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Tracially Quasidiagonal Extensions

Huaxin Lin

Abstract. It is known that a unital simple C∗-algebra A with tracial topological rank zero has real rank

zero. We show in this note that, in general, there are unital C∗-algebras with tracial topological rank

zero that have real rank other than zero.

Let 0 → J → E → A → 0 be a short exact sequence of C∗-algebras. Suppose that J and A have

tracial topological rank zero. It is known that E has tracial topological rank zero as a C∗-algebra if and

only if E is tracially quasidiagonal as an extension. We present an example of a tracially quasidiagonal

extension which is not quasidiagonal.

1 Introduction

The tracial topological rank was introduced as a noncommutative analog of the cov-

ering dimension for topological spaces ([Ln2] and [Ln3]). It plays an important

role in the classification of amenable C∗-algebras (see [Ln3], [Ln5] and [Ln6]). A

unital commutative C∗-algebra C(X) has tracial topological rank k if and only if

dim X = k. It was shown in [HLX1] that if dim X = k and TR(A) = m then

TR
(

C(X) ⊗ A
)

≤ k + m. At this moment, the most interesting case is that of a

C∗-algebra with tracial topological rank no more than 1.

If A is a unital separable simple C∗-algebra with tracial topological rank zero, it

was shown in [Ln4] that A is quasidiagonal and has real rank zero, stable rank one

and weakly unperforated ordered K0-group. We are also interested in the case of

C∗-algebras that are not simple. Let

0 → J → E → A → 0

be a short exact sequence with TR( J) = 0 = TR(A). It is known that TR(E) = 0

if and only if the extension is tracially quasidiagonal [HLX2]. The definition of tra-

cially quasidiagonal extension is stated in Definition 4.1. Quasidiagonal extensions

are tracially quasidiagonal. A natural question is whether there are any tracially qua-

sidiagonal extensions which are not quasidiagonal. We will show in this note that

there are tracially quasidiagonal extensions which are not quasidiagonal.

In the case that A is simple, as mentioned above, it has been proved that TR(A) =

0 implies that A has real rank zero. The question remained, if, in general, TR(A) = 0

implies that A has real rank zero. In this note, we will construct a tracially quasi-

diagonal extension of C∗-algebras which is not quasidiagonal. We will show that the

C∗-algebra of this extension has tracial topological rank zero but real rank not equal

to zero.
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2 The Construction

Definition 2.1 Let A0 be a unital separable simple C∗-algebra with tracial topologi-

cal rank zero and with K1(A0) = Z⊕Z which satisfies the Universal Coefficient Theo-

rem. For example, A0 may be chosen to be a unital simple AT-algebra. Let B = C(S2).

As is known, K0(B) may be written as Z⊕Z and K0(B)+ = {(n,m) : n > 0}∪{(0, 0)}.

Consider the extension E:

0 → I → E
π
→ B → 0,

where I = A0 ⊗ K and the boundary map ind : K1(B) → K0(I) is zero and the

boundary map ∂ : K0(B) → K1(I) is nonzero with ∂(0, 1) 6= 0. It follows from [BD]

that E is a quasidiagonal C∗-algebra. We will use the fact that if E is quasidiago-

nal as a C∗-algebra, then there is an injective homomorphism which maps E into
∏

n Mk(n)/
⊕

n Mk(n) for some increasing sequence {k(n)}.

Set E1 = E. Let {ei j} denote the matrix units for K. Write en =
∑n

i=1 eii , n =

1, 2, . . . . Here we identify e11 with 1A0
.

Definition 2.2 Let A be a C∗-algebra, G ⊂ A be a finite subset and ε > 0 be

a positive number. Recall that a positive linear map L : A → B (where B is a C∗-

algebra) is said to be G-ε-multiplicative if

‖L(a)L(b) − L(ab)‖ < ε

for all a, b ∈ G.

Let A = Mn1
⊕ Mn2

⊕ · · · ⊕ Mnk
. By a set of standard generators of A, we mean

{(a1, a2, . . . , ak)}, where ai = 0, or ai is an element in the matrix units of Mni
.

