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Abstract

Semantic segmentation is a critical part of observation-driven research in glaciology. Using
remote sensing to quantify how features change (e.g. glacier termini, supraglacial lakes, icebergs,
crevasses) is particularly important in polar regions, where glaciological features may be spatially
small but reflect important shifts in boundary conditions. In this study, we assess the utility of the
Segment Anything Model (SAM), released by Meta AI Research, for cryosphere research. SAM is
a foundational AI model that generates segmentation masks without additional training data.
This is highly beneficial in polar science because pre-existing training data rarely exist.
Widely-used conventional deep learning models such as UNet require tens of thousands of
training labels to perform effectively. We show that the Segment Anything Model performs
well for different features (icebergs, glacier termini, supra-glacial lakes, crevasses), in different
environmental settings (open water, mélange, and sea ice), with different sensors (Sentinel-1,
Sentinel-2, Planet, timelapse photographs) and different spatial resolutions. Due to the perform-
ance, versatility, and cross-platform adaptability of SAM, we conclude that it is a powerful and
robust model for cryosphere research.

1. Introduction

Since the advent of satellite remote sensing platforms in the 1970s, observational data has
grown exponentially. In the span of decades, the polar community went from having on aver-
age one image a year of a polar study site, to having (potentially) multiple images a day.
Accompanying this increase in observations is the need for efficient feature analysis.

Segmentation techniques are needed to quantify the frequency, size, and location of many
different features in glaciology – for example, icebergs, terminus position, crevasses, surface
water – particularly in rapidly changing polar regions. Traditional remote sensing indices
(Normalized Difference Water Index, NDWI) or object detection algorithms have been suc-
cessfully used to delineate features such as surface water (Chudley and others, 2021), terminus
position (Liu and Jezek, 2004; Seale and others, 2011) and icebergs (Sulak and others, 2017;
Moyer and others, 2019). However, these techniques rely heavily on image pre-processing, sen-
sor stability and homogeneous environments (e.g. seasonally variable snow or melt or sea ice
in the background will impact the classification results). To take advantage of the range of sat-
ellite sensors imaging polar regions, a segmentation algorithm that is agnostic of sensor type,
or seasonal shifts in the environment, is needed.

The resurgence of artificial intelligence in 2006 (Hinton and others, 2006), followed by the
success of AlexNet in 2012 (Krizhevsky and others, 2012), helped to jump-start machine learn-
ing and deep learning algorithms. Convolutional Neural Networks (CNNs) that focus on
object detection, semantic segmentation, and instance segmentation provide a methodology
inspired by the visual cortex to understand various scenes and identify specific objects. As a
result, CNNs have recently been used to segment surface lakes (Yuan and others, 2020), cre-
vasses (Lai and others, 2020; Zhao and others, 2022) icebergs (Bentes and others, 2016;
Rezvanbehbahani and others, 2020), glacier termini (Krieger and Floricioiu, 2017;
Baumhoer and others, 2019; Mohajerani and others, 2019; Zhang and others, 2019), and
other features. However, a major roadblock in using CNNs is that they require large training
datasets; a robust custom trained segmentation model may require 10 000 training labels. The
absence of good training data greatly impacts the performance, and thus utility, of deep learn-
ing models in the earth sciences.

The recently-released Segment Anything Model (SAM) by Meta AI Research is a foun-
dational model in the field of artificial intelligence (Fig. 1). Foundational models are deep
learning models that are built using a large amount of unlabeled training data through self-
supervised learning (Schneider, 2022). As a result, foundational models perform efficiently
for instance and semantic segmentation, object classification and detection purposes. Since
their inception in 2018, several versions of these large-scale models have been released, such
as Dall-E 2 (Ramesh and others, 2022) and GPT-3 (Brown and others, 2020). The key
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Figure 1. Description of the Segment Anything Model (SAM), which is an image encoder that outputs masks in real-time. Masks are produced for every instance
identified, along with the corresponding confidence score (image, with permission from Kirillov and others, 2023).

Figure 2. Location of the remote sensing data for SAM analysis, with highlighted figure numbers from this manuscript.
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advantage of foundational models is that they allow for general-
ization of the model through self-supervised learning and a
minimum amount of training labels as compared to CNN
models.

