
The Knowledge Engineering Review, Vol. 30:1, 1–44. & Cambridge University Press, 2013
doi:10.1017/S0269888913000337
First published online 4 September 2013

Planning in BDI agents: a survey of the integration
of planning algorithms and agent reasoning

F EL I P E MENEGUZZ I 1 and LAVINDRA DE SILVA2

1School of Computer Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS 90619, Brazil;

e-mail: felipe.meneguzzi@pucrs.br;
2CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France; Univ. de Toulouse, LAAS, F-31400 Toulouse, France;

e-mail: ldesilva@laas.fr

Abstract

Agent programming languages have often avoided the use of automated (first principles or

hierarchical) planners in favour of predefined plan/recipe libraries for computational efficiency

reasons. This allows for very efficient agent reasoning cycles, but limits the autonomy and flexibility

of the resulting agents, oftentimes with deleterious effects on the agent’s performance. Planning

agents can, for instance, synthesise a new plan to achieve a goal for which no predefined recipe

worked, or plan to make viable the precondition of a recipe belonging to a goal being pursued.

Recent work on integrating automated planning with belief-desire-intention (BDI)-style agent

architectures has yielded a number of systems and programming languages that exploit the

efficiency of standard BDI reasoning, as well as the flexibility of generating new recipes at runtime.

In this paper, we survey these efforts and point out directions for future work.

1 Introduction

For a long time, agent programming languages have generally avoided the use of first principles

planning approaches due to the high computational cost of generating new plans/recipes1. Indeed,

languages based on the popular belief-desire-intention (BDI) (Bratman, 1987) agent model have

relied on using predefined recipes rather than on planning from scratch. This style of agent

programming language has been widely used in the implementation of both academic (e.g.,

Bordini et al., 2007) and commercial interpreters (e.g., Busetta et al., 1999). With advances in

logic-based planning algorithms (Kautz & Selman, 1996; Blum & Furst, 1997) and Hierarchical

Task Network (HTN) planning (Nau et al., 1999), there has been a renewed interest in the

application of planning to BDI agents. Consequently, a number of BDI architectures and agent

programming languages have been proposed with the ability to use planners to either generate new

recipes from scratch (e.g., Despouys & Ingrand, 1999; Meneguzzi et al., 2004b) or to guide recipe

selection (e.g., Sardiña et al., 2006).

One of the key differences among BDI agent programming languages is the way in which goals

are represented and processed by an agent. In one class of such languages, agent behaviour is

geared towards carrying out predefined hierarchical plans under the assumption that once the plan

is fully executed the agent has accomplished the associated goal. This type of agent behaviour is

closely related to HTN planning (Nau et al., 1999) and typifies the notion of goals-to-do or

procedural goals (Winikoff et al., 2002), widely used in agent programming languages due to

1 An exception is the PLACA language (Thomas, 1995), which has not been widely adopted.

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

its efficiency. In the other class of agent programming languages, agents reason explicitly about

the state of the environment, and carry out plans to reach certain desired states. Reasoning

towards achieving these goals is associated with classical STRIPS (Fikes & Nilsson, 1971), planning,

and typifies the notion of goals-to-be or declarative goals (Winikoff et al., 2002). A small subset of

agent languages, for example 3APL (Dastani et al., 2004), is actually capable of reasoning about

goals-to-be without relying on first principles planning.

The inclusion of a planning capability substantially increases the autonomy of a BDI agent

and exploits the full potential of declarative goals. For example, when there is no applicable plan

for achieving a goal at hand, an agent may consider synthesising a new plan to achieve it, or to

achieve some other relevant plan’s precondition for the purpose of making it applicable (de Silva

et al., 2009).

Planners vary significantly in the representations they use, the algorithms that solve them, and

the way in which results are represented (Meneguzzi et al., 2010). Planning techniques also differ in

the assumptions they make about the environment, in terms of the outcome of actions as well as

the observability of the state of the world (desJardins et al., 1999). This same set of assumptions

applies to the environments in which autonomous agents operate. Virtually all interpreters of

BDI programming languages assume a fully observable2 environment and a non-deterministic

transition model3. There is, however, some initial work in bridging the gap between BDI agents

and probabilistic planning techniques (Simari & Parsons, 2006).

In this paper, we survey techniques and systems aimed at integrating planning algorithms

and BDI agent reasoning. We focus in particular on describing planning BDI architectures

algorithmically using a common vocabulary and formalism to allow the reader to compare and

contrast their inner mechanisms. Academic literature employs a variety of formalisms to describe

the operation of agent architectures and programming languages, ranging from pure logic (e.g.,

Móra et al., 1999), specifications using formal semantics (e.g., Rao, 1996; d’Inverno et al., 1998;

Hindriks et al., 1999; Sardiña & Padgham, 2011) to imperative programming languages (e.g.,

Walczak et al., 2006). In this paper, we follow the tradition of BDI logic (Rao, 1996) to describe a

generic BDI programming language, given its wide adoption throughout the community. The

semantics of this language is then given through a basic agent interpreter defined using algorithms

in structured English, in the tradition of the planning literature (Ghallab et al., 2002). This allows

us to examine how planning is integrated into the basic BDI interpreter, and to compare and

contrast different approaches to planning in BDI systems. The paper is organised as follows.

Section 2 lays out the formal foundation of planning required for the paper. In Section 3 we define

an abstract agent interpreter strongly influenced by modern agent programming languages. We

then follow with sections surveying architectures based on different notions of planning: Section 4

focuses on architectures integrated with declarative planners; Section 5 focuses on architectures

integrated with procedural planners; and Section 6 offers insights into the potential integration of

probabilistic planners into BDI agent architectures. Finally, in Section 8, we conclude the paper

with future directions for research in integrating planning algorithms with BDI agents.

2 Background

In this section, we establish a common formal framework to compare the different approaches to

planning within BDI agent languages. To this end, we first introduce in Section 2.1 some notation

and definitions often used in the planning and agent programming literature, and then use these

definitions for the formalisation of planning problems in Section 2.2.

2 That is, events perceived by a BDI agent using a traditional programming language are assumed to

represent all the relevant perceptions for that particular agent, and not indirect observations from the

environment that induce a probability distribution over a set of possible states.
3 This is because most agent interpreters assume that actions may fail, but do not have an explicit model of

state transitions with probabilities.

2 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

2.1 Logic language

We use a first-order logic language consisting of an infinite set of symbols for predicates,

constants, functions, and variables, obeying the usual formation rules of first-order logic. We start

with the following basic definitions.

DEFINITION 1 (Term) A term, denoted generically as t, is a variable w, x, y, z (with or without

subscripts); a constant a, b, c (with or without subscripts); or a function

f ðt0; . . . ; tnÞ, where f is a n-ary function symbol applied to (possibly nested) terms

t0; . . . ; tn. &

DEFINITION 2 (Formula) A predicate (or a first-order atomic formula), denoted as j, is any construct of
the form pðt0; . . . ; tnÞ, where p is an n-ary predicate symbol applied to terms t0; . . . ; tn.
A first-order formula F is recursively defined as F ::¼ F ^ F0j:Fjj. &

We assume the usual abbreviations:F _ F0 stands for :ð:F ^ :F0Þ; F ! F0 stands for :F _ F0

and F2F0 stands for ðF ! F0Þ ^ ðF0 ! FÞ. Additionally, we also adopt the equivalence

fF1; . . . ;Fng � ðF1 ^ � � � ^ FnÞ and use these interchangeably. In our mechanisms we use first-

order unification (Fitting, 1990), which is based on the concept of substitutions.

DEFINITION 3 (Substitution) A substitution s is a finite and possibly empty set of pairs

fx1=t1; . . . ;xn=tng, where x1; . . . ;xn are distinct variables and each ti is a term such

that ti 6¼ xi. &

Given an expression E and a substitution s ¼ fx1=t1; . . . ; xn=tng, we use Es to denote the

expression obtained from E by simultaneously replacing each occurrence of xi in E with ti, for
all i 2 f1; . . . ; ng.

Unifications can be composed; that is, for any substitutions s1 ¼ fx1=t1; . . . ; xn=tng and

s2 ¼ fy1=t01; . . . ; yk=t0kg, their composition, denoted as s1 � s2, is defined as

fx1=ðt1s2Þ; . . . ; xn=ðtns2Þ; z1=ðz1s2Þ; . . . ; zm=ðzms2Þg, where fz1; . . . ; zmg are those variables in

fy1; . . . ; ykg that are not in fx1; . . . ; xng. A substitution s is a unifier of two terms t1, t2, if
t1s ¼ t2s.

DEFINITION 4 (Unify Relation) Given terms t1, t2 the relation unifyðt1; t2; sÞ holds iff t1s ¼ t2s for

some substitution s. Moreover, unifyðpðt0; . . . ; tnÞ; pðt00; . . . ; t0nÞ;sÞ holds iff unify

ðti; t0i ;sÞ; for all 0 � i � n. &

Thus, two terms t1, t2 are related through the unify relation if there is a substitution s that

makes the terms syntactically equal. We assume the existence of a suitable unification algorithm

that is able to find such a substitution. Specifically, we assume the implementation has the

following standard properties: (i) it always terminates (possibly failing—if a unifier cannot be

found); (ii) it is correct; and (iii) it has linear computational complexity.

We denote a ground predicate as �j. In our algorithms, we adopt Prolog’s convention

(Apt, 1997) and use strings starting with a capital letter to represent variables and strings starting

with a lower case letter to represent constants. We assume the availability of a sound and complete

first-order inference mechanism4 that decides if F0 can be inferred from F, denoted as F � F0.
In line with the equivalence mentioned before, we sometimes treat a set of ground predicates as a

4 Such mechanisms have a design space defined by the expressiveness of the language and complexity/

decidability aspects—the more expressive the language, the fewer are the guarantees that can be given

(Fitting, 1990). In particular, if we assume our first-order language is restricted to Horn clauses, then we can

use Prolog’s resolution mechanism (Apt, 1997).

Planning in BDI agents 3

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

formula, or more specifically, as a conjunction of ground predicates. Hence, we will sometimes use

the logical entailment operator with a set of ground predicates. Moreover, we assume the existence

of a mechanism to determine if a formula F can be inferred from a set of ground predicates, and if

so, under which substitution; that is, f �j0; . . . ; �jng � Fs.
For simplicity of presentation, we refer to well-formed atomic formulas as atoms. Now let S be

the infinite set of atoms and variables in this language and let S be any finite subset of S. From

these sets, we define R̂ to be a set of literals over S, consisting of atoms and negated atoms, as well

as constants for truth (>) and falsehood (?). We denote the logic language over S and the logical

connectives of conjunction (4) and negation (:) as LS.

2.2 Planning

Now that the preliminary formalisms have been presented we can discuss the necessary back-

ground on automated planning. Automated planning can be broadly classified into domain

independent planning (also called classical planning and first principles planning) and domain

dependent planning. In domain independent planning, the planner takes as input the models of all

the actions available to the agent, and a planning problem specification: a description of the initial

state of the world and a goal to achieve—that is, a state of affairs, all in terms of some formal

language such as STRIPS (Fikes & Nilsson, 1971). States are generally represented as logic atoms

denoting what is true in the world. The planner then attempts to generate a sequence of actions

which, when applied to the initial state, modifies the world so that the goal state is reached. The

planning problem specification is used to generate the search space over which the planning system

searches for a solution, where this search space is induced by all possible instantiations of the set of

operators using the Herbrand universe5, derived from the symbols contained in the initial and goal

state specifications. Domain-dependent planning takes as input additional domain control

knowledge specifying which actions should be selected and how they should be ordered at different

stages of the planning process. In this way, the planning process is more focused, resulting in

plans being found faster in practice than with first principles planning. Such control knowledge,

however, also restricts the space of possible plans.

2.2.1 Planning formalism

In what follows we will, for simplicity, stick to the STRIPS planning language. The input for

STRIPS is an initial state and a goal state—which are both specified as sets of ground atoms—and

a set of operators. An operator has a precondition encoding the conditions under which the

operator can be used, and a postcondition encoding the outcome of applying the operator. Planning

is concerned with sequencing actions which are obtained by instantiating operators describing

state transformations.

More precisely, a state s is a finite set of ground atoms, and an initial state and a goal state

are states. We define an operator o as a four-tuple hname(o), pre(o), del(o), add(o)i, where

(i) nameðoÞ ¼ actð~xÞ, the name of the operator, is a symbol followed by a vector of distinct

variables such that all variables in pre(o), del(o) and add(o) also occur in actð~xÞ; and (ii) pre(o),

del(o), and add(o), called, respectively, the precondition, delete-list, and add-list, are sets of atoms.

The delete-list specifies which atoms should be removed from the state of the world when the

operator is applied, and the add-list specifies which atoms should be added to the state of the

world when the operator is applied. An operator hname(o), pre(o), del(o), add(o)i is sometimes, for

convenience, represented as a three-tuple hname(o), pre(o), effects(o)i, where effectsðoÞ ¼
addðoÞ [f:ljl 2 delðoÞg is a set of literals that combines the add-list and delete-list by treating

atoms to be removed/deleted as negative literals. We use effects(o)1 to denote the set of positive

5 Any formal language with symbols for constants and functions has a Herbrand universe, which describes

all the terms that can be created by applying all combinations of constant symbols as parameters to all

function symbols.

4 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

literals in effects(o) and effects(o)2 to denote the set of negative literals in effects(o). Finally, an

action is a ground instance of an operator.

The result of applying an action o with effects effects(o) to a state S is a new state S0 in which the

positive effects effects(o)1 are true and the negative effects effects(o)2 are false.