Proposition 2.3 For any ε > 0, there is δ(ε, n) > 0 such that if L : A → B is a G-δ-

multiplicative contractive completely positive linear map, where A is a C∗-algebra with

dim A ≤ n, B is a unital C∗-algebra, and G contains a set of standard generators of A,

then there is a homomorphism h : A → B such that

‖L − h‖ < ε.

Proof Since the unit ball of A is compact, there is a finite subset F of the unit ball

such that, for any x ∈ A with ‖x‖ ≤ 1, dist(x,F) < ε/3. It is well known that there

is δ > 0 such that, for any G-δ-multiplicative contractive completely positive linear

map L, there is a homomorphism h : A → B such that ‖L(a) − h(a)‖ < ε/3 for all

a ∈ F. Therefore

‖L − h‖ < ε.

https://doi.org/10.4153/CMB-2003-040-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-040-1


390 Huaxin Lin

Definition 2.4 In the above proposition, let ε = 1/2n. We denote by δn the corre-

sponding δ. We may assume that 0 < δn+1 < δn < 1.

Definition 2.5 For any k, we will use πk : Mk(E) → Mk(B) for the quotient map

induced by π. Let {ξ1, ξ2, . . . } be a dense sequence of S2, where each point repeats

infinitely many times. Let {a1, a2, . . . , } be a dense sequence of the unit ball of E. Let

Gn = {0, 1E, a1, . . . , an}, n = 1, 2, . . . , and let F1 = G1. Since E is quasidiagonal,

there is a (unital) contractive completely positive linear map ψ1 : E1 → Mk(1) which

is F1–1/2 · 1/2 · 1/22-multiplicative with ‖ψ1(a)‖ ≥ (1/2)‖a‖ for all a ∈ F1. Let

p1 = 1A0
⊗ ek(1). So p1 ⊂ I and ψ1 is viewed as a map from E1 to p1(C · 1A0

⊗ K)p1.

Put φ1(a) = π(a)(ξ1) · (1E1
− p1). Define L1 : E1 → E2 = M2(E1) by

L1(a) = diag
(

a, φ1(a), ψ1(a)
)

for a ∈ E1. Set C1 = φ1(E) ⊕ p1(C · 1A0
⊗ K)p1 and C ′

1 = p1(C · 1A0
⊗ K)p1.

Set I2 = M2(I). Let F2 be a finite subset of E2 containing L1(F1), {(ai j)
2
i, j=1 : ai j =

0, a1, or a2}, a set of standard generators for C1 and {ui j}
2
i, j=1, a matrix unit, where

u11 and u22 are identified with diag(1E1
, 0), diag(0, 1E1

). Since E is quasidiagonal,

there is a (unital) F2–1/3 · 1/22 · δdim C1
/22-multiplicative contractive completely

positive linear map ψ2 : E2 → Mk(2) such that (ψ2)|M2(C·1E) is a homomorphism and

‖ψ2(a)‖ ≥ (1 − 1/4)‖a‖ for all a ∈ F2, and such that there is homomorphism

h2 : C1 → Mk(2) such that

‖(ψ2)|C1
− h2‖ < 1/4

(by Proposition 2.3, such h2 exists). Let E3 = M2+1(E2) = M3!(E) and I3 = M2+1(I2).

Let p ′

2 = 1A0
⊗ ek(2) and p2 = diag(p ′

2, p ′

2) ∈ I2. Define φ(2)
1 (a) = π2(a)(ξ1) for

a ∈ E2 but the image of φ(2)
1 is identified with M2(C · 1E). Define φ2(a) = π2(a)(ξ2)

for a ∈ E2 but the image of φ2 is identified with M2

(

C · (1E − p ′

2)
)

. Let Ψ2(a) =

diag
(

ψ2(a), ψ2(a)
)

for a ∈ E2. We now view Ψ2 : E2 → p2M2(C · 1A0
⊗ K)p2 ⊂

p2I2 p2. In particular Ψ2(1E2
) = p2. Define L2 : E2 → E3 by

L2(a) = diag
(

a, φ(2)
1 (a), φ2(a),Ψ2(a)

)

.

It should be noted that diag
(

φ2(a),Ψ2(a)
)

is in E2 and L2 is unital. Let

C2 = φ(2)
1 (E2) ⊕ φ2(E2) ⊕ p2(C · 1A0

⊗ K)p2 and C ′

2 = p2(C · 1A0
⊗ K)p2.

