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Complemented hereditary radicals

Robert L. Snider

The complemented elements of the lattice of hereditary radicals
are characterized. A hypernilpotent complemented hereditary
radical is the upper radical determined by a finite number of
finite matrix rings. As a corollary, Stewart's characterization
of radical semisimple classes is obtained. The methods are

universal algebraic in nature.

In [14], we showed that the natural order on the class of all radicals
for associative rings gives rise to a complete lattice in which the
hereditary radicals form a complete sublattice, where for hereditary
radicals o and B , the meet f{a A B)(R) = a(R) n B(R) for any ring R .
The semisimple class of the join o v B 1is the intersection of the
semisimple class of o and the semisimple class of B . We also showed
that the lattice of hereditary radicals is Brouwerian and hence
distributive. 1In [14], we raised the gquestion of characterizing the
complemented elements of this lattice. In this paper, we completely
characterize the complemented hereditary radicals by a detailed study of
the polynomial identities of certain algebras. As an application, we
quickly obtain a recent result of Stewart {157 characterizing radical

semisimple classes.

Our approach is somewhat universal algebraic in nature. We suggest
the reader unfamiliar with this approach see Gratzer [§]. For elementary

definitions and notions concerning radicals, see [7] or [17].

We shall always use lower case Greek letters to denote radicals. If
R is a ring, then the #n x n matrix ring over R will be denoted by

Rn . |4} will denote the cardinality of the set 4 .
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For a hereditary radical o , let oa* denote its pseudocomplement
where the pseudocomplement is the largest radical A such that
o AX=0. of must exist since our lattice is Brouwerian. If o has a
complement, its complement must necessarily be o* . Suppose now that o

is complemented. Since (a v a*)(ZO) =7z and (o A a*)(ZO] = 0 where

[¢]

Zo is the integers with zero multiplication, we have either a(Zo) =27

and o*(Z) =0 or a(z) =0 end o*(2) =2 . In the remainder of

the paper, we shall always assume a(Zo) = ZO . This means that a is

hypernilpotent. We shall characterize the hypernilpotent complemented
radicals. A non-hypernilpotent complemented hereditary radical is then

just the complement of a hypernilpotent one.

Let O be a hereditary radical. In [4], AndrunakieviC constructed
the largest radical o' among all those radicals B with o(R) n B(R) =0

for every ring R . Clearly if o' is hereditary, o' = a* . If a is

hypernilpotent, he showed that o' and o were hereditary. Therefore,
if o 1is also complemented, we have o' = 0*f and " = a** = o . It then

follows from [4] that
a*(R) = N{I : R/T is subdirectly irreducible with a~radical heartl} ,
and

a(R) = a**(R) = N{I : R/I 1is subdirectly irreducible with

O-semisimple heart} .

THEOREM 1. If § <s an o-semisimple simple ring where o 1is a
complemented hypernilpotent radical, then S 1is finite.

Proof. Let C ©be the centroid of S . C 1is a field since S is
simple and S can be regarded as an algebra over C . In [14], we showed
that C 1is finite. We show § satisfies a polynomial identity over (C .

Suppose not. Let F be the free algebra over ( with max{No, IS[}

generators. Let f #0 be in F ; then there exists a homomorphism
h : F> S such that h(f) # 0 since S does not satisfy a polynomial

identity. If « ey xn are the generators of F in the expression of

l’
f , we define h' : F+ S by h'(xiJ = h(xi) , =1, ..., n and

defining &' on the other generators making h' onto. This can be done
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since F has at least as many generators as S has elements. Hence
N{kerh : h : F+ S 1is onto} = 0 , that is F is a subdirect sum of
copies of S . Therefore a(F) =0 . Let H be an infinite field
containing ¢ and G a simple ring which satisfies no polynomial
identities but contains K 1in its center (for example, a division ring
over H infinite dimensional over its center). Let F' be the free ring

with max{*b, ‘Sl, |G|} elements. Repeating the above argument, we

obtain o(F') = 0 . Also F' is a subdirect sum of copies of G .
o(G) = G since G has infinite centroid [14]. Therefore a*(G) = 0 and
hence 0*(F') = 0 . We then have (a v a*)(F') = 0 , contradicting the
fact that a v a* =1 . (1 .is the radical for which all rings are
radical.) Since S satisfies a polynomial identity, S is primitive by
a theorem of Herstein in [13]. By a theorem of Kaplansky [9], S is
finite dimensional over its center which must be C . Therefore S is
finite since C 1is finite.