DEFINITION 5 (Function R) The result of applying an action o to a state specification S is described

by the function R : 2R̂ � �O ! 2R̂, where �O is the set of all actions (ground

operators), which is defined as6

RðS; oÞ ¼ ðSneffectsðoÞ�Þ [effectsðoÞþ if S � pre ðoÞ;
undefined otherwise:

(
&

DEFINITION 6 (Function Res) The result of applying a sequence of actions to a state specification is

described by the function Res : 2Ŝ � �O
l ! 2Ŝ; which is defined inductively as

ResðS; hiÞ ¼ S

ResðS; ho1; o2; . . . ; oniÞ ¼ ResðRðS; o1Þ; ho2; . . . ; oniÞ
&

Thus, a planning problem following the STRIPS formalism comprises a domain specification,

and a problem description containing the initial state and the goal state. By using the definitions

introduced in this section, we define a planning instance formally in Definition 7. Here, the

solution for a planning instance is a sequence of actions D which, when applied to the initial state

specification using the Res function, results in a state specification that supports the goal state. The

solution for a planning instance or plan is formally defined in Definition 8.

DEFINITION 7 (Planning Instance) A planning instance is a tuple P ¼ hX; I;Gi, in which:

> X ¼ hS;Oi is the domain structure, consisting of a finite set of atoms S and a finite set of

operators O;
> I � R̂ is the initial state specification; and
> G � R̂ is the goal state specification.

&

DEFINITION 8 (Plan) A sequence of actions D ¼ ho1; o2; . . . ; oni is said to be a plan for a planning

instance P ¼ hX; I;Gi, or a solution for P, if and only if ResðI;DÞ � G7. &

A planning function (or planner) is a function that takes a planning instance as its input and

returns a plan for this planning instance, or failure, indicating that no plan exists for this instance.

This is stated formally in Definition 9.

DEFINITION 9 (Planning Function) A planning function is described by the function Plan :
fP1; . . . ;Png ! �O

l [ffailureg; where fP1; . . . ;Png is the set of all planning

instances, which is defined as

PlanðPÞ ¼
D D is a plan forP;

failure otherwise:

�

&

6 We use the notation 2S to denote the power set of S (Weisstein, 1999).
7 Recall from Section 2.1 that we sometimes treat a set of ground predicates as a formula.

Planning in BDI agents 5

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

We assume such a function exists. The only requirement for the result D of Plan(P) is that it

follows some consistency criteria (e.g., the shortest D). The most basic planning function is the

forward search algorithm. An adapted version of the forward search algorithm (Ghallab et al.,

2004, Chapter 4, page 70) is shown in Algorithm 2. The input for this algorithm is basically

a planning instance, and the output is a solution for the instance. Algorithm 1 simply calls

Algorithm 2 with an empty set as the last parameter, which is later used to keep track of the

states visited so far during the search to avoid getting into an infinite loop (i.e., to guarantee

termination)8. First, Algorithm 2 finds all actions that are applicable in initial state I, and saves

these in the set applicable (Line 5). From this set, an action is picked arbitrarily, and the result of

applying this action in state I is taken as I0 (Line 11). Next, the algorithm is recursively called with

the new state I0. If the recursive call returns a plan for hI0;G;Oi—i.e., the goal state is eventually

reached after applying some sequence of actions to I0 (Line 2)—then the result of the forward

search is attached to the end of action o, and the resulting sequence returned as a solution for the

planning instance. Otherwise, a different action is picked from applicable and the process is

repeated. If none of the actions in applicable can be used as the first action of a sequence of actions

that leads to the goal state, then failure is returned.

2.2.2 HTNs

Unlike first principles planners, which focus on bringing about states of affairs or ‘goals-to-be’,

HTN planners, like BDI systems, focus on solving abstract/compound tasks or ‘goals-to-do’.

Algorithm 1 Basic forward search

1: function FORWARDSEARCH(I, G, O)

2: return FORWARDSEARCHAVOIDLOOPS(I, G, O, ;)
3: end function

Algorithm 2 Basic forward search with loop checking

1: function FORWARDSEARCHAVOIDLOOPS(I, G, O, S)

2: if I � G then

3: return the empty sequence

4: end if

5: applicable :¼ fnameðoÞs j o 2 O; nameðoÞs is ground; I � preðoÞsg
6: if applicable5 ; or IAS then

7: return failure

8: end if

9: S :5S[{I}
10: for each act A applicable do

11: I0 :5Res(I, act)

12: D :5FORWARDSEARCHAVOIDLOOPS(I0, G, O, S)

13: if D 6¼ failure then

14: return act �D
15: end if

16: end for

17: return failure

18: end function

8 More information regarding the properties of the forward search algorithm can be found in Ghallab et al.

(2004: Chapter 4, pp. 70–72).

6 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

Abstract tasks are solved by decomposing (refining) them repeatedly into less abstract tasks, by

referring to a given library of methods, until only primitive tasks (actions) remain. Methods are

supplied by the user and contain procedural control knowledge for constraining the exploration

required to solve abstract tasks—an abstract task is solved by using only the tasks specified in a

method associated with it.

We use the HTN definition from Kuter et al. (2009) (actually an STN from Ghallab et al., 2004,

Chapter 11, pages 231–244, which is a simplified formalism useful as a first step for understanding

HTNs) whereby a HTN task network is a pair H ¼ ðT ;CÞ where T is a finite set of tasks9 to be

accomplished and C is a set of ordering constraints on tasks in T that together make T totally

ordered. Constraints specify the order in which certain tasks must be executed and are represented by

the precedes relation: ti 	 tj means that task ti must be executed before tj. Conversely, the succeeds

relation represents the opposite ordering: ti
 tj means task ti must be executed after tj. A task can be

primitive or compound/non-primitive, with each being a predicate representing the name of the task.

All tasks have preconditions as defined before, specifying a state that must be true before the task

can be carried out, and primitive tasks correspond to operators in first principles planning, which

thereby have effects specifying changes to the state of the world. An HTN planning domain is a pair

D ¼ ðA;MÞ where A is a finite set of operators and M is a finite set of methods. A method

describes how a non-primitive task can be decomposed into subtasks. We represent methods as

tuples m ¼ ðs; t;H0Þ, where s is a precondition, denoted by pre(m), specifying what must hold in the

current state for a task t (denoted task(m)) to be refined into H0 ¼ ðT 0;C0Þ (denoted network(m));

this involves decomposing t into new tasks in T 0 by taking into account constraints in C 0.

Intuitively, given an HTN planning problem P ¼ ðd; I;DÞ, where D ¼ ðA;MÞ is a planning

domain, d is the initial task network that needs to be solved, and I is an initial state specification as

in first principles planning, the HTN planning process works as follows. First, an applicable

reduction method (i.e., one whose precondition is met in the current state) is selected fromM and

applied to some compound task in (the first element of) d. This will result in a new, and typically

‘more primitive’ task network d 0. Then, another reduction method is applied to some compound

task in d 0, and this process is repeated until a task network is obtained containing only primitive

tasks. At any stage during the planning process, if no applicable method can be found for

a compound task, the planner essentially ‘backtracks’ and tries an alternative reduction for a

compound task previously reduced.

To be more precise about the HTN planning process, we first define what a reduction is.

Suppose d5 (T, C) is a task network, t 2 T is a compound task occurring in d, and that

m ¼ ðs; t0;H0Þ—with H0 ¼ ðT 0;C0Þ—is a ground instance of some method inM that may be used

to decompose t (i.e., t0 ¼ ts). Then, reduce(d, t, m, s) denotes the task network resulting from

decomposing task t occurring in d using method m. Informally, such decomposition involves

updating both the set T in d by replacing task t with the tasks in T 0, as well as the constraints C in

H to take into account constraints in C0. For example, suppose task network H mentions a task t1,

a task t2, and the constraint t1 	 t2. Now if a method m ¼ ðt1; ft3; t4g; ft3 	 t4gÞ is applied to H,
the resulting set of constraints will be ft3 	 t2; t4 	 t2; t3 	 t4g.

The HTN planning process is described in Algorithm 3 (adapted from Ghallab et al. (2004,

Chapter 11, page 239)). We refer the reader to Ghallab et al. (2004) and Kuter et al. (2009) for a

more detailed account of HTN planning.

Notice that, although both Algorithms 2 and 3 perform a non-deterministic search from an

initial state until a certain goal condition holds, the goal condition in Algorithm 2 is an explicit

world state, whereas in Algorithm 3 the goal condition is to reach a fully decomposed task

network. This difference in the goal condition makes planning for HTNs significantly more

practical than planning in STRIPS-like domains, since the search space is generally much smaller.

9 Actually, these tasks are labelled so that we can have duplicates and uniquely identify them when writing

constraints. We omit this extra bit of detail to simplify the notation.

Planning in BDI agents 7

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

3 Agent interpreter

To show how different styles of planning can be incorporated into BDI agents, we start by

defining a generic BDI interpreter, inspired by traditional implementations such as PRS (Rao &

Georgeff, 1995) and the more recent Jason (Bordini et al., 2007) system. In this interpreter, an

agent is defined by a set of beliefs and a set of plans or plan rules10, with each plan rule encoding

first a header stating when the plan rule is to be adopted, and then a sequence of steps that are

expected to bring about a desired state of affairs. Goals are implicit, and plans intended to fulfil

them are invoked whenever some triggering condition is met, notionally the moment at which this

implicit goal becomes relevant. Given the terminology introduced in Section 2.2, some confusion

may arise about the difference between a plan/plan rule in the context of BDI programming

languages, and a plan in the context of planning systems. As we shall see below (in Definition 13)

the sequence of steps associated with a BDI plan rule once fully instantiated, more closely matches

the notion of a plan (from Definition 8). When there is no risk of confusion, we shall refer to BDI

programming language plan rules as plans.

The main reasoning cycle of BDI agents manipulates four data structures:

> beliefs, comprising the information known by the agent, which is regularly updated as a result of

agent perception;
> plan rules, representing the behaviours available to the agent, combined with the situations in

which they are applicable;

Algorithm 3 Expanding HTN

1: function FORWARDDECOMP(s, H, A,M)

2: if H5 ; then return ;
3: end if

4: choose any tuAT such that =9tv; tv 	 tu, where H ¼ ðT ;CÞ
5: if tu is a primitive task then

6:

act :¼ fða; sÞ j a is a ground instance of an action inA;
s is such that nameðaÞ ¼ tus;

s � preðaÞg
7: if act5 ; then return failure

8: end if

9: choose any (a, s)A act

10: p :5 FORWARDDECOMP(R(s, a); ðT �ftug;CÞs; A;MÞ
11: if p 5 failure then return failure

12: else return a �p
13: end if

14: else

15:

met :¼ fðm; sÞ j m is a ground instance of amethod inM;

s is such that nameðmÞ ¼ tus;

s � preðmÞg
16: if met5 ; then return failure

17: end if

18: choose any (m, s)Amet

19: H0 :¼ reduceðH; tu;m; sÞ
20: return FORWARDDECOMP ðs;H0;A;MÞ
21: end if

22: end function

10 In the BDI literature, plan rules are often referred to as plans, and sometimes as BDI plans.

8 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

> goals, representing desired world states that the agent will pursue by adopting plans; and
> intention structures, comprising a set of partially instantiated plans currently adopted by

the agent.

Then, by combining all of the above entities, an agent can be formally defined as follows.

DEFINITION 10 (Agent) An agent is a tuple hAg, Ev, Bel, Plib, Inti, where Ag is the agent identifier;

Ev is a queue of events; Bel is a belief base; Plib—the plan library—is a set of plan

rules; and Int—the intention structure—is a set of intentions. &

An agent is notified of changes in the environment, as well as modifications to its own data

structures, through triggering events, which may trigger the adoption of plan rules. We consider

two types of goal: achievement goals, denoted by an exclamation marked followed by a predicate

(e.g. !move(A,B)); and test goals, denoted by a question mark followed by a predicate (e.g.

?at(Position)). Test goals are used to verify whether the predicate it mentions is true, whereas

achievement goals are used to achieve a certain state of affairs. Though Rao (1996) describes goals

in this type of architecture as representing world states that an agent wants to achieve, as we have

discussed above, they are in practice described as intention headers used to identify groups of plan

rules allocated to achieve an implicit objective. Recently, perceived events are stored in the event

queue Ev in increasing order of arrival time. An event may be a belief addition or deletion, or a

goal addition or deletion. Belief additions are positive ground literals (i.e., facts perceived as being

true), and belief deletions are negative ground literals (i.e., facts perceived as being false)11. Events

form the invocation condition of a plan, as further discussed in Definition 13.

DEFINITION 11 (Events and event-queue) Let j be a predicate (cf. Definition 2). An event e is either:

1. a belief addition 1j, whereby belief j is added to the belief base;

2. a belief deletion 2j, whereby belief j is removed from the belief base;

3. a goal addition 1!j, whereby the achievement goal !j is posted to the agent;

4. a goal deletion 2!j, whereby the achievement goal !j has been dropped by the agent;

5. a goal addition 1?j, whereby the test goal ?j is posted to the agent; or

6. a goal deletion 2?j, whereby the test goal ?j has been dropped by the agent.

An event queue Ev is a sequence e1; . . . ; en½ � of ground events12. &

The belief base comprises a set of beliefs, which can be queried through an entailment relation.

DEFINITION 12 (Beliefs and belief base) A belief is a ground first-order predicate. A belief base Bel is

a finite and possibly empty set of beliefs f �j1; . . . ; �jng, along with an associated

logical entailment relation � for first-order formulae. &

3.1 Plans and intentions

An agent’s behaviours are encoded as plan rules that specify the means for achieving particular

(implicit) goals, as well as the situations and events for which they are relevant. Plan rules contain

a head describing the conditions under which a certain sequence of steps should be adopted, and

a body describing the actions that the agent should carry out to accomplish the plan rule’s goal.

A plan rule’s head contains two elements: an invocation condition, which describes when the plan

rule becomes relevant as a result of a triggering event; and the context condition encoding the

11 Note that the operational semantics of goal deletions are neither provided nor clear in Rao (1996). In

Hübner et al. (2006b), an informal semantics for �!j is given where it is used as a means to facilitate

‘backtracking’, that is, the trying of alternative plans on the failure of a plan to solve an achievement goal.
12 Here �e denotes a ground instance of event e.

Planning in BDI agents 9

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

situations under which the plan rule is applicable, specified as a formula. Each step in a plan rule body

may either be an action (causing changes to the environment) or a (sub)goal (causing the addition of

a new plan from the plan library to the intention structure). Interleaving actions and subgoal

invocations allows an agent to create plans using hierarchy of alternative plans, since each subgoal

can be expanded using any one of a number of other plan rules whose invocation condition matches

the subgoal. Finally, the plan library, defined below, stores all the plan rules available to the agent.