Let E4 = M4(E3) and I4 = M4(I3). Let D2 be a finite subset containing 1C2
and

the standard generators of C2. Let F3 be a finite subset of E3 containing L2(F2),

{(ai j)
3×2
i, j=1 : ai j = 0, a1, a2, or a3}, D2 and {ui j}

3
i, j=1, a matrix unit and where uii is

identified with a diagonal element with 1E3
on the i-th place and zero elsewhere.

Since E is quasidiagonal and E3 = M3!(E), there is a F3–1/4 · 1/23 · δdim C2
/23-

multiplicative contractive completely positive linear map ψ3 : E3 → Mk(3) such that

(ψ3)|M3!(C·1E) is a homomorphism with ‖ψ3(a)‖ ≥ (1 − 1/23)‖a‖ for a ∈ F3 and

there is a homomorphism h3 : C2 → Mk(3) such that

‖ψ3|C2
− h3‖ < 1/23.
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Define φ(3)
i (a) = π3!(a)(ξi) for a ∈ E3 but the image of φ(3)

i is identified with

M3!(C · 1E), i = 1, 2. Let p ′

3 = 1A0
⊗ ek(3) and p3 = diag(p ′

3, . . . , p ′

3), where p ′

3

repeats 3! times. So p3 ∈ I3. Let Ψ3(a) = diag
(

ψ3(a), . . . , ψ3(a)
)

for a ∈ E3, where

ψ3(a) repeats 3! many times. We view Ψ3 : E3 → p3M3(C · 1A0
⊗ K)p3. Define

φ3(a) = π3!(a)(ξ3) for a ∈ E3 but its image is identified with M3!

(

C · (1E − p ′

3)
)

(so

its unit is 1E3
− p3). Define L3 : E3 → E4 by (for any a ∈ E3)

L3(a) = diag
(

a, φ(3)
1 (a), φ(3)

2 (a), φ3(a),Ψ3(a)
)

.

Note that diag
(

φ3(a),Ψ3(a)
)

∈ E3. Put

C3 =

2
⊕

i=1

φ(3)
i (E3)⊕φ3(E3)⊕p3M3!(C·1A0

⊗K)p3 and C ′

3 = p3M3!(C·1A0
⊗K)p3.

We continue the construction in this fashion. With Cn =
⊕n−1

i=1 φ
(n)
i (En) ⊕ φn(En) ⊕

pn

(

Mn!(C · 1A0
⊗ K)

)

pn, let En+1 = Mn+1(En) and In+1 = Mn+1(In). Let Dn be a

finite subset of Cn containing 1Cn
and a standard set of generators of Cn and Fn+1 be

a finite subset of En+1 containing Ln(Fn), {(ai j)
n!
i, j=1 : ai j = 0, a1, . . . , or an}, Dn and

{ui j}
n
i, j=1, a matrix unit, where uii is identified with diag(0, . . . , 0, 1En

, 0, . . . , 0) (the

i-th place is 1En
). Since E is quasidiagonal and En+1 = M(n+1)!(E), there is a unital

Fn+1–1/(n + 2) · 1/2n+1 · δdim Cn
/2n+1-multiplicative contractive completely positive

linear map ψn+1 : En+1 → Mk(n+1) such that (ψn+1)|M(n+1)!
(C · 1E) is a homomorphism,

‖ψn+1(a)‖ ≥ (1−1/2n+1)‖a‖ for a ∈ Fn+1 and there is a homomorphism hn+1 : Cn →
Mk(n+1) such that

‖(ψn+1)|Cn
− hn+1‖ < 1/2n+1.

Define φ(n+1)
i (a) = π(n+1)!(a)(ξi) for a ∈ En+1 and identify the image of φ(n+1)

i with

M(n+1)!(C · 1E), i = 1, 2, . . . , n. Let p ′

n+1 = 1A0
⊗ ek(n+1) and pn+1 = diag(p ′

n+1, . . . ,
p ′

n+1), where p ′

n+1 repeats (n + 1)! times. Put Ψn+1(a) = diag
(

ψn+1(a), . . . , ψn+1(a)
)

,

where ψn+1(a) repeats (n + 1)! many times. Thus the image of Ψn+1 is identified

with pn+1M(n+1)!(C · 1A0
⊗ K)pn+1. Note that Ψn+1(1En+1

) = pn+1. Define φn+1(a) =

π(n+1)!(a)(ξn+1) but identify its image with M(n+1)!

