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Abstract

Using a result of Vdovina, we may associate to each complete connected bipartite graph κ a
two-dimensional square complex, which we call a tile complex, whose link at each vertex is κ. We regard
the tile complex in two different ways, each having a different structure as a 2-rank graph. To each 2-rank
graph is associated a universal C�-algebra, for which we compute the K-theory, thus providing a new
infinite collection of 2-rank graph algebras with explicit K-groups. We determine the homology of the tile
complexes and give generalisations of the procedures to complexes and systems consisting of polygons
with a higher number of sides.
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1. Introduction

In [15], it was shown how to construct a two-dimensional CW-complex whose link
at each vertex is a complete bipartite graph. In [6], generalising the work of
[10], certain combinatorial objects called higher-rank graphs were defined and then
associated with a generalisation of a graph algebra [9, Ch. 1]. We combine these two
methods to build an infinite family of C�-algebras corresponding to complete bipartite
graphs.

We begin in Section 2 by detailing Vdovina’s construction of the CW-complexes,
called tile complexes; the data we use to build these is called a tile system. In Sections
3 and 5, we associate adjacency matrices to the tile systems in two different ways: by
considering the tiles as pointed and as unpointed geometrical objects, as in [5]. Since
these adjacency matrices commute, they characterise the structure of a higher-rank
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graph, and induce a universal C�-algebra: the higher-rank graph algebra. We use a
result of [2] to calculate the K-groups of these algebras (Theorems 3.10 and 5.3).

In Section 6, we show that the tile complexes have torsion-free homology groups
given by H1 � Zα+β+2, H2 � Z(α−1)(β−1) and Hn = 0 otherwise.

Finally, we explore extensions of these methods to 2t-gon systems, constructed
analogously from two-dimensional complexes consisting entirely of 2t-gons. In all,
we associate 2-rank graph C�-algebras to five systems, and compute their K-theory in
the following theorems:

(1) pointed and unpointed tile systems (Theorems 3.10 and 5.3);
(2) pointed and unpointed 2t-gon systems for even t (Theorem 7.4 and Corollary 7.6);
(3) pointed 2t-gon systems for arbitrary t (Theorem 7.11).

The respective systems in (2) directly generalise those in (1); however, there is
another intuitive way of building 2t-gon systems from polyhedra, (3). We discuss the
naturality of these generalisations in Section 7.

Our approach differs from that of Robertson and Steger [10], who focused on
complexes with one vertex. Furthermore, we use the terminology of higher-rank
graphs in order to demonstrate the large intersection between the fields of k-graphs
and geometry.

Throughout this paper, α, β are positive integers, and κ(α, β) denotes the complete
connected bipartite graph on α white and β black vertices.

2. The tile system associated to a bipartite graph

DEFINITION 2.1. Let t ∈ Z satisfy t ≥ 2, and let A1, . . . , An be a sequence of solid
t-gons, with directed edges labelled from some setU. By gluing together like-labelled
edges (respecting their direction), we obtain a two-dimensional complex P. We call
such a complex a t-polyhedron.

The link at a vertex z of P is the graph obtained as the intersection of P with a small
2-sphere centred at z.

THEOREM 2.2 (Vdovina [15]). Let G be a connected bipartite (undirected) graph on α
white and β black vertices, with edge set E(G). Then, for each t ≥ 1, we can construct
a 2t-polyhedron P(G) which has G as the link at each vertex.

We refer to [15], in which it was shown how to build such a 2t-polyhedron. The
general method is as follows.

Write U′ = {u1, . . . , uα} for the set of white vertices of G, and V ′ = {v1, . . . , vβ} for
the set of black vertices.

Let U be a set with 2tα elements, indexed u1
i , u2

i , . . . , ut
i, ū1

i , ū2
i , . . . ūt

i for each
ui ∈ U′, and let V be the corresponding set with 2tβ elements. Define fixed-point-free
involutions ur

i �→ ūr
i and vr

i �→ v̄r
i in U and V, respectively.

Each edge of the graph G joins an element of U′ to an element of V ′; for
each edge e = upvq, we construct a 2t-gon Ae with a distinguished base vertex.
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FIGURE 1. Construction of a 2t-polyhedron. Give each side of a sequence of solid 2t-gons a direction
and a label from one of two sets U, V, and then glue together corresponding sides with respect to their
direction.

Label the boundary of Ae anticlockwise, starting from the base, by the sequence
u1

p, v1
q, u2

p, v2
q, . . . , ut

p, vt
q, giving each side of the boundary a forward-directed arrow.

We denote this pointed oriented 2t-gon by Ae = [u1
p, v1

q, . . . , ut
p, vt

q]. Then glue the
Ae together in the manner of Definition 2.1 in order to obtain a 2t-polyhedron P(G)
(Figure 1).

DEFINITION 2.3. In this paper, we mainly concern ourselves with 4-polyhedra, that
is, those constructed by gluing together squares. We refer to 4-polyhedra as tile
complexes. For a connected bipartite graph G, write TC(G) for the tile complex P(G),
and define the set

S(G) := {Ae = [u1
p, v1

q, u2
p, v2

q], [ū1
p, v̄2

q, ū2
p, v̄1

q],

[u2
p, v2

q, u1
p, v1

q], [ū2
p, v̄1

q, ū1
p, v̄2

q] | e = upvq ∈ E(G)}. (2-1)

We call the elements of S(G) pointed tiles. We define an equivalence relation which,
for each Ae, identifies the four corresponding pointed tiles in (2-1). We denote byS′(G)
the quotient of S(G) with respect to this relation, and we write A′e = (u1

p, v1
q, u2

p, v2
q) for

the equivalence class of Ae inS′(G). ThenS′(G) is the set of geometric squares (that is,
disregarding basepoint and orientation) in TC(G). We call elements ofS′(G) unpointed
tiles.

Notice that by placing the basepoint at the bottom-left vertex, we can arrange that
the horizontal sides of each pointed tile are labelled by elements of U, and the vertical
sides by elements of V, such that S(G) ⊆ U × V × U × V . Indeed, the four tuples in
(2-1) correspond to the four symmetries of a pointed tile that preserve this property
(Figure 2).

Note also that, by design, any two pointed tiles in S(G) are distinct, and any two
adjacent sides of a tile uniquely determine the remaining two sides.

DEFINITION 2.4. Let G be a connected bipartite graph on αwhite and β black vertices.
Let U, V be sets with |U| = 4α, |V | = 4β, as constructed above, and letS = S(G) ⊆ U ×
V × U × V be the corresponding set of pointed tiles. We call the datum (G, U, V ,S) a
tile system.
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FIGURE 2. Visualisation of tiles: A = [x1, y1, x2, y2], B = [x̄1, ȳ2, x̄2, ȳ1], and so on. These four pointed
squares represent different pointed tiles, but the same unpointed tile.
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FIGURE 3. Horizontal and vertical adjacency: (a) M1(A, B) = 1, (b) M2(A, B) = 1.

This construction is closely related to, and indeed modelled on, that of a VH-datum,
introduced in [16] and developed further in [1].

3. The C�-algebra corresponding to a tile system

DEFINITION 3.1. Let (G, U, V ,S) be a tile system, and A = [x1, y1, x2, y2] and B =
[x3, y3, x4, y4] be pointed tiles in S. We define two 4αβ × 4αβ matrices M1, M2 with
AB th entry Mi(A, B) as follows:

M1(A, B) =

{
1 if y1 = ȳ4 and x1 � x̄3,
0 otherwise,

M2(A, B) =

{
1 if x2 = x̄3 and y1 � ȳ3,
0 otherwise,

as demonstrated in Figure 3. We call M1 the horizontal adjacency matrix and M2 the
vertical adjacency matrix. If Mi(A, B) = 1, we say that B is horizontally or vertically
adjacent to A.

DEFINITION 3.2. Let (G, U, V ,S) be a tile system, and let A, B, C be pointed tiles in
S(G) such that M1(A, B) = 1 and M2(A, C) = 1. We say that the tile system (G, U, V ,S)
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FIGURE 4. Proposition 3.3. Given tiles A and D as shown, tiles B and C are uniquely determined; hence,
M1M2 = M2M1. Likewise, given an initial tile A, a horizontally adjacent tile B and a vertically adjacent
tile C, there is a unique tile D adjacent to both B and C: this is the UCE property.

satisfies the unique common extension property (UCE property) if there exists a unique
D ∈ S such that M2(B, D) = M1(C, D) = 1.