DEFINITION 13 (Plan Library) A plan library Plib is a finite and possibly empty set of plan

rules fP1; . . . ; Png. Each plan rule Pi is a tuple ht, c, bd i where t, the invocation

condition, is an event (cf. Definition 11), indicating the event that causes the plan

rule to be considered for adoption; c, the context condition, is a first-order formula

(cf. Section 2.1) over the agent’s belief base (with an implicit existential quantifi-

cation); and bd is the plan body consisting of a finite and possibly empty sequence of

steps ½s0; . . . ; sn�, where each si is either the invocation condition of a plan rule, or an

action (cf. Definition 14). &

In Example 1, we illustrate how a plan library affects an agent’s behaviour.

EXAMPLE 1 (Pl) Let a plan library Pl contain the following four plan rules:

> h1!move(B), at(A)4: same(A, B), [packBags; 1!travel(A, B)]i
> h1!move(B), at(A)4 same(A, B), []i
> h1!travel(A, B), has(car), [drive(A, B)]i
> h1!travel(A, B), has(bike), [ride(A, B)]i
> h1!travel(A, B), >, [walk(A, B)]i

When an agent hAg; ½þ!travelðhome; officeÞ�;Bel;Pl; Inti (cf. Definition 10) using this plan library

adopts an achievement goal to travel to a location (by generating event 1!travel(home, office), it will

be able to adopt one of three possible concrete plans, depending on the availability of a mode of

transportation encoded in its beliefs. ’

An agent interacts with the environment through (atomic) actions, which are invoked from

within the body of plan rules to bring about desired states of affairs. An action basically consists of

an action name and arguments, or more specifically, a first-order atomic formula. Thus, if walk is

an action to walk from one place to another that takes two parameters, an instance of this action

to walk from home to the office could be denoted by walk(home, office).

DEFINITION 14 (Action) An action is a tuple hj; $; �i, where

> j, the identifier, is a first-order predicate pðt0; . . . ; tkÞ where t0; . . . ; tk are variables;
> $, the precondition, is a first-order formula whose free variables also occur in j;
> e is a set of first-order predicates representing the effects of the action. Set e is composed of two

sets, e1 and e2. These sets represent new beliefs to be added to the belief base (members of e1), or

beliefs to be removed from the belief base (members of e2);
> all free variables occurring in e must also occur in $ and j.

For convenience, we refer to an action by its identifier, j, and to the preconditions of an action j a

$ðjÞ and to its effects as �ðjÞ.We refer to the set of all possible actions as Actions. &

Hence, an agent’s action as defined above is equivalent to a STRIPS-like planning operator

described in Section 2.2.1. An agent’s actions are stored in a library of actionsA available to the agent.

Plans that are instantiated and adopted by an agent are called intentions. When an agent adopts

a certain plan as an intention, it is committing itself to executing the plan to completion. Intentions

are stored in the agent’s intention structure, defined below.

10 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

DEFINITION 15 (Intentions) An intention structure Int is a finite and possibly empty set of intentions

fint1; . . . ; intng. Each intention inti is a tuple hs; sti, where s is a substitution and st—a

sequence composed of actions and invocation conditions of plan rules—is an intention

stack, containing the steps remaining to be executed to achieve an intention. &

EXAMPLE 2 (Intention Adoption) Let an agent be in the following state

hAg; ½þ!moveðofficeÞ�; fatðhomeÞ; hasðcarÞg; Pl; fgi with the same plan library Pl of

Example 1. When this agent processes event 1!move(office), this event unifies with the

invocation and context conditions of the first plan rule in the plan library under substitution

s ¼ fA=home; B=officeg, creating intention int ¼ hs; ½packBags; þ!travelðhome; officeÞ�i
and transitioning the agent to a state hAg; ½�; fatðhomeÞ; hasðcarÞg; Pl; fintgi: ’

It is important to note that the intention structure may contain multiple intentions organised in

a hierarchical way. Each individual intention is a stack of steps to be executed, with the next

executable step being the one at the top of the stack. As an agent reacts to an event in the

environment, it creates a new intention with the steps of the plan chosen to achieve the event

comprising the initial stack of this intention, so their steps can be immediately executed. The steps

of a plan adopted to achieve a subgoal of an existing intention are stacked on top of the steps

already on the intention stack, so that its steps are executed before the rest (beginning after the

subgoal) of the original intention.

3.2 Interpreter and control cycle

In this section we describe the mechanisms needed for BDI-style computational behaviour. Here,

we specify a basic abstract BDI agent interpreter and subsequently extend it to incorporate

different styles of planning. The abstract interpreter is shown in Algorithm 4; we describe each step

in more detail below.

The first two steps are for updating events and beliefs, described in Algorithms 5 and 6.

Updating events (Algorithm 5) consists of gathering all new events from the agent’s sensors (Line

2) and then pushing them into the event queue (Line 3), whereas updating beliefs (Algorithm 6)

consists of examining the set of events and then taking appropriate actions with the corresponding

beliefs: either adding beliefs when the events are of the form þ �j (as shown in Line 4), or removing

them when they are of the form � �j (as shown in Line 5)13. We are not concerned here with

more complex belief revision mechanisms (e.g., Gärdenfors, 2003), but such an interpreter could

use them.

Algorithm 4 BDI agent interpreter

1: procedure AGENTINTERPRETER(hAg, Ev, Bel, Plib, Inti)
2: loop

3: Ev :5 UPDATEEVENTS(Ev)

4: Bel :5 UPDATEBELIEFS(Ev, Bel)

5: Ev, Int :5 SELECTPLANS(Ev, Bel, Plib, Int)

6: Ev, Int :5 EXECUTEINTENTION(Int, Ev)

7: end loop

8: end procedure

13 Note that in Algorithm 6 the same beliefs are likely to be added multiple times to the belief base, until

their associated events are removed from the event queue in Algorithm 8. Indeed, Algorithm 6 can be made

more efficient by, for example, keeping track of such associated events and not re-updating the belief base.

We disregard such efficiency improvements for the sake of readability.

Planning in BDI agents 11

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

EXAMPLE 3 (Belief Update) Let an agent be in state hAg; ½þhasðcarÞ; �atðhomeÞ�; fatðhomeÞg; Pl; Inti.
The execution of Algorithm 6 will cause it to transition to a state

hAg; ½þhasðcarÞ; �atðhomeÞ�; fhasðcarÞg; Pl; Inti. ’

Selection of plans to deal with new events is shown in Algorithms 7 and 8, which starts by

removing an event e from the event queue and checking it against the invocation condition t of

each plan in the plan library (Lines 3, 4 in Algorithm 7) to generate the set of options Opt. To this

end, if an event e unifies with invocation condition t of a plan P from the plan library, via

substitution s, and the context cs (i.e., s applied to c) is entailed by the belief base Bel (Line 4),

then the resulting substitution spot and other information about the plan rule are combined into a

structure and stored in Opt, as a possible option for achieving the associated goal.

EXAMPLE 4 (Selecting Options) Let an agent be in the following state

hAg; ½þ!travelðhome; officeÞ�; fatðhomeÞ; hasðcarÞg; Pl; fgi with the same plan library

Pl of Example 1. The execution of Algorithm 7 on this agent will generate the set of

options Opt ¼ fhþ!travelðhome; officeÞ; hasðcarÞ; ½driveðA;BÞ�; fA=home; B=officegi;
hþ!travelðhome; officeÞ;>; ½walkðA;BÞ�; fA=home; B=officegig: ’

Algorithm 5 Update agent events

1: function UPDATEEVENTS(Ev)

2: NewEv :5 PERCEIVEEVENTS

3: Ev0 :5 push(NewEv, Ev)

4: return Ev0

5: end function

Algorithm 6 Procedure to update agent beliefs

1: function UPDATEBELIEFS(Ev, Bel)

2: Bel0 :5Bel

3: for e :5 e1 to en, where event queue Ev5 e1 �y � en do
4: if e ¼ þ �j then Bel0 :¼ Bel0 [f �jg // add predicate to beliefs

5: else if e ¼ � �j then Bel0 :¼ Bel0 � f �jg // remove predicate from beliefs

6: end if

7: end for

8: return Bel0

9: end function

Algorithm 7 Option Selection

1: function SELECTOPTIONS(e, Bel, Plib)

2: Opt :5 ;
3: for all plans ht, c, bdiAPlib do

4: for all s, s0 such that unifyðe; t; sÞ ^ ðBel � cðs � s0ÞÞ do
5: sopt :5 s �s0
6: Opt :5Opt[{he, c, bd, sopti}
7: end for

8: end for

9: return Opt

10: end function

12 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

After an option is chosen for execution, the substitution sopt that led to its selection is applied to

the plan body bd (Algorithm 10), and added to the associated intention structure (Line 5), with no

more plan rules selected for the new event. In the third line of Algorithm 10 (and in other

algorithms where it is used), symbol inte stands for the intention that generated event e14. If the

event is a belief update, a new intention will be created for it (Algorithm 9, Line 7); otherwise, the

event is a subgoal for some existing intention and therefore the new intention is added to it

(Algorithm 9, Line 5)15. If there are no options available to react to an event, two outcomes for the

intention that generated the event are possible. For test goals of the form þ? �j, even if an option

(plan) to respond to that test is not available, the test goal might still succeed if the belief being

tested is supported by the belief base, in which case the only change to the intention that created

the event is to compose the unifier of that belief test to it (Algorithm 8, Lines 8, 9). Finally, if the

event being processed is not a test goal, and there are no options to deal with it (Algorithm 8,

Line 11), the intention that generated the event has failed, in which case we must deal with the

failure. Algorithm 13 illustrates a possible implementation of failure handling mechanism (Bordini

et al., 2007), where events denoting the failure of achievement and test goals are generated.

Algorithm 8 Plan selection (with failure)

1: function SELECTPLANS(Ev, Bel, Plib, Int)

2: Int0 :5 ;
3: Ev0, e :5 pop(Ev)

4: Opt :5 SELECTOPTIONS(e, Bel, Plib)

5: if Opt 6¼ ; then
6: Pick one option he, c, bd, soptiAOpt

7: Int0 :5 ADDINTENTION(e, bd, sopt, Int)

8: else if ðe ¼ þ? �jÞ ^ Bel � �jsb for some sb then

9: Int0 :5 ADDINTENTION(e, [], sb, Int) // For a test goal with no options, add unifier

10: else // If there are no options, we have a failure

11: Ev0, Int0 :5 INTENTIONFAILURE(inte, e, Int, Ev
0)

12: end if

13: return Ev0, Int0

14: end function

Algorithm 9 Add an intention to the set of intentions

1: function ADDINTENTION(e, bd, sopt, Int)

2: Int0 :5 ;
3: hs, sti5CREATEINTENTION(e, bd, sopt)

4: if e is in either of the forms þ! �j; �! �j; þ? �j; or�? �j then // e is any subgoal

5: Int0 :¼ ðInt�fintegÞ [fhs; stig // inte is the intention that generated event e

6: else // Belief update events create a new intention

7: Int0 :¼ Int [fhs; stig // Add a new intention to the set

8: end if

9: return Int0

10: end function

14 Note that this line is left vague because it is an uninteresting implementation-level detail. One possible

way to implement this is by using the event queue to store not just events but also the intentions that

generated them (see Line 12 of Algorithm 11).
15 Note that although all events are considered at once for belief updates, they are handled one per inter-

preter cycle for plan rule invocations to avoid unbounded computations.

Planning in BDI agents 13

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

EXAMPLE 5 (Plan Selection) Let an agent be in the following state

hAg; ½þ!travelðhome; officeÞ�; fatðhomeÞ; hasðcarÞg; Pl; fhA=home; B=officeg; ½�igi after
having executed the two steps of the intention generated in Example 2. When this agent

executes Algorithm 8, Line 4 will generate the options described in Example 4. Since the

set of options is non-empty, Lines 6 and 7 will execute. Assuming the algorithm selects the

first option (corresponding to the plan to drive) in Line 6, Algorithms 9 and 10 will be

called. Since event 1!travel(home, office) was generated by the only intention in the agent

state, the steps for the option to drive will be added to that intention, resulting in state

hAg; ½�; fatðhomeÞ; hasðcarÞg; Pl; fhfA=home; B=officeg; ½driveðhome; officeÞ�igi. ’

After a new plan is adopted, Algorithm 4 executes a step from an arbitrary intention using

function executeIntention(Int, Ev), detailed in Algorithm 11, and illustrated in Figure 1. This

entails selecting one intention int from the intention structure and executing the topmost step of

the stack. If this step is an action it is executed immediately in the environment, and if it is a

subgoal the associated event is added to the event queue.

One possible implementation of an action execution mechanism based on Definition 5 is

shown in Algorithm 12, in which the results of an agent’s actions are directly pushed back into its

Algorithm 10 Create new intention

1: function CREATEINTENTION(e, bd, s)

2: if e is in either of the forms þ! �j; � ! �j; þ? �j; or�? �j then

3: Suppose inte ¼ hsint; sti // inte is the intention that generated event e

4: sint0 :¼ sint � s
5: st0 :¼ pushððbds0intÞ; sts0intÞ // Add new intention to the intention stack. We

// assume variables in bds 0int are renamed to those not in sts0int
6: return hs0int; st0i
7: else

8: return hs; bdsi
9: end if

10: end function

Algorithm 11 Intention execution

1: function EXECUTEINTENTION(Int, Ev, Bel)

2: Ev0, Int0 :5 ;
3: Let intA Int, where int ¼ hs; ½s1; . . . ; sn�i
4: int0; s :¼ popð½s1; . . . ; sn�Þ
5: if s is an action hj; $; �i then
6: Ev0 :5 EXECUTEACTION hj; $; �i � s; Bel; Ev
7: if int ¼ hs; ½�i then // If we execute the last action

8: Int0 :¼ Int�fintg // Remove intention

9: return Ev0, Int0

10: end if

11: else if s is a subgoal g then

12: Ev0 :5 push(1gs, Ev)

13: else if s is a belief addition/deletion then

14: Ev0 :5 push(ss, Ev)

15: end if

16: Int0 :¼ ðInt�fintgÞ [fint0g
17: return Ev0, Int0

18: end function

14 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

event queue. Consequently, Algorithm 12 ‘short circuits’ the results of an action’s execution to

the perception of its effects entirely within the agent. We provide such a simple implementation

to provide a readily understandable function that closes the loop for the agent reasoning

mechanism—in a real system actions are executed in an environment, and an agent will perceive

the results of its actions through events reflecting the changes that an action brings about to this

environment. Thus, although we do not deal with issues regarding the environment in this paper16,

we note that the results of executing an action in most realistic multi-agent settings start to reach

the agent asynchronously, possibly mixed with the results of its other actions and the actions

of other agents acting concurrently in the same environment. Consequently, the complete

implementation of action execution would involve a function in the agent interpreter that

ultimately sends the actions executed by the agents to an implementation of the environment.

