modules

(6.1) (adp)iG,, =Q, @ ¢/¢° @ ¢ /9@ Q,, (24) > (a,b,c.d).
Let W5 be the subspace of ad p given by the following elements

W5 = {ge End@P(M@p) | g(er) © (el)}.

By composing the restriction morphism H'(F,adp) — H'(F,s,adp) and the
morphism b*: H'(F,+,ad p) — H'(F,s, $/¢?) (obtained by functoriality from (6.1)),
we obtain the natural map

H'(F,adp) LN H'(Fye, ¢/%).

Let P = Q,[¢7/¢] be the Q,[ Gr]-module of dimension one over Q, and on which
Gr acts by ¢7/¢. Since p is reducible, W5 is preserved by the action of ad p and we
have a natural Gp-equivariant map given by the quotient of ad p by W:

- C = . .
(6.2) adp — Qy[¢7/¢], (£5)—c
Let v: H'(F,$°/¢) — H'(F,,$°/$) denote the natural morphism given by the

restriction of the cocycles to Gr,, and C*: H'(F,adp) <, H'(F, ¢°/¢) be the mor-
phism obtained by functoriality from (6.2). By using a standard argument of the de-
formation theory, we achieve the following result.

Lemma 6.5 We have the following isomorphism:
(voC*,B*) - -
tpnoa = ker( H'(F,ad p) ——— (H'(F,, ¢°/¢) ® H'(F,e, ¢/¢7))).

We have an exact sequence of@P[Gp]—modules: 0 - Wz —»adp - P - 0. Since
¢°/¢ # 1, H(Gr, P) = {0}, we have the following long exact sequence of group
cohomology:

(63)  0— H'(F,Ws) — H'(F,adp) — H'(F, P) — H*(F, Wy).

We will show that H*(F, W5) is trivial. First, we start by computing the dimension
of H'(F, W) in order to use the global Euler characteristic formula to deduce that
H?(F, W5) vanishes.
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Under the identification End@P (M@P )~ M, (@P), W is the subspace of the upper

triangular matrices of M, (@P). Since p is reducible, the space
W= (g e Endg (Mg )| gler) = 0,(e2) < (e0)} « Wy

is stable by the action of G, and the adjoint action on this sub-space is given by ¢/¢°.
Under the identification Endg (M ) M (Q,), W0 is the subspace of M,(Q,)

given by the strict upper trlangular matrlces anditis 1s0m0rph1c asaQ »[Gr]-module

to Q,[¢/¢°]. Therefore, we obtain the following exact sequence of Q[ Gr]-modules:

0 — @p[(b/gb”] - Wy - @; — 0. Hence, there exists a long exact cohomology
sequence
(64) 0— H'(F, Wy) — H'(F,T@,) > H'(F, ¢/¢") — H'(F, W)
—2
— H'(F,Q,) — H*(F. ¢/¢°).
Lemma 6.6 (i) The cohomology group H2(F, ¢/ ¢°) is trivial.
(ii) One always has dimg H (F, Wy) =3.

Proof It follows from the global Euler characteristic formula that
dimH(F, ¢/¢7) - dimH'(F, ¢/¢°) + dimH*(F, ¢/¢°)
~ Y dim(@,)% - [F:Q],

v]oo
Since ¢/¢? is a totally odd character, the relation above yields that
—dimg H'(F,$/¢°) + dimg H*(F,¢/¢") = -2
It follows from [4, Proposition 5.2 (ii)] that dimg HI(F ¢/¢?) = 2, and hence
H?(F, ¢/¢°) is trivial. Finally, F is a real quadratic ﬁeld so F has a unique Z,-ex-
tension and dimf H'(F, @;) =2, dimg Hom(Gp,@p) = 2. Thus, the long exact
sequence (6.4) 1mp11es that dimg H (F, W 5) = 3. [ |

Corollary 6.7 (i) The cohomology group H?(F, W) is trivial.
(ii) There exists an exact sequence

0 — H'(F, Wy) — H'(F,adp) <, H'(F, ¢7/¢) — 0.
Proof (i) This follows from the global Euler characteristic formula that
dimQ O(F, Wy) — dimg H(FW)+d1m H(FW)
=3 dlmQ (W~)GFV -[F:Q] d1m Ws.

v|oo

Thus, the assertion results directly from the fact that p is a totally odd representa-
tion and dimg Hl(F W5) = 3.
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(ii) Since HZ(F » W5) = 0, the long exact sequence (6.3) is unobstructed. [ |

Theorem 6.8 One always has dimg tpnoa < 3 and dimg tpea < L
Q, Q,

Proof Proposition 6.6 and the long exact sequence (6.4) generate the following exact
sequence:

(65  H'(F.Q,) > H!(F,¢/¢7) — H(F, Wy) — H!(F, Q) — 0.