PROPOSITION 3.3. Consider the complete bipartite graph κ = κ(α, β) on α ≥ 2 white
and β ≥ 2 black vertices, and let (κ, U, V ,S(κ)) be a tile system with corresponding
adjacency matrices M1, M2. Then:

(1) M1 and M2 are symmetric and commute with each other;
(2) each row and column of M1 and M2 contains at least one nonzero element;
(3) (κ, U, V ,S(κ)) satisfies the UCE property.

PROOF. It is straightforward to verify that the matrices M1 and M2 are symmetric.
Now, consider the pointed tile A = [u1

i , v1
j , u2

i , v2
j ] ∈ S(κ) (any other tiles may be dealt

with in a similar manner), and let D = [u2
p, v2

q, u1
p, v1

q] ∈ S(κ) for some p � i, q � j.
By the completeness of κ and the fact that α, β ≥ 2, there are tiles B = [ū1

p, v̄2
j , ū2

p, v̄1
j ]

and C = [ū2
i , v̄1

q, ū1
i , v̄2

q] in S(κ) such that M1(A, B) = M2(B, D) = 1 and M2(A, C) =
M1(C, D) = 1 (Figure 4), proving (2). Since any two adjacent sides of a tile determine
the remaining sides, B and C are unique. So M1M2(A, D) = M2M1(A, D) ∈ {0, 1} for all
A, D ∈ S(κ).

Similarly, given A, B, C ∈ S(κ) as above, D is the unique tile adjacent to both B and
C, and so (κ, U, V ,S(κ)) has the UCE property. �

We see shortly that a tile system is actually an example of a so-called k-rank graph
(specifically a 2-rank graph), as introduced in [6] to build on work by [10].

3.1. Higher-rank graphs.

DEFINITION 3.4. Let Λ be a category such that Ob(Λ) and Hom(Λ) are countable sets
(that is, a countable small category), and identify Ob(Λ) with the identity morphisms
in Hom(Λ). For a morphism λ ∈ HomΛ(u, v), we define range and source maps r(λ) = v
and s(λ) = u, respectively.
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Let d : Λ→ Nk be a functor, called the degree map, and let λ ∈ Hom(Λ). We
call the pair (Λ, d) a k-rank graph (or simply a k-graph) if, whenever d(λ) = m + n
for some m, n ∈ Nk, we can find unique elements μ, ν ∈ Hom(Λ) such that λ =
νμ, and d(μ) = m, d(ν) = n. Note that, for μ, ν to be composable, we must have
r(μ) = s(ν).

For n ∈ Nk, we write Λn := d−1(n); by the above property, Λ0 = Ob(Λ), and we call
the elements of Λ0 the vertices of (Λ, d); see [6].

We direct the reader to [14], for example, for further details and standard examples
of higher-rank graphs.

If E is a directed graph on n vertices, we can construct an n × n vertex matrix ME(i, j)
with ij th entry 1 if there is an edge from i to j, and 0 otherwise.

If E, F are directed graphs with the same vertex set, whose associated vertex
matrices ME, MF commute, then [6] showed that we can construct a 2-rank graph
out of E and F. We use their method to prove the following proposition.

PROPOSITION 3.5. Let κ = κ(α, β) be the complete bipartite graph on α ≥ 2 white and
β ≥ 2 black vertices, and let (κ, U, V ,S(κ)) be a tile system with adjacency matrices
M1, M2. Then (κ, U, V ,S(κ)) has a 2-rank graph structure.

PROOF. Following the method of Theorem 2.2, label the elements of the sets U, V

U = {u1
1, u2

1, . . . , u1
α, u2

α, ū1
1, ū2

1, . . . , ū1
α, ū2

α},
V = {v1

1, v2
1, . . . , v1

β, v2
β, v̄1

1, v̄2
1, . . . , v̄1

β, v̄2
β},

where u1, . . . , uα and v1, . . . , vβ are the white and black vertices of κ, respectively.
Construct the tile complex TC(κ), and consider the set S(κ) ⊆ U × V × U × V of
pointed tiles of TC(κ). Since κ is complete, there is for an edge joining each ui and
vj, thus:

S(κ) = {[u1
i , v1

j , u2
i , v2

j ], [ū1
i , v̄2

j , ū2
i , v̄1

j ],

[u2
i , v2

j , u1
i , v1

j ], [ū2
i , v̄1

j , ū1
i , v̄2

j ] | 1 ≤ i ≤ α, 1 ≤ j ≤ β}.

Consider the corresponding adjacency matrices M1 and M2 as described in
Definition 3.1, and note that they commute by Proposition 3.3. We can draw directed
graphs E, F with the same vertex set E0 = F0 = S(κ). We draw a directed edge in E
from A to B whenever M1(A, B) = 1, and in F from A to B whenever M2(A, B) = 1
(Figure 5). Write rE, sE (respectively, rF, sF) for the maps describing the respective
range and source of edges in E1 (respectively, F1).

Define the following edge sets: E1 ∗ F1 := {(λ, μ) ∈ E1 × F1 | rE(λ) = sF(μ)} and
F1 ∗ E1 := {(μ, λ) ∈ F1 × E1 | rF(μ) = sE(λ)}. Since M1, M2 commute, there is
a unique bijection θ : E1 ∗ F1 → F1 ∗ E1, mapping (λ, μ) �→ (μ′, λ′) such that
sE(λ) = sF(μ′) and rF(μ) = rE(λ′).
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FIGURE 5. Visualisation of the tile system corresponding to the complete bipartite graph κ(2, 2). Each
vertex is labelled with an element of S(κ); a few labels have been shown here. A solid (dashed) arrow joins
vertex A to B if and only if M1(A, B) = 1 (M2(A, B) = 1, respectively). Notice the commuting squares,
giving the tile system a 2-rank graph structure: from any vertex A, follow a solid arrow, and then a dashed
arrow to another vertex D, say. Then θ defines a unique dashed-solid path from A to D. The 1-skeleton of
the 2-rank graph Λ(κ(α, β)) is strongly connected only when α, β ≥ 3.

We construct a 2-rank graph (Λ, d) in the following way. Let Λ0 = S(κ), and
for each (m, n) ∈ N2, define the set W(m, n) := {(p, q) ∈ N2 | p ≤ m, q ≤ n}. Then an
element of Λ(m,n) is a triple (A, λ, μ) = ((A(p, q))p,q, (λ(p, q))p,q, (μ(p, q))p,q) such
that:

(a) A(p, q) ∈ S(κ) for some (p, q) ∈ W(m, n);
(b) λ(p, q) ∈ E1 for some (p, q) ∈ W(m − 1, n);
(c) μ(p, q) ∈ F1 for some (p, q) ∈ W(m, n − 1);
(d) sE(λ(p, q)) = sF(μ(p, q)) = A(p, q);
(e) rE(λ(p, q)) = A(p + 1, q) and rF(μ(p, q)) = A(p, q + 1);
(f) θ(λ(p, q), μ(p + 1, q)) = (μ(p, q), λ(p, q + 1)),

whenever these conditions make sense. We write Λ :=
⋃

m,n≥0Λ
(m,n), and define range

and source maps r(A, λ, μ) := A(0, 0), s(A, λ, μ) := A(m, n), respectively. Note that two
finite paths μ, ν in such a directed graph E can be concatenated to give a path ν · μ
if and only if sE(μ) = rE(ν); consequently, ‘change the direction’ of the sources and
ranges of the arrows here.

If ϕ, ψ are paths of nonzero length m, n in E, F respectively, with rE(ϕ) = sF(ψ), then
there is a unique element ϕψ = (A, λ, μ) ∈ Λ(m,n) such that ϕ = λ(0, 0) · · · λ(m − 1, 0)
and ψ = μ(m, 0) · · · μ(m, n − 1). If, instead (or as well), rF(ψ) = sE(ϕ), then there is a
unique element ψϕ such that ϕ = λ(0, n) · · · λ(m − 1, n) and ψ = μ(0, 0) · · · μ(0, n − 1)
(Figure 6).
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μ(1, 3)
λ(1, 3)

μ(2, 3)

λ(1, 4)

A(1, 3)

A(0, 0) = r(A, λ, μ)

A(2, 5) = s(A, λ, μ)

FIGURE 6. An element (A, λ, μ) of Λ(m,n) can be represented as an m × n grid. The isomorphism θ defines
commuting squares. Here is an element of Λ(2,5).