LEMMA 2. GF[pq)n satisfies the identity &L =0 where r
18 the exponent of GL(n, pq) .

Proof. Let GF(Pq)n act on an »n dimensional GF(pq) vector space

V. If 4 is in GF(pq]n , then we have a descending chain of subspaces,
AV 2A2V 2...2 v D ... which must terminate at A" since V has
dimension 7 . A then induces an automorphism ¢ on A™  which can be

extended to an automorphism 5 of V . Hence Er =1 . For any v in

—

V , we have A (v) = ¢"4"(v) = $ 4% (v) = 4 mr

+
i 1”(v) . Therefore A" =4

LEMMA 3. Let V be the variety of GF(p) algebras generated by
GF(pq)n . If 8 isin V and A 1is a subalgebra of S <isomorphic to
GF(p)n s then A annihilates every nilpotent ideal of S .

Proof. The proof is by induction on the index of nilpotence. Let
N be an ideal of S and suppose N2 =0 . Let e denote the identity

of A . It is sufficient to show that eN = Ne = 0 . First suppose

elle # 0 . Since the action of GF(p)e is the same on both sides of efle ,
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we can regard elNe as a left 4 @bF(p) 4° module where A° denotes

the opposite algebra of 4 . Multiplication is by ({(a ® b)(ene)

0 ~ .
A €bF(p) AT = GF(p)nz . All modules over GF(p)nz are the sum of simple

modules; hence elNe contains a simple submodule. All simple modules

over GF(p)nz

submodule with all
! Y1

®GF(p) '

x Y

n n

are isomorphic; hence we may identify one such simple

Identify A with GF(p)n . Let IS denote the 8 x g identity matrix.

Let
0 0 1 1
1 0
y = + ®
I, O 1 0

which is in S . Recalling N2 = 0 , we compute

l’o 0] (o" 1]
1 0
2
y = + ® s
I o O 1} 0]
0 0] 0] 1
T
n-1
y = + ® s
1
1 0] 1] 0]
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0 1
0
yn =0 + ® |.
0 .
1 0
+
and yn 1. 0.
By the previous lemma, we have
0 1
. 0
. . n n+pr
0# ® =y :y =o’
0
1 0
a contradiction.
Therefore eNe = 0 . Suppose now that eN # 0 . eN is a unital

module and hence has a simple submodule which we may identify with all

X

1
: since all simple A modules are isomorphic. Let
%n
0 0l 1
3= + .
In—l 0] 1

+
and zn 1 = 0 . We now obtain

0

0#£1].] =23 =2 =0
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as before. Therefore eN =0 . Similarly Ne =0 .

Suppose now that A annihilates all nilpotent ideals of index less
than k . Suppose N has index k . Clearly A n N =0 . Passing to
S/N? , we have A isomorphically embedded in S/N? . Therefore by the
above, we have (e+N2)N/IV2 =0 or eNc N2 . N? has index of nilpotence
less than k ; therefore, our induction hypothesis applies. We obtain

eN = e?Nc elN? =0 . Similarly Ne =0 .

LEMMA 4. Let F be a finite field of characteristic p . If UV 1is
the variety of GF(p) algebras generated by F s then the free algebra

over V with R generators can be described as follows: let

4 = [xég)} be the n x n matrix with entries commuting indeterminates
: (n) < (k) (k) _ .

with (xij |F| = 2P and pT;; = 0 . The free algebra is the algebra

generated by the Ay with ordinary matrixz multiplication and addition.