A direct computation shows that the image of § is of dimension one over @p.
Now we will add the local conditions at v and v? arising from nearly ordinary
deformations to (6.5):

1

HY(F,Q,) —>> H\(F, ¢/¢°) —— H'(F, Wy) —— H(F,Q,) — 0

H!(Fye, ¢/¢7) —= H'(Fye, ¢/¢7)

where t is the map given by restriction of the cocycles to Gp,, .
First, we will prove that the composition of B* with i is not trivial by proceeding
by the absurd.
Let p; be a cocycle representing a cohomology class of H'(F, W5) lying in the im-
age of i. Subsequently, we can modify p; by a coboundary with the aim that p;(g) =
9 %). The function b — b(g) is a cocycle and its cohomology class belongs to

H'(F, ¢/¢?). Suppose that cohomology class of (%) is non trivial, i.e., (§ %) is

not a coboundary, and belongs to ker(H' (F, W5) A H'(F,s, ¢/¢°)). Following this

scenario, b can be modified by a coboundary so that b = Ay/¢?, where A € @;
(see Lemma 4.1). A direct computation demonstrates that the cocycle p;(g) is the
coboundary given by ¢ — p(g)Ap(g) ™ — A where A:= ().

As a consequence, there is a contradiction, since we had assumed that p; is not a
coboundary. Therefore, we obtain that

dim@p ker(H'(F, W) LI H'(F,0, ¢/¢%)) = 2.

The exact sequence presented below follows from Corollary 6.7, Lemma 6.5, and
the above discussion:
(6.6)

0 —> (ker(H'(F, Wy) 2 H'(Fyr, $/¢7))) — tomon > H'(E, §°/$)c,

Since dim H'(F, ¢°/¢)g,, =1, it follows from (6.6) that dim@p tpnod < 3.

To compute the dimension of tp e, the extra conditions of ordinariness at p need
to be added to fyn.ora, which appear in the filtration Wi as follows. We have a natural
map of@P[GFVa ]-modules. (See (6.1).)

adﬁ—>@p, (‘ZZ)»—)(I,

and inducing by functoriality a map A*: H'(F,adp) - Hom(Gp,,,Q,).
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We have the following inclusion:

(voC*,B*,A*)

tpora € W = ker( H'(F,adp)

(H'(F,,¢"/¢) ® H'(Fy0, ¢/¢°) ® Hom(Gp,, ,@P)))

(B*,A)

Let W, denote ker(H'(F, W5)
lowing exact sequence emerges:

H'(F,s, ¢/¢°) ® Hom(Gp,,,Q,)). The fol-

(6.7) 0> Wy > W -5 HI(E, ¢°/d)cr,

Therefore, the isomorphism ker(H'(F, W) Z, H'(Fyo, ¢/¢%)) = HI(F,@;) (com-
ing from the above discussion) implies that W} is of dimension one over Q, and

Any cocycle p; € W, satistying the condition of ordinariness at p is necessarily
a homomorphism in H'(F ,@p) that is unramified at v, so trivial (since F is a real
quadratic extension of Q, F has a unique Z,-extension). Thus, the exact sequence
(6.7) yields that dim@P fpora = dim@P W-1<1. [ |

Proof of Theorem 1.5

The p-nearly ordinary deformation pg(gneay: Gp — GLy(T™™) of p yields a
canonical morphism:

(68) Rn.ord N Tn.ord.

Letn; := n™0 q A%ord and /T‘(‘l'g’rd be the completed local ring for the étale topology

of Spec A‘(‘D'"ml at a geometric point corresponding to 1;. Since h%°" is a torsion-free
A%°"_module of finite type, we gain (after localization) a finite torsion-free mor-
phism w: /T?l'g"d — T™°™, On the other hand, the local ring T°™ is endowed nat-
urally with the structure of a A-algebra originating from the finite flat morphism
Ao — hg (see [23]).

The ring R™°rd has a canonical structure of Xr(ll';’rd-algebra (see [4, §6.2]), and

the morphism (6.8) is a morphism of X‘(‘i;’rd-algebras. Moreover, the ring ngz‘tlp =

R2-0r [t 5, 0ra R7-T represents the largest p-ordinary quotient of R™°™ of determi-
o

nant equal to det p [4, §6.2].

Proposition 6.9 (i) The morphism (6.8) yields an isomorphism of regular rings
:Rn.ord ~ Tn.ord.
(ii) There exists an isomorphism between local regular rings R4 ~ T,
(iii) There exists an isomorphism Rord ~ R
(iv) There exists an isomorphism R4 p = Tord /m, TOrd ~ Tn-0rd /m;,(,i;rd']l‘“"’rd.
Proof (i) First, it needs to be demonstrated that the morphism (6.8) is surjective. By
construction, the Hecke algebra T™°" is generated of A?l‘;"d by the Hecke operators
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Ty with g + p, U, and Uye. The morphism (6.8) sends the trace of pgu.ea (Frobg) to
Ty when q + p. Otherwise, the restriction of pgaea to G, for all primes p; | p of F

is an extension of the character 1//;’ qnora DY the character 1//; qnora> Where the image of

the character ¥, ora in Tn-ord

operator T(y), where [ -, Fy,]: IEE - Gl‘ii’_ is the Artin symbol. Thus, Uy, = [7y,, Fp, |
in the image of the morphism (6.8) for some uniformizing parameter 7, of the local
field F,,. Hence, the morphism (6.8) is surjective and the Krull dimension of R™-°r¢
is at least three, since the Krull dimension of T°¢ is three.