Then, given two elements (A1, λ1, μ1) ∈ Λ(m1,n1) and (A2, λ2, μ2) ∈ Λ(m2,n2) such
that A1(m1, n1) = A2(0, 0), we can find a unique element (A1, λ1, μ1)(A2, λ2, μ2) =
(A3, λ3, μ3) in Λ(m1+m2,n1+n2) that satisfies

(a) A3(p, q) = A1(p, q), and A3(m + p, n + q) = A2(p, q);
(b) λ3(p, q) = λ1(p, q), and λ3(m + p, n + q) = λ2(p, q);
(c) μ3(p, q) = μ1(p, q), and μ3(m + p, n + q) = μ2(p, q),

whenever these conditions make sense. In this way, composition is defined in Λ, and,
by construction, we have associativity and the factorisation property of Definition 3.4.
Thus Λ, together with obvious degree functor d : (A, λ, μ) �→ (m, n) for (A, λ, μ) ∈
Λ(m,n), has the structure of a 2-rank graph, and we write (Λ, d) = Λ(κ). �

DEFINITION 3.6. Let (Λ, d) be a k-rank graph, let n ∈ Nk, and let v ∈ Λ0. Write Λn(v)
for the set of morphisms in Λn which map onto v, that is, Λn(v) := {λ ∈ Λn | r(λ) = v}.
We say that (Λ, d) is row-finite if each set Λn(v) is finite, and that (Λ, d) has no sources
if each Λn(v) is nonempty.

As an extension of the concept of a graph algebra (see [9]), we can associate a
C�-algebra to a k-rank graph.

DEFINITION 3.7. Let Λ = (Λ, d) be a row-finite k-rank graph with no sources. We
define C�(Λ) to be the universal C�-algebra generated by a family {sλ | λ ∈ Λ} of
partial isometries satisfying the following properties.

(a) For all u, v ∈ Λ0, we have (sv)2 = sv = s∗v and susv = 0 whenever u � v.
(b) If r(λ) = s(μ) for some λ, μ ∈ Λ, then sμλ = sμsλ.
(c) For all λ ∈ Λ, we have s∗λsλ = ss(λ).
(d) For all vertices v ∈ Λ0 and n ∈ Nk,

sv =
∑

λ∈Λn(v)

sλs∗λ.

Note that, without the row-finiteness condition, property (d) is not well defined.
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THEOREM 3.8 (Evans [2, Proposition 4.4]). Let Λ be a row-finite 2-graph with no
sources, finite vertex set Λ0, and vertex matrices ME, MF. Then

K0(C�(Λ)) � Zr0 ⊕ tor(coker(1 −MT
E , 1 −MT

F )),
K1(C�(Λ)) � Zr1 ⊕ tor(coker(1 −ME, 1 −MF)),

where

r0 := rk(coker(1 −MT
E , 1 −MT

F )) + rk(coker(1 −ME, 1 −MF)),

r1 := rk(coker(1 −MT
E , 1 −MT

F )) + rk(coker(1 −ME, 1 −MF)),

|Λ0| = n, 1 is the n × n identity matrix, ( ∗ , ∗ ) denotes the corresponding block n × 2n
matrix, rk(G) is the torsion-free rank of a finitely generated Abelian group G, and
tor(G) is the torsion part of G.

COROLLARY 3.9. Let κ = κ(α, β) be the complete bipartite graph on α ≥ 2 white and
β ≥ 2 black vertices, and let (κ, U, V ,S(κ)) be a tile system with adjacency matrices
M1, M2 as in Definition 3.1. For simplicity, we write C�(κ) = C�(Λ(κ)). Then

K0(C�(κ)) = K1(C�(κ)) = coker(1 −MT
1 , 1 −MT

2 ) ⊕ Zr,

where r := rk(coker(1 −MT
1 , 1 −MT

2 )).

PROOF. Firstly, α, β < ∞ by assumption, and by the UCE property of the tile system
(Proposition 3.3) we know that each row and column of M1 and M2 has at least one
nonzero element. Hence,Λ(κ) is row-finite, has no sources, and satisfies |Λ(κ)0| = 4αβ,
whence the result follows from Theorem 3.8. �

THEOREM 3.10 (K-groups for pointed tile systems). Let a, b ≥ 0. Let κ(a + 2, b + 2)
be the complete bipartite graph on a + 2 white and b + 2 black vertices. Without loss
of generality, we assume that a ≤ b. Write l := lcm(a, b), and g := gcd(a, b). Then, for
ε = 0, 1, we have the following assertions.

(1) If a = b = 0, then Kε(C�(κ(a + 2, b + 2))) = Kε(C�(κ(2, 2))) � Z8.
(2) If a = 0, 1 and b ≥ 1, then

Kε(C�(κ(a + 2, b + 2))) � (Z/b)2 ⊕ Z4(b+1).

(3) If a, b ≥ 2 and a, b are coprime, then

Kε(C�(κ(a + 2, b + 2))) � (Z/a)b−a ⊕ (Z/ab)a+1 ⊕ Z2(a+1)(b+1).

(4) If a, b ≥ 2 and a, b are not coprime, then

Kε(C�(κ(a + 2, b + 2))) � (Z/a)b−a ⊕ (Z/l)a+1 ⊕ (Z/g)a+2 ⊕ Z2(a+1)(b+1),

where (Z/a)0 is defined to be the trivial group in the case that a = b.

PROOF. We begin by proving (3) and (4), since (1) and (2) are special cases thereof.
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Assume that a, b ≥ 2. Write α = a + 2 and β = b + 2, and for 1 ≤ i ≤ α, 1 ≤
j ≤ β, let Aij denote the pointed tile [u1

i , v1
j , u2

i , v2
j ] ∈ S(κ). Similarly, write Bij :=

[ū1
i , v̄2

j , ū2
i , v̄1

j ], Cij := [ū2
i , v̄1

j , ū1
i , v̄2

j ], Dij := [u2
i , v2

j , u1
i , v1

j ] for the tiles with the same
edge labels as the horizontal reflection, vertical reflection, and rotation by π of Aij,
respectively. Then S(κ) = {Aij, Bij, Cij, Dij | 1 ≤ i ≤ α, 1 ≤ j ≤ β}, and

coker =
〈
S ∈ S(κ)

∣∣∣∣∣ S =
∑

T∈S(κ)

M1(S, T) · T =
∑

T∈S(κ)

M2(S, T) · T
〉
, (3-1)

where coker := coker(1 −MT
1 , 1 −MT

2 ). Now fix some p ∈ {1, . . . ,α} and q ∈
{1, . . . , β}, and notice that:

• M1(Apq, T) = 1 if and only if T = Biq, and M1(Bpq, T) = 1 if and only if T = Aiq,
for some i � p;

• M1(Cpq, T) = 1 if and only if T = Diq, and M1(Dpq, T) = 1 if and only if T = Ciq,
for some i � p;

• M2(Apq, T) = 1 if and only if T = Cpj, and M2(Bpq, T) = 1 if and only if T = Dpj,
for some j � q;

• M2(Cpq, T) = 1 if and only if T = Apj, and M2(Dpq, T) = 1 if and only if T = Bpj,
for some j � q.

Hence, the relations of (3-1) are equations of the form Apq =
∑

i�p Biq =
∑

j�q Cpj, and
so on for each Bpq, Cpq, Dpq. In particular, we can write Bpq =

∑
i�p Aiq and Cpq =∑

j�q Apj so that

Apq = (α − 1)Apq + (α − 2)
∑
i�p

Aiq and Apq = (β − 1)Apq + (β − 2)
∑
j�q

Apj.

Define Jq :=
∑α

i=1 Aiq, and Ip :=
∑β

j=1 Apj. Then (α − 2)Jq = (β − 2)Ip = 0, and, view-
ing the sum of all the tiles Aij both as the sum of all the Ii and of the Jj, we conclude
that gΣ = 0, where Σ :=

∑
i,j Aij.

Now, we can also write Dpq (and all of the relevant relations) in terms of the Aij,
namely Dpq =

∑
i�p
∑

j�q Aij. Hence, we can remove all the Bpq, Cpq, and Dpq from the
list of generators of coker, yielding

coker = 〈Apq | (α − 2)Jq = (β − 2)Ip = 0, Jq =
∑

i Aiq,
Ip =
∑

j Apj, for 1 ≤ p ≤ α, 1 ≤ q ≤ β〉. (3-2)

We have the following equalities:

Ap1 = Ip −
β∑

j=2

Apj, A1q = Jq −
α∑

i=2

Aiq, I1 = Σ −
α∑

i=2

Ii, J1 = Σ −
β∑

j=2

Jj.
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×
C2 C2

FIGURE 7. The 2-graph Λ(κ(2, 2)), depicted in Figure 5, consists of four copies of C2 × C2, where C2 is
the cyclic 1-graph with two vertices.