Implementations of action execution can vary significantly, depending on what the underlying

environment intends to model, and how the agent formalisms deal with the environment. Some

agent formalisms (e.g., Sardiña et al., 2006) make assumptions about actions being atomic, and the

degree to which an agent receives any feedback about the direct effects of its own actions (i.e., a

new perception is the direct result of an agent’s own actions, or of others). Other agent formalisms

assume that the environment functions according to a stochastic transition function (Schut et al.,

2002); hence the action implementation in the environment would include an element of chance.

Thus if the preconditions of an action are met (Line 3), executing the action amounts to pushing

the effects of the action onto the event queue (Lines 4–8).

This agent interpreter, and the processes upon which it is based, have a very low computational

cost, as demonstrated by various practical implementations such as dMARS (d’Inverno et al.,

2004), PRS (Ingrand et al., 1996), and Jason (Bordini & Hübner, 2006).

Now, as we have seen, multiple events may occur simultaneously in the environment, and

multiple intentions may be created by an agent as a result of these events, possibly resulting in

multiple plan rules becoming applicable and adopted by the agent. Hence, two execution outcomes

are possible: interleaved and atomic execution. In the former, plans in different intentions alter-

nate the execution of their steps, in which case care must be taken to ensure that no two plans that

may execute simultaneously have steps that jeopardise the execution of one another (e.g., actions

in one plan might invalidate the preconditions of actions in a concurrent plan).

Execute Plan Step

Plan Adopted

Goal Addition Event Execute Action Update Beliefs

Execute Subplan

Subplan Succeeded

Subgoal Belief Update

Action Succeeded

Beliefs Updated

Atomic Action

Action Failed

Subplan Failed

Figure 1 Executing plan steps

16 We suggest reading Chapter 2 of Wooldridge (2002).

Planning in BDI agents 15

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

3.3 Limitations of BDI reasoning

One shortcoming of BDI systems is that they do not incorporate a generic mechanism to do any

kind of lookahead or planning (i.e., hypothetical reasoning). In general, planning is useful when

(Sardiña et al., 2006): (i) important resources may be consumed by executing steps that are not

necessary for a goal; (ii) steps are not reversible and may lead to situations from which the goal can

no longer be solved; (iii) executing steps in the real world takes more time than deliberating about

the outcome of steps (in a simulated world); and (iv) steps have side effects which are undesirable if

they are not useful for the goal at hand.

Adopting intentions in traditional BDI interpreters is driven by events in the form of additions

and deletions of either beliefs or goals. These events function as triggers for the adoption of plan

rules in certain contexts, causing plans to be added to the intention stack from which the agent

executes the plan’s steps. In the process, the agent might fail to execute an atomic action or to

accomplish a subgoal, resulting in the failure of the original plan’s corresponding intention. On the

other hand, an agent might execute a plan successfully and yet fail to bring about some result

intended by the programmer. If a plan selected for the achievement of a given goal fails, the

default behaviour of a traditional BDI agent is to conclude that the goal that caused the plan to be

adopted is not achievable. Alternatively, modern interpreters such as JACK (Busetta et al., 1999)

and Jason (Bordini et al., 2007) (among others) can try executing alternative plans (or different

instantiations of the same plan rule) in the plan library until the goal is achieved, or until none of

them achieve the goal. Here, the rules that allow the interpreter to search for effective alternative

Algorithm 12 Action Execution

1: function EXECUTEACTION ðhj; $; �i; Bel; EvÞ
2: Ev0 :5 ;
3: if Bel ‘ $ then

4: for all f 2 �þ ðjÞ do
5: Ev0 :5 push(1f, Ev)
6: end for

7: for all f 2 �� ðjÞ do
8: Ev0 :¼ pushð�f; EvÞ
9: end for

10: end if

11: return Ev0

12: end function

Algorithm 13 Intention Failure

1: function INTENTIONFAILURE(int, e, Int, Ev)

2: Ev0, Int0 :5 ;
3: if e ¼ ðþ! �jj � ! �jÞ then
4: Int0 :¼ Int�fintg
5: Ev0 :¼ Ev [f�! �jg
6: else if e ¼ ðþ? �jj � ? �jÞ then
7: Int0 :¼ Int�fintg
8: Ev0 :¼ Ev [f�? �jg
9: else // Otherwise e was of the form þ �j
10: Int0 :¼ Int

11: end if

12: return Ev0, Int0

13: end function

16 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

means to accomplish a goal, and verification of goal achievement must be explicitly encoded in the

plan library by the programmer.

This control cycle (summarised in Figure 2) strongly couples plan execution to goal achieve-

ment. It also allows for situations in which the poor selection of a plan rule leads to the failure

of a goal that would otherwise be achievable if the search for a plan rule was performed more

intelligently. While such limitations can be mitigated through meta-level constructs that allow goal

addition events to cause the execution of applicable plans in sequence (Georgeff & Ingrand, 1989;

Hübner et al., 2006a), and the goal to fail only when all plans fail, in most traditional BDI

interpreters goal achievement is an implicit side effect of a plan being executed successfully.

Although research on declarative goals (Winikoff et al., 2002) aims to address this shortcoming

from an agent programming language perspective, the problem remains that once an agent has run

out of user-defined plans, the goal will fail.

In order to address these shortcomings of BDI interpreters, as well as enable agents generate

new behaviours at runtime, various planning mechanisms have been studied. The three approaches

to planning that have been integrated into BDI agent systems are discussed next.

Lookahead on existing BDI plans: In this style of planning (e.g., Sardiña et al., 2006; Walczak

et al., 2006), an agent is able to reason about the consequences of choosing one plan for solving a

goal over another. Such reasoning can be useful for guiding the selection of plans for the purpose

of avoiding negative interactions between them. For example, consider the goal of arranging a

domestic holiday, which involves the subgoals of booking a (domestic) flight, ground transpor-

tation (e.g., airport shuttle) to a hotel, and hotel accommodation. Although the goal of booking a

flight could be solved by selecting a plan that books the cheapest available flight, this will turn out

to be a bad choice if the cheapest flight lands at a remote airport from where it is an expensive taxi

ride to the hotel, and consequently not enough money is left over for accommodation. A better

choice would be to book an expensive flight that lands at an airport closer to the hotel, if ground

transportation is then cheap, and there is enough money left over for booking accommodation.

By reasoning about the consequences of choosing one plan over another, the agent could guide its

execution to avoid selecting the plan that books the cheapest flight. Such lookahead can be

performed on any chosen substructures of goal-plan hierarchies; the exact substructures are

determined by the programmer at design time.

Planning to find new BDI plans: The second way in which planning can be incorporated into the

BDI architecture is by allowing agents to come up with new plans on the fly for handling goals

Find applicable plans

Goal addition/deletion

Push plan into Intentions

Process Intention

Applicable plan found

No plan foundGoal
Achieved Goal Failed

Plan failed

Plan Executed Plan failed

Figure 2 Simplified BDI control cycle. Dashed lines represent failure recovery mechanisms

Planning in BDI agents 17

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

(e.g., Despouys & Ingrand, 1999; Móra et al., 1999; Meneguzzi & Luck, 2007; de Silva et al., 2009).

This is useful when the agent finds itself in a situation where no plan has been provided to solve a

goal, but the building blocks for solving the goal are available. To find a new plan, the agent

performs first principles planning, that is, it anticipates the expected outcomes of different steps so

as to organise them in a manner that solves the goal at hand. To this end, the agent uses its existing

repertoire of steps, specifically, some combination of basic steps (e.g., deleting a file or making a

credit card payment) and the more complex ones (e.g., a high-level step for going on holiday).

Similarly, to how the programmer can choose substructures of a goal-plan hierarchy when looking

ahead within existing plans, when planning from first principles the programmer is able to identify

the points from which first principles planning should be performed. In addition, such planning

could also be done automatically on, for instance, the failure of an important goal.

Planning in a probabilistic environment: By using a deterministic model of planning, even though

the languages themselves are ostensibly designed to be suitable for an uncertain world, traditional

BDI agent interpreters (Georgeff et al., 1999) must rely on plan libraries designed with con-

tingency plans in case of failures in execution. While in theory these contingency plans could be

designed perfectly to take into account every conceivable failure, the agent’s reasoning does

not take into consideration the failures before they actually happen, as there is no model of the

non-determinism associated with the failures. In order to perform this kind of proactive reasoning

about failures, it is necessary to introduce a model of stochastic state transition, and an associated

planning model to the BDI interpreter. The implementation of such approaches range from

automatically generating contingency plans (Dearden et al., 2002) to calculating optimal policies

for behaviour adoption using decision theory (e.g., using a Markov decision process (MDP);

Bellman, 1957). In this way an agent adopting a plan takes into consideration not only a plan’s

feasibility but also its likelihood to be successful. Moreover, if the environment changes and the

failure of certain plans become predictable, current BDI implementations have no mechanism to

adapt its plan adoption policy to this new reality.

Unlike linear plans such as those explained in Section 2.2, contingency plans are branching

structures where each branch is associated with a test on an agent’s perception, leading to different

sequences of actions depending on the state of the environment as the agent executes the plan.

Optimal policies in MDPs consist of a function that associates the action with the highest expected

reward for each state of the environment, usually taking into consideration an infinite time horizon.

The two solution concepts for probabilistic planning domains are strongly related, as an optimal

policy can be used to generate the tree structure corresponding to a contingency plan (Meuleau &

Smith, 2003). Within the context of this paper, we can associate the creation of contingency plans as

a probabilistic approach to the creation of new BDI plans, whereas optimal policies can be used as

probabilistic solution to the question of selecting a plan with the best chance of success.

4 Planning with declarative planners

One of the key characteristics of traditional BDI interpreters of the type defined in Section 3 is

their reliance on a library of abstract hierarchical plans. Plans in this library are selected by the

efficient matching of their invocation conditions to incoming events and testing of plans’ logical

context conditions against the agent’s beliefs. Agents that use this model of plan adoption to react

to events are said to use procedural goals (Winikoff et al., 2002), since agents are executing

procedural plans under the assumption that the successful execution of a plan leads to the

accomplishment of the associated implicit goal. Since the events processed by an agent have

limited information about what the agent is trying to accomplish besides identifying the procedure

the agent will be carrying out, this approach limits the range of responses available to an agent in

case a plan selected to accomplish a procedural goal fails. Moreover, since there is no verification

of the effects of a plan, it is even possible that an agent might execute a procedural plan

successfully without actually accomplishing the agent’s goal due to a silent failure. To address

these limitations, notions of declarative goals were introduced in languages such as GOAL

18 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

(Hindriks et al., 2001), CAN (Winikoff et al., 2002), 3APL (Dastani et al., 2004), 2APL (Dastani,

2008) and adapted into the Jason interpreter by Hübner et al. (2006a). Declarative goals describe a

state that the agent desires to reach, rather than a task that needs to be performed, capturing more

closely some of the desirable properties of goals such as the requirement for them to be persistent,

possible, and unachieved. To accommodate declarative goals, the plan language (Winikoff et al.,

2002) includes the construct Goalðfs; P; ff Þ, which intuitively states that (declarative) goal fs

should be achieved using (procedural) plan body P, failing if ff becomes true. This entails that if

program P within goal-program Goalðfs; P; ff Þ has completed execution but condition fs is still

not true, then P will be re-tried; moreover, if fs becomes true during the execution of P, the goal-

program will succeed immediately. In this section, we review agent architectures that rely on

planning algorithms to search for solutions for goals consisting of a specific world state described

as a logical formula, thereby supporting agents that use declarative goals, or a goals to be. Since,

even with declarative goals, a BDI agent is still limited by the set of plans included in its plan

library at design time, these architectures also let agents formulate new plans to tackle situations

that were unforseen at design time.

4.1 Propice-plan

The Propice-plan (Despouys & Ingrand, 1999) framework is the combination of the IPP (Köhler

et al., 1997) first principles planner and an extended version of the PRS (Ingrand et al., 1992) BDI

system. It includes extensions to allow an agent to anticipate possible execution paths for its plans,

as well as the ability to update the planning process in order to cope with a dynamic world.

Although plan rules (called operational plans in Propice-plan, or OPs) are very similar to the ones

used in PRS, they differ in that a designer specifies a plan not only in terms of a trigger, context

condition, and body (see Definition 13), but also includes a specification of the expected

declarative effects of the plan rule. A Propice-plan agent contains three primary modules:

1. an execution module Em responsible for selecting plans from the plan library and executing

them, similarly to the agent processes described in Section 3.2;

2. an anticipation module Am responsible for simulating the possible outcomes of the options

selected; and

3. a planning module Pm responsible for generating a new plan when the execution module fails to

find an option.