REMARK. Amitsur [Z] states this without proof for infinite fields of

characteristic not necessarily p .
Proof. Let R be the algebra generated by the Ak's . R is

clearly free over V since every substitution by elements of F for the
(k),
%]

only show R is in V . To see this, consider the algebra T generated

by the xiﬁ)'s . T is clearly the free algebra of V(F) . Hence

x s clearly induces a homomorphism of R into Fn .  Therefore we need

1a(F) = 1a(7) . From [12, Theorem 31, I4(F,) = 1a(7,) . Clearly

R E-Tn . Therefore R is in V since Tn is.
For a class of rings M , we denote the upper radical of M by UM

THEOREM 5. Let F=GF(p?) . If a=U{F ]}, then o isa
complemented hereditary radical.

Proof. o A a* = 0 . Suppose then that o v o* <1 . Since the
semisimple class of the join is the intersection of the semisimple classes

[14], there exists a ring R # O such that a(R) = a*(R) =0 . {Fn} is
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a special class since every class of simple rings with unity is special

[4], hence a(R) =N{I : R/T = Fn} ; that is, R is a subdirect sum of
copies of Fn . It follows that R 1is in the variety generated by Fn .

Also since o is hypernilpotent, we have o* = o' where a' is the

complementary radical of Andrunakievic¢ [4]. Therefore
a*(R) = MI : R/I is subdirectly irreducible with a-radical heart} .

.
By Lemma 2, F, and hence R satisfies the identity T ot =0

where r 1is the exponent of GL{(n, F) . Therefore R is a P.I. algebra
and also an algebraic algebra and hence £ is locally finite [10]. There
exists an epimorphism h : R ~ Fn . Let {xi} be a complete set of
liftings of F, . The subalgebra (xi) generated by {xi} is finite
since R 1is locally finite. h](xi) is onto. Let J((xi)) denote the
Jacobson radical of (xi) . R/J((xi)) is a separable algebra; hence by

a generalization of the Principal Theorem of Wedderburn [1], (xi) and

hence K contains a subalgebra 4 isomorphic to Fn

R 1is a subdirect sum of subdirectly irreducible rings {Sj} with
o-radical hearts. The image of A must be nonzero in some Sﬁ . A is

simple; hence the image is an isomorphic copy. We suppose now that

Ac Si . Let H Dbe the heart of Si . Suppose H2 =HF . H is then a

simple ring. H satisfies a polynomial identity since R does. By a
theorem of Herstein in [73], H is primitive and hence by a theorem of
Kaplansky [9], H is isomorphic to Dm where D 1is a division ring

- . . . . ntr 7
finite dimensional over its center (¢ . (¢ must satisfy « -x =0
Therefore ( is finite and C =D . Cm has a unit. It follows that Cm
is a direct summand of S . Si is subdirectly irreducible, hence
Ch = Si . Recall AcC qﬂ . Since A satisfies no identities of degree

less than 2n [3], we have »n <m since Cm satisfies the standard

identity of degree 2m [3]. Also Cﬁ satisfies all identities of Fn
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since R does. Therefore m <n . Since AgCn , U(4) gV(Cn) and
clearly by construction U(Cn) c V() = V(FnJ . Let (An) be the free
algebra with No generators of V(Fn) described in the previous lemma
and (Bk)_ the corresponding free algebra for V(Cn] . The mapping

Ak - Bk induces an isomorphism. It is clear then that ¢ = F . This is
impossible since Cn = Si was assumed to have o-radical heart, but
a(F,) = 0. Therefore H? =0 .

Let e denote the identity of A . Let X be the collection of all

idempotents x of eSie such that ax = xa for all a in 4 . X 1is

not empty since e is in X . Let I = J{4x : x is in X} . The
Jacobson radical J(SiJ of Si is nilpotent since Si is an algebraic
algebra of bounded index (4]. e annihilates J(5.) by Lemma 3. It
follows that eS.e n J(Si) =0 . Clearly IceSe . It is then
sufficient to show that 7 1is an ideal of S’i since this will contradict
the subdirect irreducibility of Si . Let x bein X aﬁd Yy in .5'7,. .