2. Methods

While SAM does not require training data, model performance
can be improved by adding “prompts” (see Supplementary Figs.
S1 & S2). Prompts allow the user to identify features of interest
(and features that are not of interest) and can be either points or
boxes. We quantify the performance of SAM using no-prompts
and with-prompts by calculating the F1 score for each image.
Our dataset, like most real-world datasets, is imbalanced (the
number of features being detected is not evenly balanced by
the background). As a result, the F1 metric most accurately
represents model performance. The F1 score ranges between 0
and 1; segmentation results with an F1 score close to 1 are
good. To prepare ground truth data for validation of the
model, we created manual annotations using the V7 labs
Darwin (V7Labs, 2023) application and the iPad Pro. The V7
Labs Darwin annotation tool along with the iPad Pro stylus
improves the speed, accuracy, and control on labeling signifi-
cantly (V7Labs, 2023).

Semantic segmentation is an important form of data extraction
heavily used within cryosphere research. However, the complexity
of segmenting glaciological features makes it difficult to create an
automated segmentation approach. With SAM we do not incorpor-
ate any additional training data, or pre-process any imagery. There
are currently three SAM encoders – ViT-B (Vision Transformer
Base), ViT-L (Vision Transformer Large), ViT-H (Vision
Transformer Huge) – which have varying numbers of parameter
counts. We found that the ViT-L encoder for SAM model performs

most consistently for our datasets, so all results are generated with
the ViT-L encoder (see Supplementary Fig. S3).

2.1 Data

We acquire Sentinel-1 and Sentinel-2 imagery from Google Earth
Engine (Gorelick and others, 2017). The Sentinel-1 SAR image
used in this study is obtained in Interferometric Wide Swath
(IW) mode at a spatial resolution of 20 × 22 m (pixel spacing of
10 meters) and with HH, HV, and HHxHV polarization bands.
The Planet imagery is obtained from the PlanetScope sensors
accessed via the Planet data portal. PlanetScope images are at
3 m spatial resolution. The timelapse imagery is obtained from
Stardot Technologies CAM-SEC5-B that has a Standard 4.5–10
mm Varifocal Lens (LEN-MV4510CS). Landsat-4, Landsat-5,
and Landsat-8 images are downloaded through the USGS Earth
Explorer. We chose these remote sensing platforms as they are
commonly used datasets in glaciology research. All the optical
images have an RGB band combination. To create a diverse data-
set for this analysis, we use images from different regions of the
Greenland Ice Sheet as shown in Figure 2.

2.2 Mask generation

For the no-prompt approach, individual instance segmentation
results are generated by SAM. SAM can detect multiple feature
instances within a single image such glacier termini, icebergs,
fjord walls, snow, and water. However, the model is not an object
detection model. The model does not recognize that these features
are icebergs, sea-ice, terminus, land, water, or something else. The
user needs to provide the context of what is present within the
image, similar to how most deep-learning models operate. A
potential future enhancement of SAM or a derivative of SAM

a b

c d

Figure 3. SAM segmentation process, showing (a) the raw satellite image, in this case from Planet, (b) manual iceberg labels, (c) no-prompt SAM segmentation, (d)
with-prompt SAM segmentation.
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can be to build an object detection model (like the object detec-
tion model “You Only Look Once” or YOLO), that identifies if
something is an iceberg or glacier terminus. In our extraction of
mask instances, we add all the instances detected to a new 2D
array of the same shape as the original image. The 2D array
will add foreground values (1 s) at location indices of every fore-
ground instance detected. During the testing of the model, there
are certain instances where the entire scene is detected as an
object. To overcome this, we put in a condition to exclude such
instances. We remove any instance larger than 25% of the original
image as that suggests a background detection that is too large to
be a feature of interest (e.g. an iceberg or supraglacial lake). For
other glaciology features such as a glacier terminus, all the
instances are saved as an image and the potential feature of inter-
est (glacier terminus) is extracted from the stack of instances that

were identified by SAM. The number of instances in such scenes
are small, and is therefore a quick selection process. The terminus
for the no-prompt segmentation classifies the glacier and land fea-
tures on the edge of the image under a single class while the with-
prompt segmentation classifies the mélange and land together.