Finally, Theorem 6.8 implies that R™°" is a regular ring of dimension three, be-
cause the Krull dimension of a local ring is less than or equal to the dimension of its
tangent space. Therefore, the surjection (6.8) is necessarily an isomorphism of regular
local rings of dimension three, since the Krull dimension of T=2-ord i three.

(ii) This derives from (i) and the relation [4, (20)] that R°™ ~ T°'d_On the other
hand, Theorem 6.8 implies that the dimension of mgora / mﬁzord is one over @p. More-

is just the character d,, sending [y, F,, ] to the Hecke

over, the Krull dimension of T°™ is equal to one and the tangent space of T°™¢ is of
dimension one, hence T°™ is a regular local ring of dimension one.

(iii) The deformation p,-; of p (see Lemma 4.1) induces by functoriality a ho-
momorphism Rord . R._,. Since R,.; is generated over A by the trace of p,
(IRE: 4 = Riop), this homomorphism Rt R, s necessarily surjective. Finally,
since both R°™ and R,-; are discrete valuation rings, then this surjection rises to an
isomorphism.

(iv) This follows from (i), (ii), and the relations of [4, §6.2]. [ |

Let S](1,1d),r denote the space of p-ordinary p-adic cuspidal Hilbert modular
forms over F of weight one, tame level one, of trivial Nybentypus character, and with
coefficients in Q, and let S{(1,1d) ¢ [[E1 (¢, ¢?)]] be the generalised eigenspace at-

tached to E;(¢, ¢°) inside S{(1,1d)r. By construction of the universal p-ordinary
Hecke algebra hp and the Hida duality between cuspidal p-adic modular forms and
Hecke algebras, the following isomorphism is a generalization of [12, Proposition 1.1]:

Homg (T*/my T, Q,) = §{ (1,1d) £ [ Ei (¢ ¢*)].

We have the following consequence of Proposition 6.9, summarizing the overall
results of this paper.

Corollary 6.10  Assume that ¢ is unramified everywhere and ¢(Frob, ) # ¢ (Frob,).
Then the following conditions are equivalent.

(i) T™°rd is ¢tale over K‘(‘i;’rd.
(ii) To™ is étale over A.
(iii) T, is étale over A.
(iv) The ramification index e of C over W is exactly two.
(v) The Q,-vector space S{(1,1d)£[[E1(¢, $7)] is of dimension one and it is gener-
ated by E1 (¢, ¢°).
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Remark 6.11 If hypothesis (G) holds, the equivalences of the above corollary hold
as well, and every overconvergent form of S (1,1d) /¢ [[E1 (¢, ¢°)]] is necessarily clas-
sical.

7 Examples Where the Ramification Index e of C
Over W at f Is Two

Cho, Dimitrov, and Ghate provided several examples for Hida families J containing
a classical RM cuspform and such that the field generated by the coefficients of F is
a quadratic extension of the fraction field of the Iwasawa algebra A . Thus, we have
several numerical examples for which the ramification index e of € over W at f is two.

7.1 Examples provided by Dimitrov and Ghate

Denote by Ty the N-New-quotient of hg,m acting on the space of Ao -adic ordinary
cuspforms of tame level N that are N-New. Dimitrov and Ghate [17, §7.3] studied the
Hida families specializing to classical RM forms, and they gave some examples for
which the rank of T} over the Iwasawa algebra A ¢ is two. In this case, if ¥ denotes a
p-adic Hida family specializing to the classical RM form f, then the field generated by
the coefficients of F is obtained by adjoining to Frac(A ¢ ) a square-root of an element
inA O-

Their method of computation is based on the study of the specializations in weights
of two or more; specifically, they showed that the p-adic completions of the Hecke
fields of modular forms f; for the first few weights k are all quadratic extensions of
Q, (see [17, §7.3, Tables 1 and 2]).

7.2 Examples Provided by Cho

The method of computation of S. Cho [8, §7] includes the study of the unramified
specializations of hé"f‘; of higher weight in the aim to prove that h(g:nl1 ~ Ao in many
examples.

Let Hy be the Hecke algebra over Q for the space of cusp forms of weight k, Ny-
bentypus character €g, and level N; let H ,t be the maximal real sub-algebra of Hy and,
moreovet, let D, be the discriminant of H Z

A direct computation illustrates that the Atkin-Lehner involution acts on Hy as
the complex conjugation. Therefore, when p + D, the specialization of h{&; at the
weight k is unramified over O, and hence h(g:nl1 ~ Ao by [19, Proposition 8].

Thus, it is sufficient to detect examples such that the specialization of h&ﬁ; athigher
weight k is unramified over O; Cho checked this unramifiedness using the discrimi-
nant table from [18, Table 1].
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