The way these modules interact during plan selection is illustrated in Algorithm 14. This

algorithm is somewhat similar to the original plan selection of Algorithm 8 until Line 11. It differs

in that plans from the plan library are not only filtered by their trigger and context condition into

Opt, but also further filtered by the anticipation module Am. We discuss the Am module in more

detail in Section 5.4, but for now assume that this module takes as input a set of options Opt,

containing elements of the form ht; c; bd; sopti and returns one option anticipated to be executed

without failure. If such a plan cannot be found, the remainder of the algorithm (from Lines 11 to

19) uses the planning module Pm to construct a new plan rule from scratch. Specifically, the Pm

module uses the IPP planner to obtain a new PRS plan at runtime. To formulate plans, IPP uses

the plan rules of PRS (augmented with their expected declarative effects), by treating these plan

rules as planning operators17. In particular, the precondition of a planning operator is taken as the

context condition of the corresponding plan rule, and the postcondition of the planning operator

is taken as the declarative effects of the corresponding plan rule. The goal state to plan for is the

(programmer supplied) primary effect of the achievement goal that failed. Solutions found by IPP

are returned to the Em, which executes them by mapping their actions back into ground plan rules.

17 Actually, we assume that the plan library Plib provided as an argument to IPP is an extended version

including information about expected declarative effects of plan rules, which could easily be obtained from a

(global) lookup table, for instance.

Planning in BDI agents 19

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

To this end an intention is created (Line 14) by including a test for the (ground) context condition

of the plan found to ensure that when the intention is actually executed the context condition still

holds. Recall from before that inte in Algorithm 14 is the intention that generated event e.

4.2 X2-BDI

In an attempt to bridge the gap between agent logic theory and implementation (Móra et al., 1999)

developed X-BDI, a logic-based agent interpreter implemented using the extended logic

programming (ELP) with explicit negation formalism developed by Alferes and Pereira (1996). In

turn, the ELP formalism has an implementation in Prolog that solves explicit negation using an

extension of the well-founded semantics (WFS) (Alferes et al., 1995), and for which a proof of

correctness exists18. X-BDI (Móra et al., 1999) is one of the first agent models to include a

recognisably declarative goal semantics. An X-BDI agent is defined in terms of a set of beliefs, a

set of desires, a set of intentions, and a set of time axioms, that is, as a tuple Ag ¼ hB;D; I ; T Axi.
In its original implementation, X-BDI uses the time axioms of event calculus (Kowalski & Sergot

1986), which also include the description of the actions available to the agent. Beliefs are repre-

sented as a set of properties defined in a first-order language, equivalent to that of Section 2.1 and

expressed in event calculus; moreover, consistency between beliefs is enforced using the revision

mechanisms of ELP. However, in keeping with the algorithmic presentation style of this paper, we

simplify the explanation of X-BDI and do not refer to the event calculus representation directly.

Instead, we consider beliefs as ground time-stamped logical atoms. In this paper, we consider an

X-BDI belief base B as an extension of the belief base (and its entailment relation) of Definition 12

to include the notion of time, and we use B�T F to denote first-order formula F being entailed by

the belief base at time T19. We denote the current time as Now and denote the set of properties at

Algorithm 14 Propice-plan plan selection

1: function SELECTPLANSPROPICE(Ev, Bel, Plib, Int)

2: Int0 :¼ ;
3: Ev0, e :5 pop(Ev)

4: Opt :5 Em.SELECTOPTIONS(e, Bel, Plib) // Conceptually, plan selection is in Em
5: Opt :5Am.SELECTOPTIONS(Opt)

6: if Opt 6¼ ; then
7: Let plan he; c; bd; sopti 2 Opt

8: Int0 :5 ADDINTENTION(e, bd, sopt, Int)

9: else if ðe ¼ þ? �jÞ ^ Bel � �jsb for some sb then

10: Int0 :5 ADDINTENTION(e, [], sb, Int)

11: else

12: Ground plan D :5Pm.IPP(he, Bel, Plibi)
13: if D 5 he, c, bdi then // Plan found is non-empty

14: hs, sti :5 CREATEINTENTION ðe; ðþ?cÞ � bd; ;Þ // ; for substitutions as bd is ground

15: Int0 :¼ Int [fhs; stig
16: else

17: Ev0, Int0 :5 INTENTIONFAILURE(inte, e, Int, Ev
0)

18: end if

19: end if

20: return Ev0, Int0

21: end function

18 This interpreter is now available from the XSB project: http://xsb.sourceforge.net/
19 The exact definition of this entailment relation involves the axioms of event calculus, which we omitted

for readability. For details, please refer to Móra et al. (1999).

20 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

time T as BT . Desires represent all potential goals: those that an agent might adopt, with each

desire d ¼ hPd ; Td ; T ; bddi consisting of a desired property Pd (which the agent desires to make

true), the time Td at which the desired property should be valid, an unbound variable T denoting

the time at which the desire was committed to an intention, and a body bdd that conditions the

adoption of the desire on a (possibly empty) conjunction of beliefs. Here, bdd is analogous to the

context conditions of the plans in a procedural BDI programming language such as the one

described in Section 3. We capture the essence of the intention selection process from X-BDI in

Algorithm 15.

Since the desires are not necessarily mutually consistent, it might be the case that not all of

them are adopted at once by the agent; moreover, the agent has to filter possible goals at every

reasoning cycle. To this end, X-BDI creates two intermediate subsets of desires before committing

to intentions. The first subset consists of desires whose property Pd is not believed to be true by the

agent20, and whose body rule is supported by the beliefs at the current time; this subset D0 is that of
eligible desires (Line 2). X-BDI then selects a subset of the eligible desires that are both consistent

among each other (Line 5) and possible: these are the candidate desires DC. A set of desires is

deemed possible if there is a plan that can transform the set of beliefs so that the desired properties

become true. These plans are obtained via a planning process for each element in the power set of

eligible desires (Line 4). The planning problem given to the planner consists of a STRIPS domain

specification X (see Definition 7), the beliefs that are true at the current time, and the (combined)

set of desired properties corresponding to element D in the power set of eligible desires (Line 8).

The set of intentions in X-BDI contains two distinct types of intention. Primary intentions are

declarative goals in the sense that they represent the properties expressed as desires, which the

agent has committed to achieving (Line 15). Commitment to primary intentions leads an X-BDI

agent to adopt plans to achieve them. The steps of these plans comprise the relative intentions,

which are analogous to procedural goals (Line 16). Thus, in X-BDI, an agent only starts acting

(i.e., carrying out relative intentions) after a reasoning cycle that consists of filtering the set of

desires so that a maximal subset of candidate desires is selected, and committing to these desires as

primary intentions.

Algorithm 15 X-BDI

1: function XBDIINTENTIONSELECTION (B;D; I ;T)

2: D0 :¼ fdjd 2 D ^ ðB�T bddÞ ^ ðBjTd
PdÞ ^ ðNow � TÞg

3: DC :¼ ;
4: for all D 2 2D

0
do

5: if 8di; dj 2 D ðPdi ^ Pdj
ÞjT ? then

6: PD :¼ fPdi jdi 2 Dg
7: J :5 planning operators from T Ax

8: P :¼ hX;BNow;PDi
9: DD :5PLAN(P)

10: if DD 6¼ ; then
11: DC :¼ DC [D

12: end if

13: end if

14: end for

15: IP :¼ D 2 DC with the largest jDj
16: IR :¼ DIP
17: return IR
18: end function

20 Because it is not rational to desire something that will come about regardless of one’s actions.

Planning in BDI agents 21

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

Unlike most of the agent architectures described in this paper, X-BDI does not include a library of

fully formed plans, but rather a set of environment modification planning operators defined in event

calculus analogous to those in Definition 14. So the possibility of a desire is verified by the existence

of an explanation generated by logical abduction. Here, logical abduction refers to the process of

generating a set of predicates (in this case, action descriptions in event calculus) that when added to

the belief base entail the desired properties. Thus, in order to choose among multiple sets of

candidate desires, X-BDI uses ELP constructs that allow desires to be prioritised in a logical revision

process (cf., Móra et al., 1999)21. This type of desire selection suffered from significant inefficiencies,

in particular, due to the logical abduction process required to determine if a plan is possible. In order

to address this, X2-BDI (Meneguzzi et al., 2004a) improves on X-BDI by substituting the abduction

process with a STRIPS planner based on Graphplan (Blum & Furst, 1997).

4.3 AgentSpeak(PL)

To further enhance the ability of an agent to respond to circumstances unforeseen at design time

when achieving its goals, (Meneguzzi & Luck, 2007) has created an extended AgentSpeak(L)

interpreter able to invoke a standard classical planner to create new plans at runtime. To this end, a

new construct representing a declarative goal is introduced, which the designer may include at any

point within a standard AgentSpeak plan. Moreover, BDI plans that can be used in the creation of

new BDI plans are annotated offline with their expected effects (i.e., how the world would change if

the plans were executed). Alternatively, if action descriptions (such as those from Definition 14) are

available, expected effects could be extracted offline as done, for example, in Sardiña et al. (2006).

A declarative goal in AgentSpeak(PL) is a special event of the form þ!goalconjð½g1; . . . ; gn�Þ,
where g1; . . . ; gn is a conjunction of logical literals representing what must be made true in the

environment. The plan library of an AgentSpeak(PL) agent contains a special type of plan

designed to be selected only if all the other standard plans to handle a declarative goal event have

failed. Consequently, the computationally expensive process of planning from first principles is

only used as a last resort, thereby making maximum use of standard AgentSpeak(PL) reasoning

while still being able to handle situations not foreseen at design time. Enforcing the selection of the

fallback plan as a last resort can be achieved in AgentSpeak-like interpreters through an appropriate

Option Selection Function (Rao, 1996). In the Jason-based (Bordini et al., 2007) implementation of

AgentSpeak(PL) (Meneguzzi & Luck, 2008), plan selection follows the order in which plans are

added to the plan library at design time; thus the fallback plan is simply added last to the plan

library. This fallback plan contains the action genplan that is associated with the planning process

as follows:

þ!goalconjð½g1; . . . ; gn�Þ : true
 genplanð½g1; . . . ; gn�Þ:

The action genplan performs three processes. First it converts the agent’s plan library, beliefs,

and a specified goal into a classical planning domain and problem. In this conversion, the agent’s

belief base is considered the initial state of a STRIPS planning problem and the declarative goal as

the goal state. Each existing AgentSpeak plan is converted into a STRIPS planning operator

named after the plan’s invocation condition, using the plan’s context condition as the operator’s

precondition and expected effects as the operator’s effect. Second, genplan invokes the classical

planner. Third, if the planner successfully generates a new plan, genplan converts the steps of the

STRIPS plan into the body of a new AgentSpeak plan, pushing this new plan into the agent’s

intention structure. This planning approach was further extended by Meneguzzi and Luck (2008)

with the addition of a method to introduce newly created plans to the agent’s plan library through

the generation of a minimal context condition, which ensures that the plan added to the plan

21 The specifics of how this is implemented has been omitted for readability.

22 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

library will only be invoked when it is possible to execute the plan to its completion (i.e., it assumes

the downward refinement property; Bacchus & Yang, 1993). Basically, this context condition is

generated by constructing a data structure similar to the planning graph from Blum and Furst

(1997) using only the actions in the plan, and propagating unsatisfied preconditions from each

action back to the initial level of the graph.

Although AgentSpeak(PL)’s planning capability is realised through a planning action/function

implemented outside the traditional reasoning cycle, conceptually, the AgentSpeak(PL) cycle can

be understood in the context of our abstract agent interpreter, as illustrated in Figure 3. Thus, the

plan selection function of Algorithm 8 can be modified to represent the operational semantics of

AgentSpeak(PL) by adding, after the traditional event matching mechanism, calls to the three

processes used by genplan, as shown in Algorithm 16.

Goal
Achieved

Goal
Failed

Find applicable
plans

Push plan into
intentions

Goal addition/deletion

No plan found

Invoke
STRIPS Planner

Planner succeeded

Planner failed

Process
Intentions

Plan failedPlan executed

Plan found

Add plan to
Plan Library

Figure 3 Reasoning cycle for AgentSpeak(PL)

Algorithm 16 Plan selection in AgentSpeak(PL)

1: function SELECTPLANSASPL(Ev, Bel, Plib, Int)

2: Int0 :5 ;
3: Ev0, e :5 pop(Ev)

4: Opt :5 SELECTOPTIONS(e, Bel, Plib [Plib0)
5: if Opt 6¼ ; then
6: Pick one option he; c; bd; sopti 2 Opt

7: Int0 :5 ADDINTENTION(e, bd, sopt, Int)

8: else if ðe ¼ þ? �jÞ ^ Bel � �jsb for some sb then

9: Int0 :5 ADDINTENTION(e, [], sb, Int)

10: else // Up to here, same as Algorithm 8 – no valid plans were found

11: P :5 CONVERTTOSTRIPS(e, Bel, Plib)

12: D :5 PLAN(P)

13: if D 6¼ E then // Planner found a plan (e is the empty plan)

14: bd :5 CONVERTTOAGENTSPEAK(D)

15: c :5 GENERATECONTEXT(D)

16: Plib0 :¼ Plib0 [fhe; c; bdig
17: Int0 :¼ Int [fbdg
18: else

19: Ev0, Int0 :5 INTENTIONFAILURE(inte, e, Int, Ev
0)

20: end if

21: end if

22: return Ev0, Int0

23: end function

Planning in BDI agents 23

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

In more detail, the traditional option selection algorithm is first invoked in Line 4. In this line the

set Plib0 is an initially empty global cache of previously generated plans. If this process fails to find

any options, then the desired declarative goal associated with event e, the agent’s belief base Bel, and

its plan library Plib are converted to a STRIPS representation in Line 11. The resulting STRIPS

domain P is then used in the invocation of a classical planner in Line 12; if it successfully generates a

plan, the resulting plan is converted into the body of an AgentSpeak plan in Line 14. Before this plan

can be added to the plan library, a context condition is created by the GENERATECONTEXT
22 algorithm in

Line 15. Finally, the newly created plan is added to the plan library, and then adopted as an intention.

4.4 Hybrid Planning Framework

In the Hybrid Planning Framework of de Silva et al. (2009) (hereby referred to simply as the Hybrid

Planning Framework), classical planning is added to the BDI architecture with the focus being on

producing plans that conform to and re-use the agent’s existing procedural domain knowledge. To

this end, ‘abstract plans’ are produced, which can be executed using this knowledge, where abstract

plans are those that are solely made up of achievement goals. The input for such a planning process

is the initial and goal states as in classical planning, along with planning operators representing

achievement goals. The effects of such an operator are inferred from the hierarchical structure of the

associated achievement goal, using effects of operators at the bottom of the hierarchy as a basis.