Furthermore, A11 may be expressed in terms of Σ, Ip, Jq, and Apq for p, q ≥ 2, and so,
after a sequence of Tietze transformations on (3-2), we find that

coker = 〈Σ, Ip, Jq, Apq | (α − 2)Jq = (β − 2)Ip = gΣ = 0, for 2 ≤ p ≤ α, 2 ≤ q ≤ β〉,

where g := gcd(α − 2, β − 2). This, after substituting a = α − 2 and b = β − 2, gives a
presentation for (Z/b)a+1 ⊕ (Z/a)b+1 ⊕ (Z/g) ⊕ Z(a+1)(b+1). In particular, we have a + 1
copies of (Z/b) ⊕ (Z/a). It is well known that if a and b are not coprime, (Z/b) ⊕
(Z/a) � (Z/l) ⊕ (Z/g); in case (4), this, together with Corollary 3.9, immediately gives
the desired result. In case (3), where a and b are coprime, we instead have that (Z/b) ⊕
(Z/a) � (Z/ab), and we are done.

Now consider case (1), where α = β = 2. Then, following the method above, coker
is generated by {Apq | p, q = 1, 2} with trivial relations, and so coker � Z4. Hence, by
Corollary 3.9, Kε(C�(κ)) � Z8.

Similarly, when α = 2 and β ≥ 3, it is straightforward to show that

coker = 〈Ip, Apq | (β − 2)Ip = 0, for p = 1, 2 and 2 ≤ q ≤ β〉,

and, when α = 3 and β ≥ 3,

coker = 〈Σ, Ip, Jq, Apq | Jq = (β − 2)Ip = Σ = 0, for p = 2, 3 and 2 ≤ q ≤ β〉,

both of which are presentations of (Z/(β − 2))2 ⊕ Z2(β−1); hence, by Corollary 3.9, (2)
is proved. �

EXAMPLE 3.11. Recall the tile system corresponding to κ(2, 2), given in Figure 5.
From the diagram, we can see that the (1-skeleton of the) 2-rank graph Λ(κ(2, 2)) com-
prises four connected components, each being the Cartesian product C2 × C2, depicted
in Figure 7. It is well known that the k-graph C�-algebra of C2 is isomorphic to
M2(C(T)). Furthermore, there is a natural isomorphism C�(Cm × Cn) � Mmn(C(T2)),
and so C�(κ(2, 2)) � (M4(C(T2)))4. The K-groups of this C�-algebra are both Z8, in
agreement with Theorem 3.10.

THEOREM 3.12. Let α, β ≥ 3, and let κ = κ(α, β) be the complete bipartite graph
on α white and β black vertices. Then the order of the class of the identity [1] in
K0(C�(Λ(κ))) is equal to g := gcd(α − 2, β − 2).

PROOF. From [3], it follows that the order of [1] in K0(C�(κ)) is equal to the order of
the sum of pointed tiles in S(κ); by considerations in the proof of Theorem 3.10, we
know this to be g. �
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4. Aperiodicity and Kirchberg–Phillips classification

Kumjian and Pask in [6] developed conditions under which the C�-algebra of a
k-rank graph is both simple and purely infinite. In this section we show that the
conditions are satisfied by the algebras C�(κ), and thus, by the Kirchberg and Phillips
results [4, 8], that the C�(κ) are completely classified by their K-theory. We detail the
following definitions from [6].

Let k ≥ 1, and let Ωk be the countable small category with object set Ob(Ωk) := Nk
0

and morphism set Hom(Ωk) given by

{(m, n) = (m1, . . . , mk, n1, . . . , nk) ∈ Nk
0 × N

k
0 |mi ≤ ni for all 1 ≤ i ≤ k}.

We identify Ob(Ωk) with the set of identity morphisms {(m, m) | m ∈ Nk
0}, and,

hence, identify Ωk with Hom(Ωk). Define range and source maps r(m, n) := m and
s(m, n) := n, respectively. Then Ωk, together with the degree map d(m, n) := n −m,
is a k-rank graph, which we can visualise as a nonnegative integer lattice in Rk (see
Figure 6).

DEFINITION 4.1. Let Λ be a k-rank graph. We define the infinite path space Λ∞ of Λ
to be Λ∞ := {ϕ : Ωk → Λ | ϕ is a k-graph morphism}.

Given a vertex v ∈ Λ0, we write Λ∞(v) for the set of infinite paths that begin at v,
that is, Λ∞(v) := {ϕ ∈ Λ∞ | ϕ(0) = v}.

Let p ∈ Zk, and let ϕ ∈ Λ∞. We say that p is a period for ϕ if, for every (m, n) ∈ Ωk

with m + p ≥ 0, we have ϕ(m + p, n + p) = ϕ(m, n). We call ϕ periodic if we can find
a nonzero period for ϕ.

Given q ∈ Nk
0 and a path ϕ ∈ Λ∞, we write ϕq(m, n) := (m + q, n + q). We say that

ϕ is eventually periodic if we can find some nonzero q ∈ Nk
0 such that ϕq is periodic.

We say that an infinite path ϕ is aperiodic if it is neither periodic nor eventually
periodic.

We say that Λ satisfies the aperiodicity condition (also referred to in the literature
as Condition (A)) if, for every vertex v ∈ Λ0, we can find an aperiodic path ϕ ∈ Λ∞(v).
We say that Λ is cofinal if, for every vertex v ∈ Λ0 and every infinite path ϕ ∈ Λ∞, we
can find λ ∈ Λ and n ∈ Nk

0 such that r(λ) = v and s(λ) = ϕ(n).

The aperiodicity condition is a generalisation of the condition on 1-graphs that
every cycle has an entrance. Similarly, cofinality is a generalisation of the prop-
erty of 1-graphs that every vertex be reachable from somewhere on every infinite
path.

LEMMA 4.2. Consider the complete bipartite graph κ = κ(α, β), where α, β ≥ 3, and
let Λ(κ) be the corresponding 2-rank graph as constructed in the proof of Proposition
3.5. Then Λ(κ) satisfies the aperiodicity condition.

In order to get a feeling as to why this is true, consider Figure 8, which shows a
representation of Λ(κ(3, 3)). Each vertex is labelled by a pointed tile from S(κ(3, 3)),
and since each tile is vertically adjacent to two others (and horizontally adjacent to
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FIGURE 8. A representation of Λ(κ(3, 3)). It is always possible to exit a cycle.

two others), there are two solid arrows and two dashed arrows emanating from each
vertex of Λ(κ(3, 3)). This suggests that, analogously to the 1-graph condition, we can
always find an entrance to any cycle in Λ, namely by stopping mid-cycle at a vertex,
and diverting the path down the second of the two available edges. Hence, as long as
α, β ≥ 3, there is enough choice at each vertex to be able to exit a cycle.

PROOF. Firstly, write Λ = Λ(κ), and let A ∈ Λ0 be an arbitrary vertex. We construct an
aperiodic infinite path beginning from A in the following way.

Let x : Ω1 →
⋃

m≥0Λ
(m,0) be a 1-graph morphism such that x(0) = A. The vertex A

represents a pointed tile in S(κ), which is horizontally adjacent to β − 1 other pointed
tiles. Hence, A is connected by bidirectional blue arrows to β − 1 other vertices in Λ.
Choose two of these vertices, B1 and B2, say, and let x be such that

x(m, m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A if m is even,
B1 if m = r2 + r + 1 for some r ≥ 1,
B2 otherwise,

for all m ∈ N0. Since x forms an aperiodic sequence, there is no p ∈ Z such that
x(m, m) = x(m + p, m + p) for all m, nor any q ∈ N such that xq is periodic; hence,
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x is an aperiodic path. Similarly, define y : Ω1 →
⋃

n≥0Λ
(0,n) by

y(n, n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A if n is even,
C1 if n = s2 + s + 1, for some s ≥ 1,
C2 otherwise,

for some vertices labelled by pointed tiles C1, C2 that are vertically adjacent to A. Then
y is also an aperiodic path. By the UCE property, x and y uniquely determine an infinite
path ϕ : Ω2 → Λ with ϕ((m, 0), (m, 0)) = x(m, m) and ϕ((0, n), (0, n)) = y(n, n).