Note that Ax = x4 ; hence it sufficies to show Ay <€ I . Consider the
subalgebra (A4, y) generated by A and y . (4, y) 1s finite

dimensional since Si is an algebraic algebra which satisfies a polynomial

identity and hence is loecally finite [10]. (4, y)/J((A, y)) is separable
where J((A, y)) is the Jacobson radical of (4, y) . By the Principal
Theorem of Wedderburn, (4, y) contains a subalgebra B which is
isomorphic to (4, yy/J(<4, y») and <4, y) = B+ J(c4, y») . The
previous sum is a vector space direct sum. By Lemma 3, 4 annihilates the

nilpotent ideal J((A, y)) since 4 _ZQGF(p)n . e=g3+j with z in B

and § in J(<4, y)) . The projection of A into B is a ring
homomorphism since J (¢4, y>) is an ideal. Therefore Im(4) is
isomorphic to 4 and hence 3zj =jz = 0 whenever a = z + k for some aqa
in A4 . We then have e = ¢2 = ¢(a+j) = ez = (3+j)z = 32 = z for

e =2+ . Hence AC B, By the Wedderburn-Artin Theorem

B

L[}

Cl ® 02 ®...® Cr where Ci are matrix rings over division rings.
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The projection of A on each factor is either 0 or an embedding. As

before, if Fn =AC Ci , we have A = (., . By renumbering if necessary,

7
we have B=Cl®Cz®...®Ct®Ct+l®...®CP where Fn=ci and

= L < = ] . = . = .
ec=ce , 1=t , and eCj 0, g>t . Then ec,e = ¢ and e;a = ac,
for each a in A vwhere e; is the identity of Ci s, 1 =t . Hence
e, isin X end 4de. =C, . Now y = b+j. ay=ab+aj=ab is in
c,®c,®...0C)bcc, ®C,®... ®C, I . Therefore I is an

ideal.

THEOREM 6. Let o be a hypernilpotent radical. o 1is complemented
if and only if o is the wpper radical determined by a finite number of

matrix rings over finite fields.

T .
Proof. First suppose a = U{F(t)} . Let o, = U{F(t)} .. is
n, [._ 7 n. 7
7 71=1 7
complemented by the previous theorem. o = o Aay, A el A 0, [14].
Clearly B = ai v aé V ooeo V a; is the complement of o .

" since o is

Conversely suppose O has a complement. O = o
hypernilpotent. It follows that o is the upper radical determined by
the subdirectly irreducible rings with o*-radical hearts. Let S be
such a ring with heart H . Since o 1is hypernilpotent, S 1is a
semiprime ring and hence H2 = H . Therefore H 1is a simple ring.
Therefore by Theorem 1, H 1is finite and hence is a matrix ring over a
finite field. H has an identity and hence H is a direct summand of S .
Therefore H =S5 . We now have that o is the upper radical determined by

matrix rings over finite fields. We must show that their number is finite.

Suppose first of all that for some prime p , the number of

a-semisimple simple rings is finite. Let {F(l)} be these rings. We
7

first show 7 1is bounded. Suppose not. It follows that no identity over

GF(p) can be satisfied by all the Fiz) since all identities satisfied
7
by Fit) have degree at least 2ni [3]. Consider the free GF(p)

(2
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algebra G with ¢ (cardinality of the continuum) generators. As in the
proof of Theorem 1, we see that G 1is a subdirect sum of the Fiz) .

7
Therefore o(G) = 0 . If on the other hand S is a simple algebra
satisfying no polynomial identities over GF(p) and |SI e (for
example, all linear transformations of finite rank on a vector space of
countably infinite dimension over GF(p)) , then a(S) =8 . o is
complemented; hence 0*(S) =0 . As before we see that G 1is a
subdirect sum of copies of § . Therefore a(G) = a*(G) = (a v a*)(G) = 0,
a contradiction since o v a* =1 . Therefore n; is bounded. Hence for
(4)

some #n , there is an infinite number of fields F of characteristic

p with =n, =n . We distinguish two cases.