(

C · (1E − p ′

n+1)
)

(so its unit is

1En+1
− pn+1). Define

Ln+1(a) = diag
(

a, φ(n+1)
1 (a), φ(n+1)

2 (a), . . . , φ(n+1)
n (a), φn+1(a),Ψn+1(a)

)

,

where a ∈ En+1. Note that diag
(

φn+1(a),Ψn+1(a)
)

∈ En+1. Let

Cn+1 =

n
⊕

i=1

φ(n+1)
i (En+1) ⊕ φn+2(En+1) ⊕ pn+1(C · 1A0

⊗ K)pn+1 and

C ′

n+1 = pn+1M(n+1)!(C · 1A0
⊗ K)pn+1.

It is easy to verify that (En, Ln) forms a generalized inductive limit in the sense

of [BE]. Denote by A the C∗-algebra defined by this inductive limit. We will use
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Ln,n+k : En → En+k for the decomposition Ln+k−1 ◦ · · · ◦ Ln and Ln,∞ : En → A for the

map induced by the inductive limit. We will also use the fact that ‖Ln(a)‖ = ‖a‖ =

‖Ln,∞(a)‖ for all a ∈ En, n = 1, 2, . . . .

Let I1 = I, In+1 = M(n+1)!(I). Then In
∼= A0 ⊗ K and In is an ideal of En. Set

J0 =
⋃

∞

n=1 Ln,∞(In) and J = J̄0.

Proposition 2.6 J is an ideal of A.

Proof Let a ∈ A and b ∈ J. We want to show that ab, ba ∈ J. For any ε > 0, there

are a ′ ∈
⋃

∞

n=1 Ln,∞(En) and b ′ ∈ J0 such that ‖a − a ′‖ < ε and ‖b − b ′‖ < ε. It

suffices to show that a ′b ′, b ′a ′ ∈ J. To simplify notation, without loss of generality,

we may assume that a ∈
⋃

∞

n=1 Ln,∞(En) and b ∈ J0. Therefore, there is an integer

n > 0 such that a = Ln,∞(a1) and b = Ln,∞(b1), where a1 ∈ En and b1 ∈ In. There

is an integer N > n such that

∥

∥LN,N+k ◦ Ln,N (a1)LN,N+k ◦ Ln,N (b1) − LN,N+k

(

Ln,N (a1)Ln,N (b1)
)
∥

∥ < ε

for all k > 0. By the definition of Ln,N , Ln,N (b1) ∈ IN . Therefore

LN,N+k

(

Ln,N (a1)Ln,N (b1)
)

∈ IN+k.

This implies that

dist(ab, J) < ε

for all ε > 0. Hence ab ∈ J. Similarly ba ∈ J.

Definition 2.7 Let B1 = C(S2) and Bn+1 = M(1+n)!

(

C(S2)
)

, n = 1, 2, . . . . De-

fine hn : Bn → Bn+1 by hn(b) = diag
(

b, b(ξ1), . . . , b(ξn)
)

, n = 1, 2, . . . . Let B∞ =

limn(Bn, hn). Then B∞ is a unital simple C∗-algebra with TR(B∞) = 0 (see Def-

inition 3.2), K1(B∞) = {0} and K0(B∞) = Q ⊕ Z with (K0(B∞))+ =
{

(r,m) :

r ∈ Q+ \ {0},m ∈ Z
}

∪ {(0, 0)}.

Proposition 2.8 Let π : A → A/ J be the quotient map. Then π(A) ∼= B∞.

Proof We first show that, for each n, Ln,∞(En) ∩ J = Ln,∞(In).

Let a ∈ En \ In. Then, by the construction, for all m > 0,

dist
(

Ln,m(a), In+m

)

≥ ‖πn!(a)‖,

where πn! : En → En/In is the quotient map. This implies that

dist
(

Ln,∞(a), J
)

≥ ‖πn!(a)‖.

Therefore Ln,∞(En) ∩ J = Ln,∞(In).