Denote by D the unique pointed tile (other than A) adjacent to both B1 and C1. This
cannot also be adjacent to B2, nor to C2, so ϕ((m, n), (m, n)) = D precisely when m =
r2 + r + 1 and n = s2 + s + 1, for some r, s ≥ 1. As above, there is no p ∈ Z2 such that
ϕ((m, n), (m, n)) = ϕ((m, n) + p, (m, n) + p), nor any q ∈ N2

0 such that ϕq is periodic.
Since our initial vertex A was arbitrary, we are done. �

The following definitions are required for the rest of the section. For the reader who
desires more detail, we recommend [11, Ch. 5].

DEFINITION 4.3. Let A be a unital C�-algebra, and let B ⊂ A be a C�-subalgebra.
We say that B is hereditary if, for all a, b ∈ A, if b ∈ B and a ≤ b, then a ∈ B.

We say thatA is simple if it has no nontrivial closed two-sided ideals.
If A is simple, we say that it is purely infinite if every nonzero hereditary

C�-subalgebra of A contains a projection which is Murray–von Neumann equivalent
to a proper subprojection of itself. Equivalently, A is purely infinite if every nonzero
hereditary C�-subalgebra contains a projection equivalent to 1.

THEOREM 4.4 (Kumjian and Pask [6]). Let Λ be a k-rank graph that satisfies the
aperiodicity condition. Then the associated universal C�-algebra C�(Λ) is simple if
and only if Λ is cofinal.

THEOREM 4.5 (Kumjian and Pask [6], Sims [13, Proposition 8.8]). Let Λ be a k-rank
graph that is cofinal and satisfies the aperiodicity condition. Suppose that, for every
v ∈ Λ0, we can find λ ∈ Λ with r(λ) = v, and some cycle μ ∈ Λ with an entrance, such
that d(μ) � 0, and s(λ) = r(μ) = s(μ). Then C�(Λ) is purely infinite.

PROPOSITION 4.6. Consider κ = κ(α, β) for α, β ≥ 3, and let Λ(κ) be the correspond-
ing 2-rank graph. Then the C�-algebra C�(κ) from Definition 3.7 is simple and purely
infinite.

PROOF. Firstly observe that Λ(κ) is cofinal, since the 1-skeleton of Λ(κ) is strongly
connected. From Theorem 4.4 it follows that C�(κ) is simple.

Now, let A ∈ Λ(κ)0 be an arbitrary vertex. Since each edge of the 1-skeleton of Λ(κ)
is bidirectional, we can set μ to be a path that begins at A and traverses a single solid
edge to some vertex B, before immediately returning to A. Then d(μ) = (2, 0), and,
since α, β ≥ 3, B is the range of some other solid edge, and so μ is a cycle with an
entrance. Then, by strong-connectedness, the conditions of Theorem 4.5 are satisfied,
and Λ(κ) is purely infinite. �
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In [2] it is shown that, given a row-finite k-rank graph Λ with no sources, the
C�-algebra C�(Λ) is separable, nuclear, unital, and satisfies the universal coefficient
theorem. Furthermore, we have shown in Proposition 4.6 that, given a complete
bipartite graph κ = κ(α, β) with α, β ≥ 3, the C�-algebra C�(κ) associated to its
2-rank graph is simple and purely infinite. Hence, we can deduce the following
result.

COROLLARY 4.7. Consider the complete bipartite graph κ = κ(α, β) for α, β ≥ 3,
with corresponding 2-rank graph Λ(κ). Then the isomorphism class of the associ-
ated C�-algebra C�(Λ(κ)) is completely determined by the K-groups K0(C�(κ)) =
K1(C�(κ)) and the position of the class of the identity in K0(C�(κ)).

5. Unpointed tiles

There is an alternative way we could have defined the adjacency matrices above,
giving rise to a different 2-rank graph structure.

Define an unpointed tile system (G, U, V ,S′) in the same way as in Definition 2.4,
but replacing S = S(G) with the set of unpointed tiles S′ = S′(G). We show that
analogues of the results in Section 3 also hold for unpointed tile systems.

DEFINITION 5.1. Let (G, U, V ,S′) be an unpointed tile system, and let A′, B′ ∈ S′
be unpointed tiles, that is, equivalence classes of some pointed tiles A, B ∈ S (see
Definition 2.3). Recall the matrices M1, M2 from Definition 3.1. We define functions
M′1, M′2 : S′ × S′ → {0, 1} as follows:

M′1(A′, B′) =
{

1 if M1(A•, B•) = 1, for some A• ∼ A, B• ∼ B,
0 otherwise,

M′2(A′, B′) =
{

1 if M2(A•, B•) = 1, for some A• ∼ A, B• ∼ B,
0 otherwise.

We define adjacency matrices M′1, M′2 accordingly.

PROPOSITION 5.2. Consider the complete bipartite graph κ = κ(α, β) on α ≥ 2
white and β ≥ 2 black vertices, and let (κ, U, V ,S′(κ)) be an unpointed tile
system. Then the corresponding adjacency matrices M′1 and M′2 commute, and
(κ, U, V ,S′(κ)) has the UCE property. Hence, (κ, U, V ,S′(κ)) has a 2-rank graph
structure.

PROOF. Given two unpointed tiles A′, B′ ∈ S′(κ), consider their respective sets of
pointed tiles A,B ∈ S(κ) as defined in Definition 5.1. Notice that M′1(A′, B′) = 1 if
and only if, for every A• ∈ A, we can find some B• ∈ B such that M1(A•, B•) = 1. The
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same is true for M′2. Write A′ = (u1
i , v1

j , u2
i , v2

j ), and define sets

XA := {T ∈ S′(κ) | M′1(A, T) = 1}, YA := {T ∈ S′(κ) | M′2(A, T) = 1}.

Then XA contains precisely those tiles of the form (u1
k , v1

j , u2
k , v2

j ), where k � i, and YA

only those of the form (u1
i , v1

l , u2
i , v2

l ), where l � j. The proof then proceeds in a similar
fashion to that of Proposition 3.3, and the 2-rank graph structure follows immediately
from [6, Section 6] as in Theorem 3.5. �

We write Λ′(κ) for the 2-rank graph induced by the adjacency matrices M′1 and M′2.
It is not difficult to verify thatΛ′(κ) is row-finite, with a finite vertex set and no sources.
Hence, we can apply Theorem 3.8, and derive the following result.

THEOREM 5.3 (K-groups for unpointed tile systems). Let a, b ≥ 0, and let
κ(a + 2, b + 2) be the complete bipartite graph on a + 2 white and b + 2 black vertices.
Again, without loss of generality, we can assume that a ≤ b. Write C�(κ) := C�(Λ′(κ)).
Then, for ε = 0, 1, we have the following assertions.

(1) If a = b = 0, then Kε(C�(κ(a + 2, b + 2))) = Kε(C�(κ(2, 2))) � Z2.
(2) If a = 0 and b ≥ 1, then

Kε(C�(κ(a + 2, b + 2))) � (Z/2)b ⊕ (Z/(2b)).

(3) If a, b ≥ 1, then

Kε(C�(κ(a + 2, b + 2))) � (Z/2)(a+1)(b+1)−1 ⊕ (Z/2g),

where g := gcd(a, b).

PROOF. Again, we start by proving (3) as the first two cases follow. Write α := a + 2,
β := b + 2, and let α, β ≥ 3. For 1 ≤ i ≤ α, 1 ≤ j ≤ β, write A′ij for the unpointed tile
(u1

i , v1
j , u2

i , v2
j ) ∈ S′(κ). Then

coker = coker(1 − (M′1)T , 1 − (M′2)T )

=

〈
A′ij ∈ S′(κ)

∣∣∣∣∣A′ij =
∑

T ′∈S′(κ)
M′1(A′ij, T ′) · T ′ =

∑
T ′∈S′(κ)

M′2(A′ij, T ′) · T ′
〉
. (5-1)

Fix p ∈ {1, . . . ,α}, q ∈ {1, . . . , β}, and notice that:

• M′1(A′pq, T ′) = 1 if and only if T ′ = A′iq for some i � p;
• M′2(A′pq, T ′) = 1 if and only if T ′ = A′pj for some j � q.