Case I. All but finitely many finite fields of characteristic p

are in {F(j) tn,. = n} .
Jd

Case II. Infinitely many finite fields of characteristic p are
not F(j)'s

Case I. Let C %be the direct limit of the F(j)'s where the
29,
but finitely many finite fields of characteristic p are represented. C

(7)

n

s form a direct system with the inclusion maps. ¢ exists since all

is a field and Cn is the direct limit of the F Clearly

(4) (d) . _ )
F c ¢, hence Id(Cn) < NId FnJ . Also if p(xl, ey xn) =0 1is

n = n
(4)

an identity for each Fn

2(9)
n

then since Cn is a direct limit of the
, we have p(xl, ey xn) is an identity for Cn . Hence

V(Cn) = V{Fig)} . Therefore the free GF(p) algebra H over this

(4),

n

variety with ?% generators is a subdirect sum of the F s as before.
Therefore a(H) =0 . Now a*(Cn] =0 and H 1is a subdirect sum of

copies of Cn , hence a*(%) = 0= a(#) = (o v a*)(#) , a contradiction.
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Case II. Consider the polynomial ring (GF(p)[x])n . [GF(p)[x])n

and hence we have a(GF(p)[x]) =0

is a subdirect sum of the F;J) "

Also since there are infinitely many Fn with a*(Fn) =0 , we have
a*(GF(p)[x]]n = 0 . Again we have (a V\g*)(GF(P)[x])n =0, a
contradiction.

We now have that for each prime p , there are only finitely many
O~semisimple simple rings of characteristic p . We now show that only
()

n.
T

finitely many p are represented. Suppose not. Let X be the

o-semisimple simple rings. We first show ni is bounded above. Suppose

not. We show that no polynomial identity over the integers is satisfied
%)
n.
7

(mod p) for only finitely many primes p . Let & be the degree of

by all the Consider g(xl, veey X ] . g(xl, ey xn) =0

n

g(xl, ches xn) . We can find some prime p such that g(xl, ceey xn) # 0

()
.
be S

(mod p) and there is a X of characteristic p with 2ni > s

Since Kél) satisfies no identity of degree less than 2ni ,
A
g(xl, . xn) is not identity in Kn . As before the free algebra over
7
the integers with sufficiently many generators is a subdirect sum of the
%(%)
n

7

and the subdirect sum of copies of some infinite simple ring which

satisfies no identities over the integers. It follows that the free
algebra is o v o*-semisimple. Again this is a contradiction and hence

n; is bounded. As before, we must have infinitely many n; equal =n
for some positive integer #n . Again we have the polynomial ring (Z[x])

(Z denotes the integers) is a subdirect sum of the Kéz)'
7

n

s . Also for

each p , we can pick Gip) with a(Gip)] = G;p) wvhere (G 1is a finite

field of characteristic p . (Z[x]}n is also a subdirect sum of the
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Géa) . Therefore a[Z[x]n) = u*(Z[x]n} = 0 , a contradiction.

We are now able to obtain a recent theorem of Stewart [15]
characterizing radical semisimple classes. A radical semisimple class M
is a radical class which is simultaneously a semisimple class for some

other radical.

- THEOREM 7 (Stewart). M <Zs a radical semisimple class if and only
1f there exists an integer n such that

M={r:a"=x forevery  in R} .

Proof. It is easy to verify that if M is as above, then M is a
radical semisimple class. Suppose then that we are given a radical
semisimple class M . M 1is closed under homomorphic images and subdirect
sum. Therefore M is a variety. Let B be the radical with M as its
radical class and o the radical whose semisimple class is M . We show
that 12 = I for every ring I of M . Suppose not. We then have I/I2

is in M and I/I2 is a zero ring. Every ideal of Zo . the integers

with zero multiplication, can be mapped into I/I%? with nonzero image.

Since M 1is a semisimple class we have ZO is in M . This implies B

is larger than the Baer lower radical. Armendariz has shown [6] that this
implies that M is all rings, a contradiction. I2 =T implies B 1is
subidempotent [4], hence the complementary radical R' is hereditary [4]
and hence B' = B* . Clearly B' =2 a . It is then clear that BR* v B =1

and B 1is complemented. We then have that B* is the upper radical

Y
determined by a finite number of finite matrix rings {F(l)} . Each
7 ‘i=1
F(L) is in M since B[Fii)] = F(l) and hence all subrings are in M
i i Z

since M 1is a variety. If any n; >1 , then M mnust contain rings with

zero multiplication, but JI2 = I for every ring in M , a contradiction.

Therefore n, = 1 . Let 7n be the least common multiple of the

(i)l.

s . 7n clearly is the n demanded in the theorem.
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