The authors obtain the operator’s precondition by simply taking the disjunction of the context

conditions of plan rules associated with the achievement goal.

One feature of abstract plans is that, as highlighted in Kambhampati et al. (1998), the primitive

plans that abstract plans produce preserve a property called user intent, which intuitively means

that the primitive plan can be ‘parsed’ in terms of achievement goals whose primary/intended

effects support the goal state. In addition, abstract plans also have the feature whereby they are,

like typical BDI plans, flexible and robust: if a primitive step of an abstract plan happens to fail,

another option may be tried to achieve the step.

The authors note, however, that producing abstract plans is not a straightforward process. The

main issue is an inherent tension between producing plans that are as abstract as possible (or

‘maximally abstract’), while at the same time ensuring that actions resulting from their refinements

are necessary (non-redundant) for the specific goal to be achieved. Intuitively, a higher level of

abstraction implies a larger collection of tasks, thereby increasing the potential for redundant

actions when the abstract plans are refined.

The authors explore the tension by first studying the notion of an ‘ideal’ abstract plan that is

non-redundant while maximally abstract—a notion they identify as computationally expensive—

and then defining a non-ideal but computationally feasible notion of an abstract plan in which

the plan is ‘specialised’ into a new one that is non-redundant but also preserves abstraction as

much as possible. More concretely, instead of improving an abstract plan by exploring all of its

specialisations, the authors focus on improving the plan by exploring only the limited set of

specialisations inherent in just one of its ‘decomposition traces’, and extracting a most abstract

and non-redundant specialisation of the hybrid plan from this limited set.

For example, consider a Mars Rover agent that invokes a planner and obtains the abstract

plan h shown in Figure 4(a)23. Consider next the actual execution of the abstract plan, shown in

Figure 4(c). Now, notice that breaking the connection after sending the results for Rock2, and then

re-establishing it before sending the results for Rock3 are unnecessary/redundant steps. Such

redundancy is brought about by the overly abstract task PerformSoilExperiment. What we would

prefer to have is the non-redundant abstract plan h0 shown in Figure 4(b). This solution avoids

the redundancy inherent in the initial solution, while still retaining a lot of the structure of the

abstract plans provided by the programmer. In particular, we retain the abstract tasks Navigate

22 We refer the reader to Meneguzzi and Luck (2008) for the implementation of GENERATECONTEXT.
23 This figure is slightly adapted from de Silva et al. (2009).

24 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

and ObtainSoilResults, which lets us achieve these tasks using different refinements to that

shown here, if possible and necessary. Moreover, replacing each of PerformSoilExperiment and

TransmitSoilResults with a subset of their components, removes the inherent redundancy.

Then, the entire process for hybrid planning (de Silva et al., 2009) involves obtaining, via

classical planning, an abstract plan that achieves a required goal state given some initial state.

Specifically, the steps are as follows: (i) transform achievement goals in the BDI system into

abstract planning operators by ‘summarising’ the BDI hierarchy, similarly to Clement and Durfee

(1999); (ii) call the classical planner of choice with the current (initial) state, the required goal state,

and the abstract planning operators obtained in the first step; (iii) check the correctness of the plan

obtained to ensure that a successful decomposition is possible—a necessary step due to the

incompleteness of the representation used in the first transformation step; and finally, (iv) improve

the plan found by extracting its non-redundant and most abstract part.

5 Planning with procedural planners

5.1 CANPlan

Considering the many similarities between BDI agent-oriented programming languages and HTN

planning, Sardiña et al. (2006) formally defines how a BDI architecture can be extended with HTN

Figure 4 (a) A redundant abstract plan h; (b) an abstract plan h0 with redundancy (actions in bold) removed;

and (c) the execution trace of h

Planning in BDI agents 25

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

planning capabilities. In this work, the authors show that the HTN process of systematically

refining higher-level tasks until concrete actions are derived is analogous to the way in which a

PRS-based interpreter repeatedly refines achievement goals with instantiated plans. By taking

advantage of this almost direct correspondence, HTN planning is used to provide lookahead

capabilities for a BDI agent, allowing it to be more ‘informed’ during plan selection. In particular,

HTN planning is employed by an agent to decide which plans to instantiate and how to instantiate

them in order to maximise its chances of successfully achieving goals. HTN planning does not,

however, allow the agent to create new plan structures (Figure 5).

An algorithm that illustrates the essence of the CANPlan semantics is shown in Algorithm 1724.

Observe that the main difference between this algorithm and Algorithm 8 is Line 5, where HTN

planning is used to select a plan in set Opt for which a successful HTN decomposition of its

associated intention exists, with respect to the current belief base. To this end the FORWARDDECOMP

function (Algorithm 3) is called in Algorithm 1825. The inability of function FORWARDDECOMP to find

Goal
Achieved

Find applicable plans

Find valid HTN expansion

Push plan into intentionsProcess Intentions

Goal
Failed

Goal addition/deletion

Applicable plan found

No plan found

Expansion found

No expansion found

Plan executed

Figure 5 Summarised reasoning cycle of CANPLAN

Algorithm 17 BDI plan selection using HTN planning

1: function SELECTPLANSHTN(Ev, Bel, Plib, Int)

2: Int0 :¼ ;
3: Ev0, e :5 pop(Ev)

4: Opt :5 SELECTOPTIONS(e, Bel, Plib)

5: opt :5 SELECTSUCCESSFULOPT(Opt, Bel, Plib)

6: if opt 6¼ E then
7: Suppose opt5 he, c, bd, sopti
8: Int0 :5 ADDINTENTION(e, bd, sopt, Int)

9: else if ðe ¼ þ? �jÞ ^ Bel � �jsb for some sb then

10: Int0 :5 ADDINTENTION(e, [], sb, Int)

11: else // If there are no options that work, we have a failure

12: Ev0, Int0 :5 INTENTIONFAILURE(inte, e, Int, Ev
0)

13: end if

14: return Ev0, Int0

15: end function

24 We have kept the algorithm simple rather than trying to precisely capture the CANPlan semantics.
25 Note that we have, for brevity, kept intention creation implicit in this algorithm.

26 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

a plan is considered a failure, which is handled as in Algorithm 8. In arguments to FORWARDDECOMP

we use certain BDI entities (such as st) in place of the corresponding HTN representations, in line

with the mapping shown in Table 1. Indeed, we assume the existence of a mapping function that

transforms the relevant BDI entities into their corresponding HTN counterparts. We refer the reader

to Sardiña et al. (2006) for the details.

Note that unlike the CANPlan semantic rules, Algorithm 17 performs HTN planning whenever

a plan needs to be chosen for a goal. In CANPlan, on the other hand, HTN planning is only

performed at user specified points in the plan library—hence, some goals may be refined using the

standard BDI plan selection mechanism. Another difference compared to the semantics is that the

algorithm does not re-plan at every step to determine if a complete, successful execution exists.

Instead, the re-planning occurs only at points where goals are refined; the algorithm then executes

the steps in the chosen plan until the next goal is refined. In both approaches, failure occurs in the

BDI system when relevant environmental changes are detected, i.e., when the context condition in

a chosen plan is no longer applicable within the BDI cycle. Consequently, environmental changes

leading to failure may be detected later in the algorithm than in the semantic rules. In this sense,

the algorithm seems to more closely capture the implementation discussed by Sardiña et al. (2006),

which first obtains a complete HTN decomposition ‘tree’ and then executes it step by step until

completion or until a failure is detected.

5.2 The LAAS-CNRS Architecture

Another system that uses an HTN-like planner to obtain a complete decomposition of a task(s)

before execution is an integrated system used with (real and simulated) robots in human–robot

Table 1 Comparison of BDI and HTN systems (Sardiña & Padgham, 2011)

BDI systems HTN systems

Belief base State

Plan library Method library

Event Compound task

Action Primitive task

Plan body/program Task network

Plan rule Method

Plan rule context Method precondition

Test ?f in plan-body State constraints

Sequence; in plan body Ordering constraint !

Parallelism J in plan body No ordering constraint

Goal programs Goalðfs; P; ff Þ Task P with a constraint ðP; fsÞ

Relevant plans for an event Matching methods for a task

Plan selection Task reduction

Successful execution of plan Task-network solution

Algorithm 18 Select an option that can be decomposed via HTN

1: function SELECTSUCCESSFULOPT(Opt, Bel, Plib)

2: if there exists he, c, bd, sopti A Opt such that FORWARDDECOMP(Bel, st, A, Plib) 6¼ ; then
// Note that hs, sti :5 CREATEINTENTION(e, bd, sopt)

3: return he, c, bd, sopti
4: else

5: return E
6: end if

7: end function

Planning in BDI agents 27

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

interaction studies at the LAAS-CNRS (Alami et al., 2011). The integration combines a PRS-based

robot controller with the Human-Aware Task Planner (HATP) (Alami et al., 2009) SHOP-like HTN

planner. The algorithm for this approach is shown in Algorithm 19.

Goals to achieve are sent directly from the user to the PRS-based system, via a voice-based

interface or an Android tablet. PRS then validates the goal (e.g., checks if the goal has already

been achieved) and sends the goal, if valid, as a task for HATP to solve (Line 4). HATP first

searches for a standard HTN solution—one composed of actions/primitive tasks—and then the

plan found is post-processed by HATP into two semi-parallel streams of actions (Line 5): one for

the agent to execute and the other for the human to execute, possibly with causal links between

actions in the two streams to account for any dependencies (e.g., before executing an action the

robot might have to wait for the human to execute an action that makes an object accessible to the

robot). Basically, this step involves extracting a partially ordered plan from a totally ordered plan

and then distinguishing actions that need to be done by a human from those that should be

performed by the robot. To indicate to the human what actions he/she needs to execute the robot

uses a speech synthesis module. Action execution is realised via PRS plans, which invoke functions

that do more low-level geometric planning to achieve/execute the smaller steps such as robot-arm

motions and gripper commands. More specifically, geometric planning is used here for things such

as final object/grasp configurations and motion trajectories for the robot’s arms, which takes into

account constraints such as human postures, abilities, and preferences. Action execution is verified

to check that their intended outcomes are satisfied, the failure of which triggers re-planning for the

original goal.

5.3 Planning in Jadex

The work of Walczak et al. (2006) is another approach to merging BDI reasoning with planning

capabilities, achieved through a continuous planning and execution approach implemented in the

Jadex agent framework (Pokahr et al., 2005). The approach of Walczak et al. (2006) deviates

significantly from traditional BDI systems in that an agent’s desires are not seen as activities to be

executed nor logically represented states to be achieved, but instead as inverse utility (i.e., cost)

functions that assign a value to particular agent states (rather than environmental states). That is,

each agent desire assigns a value to the states so that when different desires are adopted, the

agent’s valuation of the states changes.

Like in traditional BDI agents, goals in Jadex are specific world states that the agent is currently

trying to bring about. However, unlike the logic-based representations used to specify the search

space and the actions that modify the environment in the other approaches described in this paper,

Algorithm 19 PRS plan selection using HATP

1: function SELECTPLANSVIAHATP(Ev, Bel, Plib, Int)

2: Int0 :¼ ;
3: Ev0, e5 pop(Ev)

4: if plans5 FORWARDDECOMP(Bel, e, A, Plib) 6¼ ;, then
5: plan :5 EXTRACTPARALLELHUMANROBOTPLAN(D A plans)

6: bd :5 CONVERTTOPRS(plan)

7: hs, sti :5 CREATEINTENTION(e, bd, ;)
8: Int0 :¼ Int [fhs; stig
9: else // If there is no option that works, we have a failure

10: Ev0, Int0 :5 INTENTIONFAILURE(inte, e, Int, Ev
0)

11: end if

12: return Ev0, Int0

13: end function

28 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

actions in Jadex define value-assignments to fields within objects in the Java programming

language. Moreover, instead of using events to directly trigger the adoption of plans, Jadex uses an

explicit representation of goals, each of which has a lifecycle consisting of the following states:

option, suspended, and active. Adopted goals become options (and thus become eligible to create

plans to adopt as intentions), which are then handed over to a meta-level reasoning component

to manage the goal’s state. This high-level view of Jadex’s reasoning cycle is illustrated in

Algorithm 20 and Figure 6. Given the representation of the environment state, Jadex uses a

customised HTN-like planner that takes into account the agent’s current goals and the functions

specified by the agent’s desires to refine goals into actions. This planning process takes as input a

goal stack, the agent’s current state, its desires, and a time deadline. Planning then consists of

decomposing the goal stack into executable actions, while trying to maximise the expected utility

of the resulting plan using a heuristic based on the distance from the current state to the goals and

the expected utility of these goals.

5.4 Lookahead in Propice-plan

Similarly, to some of the systems already discussed that perform lookahead, the anticipation

module Am of Propice-plan, introduced in Section 4.1, can also evaluate choices in advance and

advise the execution module Em (as shown in Algorithm 14) regarding which plan choices are likely

to be more cost effective (e.g., less resource intensive); moreover, the Em can detect unavoidable

goal failures, that is, where no available options are applicable, and adapt PRS execution by

Agent
Capability

Plans

Beliefs

Jadex abstract architecture

Jadex execution cycle

(a)

(b)

Goals

Reaction
Deliberation

Events

Messages

Dispatch
(Sub)Goals

Goal
Events

Goal
Conditions

Condition
Events

Application Events
Read/Write

Facts

Select
Plans

Handle
Events

Messages

Message Queue

Message
Receiver

Create event
for message

Event list

Dispatcher

Scheduler

Capabilities/eventbases

Capabilities/planbases

Meta-level reasoning

Find applicable
candidates

Select
candidates

Ready list

Select message

Select intention

Select event

Execute
plan step

Internal/goal events

Figure 6 Jadex overview (Pokahr et al., 2005)

Algorithm 20 High-level view of Jadex reasoning cycle

1: procedure JADEXINTERPRETER(Ag, Ev, Bel, Gls, PLib, Int)

2: Ev :5 UPDATEEVENTS(Ev)

3: Bel :5 UPDATEBELIEFS(Bel, Ev)

4: Ev, Gls :5 UPDATEGOALS(Bel, Gls)

5: Int :5 SELECTPLANS(Bel, Ev, Gls)

6: Ev, Int :5 EXECUTEPLANS(Int, Ev)

7: end procedure

Planning in BDI agents 29

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

‘inserting’ instantiated plans to avoid such failure if possible. The anticipation module performs

lookahead whenever there is time to do so: in the ‘blast furnace’ example domain used by

Despouys and Ingrand (1999) the agent system sometimes remains idle for hours between tasks.