Hence, the relations of (5-1) are equivalent to A′pq =
∑

i�p A′iq =
∑

j�q A′pj. Define

Jpq :=
( α∑

i=2

A′iq
)
− A′pq and Ipq :=

( β∑
j=2

A′pj

)
− A′pq
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for p, q ≥ 2. Then

2Jpq = 2
( α∑

i=2

A′iq
)
− 2A′pq

= 2(A′2q + · · · + A′αq − A′pq) + A′1q − A′1q

= (A′1q + A′2q + · · · + A′αq − A′pq) + (−A′1q + A′2q + · · · + A′αq) − A′pq

= A′pq + 0 − A′pq = 0,

and, similarly, 2Ipq = 0. Now Jpq = 0 or Ipq = 0 only if A′pq = A′1q or A′pq = A′p1,
respectively. But, since α, β ≥ 3, these equivalences are not relations listed at (5-1),
and so ord(Jpq) = ord(Ipq) = 2. Notice that we can write each A′1q and A′p1 in terms of
the other A′ij for p, q ≥ 2; hence, we can remove these from the list of generators by a
sequence of Tietze transformations.

Also notice that A′2q = J2q −
∑α

i=3 A′iq. Proceeding inductively, we can write each A′pq
in terms of the Jiq and the A′iq for i > p. Similarly, we can express each A′pq in terms of
the Ipj and the A′pj for j > q. Hence, we can rewrite the generators of coker as A′11, Ipq,
Jpq for p, q ≥ 2. But A′11 = −(A′p1 + Jp1) = −(A′1q + I1q) for all p, q ≥ 2, so

(α − 2)A′11 = −
α∑

i=3

(A′i1 + Ji1) = −
(
J21 +

α∑
i=3

Ji1

)
,

and 2(α − 2)A′11 = 0. Similarly, 2(β − 2)A′11 = 0, and, hence, 2gA′11 = 0, where g :=
gcd(α − 2, β − 2).

Observe that, since Ipq is defined in terms of the A′pj, and each A′pj can be written in
terms of the Jij, we can remove the Ipq from the list of generators of coker. Finally, we
can rewrite (5-1) as

coker = 〈J2q, Jp2, Jpq, A′11 | 2J2q = 2Jp2 = 2Jpq = 2gA′11 = 0,
for 3 ≤ p ≤ α, 3 ≤ q ≤ β〉,

and, after substituting a = α − 2, b = β − 2, this gives a presentation for
(Z/2)(a+1)(b+1)−1 ⊕ (Z/2g). There is no torsion-free part, so this proves (3). If α = 2,
then A′1q = A′2q for all 1 ≤ q ≤ β, so we can write

coker =
〈
A′1q

∣∣∣∣∣A′1q =
∑
j�q

A′1j, for 1 ≤ q ≤ β
〉
.

We adjust the proof above accordingly to obtain the result of (2). Finally, in case
(1), where α = β = 2, we have A′11 = A′12 = A′21 = A′22 with no further relations, so that
coker = 〈A′11〉 � Z, and the result follows from Theorem 3.8. �

THEOREM 5.4. Let α, β ≥ 3, let κ = κ(α, β) be the complete bipartite graph on α white
and β black vertices, and write g := gcd(α − 2, β − 2). Then the order of the class of
the identity [1] in K0(C�(Λ′(κ))) is equal to g if g is odd, and g/2 if g is even.
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PROOF. We use the same notation as in the proof of Theorem 5.3. As with Theorem
3.12, we know that the order of [1] in K0(C�(κ)) is equal to the order of the sum of all
tiles A′ij. We write Σ for this sum.

We have A′pq =
∑

i�p A′iq =
∑

j�q A′pj, and so Σ = (α − 1)Σ = (β − 1)Σ. From this, it
follows that gΣ = 0. We also have A′pq =

∑
i�p
∑

j�q A′ij, so

Σ = A′pq +
∑
i�p

A′iq +
∑
j�q

A′pj +
∑
i�p

∑
j�q

A′ij = 4A′pq

for any fixed p, q. But 2gA′pq = 0, and so, if g = 2h for some integer h, then hΣ =
4hA′pq = 0, and we are done. �

The proof of the next proposition is analogous to that of Proposition 4.6.

PROPOSITION 5.5. Consider the complete bipartite graph κ = κ(α, β) for α, β ≥ 3,
and the associated 2-rank graph Λ′(κ). Then the isomorphism class of the universal
C�-algebra C�(Λ′(κ)) is completely determined by its K-theory and the position of the
class of the identity in K0(C�(Λ′(κ))).

6. The homology of a tile complex

THEOREM 6.1. Let κ = κ(α, β) be the complete bipartite graph on α ≥ 2 white and
β ≥ 2 black vertices, let (κ, U, V ,S′(κ)) be an unpointed tile system, and let TC(κ) be
its associated tile complex. Then the homology groups of TC(κ) are given by

Hn(TC(κ)) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for n = 0,
Z
α+β−2 for n = 1,
Z

(α−1)(β−1) for n = 2,
0 for n ≥ 3.

PROOF. As TC(κ) is a path-connected, two-dimensional CW-complex by construction,
Hn(TC(κ)) � 0 for n = 0 and n ≥ 3.

The proof is based on that of [7, Proposition 3]. The boundary of each square
in TC(κ) is given by an element of S′(κ); write these elements as (u1

i , v1
j , u2

i , v2
j ). By

construction, TC(κ) has four vertices: each is the origin of all directed edges labelled
u1

i , v1
j , u2

i and v2
j . Each tile is homotopy equivalent to a point; pick tile (u1

1, v1
1, u2

1, v2
1)

and contract it, thereby identifying the four vertices. Call the resulting tile complex
TC1(κ). This is a two-dimensional CW-complex whose edges are loops, and whose
2-cells comprise for 2 ≤ i ≤ α, 2 ≤ j ≤ β

• (α − 1)(β − 1)-many unpointed tiles A′ij = (u1
i , v1

j , u2
i , v2

j );
• (α − 1)-many 2-gons X′i with boundaries described analogously by (u1

i , u2
i );

• (β − 1)-many 2-gons Y ′j with boundaries described by (v1
j , v2

j ).
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Consider the chain complex associated to TC1(κ):

· · · −→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0.

Since TC1(κ) is two-dimensional and has one vertex, this boils down to

0
0−→ C2

∂2−→ C1
0−→ 0,

and so H1(TC1(κ)) � C1/ im(∂2) and H2(TC1(κ)) � ker(∂2). We have ∂2(A′ij) = u1
i +

v1
j + u2

i + v2
j , ∂2(X′i ) = u1

i + u2
i , and ∂2(Y ′j ) = v1

j + v2
j . Clearly ker(∂2) is generated by

{A′ij − X′i − Y ′j | 2 ≤ i ≤ α, 2 ≤ j ≤ β}, which implies that ker(∂2) � Z(α−1)(β−1).
Similarly, an Abelian group presentation for H1(TC1(κ)) is given by

H1(TC1(κ)) � 〈u1
i , v1

j , u2
i , v2

j | u1
i + v1

j + u2
i + v2

j = u1
i + u2

i

= v1
j + v2

j = 0 for 2 ≤ i ≤ α, 2 ≤ j ≤ β〉,

which, after substituting u2
i = −u1

i and v2
j = −v1

j , gives

H1(TC1(κ)) � 〈u1
i , v1

j | 2 ≤ i ≤ α, 2 ≤ j ≤ β〉.

This is a presentation for Zα+β−2, and, since TC1(κ) is homotopy equivalent to TC(κ),
we are done. �

7. Pointed and unpointed 2t-gon systems

In this section we suggest generalisations of the methods above for constructing
C�-algebras associated to 2t-gon systems, both for even and arbitrary t ≥ 1.

When t = 2, we have an innate idea of what it means for two 2t-gons to be
‘stackable’ – functions we called horizontal and vertical adjacency in Definition 3.1.
We extend this notion to all even t ≥ 2 in as natural a way as possible. The following
definition directly generalises those at the beginning of Section 2.

DEFINITION 7.1. Let G be a connected bipartite graph on αwhite and β black vertices.
Let U, V be sets with |U| = 2tα, |V | = 2tβ, gifted with fixed-point-free involutions
u �→ ū, v �→ v̄, respectively. Using U and V, construct the 2t-polyhedron P(G) from
Theorem 2.2, which comprises 2t-gons Ae = [u1

p, v1
q, . . . , ut

p, vt
q] and has G as its link

at each vertex. Write S′(G) := {Ae | e ∈ E(G)} for the set of 2t-gons comprising P(G).
We call elements of S′t(G) unpointed 2t-gons, and denote them by Ae = (x1, y1, . . . ,
xt, yt).