Now we have

Ln,∞(En)/ J ∼= Bn.
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From the construction there is an isomorphism from Ln(En)/In+1 to Ln,∞(En)/ J. De-

note by jn : Ln,∞(En)/ J → Ln+1,∞(En+1)/ J the map induced by Ln and by γn the

isomorphism from Ln,∞(En)/ J onto Bn. We obtain the following intertwining:

Ln,∞(En)/ J
jn

//

πn!

��

Ln+1,∞(En)/ J

π(n+1)!

��

Bn

hn,∞

// Bn+1.

This implies that B∞
∼= A/ J.

3 The Tracial Topological Rank of the C∗-Algebra A

Throughout the rest of the paper, we will use f δ1

δ2
(where 0 < δ2 < δ1 < 1) for the

following non-negative continuous function on [0,∞) defined by

f δ1

δ2
(t) =











1 t ≥ δ1,
t−δ2

δ1−δ2
δ2 < t < δ1,

0 t ≤ δ2.

Definition 3.1 Let a and b be two positive elements in a C∗-algebra A. We write

[a] ≤ [b] if there exists x ∈ A such that a = x∗x and xx∗ ∈ bAb, and [a] = [b] if

a = x∗x and b = xx∗. For more information on this relation, see [Cu1], [Cu2] and

[HLX1].

Definition 3.2 ([Ln4] and [HLX1]) Recall that a unital C∗-algebra A is said to have

tracial topological rank zero if the following holds: for any ε > 0, any finite subset

F ⊂ A containing a nonzero element a ∈ A+, and 0 < σ4 < σ3 < σ2 < σ1 < 1,

there is a projection p ∈ A and a finite dimensional C∗-subalgebra B of A with 1B = p

such that

(1) ‖xp − px‖ < ε for all x ∈ F,

(2) pxp ∈ε B for all x ∈ F, and

(3)
[

f σ1
σ2

(

(1 − p)a(1 − p)
)]

≤ [ f σ3
σ4

(pap)].

If A has tracial topological rank zero, we will write TR(A) = 0. If A is non-unital,

we will say that A has tracial topological rank zero if TR(Ã) = 0.

Lemma 3.3 Let 0 < σ4 < σ3 < 1, there is δ1 = δ(σ3, σ4) > 0 such that for any

C∗-algebra A, any a, b ∈ A+ and x ∈ A with ‖x‖ ≤ 1, ‖a‖ ≤ 1, ‖b‖ ≤ 1 and any σ1,

σ2 with σ3 < σ2 < σ1 < 1, then ‖x∗x − a‖ < δ1 and ‖xx∗ − b‖ < δ1 imply

[ f σ1
σ2

(a)] ≤ [ f σ3
σ4

(b)].
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Proof Let σ ′

4 = σ4 + σ3−σ4

4
and let σ ′

3 = σ4 + σ3−σ4

2
. It follows from Lemma 1.8 of

[HLX1] that there is δ (depending only on σ4 < σ ′

4 < σ ′

3 < σ3) such that

[ f σ1
σ2

(a)] ≤ [ f
σ ′

3

σ ′

4
(x∗x)]

if ‖x∗x − a‖ < δ with 0 < σ ′

3 < σ2 < σ1 < 1. On the other hand, by Lemma 1.8 of

[HLX1] that there is δ(σ4, σ3) > 0, such that if ‖xx∗ − b‖ < δ(σ4, σ3),

[ f
σ ′

3

σ ′

4
(xx∗)] ≤ [ f σ3

σ4
(b)].

Since

[ f
σ ′

3

σ ′

4
(x∗x)] = [ f

σ ′

3

σ ′

4
(xx∗)],

we conclude that

[ f σ1
σ2

(a)] ≤ [ f σ3
σ4

(b)].

Note both δ and δ(σ4, σ3) depend only on σ3 and σ4.

Lemma 3.4 TR(A) = 0.

Proof By 1.11 in [HLX1], it suffices to show the following: for any ε > 0, any 0 <
σ2 < σ1 < 1, any finite subset F of A and a nonzero element a ∈ A+, there is a

projection p ∈ A and a finite dimensional C∗-subalgebra C ⊂ A with 1C = p such

that

(1) ‖xp − px‖ < ε for all x ∈ F,

(2) dist(pxp,C) < ε for all x ∈ F, and

(3)
[

f σ1
σ2

(

(1 − p)a(1 − p)
)]

≤ [ f σ3
σ4

(pap)] for some 0 < σ4 < σ3 < σ2.