For the with-prompt approach, we create two different shape-
files. One shapefile consists of prompt points representing the
foreground or object of interest (value of 1) and the other consists
of prompt points representing the background (value of 0). The
location coordinates (the row and column values of each prompt)
are added to the point shapefiles. Each shapefile is then read and
coordinates are extracted as an array with corresponding labels of
1 and 0 s (ones and zeros).

Prompts are selected based on the foreground, or objects that
will be segmented (1 s), and background (0 s). The necessity and

Figure 4. SAM detections of icebergs in open water across different sensors. (a) Planet, (b) Sentinel-2, (c) Sentinel-1, (d) Timelapse photograph. The second column
shows segmentation results with no added prompts; the last column shows results with 20 prompt points added (10 points on the icebergs and 10 points for the
background). The corresponding confusion matrices of the images can be viewed in Figure S4.
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number of prompts are dictated by the density of the objects of
interest, the radiometric diversity of the objects in the dataset,
and the complexity of the scenes. For example, icebergs and
supraglacial lakes are small features (compared to glacier termini)
and are found in varied and radiometrically complex back-
grounds. This makes the selection process of foreground (1 s)
and background (0 s) essential. Other features, such as crevasses,
are narrow and sometimes hard to differentiate from the back-
ground. In these cases, we place prompts on the background (0 s)
adjacent to the objects (1 s) to help the model recognize the import-
ance of these characteristic gradients. For larger features, such as
glacier termini, prompts are placed across the terminus to get a
range of radiometrically different pixels. The final binary image is
created based on the features that the model detects (1 s) and the
background (0 s) (Fig. 3).

Validation

To determine the validity of the SAM model, we generate the F1
score for each scene, which is a useful metric for imbalanced data-
sets (Jeni and others, 2013). The F1 score is quantified for each
scene by comparing SAM results with our manual labels, using
the following equations which account for true positives (TP),
false positives (FP), and false negatives (FN).

precision = TP
TP+ FP

(1)

recall = TP
TP+ FN

(2)

F1 = 2× precision× recall
precision+ recall

(3)

The F1 score is the harmonic mean of the precision and recall.
Precision focuses on minimizing the false positives in the dataset
(i.e measuring the true positives in total positives predicted by the
model). Recall focuses on minimizing the false negatives in the
dataset. In other words, recall measures the correctly identified
objects (positives) among the manually-identified objects.

The precision, recall, and F1 score are instrumental in determin-
ing the performance of a model in semantic segmentation. The F1
score is between 0 and 1. The closer it is to 1, the better the per-
formance of the model, as it is an overall representation of a strong
true positive and strong true negative score. However, it is difficult
to set a threshold for an “acceptable” F1 scores, as it will depend on
the study. Ideally a model aims to have a very high precision and
recall to determine an overall strong F1 score. However, it is
important to also assess the precision and recall values of the fore-
ground and the background as this provides a way to determine if
the performance of the model is being affected by higher false posi-
tives or higher false negatives or both. Another way of doing this, is
creating a confusion matrix for each scene, which provides a visual
representation of the number of true positives, true negatives, false
positives, and false negatives.

3. Results

3.1 SAM performance across different sensors

Many polar remote sensing applications need to balance the acute
trade-offs between consistent year-round imagery from Synthetic
Aperture Radar (SAR) and long-term, high-resolution imagery
from optical remote sensing sensors. Segmentation techniques

that work across platforms are therefore critical in building robust
datasets (e.g. Zhao and others, 2022). Here, we assess SAM per-
formance across imagery commonly used in glaciology (Fig. 4).
Sentinel-1 is a polar-orbiting C-Band SAR with a spatial reso-
lution of 20 × 22 m. Sentinel-2 is a polar-orbiting optical satellite
with a ground resolution of 10 m. We also test SAM segmentation
on a suite of Landsat satellites, namely Landsat-4 (60 m),
Landsat-5 (30 m), and Landsat-8 (15 m). We include one optical
CubeSat sensor, PlanetScope, which has a spatial resolution of 3
m. Finally, we explore the performance of SAM on in situ time-
lapse photographs. Result metrics are shown in Table 1.