Analogously to Section 2, we write [x1, y1, . . . , xt, yt] for a pointed 2t-gon, that is,
a 2t-gon labelled anticlockwise and starting from a distinguished basepoint by the
sequence x1, y1, . . . , xt, yt, for some xi ∈ U, yi ∈ V . Write St = St(G) for the set of 2tαβ
pointed 2t-gons. We call the tuple (G, U, V ,St) a 2t-gon system. Similarly, we call the
tuple (G, U, V ,S′t) an unpointed 2t-gon system.
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B
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FIGURE 9. U-, V-adjacency: Consider the pointed octagons A = [x1, y1, . . . , x4, y4], B = [x̄′1, ȳ4, . . . , x̄′2, ȳ1],
and C = [x̄3, ȳ′2, . . . , x̄4, ȳ′3] in S4. We say that A and B are V-adjacent, and A and C are U-adjacent. There
is a unique octagon D = [x′3, y′3, . . . , x′2, y′2] that is both U-adjacent to B and V-adjacent to C.

Consider the adjacency matrices M1 and M2 from Definition 3.1. We can view two
pointed tiles (4-gons) A = [x1, y1, x2, y2] and B as being horizontally adjacent, that is,
M1(A, B) = 1, if and only if, after reflecting A through an axis connecting the midpoints
of x1 and x2, and then replacing x1, x2 by some x′1 � x1, x′2 � x2 respectively, we can
obtain B. Likewise, if and only if we can obtain B by reflecting A through an axis
joining the midpoints of the y edges, and then changing the labels of those edges, do
we say that A and B are vertically adjacent.

DEFINITION 7.2. Let t be an even integer, let (G, U, V ,St) be a 2t-gon system, and let
A = [x1, y1, . . . , xt, yt] ∈ St be a pointed 2t-gon.

Reflect A through an axis joining the midpoints of the sides labelled x1 and x(t/2)+1
to obtain a new pointed 2t-gon [x̄1, ȳt, x̄t, ȳt−1, . . . , x̄2, ȳ1]. A pointed 2t-gon B ∈ St is
V-adjacent to A whenever B = [x̄′1, ȳt, x̄′t , ȳt−1, . . . , x̄′2, ȳ1] for some x′i � xi.

Similarly, reflect A so that x1 �→ x̄(t/2)+1; we obtain a new pointed 2t-gon

[x̄(t/2)+1, ȳt/2, x̄t/2, . . . , ȳ1, x̄1, ȳt, x̄t, . . . , x̄(t/2)+2, ȳ(t/2)+1]. (7-1)

We say that a pointed 2t-gon B ∈ St is U-adjacent to A if B is of the form (7-1), but
with all elements yi replaced with some y′i � yi (Figure 9).

We define the U- and V-adjacency matrices, MU and MV , respectively, to be the
2tαβ × 2tαβ matrices with AB th entry 1 if A and B are U-adjacent (respectively,
V-adjacent), and 0 otherwise.
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PROPOSITION 7.3. Let t be even, and (κ, U, V ,St(κ)) be a 2t-gon system with
adjacency matrices MU, MV. Then these matrices commute, and (κ, U, V ,St(κ))
has the UCE property. Hence, (κ, U, V ,St(κ)) has a 2-rank graph structure.

PROOF. Consider the pointed 2t-gon A = [u1
i , v1

j , . . . , ut
i, vt

j] ∈ St(κ); those 2t-gons
corresponding to its reflections and rotations are treated similarly. Then a pointed
2t-gon B is V-adjacent to A if and only if B = [ū1

k , v̄t
j, . . . , ū2

k , v̄1
j ] for some k � i.

Suppose B is such a 2t-gon V-adjacent to A; then a pointed 2t-gon D is U-adjacent
to B if and only if

D = [u(t/2)+1
k , v(t/2)+1

l , . . . , ut
k, vt

l, u1
k , v1

k , . . . , ut/2
k , vt/2

l ] (7-2)

for some l � j. Likewise, C is U-adjacent to A if and only if

C = [ū(t/2)+1
i , v̄t/2

l , . . . , ū1
i , v̄t

l, . . . , ū(t/2)+2
i , v̄(t/2)+1

l ]

for some l � j. Clearly, if C is such a 2t-gon, then D is V-adjacent to C if and only if it
is of the form (7-2). Exactly one such D exists in St(κ); hence, MU and MV commute.
Then (κ, U, V ,St(κ)) has the UCE property, and the 2-rank graph structure follows
from [6, Section 6]. �

Recall the 2-rank graph Λ(κ) induced from a tile system and its adjacency matrices
M1, M2 in Section 3, and recall its associated universal C�-algebra C�(Λ) from
Definition 3.7. We similarly write Λt(κ) for the 2-rank graph induced from the U- and
V-adjacency matrices MU and MV , and observe that Λt(κ) is row-finite, with a finite
vertex set and no sources. Hence, from Theorem 3.8 we can deduce the following
theorem.

THEOREM 7.4 (K-groups for pointed 2t-gon systems, t even). Let α, β ≥ 2, let t ≥ 2
be even, and let κ = κ(α, β) be the complete bipartite graph on α white and β black
vertices. Then

Kε(C�(Λt(κ))) � (Kε(C�(Λ(κ))))t/2

for ε = 0, 1.

PROOF. Fix t and assume, without loss of generality, that α ≤ β. Analogously to the
proof of Theorem 3.10, we denote the pointed 2t-gons in St(κ) as follows:

• (Ar)ij = [ur
i , vr

j , . . . , ut
i, vt

j, u1
i , v1

j , . . . , ur−1
i , vr−1

j ];
• (Br)ij = [ūr

i , v̄r−1
j , . . . , ū1

i , v̄t
j, . . . , ūr+1

i , v̄r
j ];

• (Cr)ij = [ū(t/2)+r
i , v̄(t/2)+r−1

j , . . . , ū1
i , v̄t

j, . . . , ū(t/2)+r+1
i , v̄(t/2)+r

j ];

• (Dr)ij = [u(t/2)+r
i , v(t/2)+r

j , . . . , ut
i, vt

j, u1
i , v1

j , . . . , u(t/2)+r−1
i , v(t/2)+r−1

j ]
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for 1 ≤ i ≤ α, 1 ≤ j ≤ β, 1 ≤ r ≤ t/2. Here, the addition in the subscript indices is
defined modulo t. Note that each S ∈ St(κ) takes one of the above forms. Then

coker(1 −MT
U , 1 −MT

V ) =
〈
(Ar)pq, (Br)pq, (Cr)pq, (Dr)pq

∣∣∣∣∣
(Ar)pq =

∑
i�p

(Br)iq =
∑
j�q

(Cr)pj,

(Br)pq =
∑
i�p

(Ar)iq =
∑
j�q

(Dr)pj,

(Cr)pq =
∑
i�p

(Dr)iq =
∑
j�q

(Ar)pj,

(Dr)pq =
∑
i�p

(Cr)iq =
∑
j�q

(Br)pj,

for 1 ≤ p ≤ α, 1 ≤ q ≤ β, and 1 ≤ r ≤ t/2
〉
.

But, comparing this to (3-1), we see this is precisely a presentation for the direct sum
of t/2 copies of coker(I −MT

1 , I −MT
2 ) as in Theorem 3.10, and the result follows. �

THEOREM 7.5. Let α, β ≥ 3, let t ≥ 2 be even, and let κ = κ(α, β) be the complete
bipartite graph on α white and β black vertices. Then the order of the class of the
identity [1] in K0(C�(Λt(κ))) is equal to g := gcd(α − 2, β − 2).

Furthermore, the isomorphism class of C�(Λt(κ)) is completely determined by the
K-groups from Theorem 7.4 and the order of [1] in K0.

PROOF. The result follows from Theorems 3.12 and 7.4, and considerations similar to
those in the proof of Proposition 4.6. �

If we extend the concept of U- and V-adjacency from Definition 7.2 in the obvious
way, we can obtain a generalisation of Section 5 for unpointed 2t-gon systems of
complete bipartite graphs. Write Λ′t(κ) for the induced 2-rank graph. We realise that
the proof of Theorem 5.3 does not depend on the number of sides 2t of the 2t-gons;
nor do the K-groups associated with Λ′t(κ).