Without loss of generality, we may assume that ‖a‖ = 1. Fix 0 < d2 < d1 <
min{1/8, σ2}. Let δ(d1, d2) > 0 be as in Lemma 3.3. There is an integer n such

that 1/n < ε/4, and a finite subset S ⊂ En such that F ∪ {a} ⊂ Ln,∞(S). Suppose

that Ln,∞(b) = a, where 0 ≤ b ≤ 1 is in En and ‖b‖ = 1. We may also assume

Ln,∞(S ′) ⊂ Ll,∞(Fl) where S ′
= S ∪ {cd : c, d ∈ S} and where Fl is as in Defini-

tion 2.5. Choose a large integer l > (n+1)2 such that max{1/2l−2, 1/l} < δ(d1, d2)/2

and
∥

∥ψl

(

Ln,l−1(b)
)
∥

∥ ≥ (1/2)‖Ln,l−1(b)‖ = (1/2)‖b‖. For s ∈ S, we may write (in

El for some contractive completely positive linear map L)

Ln,l(s) = diag
(

s, L(s)
)

with Ln,l(1En
) = diag

(

1En
, L(1En

)
)

,

where L(s) ∈ C l. Since Ll,∞ is Fl–1/(l + 1)2l · δdim C l
/2l-multiplicative, by Proposi-

tion 2.3, there is a homomorphism h : C l → A such that

‖Ll,∞|C l
− h‖ < 1/2l−1.

Let p ′
= diag

(

0, L(1En
)
)

. Then p ′ ∈ Cl. So there is a projection p ∈ h(C l) such

that ‖Ll,∞(p ′) − p‖ < min{1/2l−1, ε/2}. Since Ll,∞ is Fl–1/(l + 1)2l · δdim C l
/2l-

multiplicative, we have
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(1) ‖px − xp‖ < ε for x ∈ F and

(2) pxp ∈ε h(Cl) for x ∈ F.

To show (3) we consider two cases. The case that b ∈ En \ In is rather standard.

We start with case (i): b ∈ (In)+. We may assume that

‖elb − b‖ < min{δ(d1, d2)/4, ε/4}.

Let b1 = elbel and b ′

1 = Ln,l−1(b1). So ψl(b ′

1) 6= 0. In fact ‖ψl(b ′

1)‖ > 1/4. We have

Ln,l(b1) = diag
(

b1,Φn(b1), ψl(b ′

1), . . . , ψl(b ′

1)
)

,

where Φn : In → Il is a contractive completely positive linear map such that Φn(In)

is contained in C ′

l and ψl(b ′

1) repeats l times. Note that ‖ψl(b ′

1)‖ > 1/4. So

diag
(

ψ ′

l (b ′

1), . . . , ψ ′

l (b ′

1)
)

has an eigenvalue λ with λ ≥ 1/4 and its rank (in C ′

l )

at least l. We have

[b1] ≤ [el] and (1/4)[el] ≤
[

diag
(

ψl(b ′

1), . . . , ψl(b ′

1)
)]

,

where ψl(b ′

1) repeats l times. Put c = diag
(

(

0,Φn(b1), ψl(b ′

1), . . . , ψl(b ′

1)
)

)

and

b ′
= diag(b1, 0, . . . , 0). Since {ui j}

l
i, j=1 ⊂ Fl, there is x ∈ Fl such that

x∗x = b ′ and xx∗ ∈ C ′,

where C ′
= elC

′

l el. Moreover, c admits an eigenvalue λ such that λ ≥ 1/4 with cor-

responding spectral projection e larger than a projection in C ′

l with rank l. Therefore

there exists v ∈ C l such that

v∗v = el with el ∈ C ′

l and vv∗ ≤ e.

Note that f
1/4

1/8
(c) ≥ e. This implies that z ∈ C l such that

z∗z = xx∗ and zz∗ f
1/4

1/8
(c) = zz∗.