When performing lookahead, the Am simulates the hierarchical expansion of PRS plans, guided

by subgoals within plan bodies. The expansion is done with respect to the current state of the

agent’s belief base, which is updated along the way with effects of subgoals, similarly to how the

initial state of the world is updated as methods are refined in HTN planning. Whenever there is a

precondition of a plan having a variable whose value is unpredictable at the time of lookahead

(e.g., a variable corresponding to the temperature outside at some later time in the day), and can

only be determined when the variable is bound during execution, the different possible plan

instances corresponding to all potential variable assignments are accounted for during lookahead.

To avoid possible goal failures, the Am searches for goals that will potentially have no

applicable options, before the Em reaches that point in the execution. The Am then tries to insert

during execution an instantiated PRS plan whose effects will aid in the precondition holding for

some plan associated with the goal. The authors state that making such minor adaptations to the

execution is more efficient than immediately resorting to first principles planning, which they

claim is likely to be more computationally expensive. Consequently, first principles planning is

only called when all attempts at using standard PRS execution coupled with the Am have failed.

6 Probabilistic planning

The planning formalisms we describe in Sections 4 and 5 are based on a deterministic view of the

environment. In some of these approaches actions are seen as procedures that will either succeed

or fail with unknown probability26. The assumption is that an action either succeeds, transitioning

the environment into one particular expected state, or fails, transitioning the environment to an

arbitrary state (i.e., the exact outcome of failure is not explicitly defined).

In applications where an agent needs to reason about the physical world with an explicit model

of probabilistic state transition, it is necessary to consider the effect of actions in the world state

differently. As opposed to the state-transition model traditionally used in previous approaches, in

probabilistic approaches actions can transition to multiple other states with each of them having a

certain probability associated with it. One popular formalism for modelling planning in this setting

is the MDP (Bellman, 2003). This formalism assumes that the dynamics of the environment can be

modelled as a markov chain, whereby the environment transitions between states stochastically,

and the probability of transitioning from one state to another depends partially on the current

state (and not on the history of previous states) and partially on the agent’s action. Moreover, the

goals of the planner are implicitly represented in a function that defines, for each state, the reward

of executing a certain action.

The BDI model is not natively based on an a priori stochastic description of the environment,

that is, environment models in BDI do not have an explicit representation of the probabilities with

which an action can lead to particular outcome states. Modelling of the actions available for a

BDI agent under the traditional HTN model used for designing an agent’s plan library assumes

that the agent itself does not reason about possible failures. Instead, an agent executes its plans

and if an action succeeds the agent carries on with a plan, and if it fails, the agent is immediately

aware of the failure, and is responsible for carrying out one or more plans to deal with this failure,

a posteriori.

Environment states in stochastic models are analogous to those traditionally used to model

BDI agent states (Schut et al., 2002). That is, an environment is modelled using a finite set of

Boolean variables representing every possible proposition in the domain, and an environment

state is a truth assignment to these variables. Moreover, Schut et al. (Schut & Wooldridge, 2001;

26 In systems such as CANPlan, for instance, actions are assumed to always succeed.

30 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

Schut et al., 2001) suggests that components of the BDI model can be used to derive an MDP to

obtain an optimal solution to a planning problem faced by the agent. By being an approximation

of the optimal solution to a stochastic planning problem, BDI agents are able to plan much more

efficiently than what is required to generate an optimal solution for an MDP. The tradeoff is that

the actions chosen by a BDI agent are not necessarily optimal, but rather, they are based on

domain knowledge provided by a designer. Thus, if a BDI agent could be translated into a MDP27,

the solution to this stochastic planning problem could be used by the agent to optimally choose the

best plans at every possible state. Next, we review MDPs in Section 6.1, and the conversion of a

traditional BDI agent into an MDP in Section 6.2.

6.1 MDPs

A state s is a truth-assignment for atoms in S, and a state specification S is a subset of Ŝ specifying

a logic theory consisting solely of literals. S is said to be complete if, for every literal l in S, either l
or :l is contained in S. A state specification S describes all of the states s such that S logically

supports s. For example, if we consider a language with three atoms a, b, and c, and a state

specification S ¼ fa; :bg, this specification describes the states s1 ¼ fa; :b; cg, and

s2 ¼ fa; :b; :cg. In other words, a state specification supports all states that are a model for it, so

a complete state specification has only one model.

The specification formalism we use allows incomplete state specifications and first-order literals

on the preconditions and effects of planning operators (incomplete state specifications can omit

predicates that are not changed by an operator from its preconditions and effects, as opposed to

requiring operators to include every single predicate in the language’s Herbrand base)28.

We consider an MDP (adapted from Shoham & Leyton-Brown, 2010) to be a tuple

S ¼ ðSS; A; Pr; RÞ, where SS is a finite set of states and A is a finite set of actions, Pr is a state-

transition system that defines a probability distribution for each state transition so that, given

s; s0 2 SS and a 2 A, function Praðs0jsÞ denotes the probability of transitioning from state s to

state s0 when executing action a. R is a reward function (or utility function) that assigns a value

rðsi; ajÞ to the choices of actions aj in states si. The reward function is typically used to indirectly

represent goal states in MDPs, making it possible to generate an optimal policy pl that indicates

the best action to take in each state. This optimal policy can be obtained through various methods

that ultimately use the Bellman (1957) equations to establish the optimal choices for particular

search horizons29. Although we define the reward function as taking an action and a state, which

might lead one to believe that the reward function only describes the desirability of taking an

action, the use of an action and a state is meant to allow the calculation of the reward of a state.

6.2 Converting BDI agents to MDPs

Schut et al. (2002) provides a high-level correspondence between the theory of partially observable

Markov decision processes (POMDPs) and BDI agents, suggesting that one of the key efficiency

features of BDI reasoning (that of committing to intentions to restrict future reasoning) can be

used in POMDP solvers in order to address their inherent intractability. POMDPs are an

extension of MDPs with the addition of uncertainty on the current state of the world; hence, when

an agent is making decisions about the optimal action, it has no direct way of knowing what the

current state s 2 SS is, but rather, an agent perceives only indirect observations o 2 O that have

a certain probability of being generated in each state of the world, according to a conditional

27 Or POMDP to account for incomplete sensing capabilities.
28 Similarly to the Herbrand universe, any formal language with a Herbrand universe and predicate symbols

has a Herbrand base, which describes all of the terms that can be created by applying predicate symbols to the

elements of the Herbrand universe.
29 We shall not go into the details of the Bellman equations and their solutions.

Planning in BDI agents 31

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

probability function V. Thus, while an MDP is defined as a tuple hSS; A; O; Pr; Ri with SS being

a set of states, A a set of actions, R a reward function, and Pr a transition function, a POMDP has

additional components: a set of observations O, and an observation emission probability function

V, making it a tuple hSS; A; O; Pr; O; Ri. While some of the components of MDPs and BDI

agents are equivalent, others require the assumption that additional information about the

environment be available. Most notably, BDI agents have no explicit model of the state transitions

in the environment. In order to eliminate ambiguity, we shall refer to equivalent components

present in both BDI and MDP with a subscript of the corresponding model, for example, the

SSmkv symbol for the set of states from a POMDP specification, and thus represent a POMDP

as hSSmkv; Amkv; O; Prmkv; O; Ri. Schut et al. (2002) defines a BDI agent as a tuple

hSSBDI ; ABDI ; Bel; Des; Inti, where SSBDI is the set of agent states, ABDI is the set of actions

available to the agent, Bel is the set of agent beliefs, Des is the set of desires, and Int is the set of

intentions. Moreover, a BDI agent operates within an environment, such that the environment

transition function tbdi is known. They establish first the most straightforward correspondences

as follows:

> states in a POMDP are associated with world states of a BDI agent, that is, SSmkv � SSBDI ;
> the set of actions in a POMDP is associated with the external actions available to a BDI agent,

that is, Amkv � ABDI—however, the way in which actions change the world (i.e., the transition

function) is not known to the agent; and
> since the transition between states as a result of actions is external to the agent, it is assumed

that the environment is modelled by an identical transition function so that Prmkv � tbdi.

Regarding the state correspondences, Schut et al. (2002) propose associating the agent beliefs

Bel to the set of observations V, since an agent’s beliefs consist mainly of the collection of events

perceived from the environment. Other equivalences are harder to establish directly, for example,

the reward function R from a POMDP does not easily correspond to an agent’s desires Des,

since the former is usually defined in terms of state and action combinations, whereas desires are

often specified as a logic variable assignment that must be reached by an agent. Nevertheless,

these variable assignments do represent a preference ordering over states of the environment, and

consequently, they can be used to generate a reward function with higher values for states

corresponding to desires. Using these equivalences, Schut et al. (2002) compares the optimality of

a BDI agent versus a POMDP-based agent modelled for the TILEWORLD domain, concluding that,

since POMDPs examine the entire state space, an agent following a POMDP policy is guaranteed

to obtain higher payoff than a BDI agent, but only in domains that are small enough to be solved

by POMDP solvers. Hence, there is a tradeoff between the optimality achievable by solving a

POMDP problem versus the speed achievable by the domain knowledge encoded in a BDI agent.

Simari and Parsons (2006) go into further detail in providing algorithms for bidirectional

conversion between a BDI agent and an MDP, proving that they can be equivalently modelled,

under the assumption that a transition function for actions in the environment is known (which is

not often the case for BDI agents). The proof of the convertibility between these two formalisms is

provided through two algorithms. For the MDP to BDI conversion Simari and Parsons (2006)

provides an algorithm that converts an MDP policy into a BDI plan body, which Simari and

Parsons (2006) call an intention plan or i-plan. The converse process is detailed by an algorithm

that converts the steps of BDI plan bodies into entries of the MDP reward function. Both

conversion processes rely on the assumption (common to most BDI implementations) that a plans’

successful execution leads to a high-reward (desired) state, and that the actions/steps in the plan

provide a gradient of rewards to that desired state.

Thus, conversion from an optimal MDP policy consists of, for each state in the environment,

finding a finite path through the policy that most likely leads to a local maximum. This local

maximum is a reward state, and is commonly used as the head of a plan rule, whereas the starting

state for the path is the context condition of the plan rule. Creation of this path is straightforward:

since a policy specifies an action for each state in the environment, a path can be created by

32 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

selecting an action; discovering the most likely resulting state from that action; and consulting the

policy again until the desired state is reached. The sequence of actions in this path will comprise

the body of the plan rule.

Converting a BDI agent to an MDP, on the other hand, consists of generating a reward

function that reflects the gradient of increasing rewards encoded in each i-plan. For an individual

plan P with a body of length p and a base utility UðPÞ, assuming that the most likely state is

reached after the ith action30, the reward for this state is i � UðPÞ. Converting an entire plan

library involves iterating over the plans in the plan library in some fixed order (Lines 6–7 of

Algorithm 21), thereby obtaining an ordered sequence of individual actions and expected states,

from which the values of a reward function can be derived (Lines 8–11). Once the reward function

is obtained, the resulting MDP can be solved using, for example, the value iteration algorithm

(Bellman, 2003; Line 14).

6.3 Probabilistic plan selection based on learning

Singh et al. (2010) provide techniques to learn context decision trees using an agent’s previous

experience. Although not ostensibly developed to perform planning in a probabilistic setting, the

underlying assumption for this work is that the Boolean context conditions of traditional BDI

programs are not enough to ensure effective plan selection, in particular, where the environment

is dynamic. As a consequence Singh et al. (2010) proposes to extend (and possibly completely

supplant) the context conditions used for the selection of applicable plans with decision trees trained

using data from previous executions of each plan. Basically, as an agent executes instances of the

plans in its plan library in multiple environment/world configurations, it builds a model of the

expected degree of success for future reference during plan selection. In more detail, the training set

for the decision tree of each plan in the plan library consists of samples of the form [w, e, o], where w

is the world state composed of a vector of attributes/propositions, e is the vector of parameters of the

triggering event associated with the plan, and o is the outcome of executing the plan, that is, either

success or failure. Here, the set of attributes included in w from the environment is a user-defined

subset of the full set of attributes for the entire domain, representing the attributes that are possibly

relevant to plan selection. Learning of the decision tree happens online, so that whenever a plan is

executed, data associated with that execution is gathered and the tree is rebuilt.

Algorithm 21 Mapping of intentions to policies

1: procedure IPLANTOPOLICY(Int, Ag)

2: Initialise R with 0 for all states/actions

3: k :5 0

4: j :5 0

5: Initialise S with Ag

6: orderedPlib :5PLib:obtainOrdering()

7: for each Pi in orderedPLib do

8: for each action a in Pi do

9: s :5most likely outcome of a

10: Rðs; aÞ ¼ k l UðPiÞ
11: k :5 k 1 1

12: end for

13: end for

14: p :5 VALUEITERATION(S, R)

15: return p

16: end procedure

30 The state with the highest probability of being reached after executing the i actions in the plan.

Planning in BDI agents 33

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

The leaves of a decision tree then indicate the likelihood of success for a plan in a certain world

state given certain parameters. However, data in the decision tree alone is not sufficient to allow an

agent to make an informed decision about the best plan to select to achieve a goal, since the

confidence of an agent in a tree created with very little data, intuitively, should not be very high.