COROLLARY 7.6 (to Theorem 5.3: K-groups for unpointed 2t-gon systems). Let α, β ≥
2, and let κ = κ(α, β) be the complete bipartite graph on α white and β black vertices.
Then

Kε(C�(Λ′t(κ))) � Kε(C�(Λ′(κ)))

for ε = 0, 1, and all t ≥ 1.

PROPOSITION 7.7. Let α, β ≥ 3, let κ = κ(α, β) be the complete bipartite graph, and
write g := gcd(α − 2, β − 2). Then, for all t ≥ 1, the order of the class of the identity
[1] in K0(C�(Λ′t(κ))) is equal to g if g is odd, and g/2 if g is even.

Furthermore, the isomorphism class of C�(Λ′t(κ)) is completely determined by the
K-groups in Corollary 7.6 and the order of [1] in K0.
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COROLLARY 7.8 (to Theorem 6.1). Let (κ, U, V ,S′t(κ)) be an unpointed 2t-gon system,
and let P(κ) be its associated 2t-polyhedron. Then the homology groups of P(κ) do not
depend on t, that is,

Hn(P(κ)) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for n = 0,
Z
α+β−2 for n = 1,
Z

(α−1)(β−1) for n = 2,
0 for n ≥ 3.

7.1. Questions on canonicality. Corollary 7.6 gives us a collection of K-groups
corresponding to systems of 2t-gons with an arbitrary even number of sides 2t, whereas
in the pointed case, Theorem 7.4 insists on 2t being divisible by 4. This is due to how
we define adjacency in each instance: in the 2t-polyhedron P(κ), each face is adjacent
to every other, and since the number of faces is not dependent on t, nor are the U- and
V-adjacency matrices in an unpointed 2t-gon system.

Adjacency in the pointed case is more difficult to define canonically. When t = 2,
and we are dealing with tiles, there is an obvious pair of adjacency functions. We
extend these in Definition 7.2, thinking of two 2t-gons as adjacent if we can reflect
one horizontally or vertically in order to obtain the form of the other. This works
since horizontal and vertical reflections commute, and so the 2t-gon system has the
UCE property. If t is not even, then there are no two distinct reflections of 2t-gons
which commute, and preserve the structure of pointed 2t-gons. We must pick the same
two reflections for both adjacency functions, or else some combination of rotations
and identity transformations. None of these options is a direct extension of our
horizontal and vertical adjacency functions from Section 3, and so there is no natural
choice.

We suggest that the following definitions of U- and V-adjacency for pointed 2t-gons
are the most intuitive for t ≥ 3, based on the idea that adjacent 2t-gons should have
opposite orientations. They do not, however, generalise the tile systems from Sections
2–5, themselves being the most natural constructions when t = 2. Because of this, the
previous constructions are the main focus of this paper.

DEFINITION 7.9. Let t ≥ 1 be a fixed arbitrary integer, let (G, U, V ,St) be a 2t-gon
system, and let A = [x1, y1, . . . , xt, yt] ∈ St be a pointed 2t-gon.

A pointed 2t-gon B ∈ St is V∗-adjacent to A if and only if B = [x̄′1, ȳt, . . . , x̄′2, ȳ1] for
some x′i � xi.

Similarly, we say that a pointed 2t-gon C ∈ St is U∗-adjacent to A if and only if
C = [x̄1, ȳ′t , . . . , x̄2, ȳ′1] for some y′i � yi. We define the U∗ - and V∗-adjacency matrices
M∗U and M∗V , respectively, as above.

The proof of the following proposition is almost identical to that of Proposition 7.3,
together with Proposition 3.5. From this, along with Theorem 3.8, we can deduce
Theorem 7.11.
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PROPOSITION 7.10. Let (κ, U, V ,St(κ)) be a 2t-gon system with adjacency matrices
M∗U, M∗V. Then (κ, U, V ,St(κ)) induces a 2-rank graph Λ∗t (κ), which is row-finite, with
a finite vertex set and no sources.

THEOREM 7.11 (K-groups for pointed 2t-gon systems, t arbitrary). Let a, b ≥ 0, let t ≥
1, and let κ = κ(a + 2, b + 2) be the complete bipartite graph on a + 2 white and b + 2
black vertices. Without loss of generality, we assume that a ≤ b. Then, for ε = 0, 1, we
have the following assertions.

(1) If a = b = 0, then Kε(C�(Λ∗t (κ))) � Z4t.
(2) If b ≥ 1 and a, b are coprime, then Kε(C�(Λ∗t (κ))) � Z2t(a+1)(b+1).
(3) If b ≥ 1 and a, b are not coprime, then

Kε(C�(Λ∗t (κ))) � Z2t(a+1)(b+1) ⊕ (Z/g)t,

where g := gcd(a, b).

PROOF. The proof follows the same lines as those of Theorems 3.10, 5.3, and
7.4. Write α := a + 2, β := b + 2, and let β ≥ 3. We denote the pointed 2t-gons in
St(κ) by

• (Ar)ij := [ur
i , vr

j , . . . , ut
i, vt

j, u1
i , v1

j , . . . , ur−1
i , vr−1

j ],
• (Br)ij := [ūr

i , v̄r−1
j , . . . , ū1

i , v̄t
j, . . . , ūr+1

i , v̄r
j ]

for 1 ≤ i ≤ α, 1 ≤ j ≤ β, 1 ≤ r ≤ t, and with addition in superscript indices defined
modulo t. Observe that each S ∈ St(κ) is either of the form (Ar)ij or (Br)ij. Then

coker =
〈
(Ar)pq, (Br)pq

∣∣∣∣∣
(Ar)pq =

∑
i�p

(Br)iq =
∑
j�q

(Br)pj,

(Br)pq =
∑
i�p

(Ar)iq =
∑
j�q

(Ar)pj,

for 1 ≤ p ≤ α, 1 ≤ q ≤ β, and 1 ≤ r ≤ t
〉
,

where coker := coker(1 − (M∗U)T , 1 − (M∗V )T ). As in the proof of Theorem 3.10, define
(Jr)q :=

∑α
i=1(Ar)iq, and (Ir)p :=

∑β
j=1(Ar)pj. Through a sequence of Tietze transfor-

mations, and using some observations from previous proofs, we see that the above
presentation, and hence coker, is equivalent to〈

(Ar)pq

∣∣∣∣∣ (Ar)pq =
∑
i�p

∑
k�i

(Ar)kq =
∑
j�q

∑
l�j

(Ar)pl,
∑
i�p

(Ar)iq =
∑
j�q

(Ar)pj

〉

=

〈
(Ar)pq

∣∣∣∣∣ (α − 2)(Jr)q = (β − 2)(Ir)p = 0,
∑
i�p

(Ar)iq =
∑
j�q

(Ar)pj

〉

=

〈
(Ar)pq

∣∣∣∣∣ (α − 2)(Jr)q = (β − 2)(Ir)p = 0, (Jr)q = (Ir)p for all p, q
〉
.
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We can rewrite each (Ar)i1 and (Ar)1j in terms of the other (Ar)ij, the (Jr)q, and the (Ir)p,
and, hence, remove them from the list of generators. Then, since (Jr)q = (Ir)p for all
1 ≤ p ≤ α, 1 ≤ q ≤ β, we can remove all but one of these from the list of generators as
well, leaving

coker = 〈(Ar)pq, (Jr)1 | (α − 2)(Jr)1 = (β − 2)(Jr)1 = 0,
for 2 ≤ p ≤ α, 2 ≤ q ≤ β, and 1 ≤ r ≤ t〉. (7-3)

We substitute a = α − 2, b = β − 2, and write g := gcd(a, b). Then (7-3) is a presen-
tation of Zt(a+1)(b+1) ⊕ (Z/g)t if g > 1, and Zt(a+1)(b+1) otherwise. If α = β = 2, then
(7-3) gives a presentation of Z2. Together with Theorem 3.8, this gives the desired
result. �

PROPOSITION 7.12. Let α, β ≥ 3, and let κ = κ(α, β) be the complete bipartite graph
on α white and β black vertices. Then, for all t ≥ 1, the order of the class of the identity
[1] in K0(C�(Λ∗t (κ))) is equal to g := gcd(α − 2, β − 2).

Furthermore, the isomorphism class of C�(Λ∗t (κ)) is completely determined by the
K-groups from Theorem 7.11 and the order of [1] in K0.
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