Let y = Ll,∞(x) and b ′ ′
= (1 − p)Ll,∞(b ′)(1 − p). Since Ll,∞ is Fl–1/(l + 1)2l ·

δdim C l
/2l-multiplicative and ‖Ll,∞|C l

− h‖ < 1/2l−1, we have

‖y∗y − b ′′‖ < 1/2l−2 and ‖yy∗ − h(xx∗)‖ < 1/2l−2.

We also estimate that

‖b ′′ − (1 − p)a(1 − p)‖ < 1/2l−2 and ‖h(c) − pap‖ < 1/2l−2.

Moreover,

h(z∗z) = h(xx∗) and h(zz∗)h
(

f
1/4

1/8 (c)
)

= h(zz∗).
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Therefore, by Lemma 3.3,
[

f σ1
σ2

(

(1 − p)a(1 − p)
)]

≤
[

f d1

d2

(

h(xx∗)
)]

.

We also have that
[

f d1

d2

(

h(xx∗)
)]

= [ f d1

d2

(

h(zz∗)
)

]. Therefore

[

f d1

d2

(

h(zz∗)
)]

≤ [h(zz∗)] ≤
[

f
1/4

1/8

(

h(c)
)]

.

It then follows from Lemma 3.3 again that there are 0 < σ4 < σ3 < d2 such that

[

f
1/4

1/8

(

h(c)
)]

≤ [ f σ3
σ4

(pap)].

Therefore
[

f σ1
σ2

(

(1 − p)a(1 − p)
)]

≤ [ f σ3
σ4

(pap)].

Case (ii): b ∈ (En)+ \ Jn. This part of the proof is just a slight modification of that

of case (i). We note that (for 0 < i < n and a ∈ En) φ(n+1)
i ◦ Ln(a) has the form:

diag
(

πn!(a)(ξi), φ
(n)
1 (a), . . . , φ(n)

n−1(a), πn!(a)(ξn)
)

.

Since {ξn} is dense in S2, without loss of generality, we may assume that πm!(b) 6= 0

and n < m < (m + 1)m < l. By the construction, we may write

Ln,l(b) = diag
(

b, L ′(b), φ(m+1)
m (b), . . . , φ(m+1)

m (b), L ′ ′(b)
)

,

where φm(b) repeats m many times and L ′(b), L ′ ′(b) ∈ Cl. Note that

diag
(

0, L ′(b), φ(m+1)
m (b), . . . , φ(m+1)

m (b), L ′ ′(b)
)

≥ diag
(

0, 0, φ(m+1)
m (b), . . . , φ(m+1)

m (b), 0
)

.

Since {ui j} ⊂ Fl, there is zk ∈ Fl such that

z∗k zk = diag(b, 0, 0, . . . , 0) and zkz∗k = diag(0, . . . , 0, b, 0),

where b is on the k + 1 place. We also have (in Ml!/n!(C · 1En
))

[1En
] ≤

[

diag
(

0, φ(m+1)
m (b), . . . , φ(m+1)

m (b), 0
)]

.

There is c ∈ M(l)!/n!(C · 1En
) such that

c∗c = 1En
and cc∗ ≤ diag

(

0, φ(m+1)
m (b), . . . , φ(m+1)

m (b), 0
)

.

Note also diag(0, b, 0, . . . , 0) ≤ diag(0, 1En
, 0, . . . , 0). Since (Ll,∞)|Ml!(C·1E1

) is a

homomorphism, the same argument in the proof of case (i) shows that this implies

that
[

f σ1
σ2

(

(1 − p)a(1 − p)
)]

≤ [ f σ3
σ4

(pap)].

This shows that TR(A) = 0.

Corollary 3.5 TR( J) = 0.

Proof A similar proof shows that TR( J) = 0.
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4 Tracially Quasidiagonal Extensions

Definition 4.1 Let

0 → I → E → A → 0

be a short exact sequence of C∗-algebras. Recall that (E, I) is said to be quasidiagonal

if there exists an approximate identity {en} for I consisting of projections such that

‖ena − aen‖ → 0 for all a ∈ E.