In Figure 4a, automatic segmentation does provide good
results on the high-resolution Planet image, but is impacted by
false positives. These false positives are eliminated by adding
20 points as prompts (10 points identify the icebergs and
10 points identify the background), resulting in an F1 score of
0.91. We find similar improvements with the coarser
Sentinel-2 imagery. Adding prompts improves the F1 score
from 0.52 to 0.64 – in particular, the prompts help SAM detect
smaller icebergs. Larger icebergs were detected successfully with
both approaches. There are several small icebergs (hardly visible
in Fig. 4b) that are missed even with the prompts, which sup-
presses the overall F1 score.

The Sentinel-1 image is an RGB composite made up of HH, HV,
and HHxHV polarization bands. As with most SAR images, it is
noisy, especially compared to the optical remote sensing images.
Despite the noise, the no-prompt based approach successfully seg-
ments all prominent icebergs. Adding points improves the model
performance, particularly because the background itself is so noisy.

Performance on the timelapse photograph is strong;
no-prompt approach has an F1 score of 0.83 and with-prompts
approach has an F1 score of 0.80. Depending on the range of
pixel intensity throughout the image, and the gradients between
features of interest and the background, detection can become
complex. When the prompts are provided based on specific fea-
tures, SAM includes such pixels and potential features as part
of segmentation. However, in this manuscript we are only using
10 prompts for the foreground and 10 prompts for the back-
ground. So based on the complexity of the image scene, the
prompts might not be sufficient. In Figure 4d, an increased num-
ber of prompts, across the range of gradients, might improve the
performance of the with-prompt model.

The Landsat satellite system is the longest running satellite
constellation and is widely used in glaciology research, so we

Table 1. F1 score of segmentation tests using SAM with no prompts and with
prompts (20 points)

Image Feature Figures
F1: no
prompt

F1: with
prompts

Planet Icebergs (open water) 4a 0.87 0.91
Sentinel-2 Icebergs (open water) 4b 0.52 0.64
Sentinel-1 Icebergs (open water) 4c 0.53 0.64
Timelapse Icebergs (open water) 4d 0.83 0.80
Landsat-4 Icebergs 5a 0.49 0.44
Landsat-5 Icebergs 5b 0.76 0.70
Landsat-8 Icebergs 5c 0.77 0.80
Sentinel-2
(zoom-out)

Icebergs (open water) 6a 0.52 0.64

Sentinel-2
(zoom-in)

Icebergs (open water) 6b 0.66 0.71

Planet Crevasses 7a 0.01 0.44
Sentinel-2 icebergs (sea ice) 7b 0.88 0.88
Sentinel-2 Icebergs (mélange) 7c 0.78 0.71
Sentinel-2 Supraglacial lakes 7d 0.48 0.83
Sentinel-2 Glacier terminus 7e 0.96 0.96

.
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also assess the performance capabilities of SAM with the multiple
spatial resolutions that the Landsat satellite system provides. Here
we present the segmentation capabilities of SAM on Landsat-4 (60
meters), Landsat-5 (30 meters), and Landsat-8 (15 meters) images
from West Greenland (Fig. 5). We find that the SAM no-prompt
approach performs better with lower spatial resolution imagery
than the with-prompt approach. This result is evident in the F1
score as well as the precision and recall scores of the two
approaches. As we transition to higher spatial resolution images
of 15 meters in Landsat-8, we find that the with-prompt approach
provides better performance and a higher F1 score. It is likely that

the higher-resolution imagery provides stronger gradients
between the background and the foreground.

3.2 SAM performance across different zoom levels

Segmentation results from SAM also depends on the size of the
object relative to the size of the image. In other words, very
small objects, surrounded by a lot of background, are hard to seg-
ment. Creating smaller sub-images (from the larger image),
adjusts the relative size of the objects, thereby allowing SAM to
segment these small objects that were previously discarded in

Figure 5. SAM’s detection of icebergs in (a) Landsat-4, (b) Landsat-5, (c) Landsat-8. The second column shows segmentation results with no added prompts; the
third colum shows results with-prompts. The corresponding confusion matrices of the images can be viewed in Figure S5.
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the larger image (Fig. 6a). This approach provides the user control
over the feature size of interest. The F1 score improves when
zooming in because the model detects more of the smaller ice-
bergs (which were included in the manual labels used to calculate
the F1 score, see Supplementary Fig. S1).