In [HLX2], the extension (E, I) is said to be tracially quasidiagonal if, for any ε > 0,

any nonzero a ∈ E+, any finite subset F ⊂ E and any 0 < σ4 < σ3 < σ2 < σ1 < 1,

there exists a C∗-subalgebra D ⊂ E with 1D = p such that

(1) ‖px − xp‖ < ε for all x ∈ F,

(2) pxp ∈ε D for all x ∈ F,

(3) D ∩ I = pI p and (D,D ∩ I) is quasidiagonal, and

(4)
[

f σ3
σ4

(

(1 − p)a(1 − p)
)]

≤ [ f σ1
σ2

(pap)].

In [HLX2] we showed that if TR(I) = 0 = TR(A) = 0 then TR(E) = 0 if and

only if (E, I) is tracially quasidiagonal.

It is clear that if (E, I) is quasidiagonal, then (E, I) is tracially quasidiagonal. The-

orem 4.4 says that there are tracially quasidiagonal extensions that are not quasidiag-

onal.

Theorem 4.2 The extension

0 → J → A → B∞ → 0

is tracially quasidiagonal.

Proof One can show directly that the extension is tracially quasidiagonal, but the

proof will be similar to that of Lemma 3.4. Note, however, we have TR( J) = TR(B∞)

= 0. It follows from [HLX2] that TR(A) = 0 if and only if the extension is tracially

quasidiagonal.

Lemma 4.3 Let An be a sequence of C∗-algebras and A = limn→∞(An, Ln) be a

generalized inductive limit (in the sense of [BE]). Suppose that ‖Ln(a)‖ = ‖a‖ for all

a ∈ An, n = 1, 2, . . . , n. Suppose also that p ∈ A is a projection. Then, for any ε > 0,

there is n > 0 and a projection e ∈ An such that

‖Ln,∞(e) − p‖ < ε.

Proof By the definition, there is a sequence {Lnk,∞(ak)}, where ak ∈ Ank
such that it

converges to p. By replacing ak by (ak + a∗k )/2, we may assume that ak is self-adjoint.

Since p2
= p, we have that Lnk,∞(a2

k) → p. Therefore we may assume that

‖Lnk,∞(ak − a2
k)‖ < 1/2k+1 and ‖Lnk,∞(a2

k) − p‖ < 1/2k+1.
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Since ‖Ln(a)‖ = ‖a‖ for all a ∈ An, n = 1, 2, . . . , we may assume that

‖ak − a2
k‖ < 1/2k+1 k = 1, 2, . . . .

Thus for large k, there is a projection pk ∈ Ak such that

‖ak − pk‖ < 1/2k.

We have

‖p − Lk,∞(pk)‖ < ε

provided that k is large enough.

Theorem 4.4 RR(A) 6= 0.

Proof Suppose that RR(A) = 0. Then RR( J) = 0. It follows from [Zh] that the

following holds. If p ∈ A/ J is a projection, then there is a projection q ∈ A such

that π(q) = p. Since B∞ is a simple unital AT-algebra, there is a projection p ∈ B∞

such that [p] = (1, 1). If there were a projection q ∈ A such that π(q) = p, then, by

Lemma 4.3, there were an integer n > 0 and a projection e ∈ En such that

‖Ln,∞(e) − q‖ < 1/4.

Let πn! : En → Bn be the quotient map. From the commutative diagram

En

Ln,∞

//

πn!

��

A

π

��

Bn

hn,∞

// B∞

we conclude that πn!(e) = pn is a projection in Bn and hn,∞(pn) = π ◦ Ln,∞(e). Set

r = π ◦ Ln,∞(e). Then r ∈ B∞ is a projection such that

‖r − p‖ < 1/4.

Therefore [r] = [p] in K0(B∞). In other words, [hn,∞(pn)] = [p] = (1, 1) in

K0(B∞). From the definition, this implies that [pn] = (n!, 1) in K0(Bn) and

(πn!)∗([e]) = (n!, 1). However, since ∂(n!, 1) 6= 0 in K1(In), such e (in En) does

not exist, a contradiction. So RR(A) 6= 0.

Corollary 4.5 The extension

0 → J → A → B∞ → 0

is not quasidiagonal.

Proof The proof of Theorem 4.4 shows that ∂ : K0(B∞) → K1( J) is not zero. It

follows from [S] (see also [Sch]) that the extension is not quasidiagonal. This also

follows from the fact: If J is σ-unital, the extension is quasidiagonal and RR( J) =

RR(B∞) = 0, then RR(A) = 0.
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