Creating subsets of original images, and then mosaicking them
together after SAM implementation, does create an additional
pre- and post-processing step that is needed when working on lar-
ger regions of interest such as a fjord or basin.

3.3 SAM performance across different glaciology features

We assess the broader utility of SAM for cryosphere research by
testing it on five different cryosphere features: crevasses, icebergs
in sea ice, icebergs in mélange, supraglacial lakes, and a glacier
terminus (Fig. 7). We use Sentinel-2 imagery for all the features
except crevasses which are generally too narrow to segment in
10 m imagery. For crevasse segmentation, we use Planet imagery.

Our SAM results show that the with-prompt approach pro-
vides highly accurate results particularly for supraglacial lakes
and terminus positions. Crevasses were essentially undetectable
without any prompts, and the F1 score improved to 0.44 with
prompts. There are several narrow and short crevasses that,
even with 20 prompts, SAM did not detect. It is likely that add-
itional prompts, or a zoomed-in image, would improve this per-
formance. The F1 score for icebergs in sea-ice was consistently
strong both with and without prompts (0.88). Icebergs in the
mélange were better-detected without prompts (0.78) than with
prompts (0.71); in this scenario, the similarity between back-
ground and features caused the prompted model to over-estimate
the features. In the supraglacial lakes example, we find that due to
the presence of two large false-positives in the predicted image,
the F1 score of SAM is low at 0.48. The precision and recall scores
show that the precision of the model is low for foreground detec-
tion (supraglacial lakes) due to the false positives, thereby

impacting the overall F1-score. Adding prompts improves the
model substantially.

For iceberg segmentation, no-prompt SAM segmentation pro-
vides a fast and fairly consistent result across all sensors, spatial
resolutions, and environmental conditions such as open water,
sea-ice, and mélange. For the prompt-based approach, prompts
were placed in radiometrically different locations to make sure
that the model gets a range of sampling. For all features, prompts
generally produce better SAM segmentation results.

4. Discussion and conclusion

SAM as a foundational model has been trained on unlabeled
training data through self-supervised learning. This training
allows the model to be generalized. Additionally, the training
dataset for SAM is comprised of 10 million images and over 1.1
billion masks, thereby creating very diverse training data.
Convolutional Neural Networks (CNNs) are conventionally
trained on large numbers of training data that allows the model
to successfully segment objects within an image. However, the
overhead of computational efficiency, labeling large and diverse
training data, and having enough convolutional layers, makes
implementation of the CNN models challenging.

Our implementation of the SAM model shows that it is a
robust segmentation model with adaptability across different sat-
ellite sensors in no-prompt and with-prompt workflows. In noisy
images, such as Sentinel-1 SAR, we find that the no-prompt
approach identifies all major icebergs in images robustly; using
prompts helped the model also detect smaller icebergs along
with the prominent icebergs. This is a huge advantage for the
SAR community in climate and Earth science, as the adaptability
of the SAM model to produce semantic and instance segmenta-
tion datasets promotes data fusion workflows, thereby resulting
in an overall improvement of temporal resolution. Another
important example showing the adaptability of the SAM model

Figure 6. SAM segmentation results scale with zoom level. (a) Segmentation results on a larger Sentinel-2 scene. (b) An inset from the large Sentinel-2 scene show-
ing that at this zoom level, smaller icebergs are detected.
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is in identifying icebergs in timelapse photographs as shown in
Figure 4d. Timelapse is an extremely popular form of imagery
in polar research and is used in classification, kinematics, and fea-
ture tracking (Messerli and Grinsted, 2015; Giordan and others,

2020). Both the no-prompt and with-prompt segmentation results
were strong with an F1 score of 0.83 and 0.80 respectively.

In Rezvanbehbahani and others (2020) iceberg segmentation is
done using the CNN model UNet, applied to PlanetScope

e

Figure 7. SAM performance on different cryospere features: (a) crevasses, (b) icebergs in sea ice, (c) icebergs in pro-glacial mélange, (d) supraglacial lakes, and (e) a
glacier terminus. All imagery is Sentinel-2, except for Panel (a) that is from © Planet Labs Inc. 2023. All Rights Reserved. The corresponding confusion matrices of
the images can be viewed in Figure S6.
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imagery. In that study, the F1 score of the iceberg semantic seg-
mentation is 0.89 after extensive training on more than 10 000
manually-digitized iceberg labels. In comparison, semantic seg-
mentation of icebergs on PlanetScope imagery using SAM is
0.87 with no-prompt approach and 0.91 in with-prompt
approach. Our results are similar to the highly trained CNN
UNet model, without any training data added. With minimum
to no-training, successful semantic segmentation of complex gla-
ciological features can be done for images that the model has not
been trained.

An interesting aspect in the assessment of SAM was with the
implementation of no-prompt and with-prompt approach. We
assessed the performance of both the approaches in different con-
ditions, spatial resolutions, and glaciological features. Our results
show that, in general, the no-prompt approach works well for
images across a wide range of spatial resolutions. A uniform dis-
tribution of objects within the image helps provide consistent seg-
mentation results from SAM. However, when this distribution
changes or if the objects do not have a strong gradient, then
results from the SAM no-prompt approach are more susceptible
to false positives. The with-prompt approach provides more sup-
port for non-uniform distribution of objects within the images.
The with-prompt approach does provide high amount of control
in delineation of objects in close proximity or of objects that are
difficult to detect, such as crevasses. Low-resolution images,
such as Landsat-4 (60 m) and with objects in subtle gradients
such as icebergs in mélange, the with-prompt approach was
unable to delineate objects. This shortcoming can also be due
to the limited number of prompts for the foreground and the
backgrounds. For such images increasing the number of prompts
and improving the location of prompts will likely improve seg-
mentation results.

We find that SAM is highly adaptable across the different
image types that we compared in this study. Results of SAM
for PlanetScope, Sentinel-1, Sentinel-2, Landsat-4, Landsat-5,
Landsat-8, and timelapse photographs for multiple glaciological
features with minimum to no user input, are encouraging. This
study shows that developing a segmented dataset across multiple
remote sensing platforms is feasible, even in the absence of labeled
datasets. Additionally, new remote sensing datasets can be
included without sacrificing pre-existing workflows.

4.1 Conclusion

SAM’s ability to identify features in simple and complex images
means that high temporal resolution datasets can be created by
combining segmentation results from optical and SAR remote
sensing imagery. For larger regions where the coverage area is sev-
eral square kilometers, we find that creating subsets of the image
by grids aid the model in focusing on smaller features such as
lakes and icebergs. This additional step will allow study of glacio-
logical features in more detail as well as scaling SAM to process
regions as large as an ice-sheet.

Overall, SAM does provide a comprehensive approach of
implementing deep learning in glaciology with faster setup,
high accuracy, and minimum to no user input to generate robust
segmentation results for different use cases. The no-prompt
approach provides consistent results for different features, image
types, and spatial resolutions. However, images where foreground
object gradients are subtle or features are not as pronounced (e.g.
crevasses), the no-prompt approach is unable to segment success-
fully. The with-prompt approach provides greater control for the
object segmentation in such images. Low resolution images how-
ever do limit segmentation of smaller features such as icebergs. A
potential work around to overcome such limitations of with-
prompt approach can be to increase the number of prompts.

This will improve the data diversity and potentially aid the
model in identifying features. The dearth of good training holds
true for a lot of state of the art deep learning studies in glaciology,
thereby limiting the generalizability of such models. For studies
where a state of the art model is preferred, SAM can act as an effi-
cient tool for generating large amounts of training data thereby
enabling creation of a more generalized model.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2023.95

Data. Sentinel-1 and Sentinel-2 imagery used in this study is available via
Google Earth Engine (https://code.earthengine.google.com/) and accessed
from the Google Earth Engine data catalog (https://developers.google.com/
earth-engine/datasets/). Planet imagery is accessed via Planet’s data portal
(https://www.planet.com/). The image IDs that are used in this study are avail-
able in the Supplementary Table S1.

The code developed for extraction of features of interest has been made
available at https://github.com/leigh-stearns/segment-anything
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