Thus, one of the key issues addressed by Singh et al. is the determination of when a decision tree

has accumulated enough data to provide a reliable measure of the success rate for a particular

plan instantiation. This problem is of particular importance, since an agent must balance the

exploitation of gathered knowledge with the exploration of new data when choosing a plan in a

given situation. To address this, the authors develop a confidence measure based on an analysis of

sub-plan coverage. This notion of coverage is based on the fact that BDI plans are often structured

as a hierarchy of subgoals, each of which can be achieved by a number of different plans;

consequently, coverage is proportional to the number of these possible ways of executing a plan

for which there is data available.

Using the data stored in the decision trees, as well as the confidence measure of their coverage,

an agent selects a plan probabilistically using a calculated likelihood of success with respect to a set

of environment attributes and parameters. The confidence CðP; Bel; nÞ of a plan P is calculated

using the current world state (represented by the beliefs) and the last n � 1 executions of P.

7 Empirical evaluation

As an attempt to obtain insights into when we could use each approach and how we could

combine them, the work of de Silva and Padgham (2004) provides an empirical analysis of BDI

and HTN (specifically the SHOP algorithm; Nau et al., 1999) systems under varying environ-

mental conditions and problem sizes. The comparison is motivated by the many similarities shared

between the two approaches, as highlighted in Table 2. Two concrete implementations for each

type of system were chosen (specifically, JACK; Howden et al., 2001 and JSHOP—a Java

implementation of the SHOP algorithm) and experiments use identical domain representations

and problems for both systems, achieved with a mapping from representations used by the BDI

system to those used by the HTN system, taking into account their similarities. The experiments

explore time taken and memory usage in static and dynamic environments by the two systems.

Their results reveal that the growth rate of the BDI system when searching for a solution in a static

environment, compared to that of SHOP as the problem size increases, is linear as opposed to

polynomial, which they point out as having a significant impact for large applications. Because

only a single implementation of each type of system is used, however, further work is needed

before any general conclusions can be drawn. The study also serves to confirm that SHOP-like

HTN systems can be made to behave more like BDI systems in dynamic environments by forcing

the execution of methods soon after their decomposition.

Dekker and de Silva (2006) present a simulation system of BDI-like agents equipped with a

best-first planning component that uses actions available to the agent. Additionally, in this study,

the user has the ability to restrict the search to a given number of planning steps. The experiments

are done in a multi-agent setting involving a 21-agent (hierarchically structured) team picking

up 100 objects in a randomly generated 323 32 grid containing 12 obstacles. The performance

of the team is measured by the time it takes to pick up all the items. The authors find that, in

general, performance improves when not much time is spent on planning: the best performance is

reached when planning is limited to the minimum number of steps (50)—that is, when the

behaviour is very close to default BDI-style reactive behaviour. However, the authors note that

when the ‘thinking speed’ (the number of planning steps per time unit) is increased, planning

becomes significantly more effective than default reactive behaviour, and planning for 500 steps

becomes worthwhile. Although this study is done in a multi-agent context it still offers useful

insights for a single-agent setting.

Despite these empirical evaluations, however, there is still a need for a thorough study of

the use of HTN and first principles planning facilities in applications, and an evaluation and

34 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

validation of their effectiveness and applicability of these facilities in practice31. For example, the

types of domains in which planning from first principles is worthwhile could be explored, or one

could investigate the feasibility of planning from first principles as a part of the standard BDI

execution cycle, for example, whenever an applicable plan is not available, instead of letting the

achievement goal fail. Intuitively, this approach is likely to be more robust in some applications

since it tries to prevent the failure of achievement goals at every opportunity, rather than only at

user-specified points in the BDI hierarchy as done in some of the frameworks discussed in this

paper. However, this approach is also likely to be very computationally expensive, as the planner

may fail to find a solution each time it is called from one level higher in the BDI hierarchy.

8 Discussion

Work on the declarative notion of goals as a means to achieve greater autonomy for an agent

has been pursued by a number of researchers. In this paper we consider a number of approaches

to declarative goals currently being investigated, namely those of Hübner et al. (2006b), van

Riemsdijk et al. (2005), and Meneguzzi et al. (2004b). There are multiple claims as to the

requirements and properties of declarative goals for an agent interpreter, and while some models

involve planning from first principles to achieve such goals, other models are based on the

argument that the only crucial aspect of an architecture that handles declarative goals is the

specification of target world states that can be reached using a traditional procedural approach.

Besides the issue of how planning can be used to aid declarative reasoning, other researchers have

investigated the separate issue of using planning for adding an additional aspect of intelligence,

making for more robust agent systems. Two such systems are Propice-plan (Ingrand & Despouys,

2001) and Jadex (Walczak et al., 2006). Such efforts provide insight into many practical issues that

may arise from the integration of BDI architectures with AI planners, such as how to modify a

planning algorithm to cope with changes in the initial state during planning (Ingrand & Despouys,

2001), and how to cope with conflicts in concurrently executing plans (Walczak et al., 2006).

Related to the work on declarative planning is the work of Kambhampati et al. (1998), motivated

by the desire to combine HTN and first principles planning. In their work, first principles planning

takes into account not just the primitive actions but also the (more abstract) achievement goals. The

resulting ‘abstract plans’ are especially attractive in the context of BDI systems because they respect

and re-use the procedural domain knowledge that is already inherent in the BDI system. According

to Kambhampati et al. (1998), the primitive plans that abstract plans produce preserve a property

called user intent, which they state as the property where a primitive plan can be ‘parsed’ in terms of

achievement goals whose primary effects support the goal state. Another feature of abstract plans is

that they are, like typical BDI plans, flexible and robust: if a primitive step of an abstract plan

happens to fail, another option may be tried to achieve the step.

The work of de Silva et al. (2009) (Section 4.4) is different to Kambhampati et al. (1998) in that

the former constructs abstract planning operators from a BDI plan library, and then executes the

resulting hybrid plan within the framework, whereas in the latter, achievement goals are

decomposed during the process of first principles planning. There are also differences in the details

of the approach. Most importantly, Kambhampati et al. (1998) requires the programmer to

provide effects for achievement goals, whereas de Silva et al. (2009) computes these automatically.

Moreover, the former does not address the issue of the balance between abstraction and redundancy,

which is explored in the latter.

Apart from the systems that combine first principles planning and BDI-like systems, there are

also systems that add planning into other agent architectures. Of particular relevance to this paper

are systems that combine first principles planning with the Golog (Levesque et al., 1997) action

language, which has been successfully used for robot control. In Claßen et al. (2007) IndiGolog

31 We thank Lin Padgham for this insight.

Planning in BDI agents 35

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

(Sardina et al., 2004)—an implementation of Golog—is extended with the FF (Hoffmann &

Nebel, 2001) classical planning system. IndiGolog already supports planning from first principles

via its achieve(G) procedure, where G is a goal state formula to achieve. In Claßen et al. (2007),

another similar construct is added to the language, which amounts to calling the FF planner. The

returned plan (if any)—a sequence of planning actions—is executed within the IndiGolog engine.

The objective of this work is twofold: (i) to provide a translation from IndiGolog actions into a

version of Planning Domain Definition Language (PDDL) and (ii) to show that we can improve

efficiency by using the FF planner for planning as opposed to the built-in IndiGolog procedure.

Likewise, Baier et al. (2007) and Fritz et al. (2008) address the issue of planning from first principles

in ConGolog—Golog with support for specifying concurrency—in a way that respects and exploits

the domain control knowledge inherent in ConGolog programs similarly to Kambhampati et al.

(1998) and de Silva et al. (2009). To this end, they provide a translation from a subset of the language

of ConGolog into PDDL planning operators. The translation takes into account the domain control

knowledge-inherent ConGolog programs. Specifically, these operators ensure that primitive solutions

resulting from the planning process conform to the ConGolog programs given. Moreover, Baier et al.

(2007) propose different heuristics for planning, which show how the time taken for planning can be

reduced when the domain control knowledge encoded in planning operators is effectively used.

While the IxTeT-eXeC (Lemai & Ingrand, 2004) and RETSINA (Paolucci et al., 1999) systems do

not perform planning from within BDI-like systems, these are still worth mentioning because they

are planners that exhibit a certain element of BDI-style execution. IxTeT-eXeC is a combination of

PRS and the IxTeT-eXeC (Laborie & Ghallab, 1995) planner, which allows an expressive temporal

specification of planning operators. Unlike Propice-plan, IxTeT-eXeC gives more control to the

planner than the BDI system. Initially, IxTeT-eXeC is given a top-level goal state to achieve by the

user, which is used by the IxTeT planner to formulate a complete solution for the goal state in terms

of the planning operators in the domain, which essentially correspond to leaf-level achievement goals

in PRS (i.e., those handled only by plan bodies that do not mention any achievement goals).

The solution is then executed by IxTeT-eXeC by sending each individual planning operator in the

solution to PRS, one at a time. PRS executes a given planning operator by mapping it into the

corresponding achievement goal, and then executing it using standard BDI execution mechanisms,

which may involve (local) failure recovery—trying alternative leaf-level plan rules. These plan rules

are composed only of primitive steps that can be directly executed by the robot. Finally, PRS sends a

report back to the planner indicating the result (e.g., success or failure) of executing the achievement

goal. If during the execution of a plan found by IxTeT a new goal arrives from the user, the old plan

is repaired (if necessary) to take into account this new goal.

In the RETSINA (Paolucci et al., 1999) system, agents solve their top-level achievement goals

by performing HTN decomposition. If the information required to decompose some lower-level

achievement goal is not available at the time of planning, the agent then suspends the decomposition,

locates the relevant information gathering actions in the plan being developed that would obtain

the necessary information, and then executes these actions. Once the information is obtained,

the decomposition of the top-level achievement goal continues. RETSINA also makes use of

Rationale Based Monitoring (Veloso et al., 1998) in order to monitor conditions that are related to

the plan being developed. If, while a plan is being developed, a change in the environment makes a

monitored condition false, the planning process is abandoned. In comparison with the type of

systems presented in this paper, RETSINA agents continuously perform HTN planning/lookahead,

unless information needs to be gathered from the environment. The systems we are interested in,

on the other hand, generally follow standard BDI-style execution, using the HTN planner only

when useful/necessary.

9 Conclusion

Given the high computational cost of planning from first principles, it is important for the long-

term efficiency of planning agent architectures to have the ability to reuse plans when similar goals

36 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

need to be achieved, and to improve domain knowledge using past experiences. Although efforts

towards plan reuse have been made in the planning community (Nebel & Koehler, 1995), very few

BDI-based planning architectures have significant plan reuse capabilities. From the architectures

surveyed in this article, only AgentSpeak(PL) (Meneguzzi & Luck, 2008) has a very basic plan

reuse technique that still does not generalise to similar circumstances. Similarly, leveraging past

plan executions into new domain knowledge has been the focus of recent work in generalised

planning (Srivastava et al., 2009, 2011). Although the work of Singh et al. (2010) allows learning

context conditions for domain-specific plans in non-deterministic environments, it lacks the ability

to create new domain knowledge based on this experience.

In Table 2 we summarise the key characteristics of the architectures we have surveyed, showing,

for each architecture, the type of planning algorithm employed, the type of action (or transition

model), and whether the agent’s plan library is dynamic or fixed. The first two items in comparison

are straightforward to understand, and the plan library column refers to the types of plans that can

be generated by the planner. In the architectures where the plan library is dynamic, new plan rules

are found by the agent and possibly added to the agent’s plan library. Conversely, in the other

architectures, where the planner is used only to help optimise plan selection, new plan rules are not

found and therefore the agent’s plan library does not change.

From Algorithms 14 and 16 we can see that Propice-plan and AgentSpeak(PL) follow a similar

approach. The main difference is that, unlike Propice-plan, AgentSpeak(PL) stores plans found

for later use. There is a subtle difference in the additional test included in Propice-plan (Line 14) to

determine before execution whether the context condition is still valid relative to the current state

of the world. This seems unnecessary, however, since any relevant environmental changes will

eventually be detected in both systems when actions or achievement goals fail. Another difference

between the two systems is that in AgentSpeak(PL) the planner can be called from any point in an

agent’s plan (not shown in the algorithm), and hence essentially from any point in the BDI

‘hierarchy’. In Propice-plan however, planning occurs only (and always) when no options are

available for solving an achievement goal (Lines 11–19).

The Hybrid Planning Framework of Section 4.4 is similar to AgentSpeak(PL) in the sense that the

first principles planner can be invoked at any given programmer-selected point in the BDI ‘hierarchy’.

The Hybrid Planning Framework also shares the approach adopted by Propice-plan whereby plans

returned by the former (actually, post-processed versions of plans that take into account ‘desirable’

properties such as non-redundancy) are immediately executed rather than stored for later use.

The main difference between the planning and execution system of LAAS-CNRS (Section 5.2)

and the CANPlan framework (Section 5.1) is that while the latter exploits HTN planning to take the

right decisions at choice points—that is, to check if there is a complete successful decomposition of a

plan under consideration (Line 5 of Algorithm 7), and to take a step along that successful path—the

LAAS-CNRS framework uses HATP to find a plan composed of a sequence of (primitive) actions

(Lines 4 and 5 of Algorithm 19), much in the same way as how architectures such as Propice-plan

use a first principles planner to obtain a plan. Consequently, in the LAAS-CNRS framework the

Table 2 Comparison of planning architectures

Architecture Planning algorithm Action model Plan library

Propice-plan Modified Graphplan Deterministic Dynamic

LAAS-CNRS Framework HATP Deterministic Dynamic

X2-BDI Graphplan Deterministic Dynamic

AgentSpeak(PL) Any STRIPS/PDDL Deterministic Dynamic

CANPLAN SHOP2 Deterministic Fixed

JADEX Graphplan Deterministic Dynamic

DT-BDI None Probabilistic Fixed

Hybrid Planning Framework Metric-FF Deterministic Dynamic

Planning in BDI agents 37

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

domain-knowledge encodings written for HATP do not have to match those in PRS: HATP is

simply chosen as a more efficient alternative to using a first principles planner (albeit with the

restriction of HTN planning where solutions are limited to those entailed by the user encodings).

On the other hand, in CANPlan, the encodings used by the HTN planner have to match those in the

BDI system, as HTN planning is used here to perform lookahead on the BDI hierarchy.

Overall, first principles planners seem well suited to create new BDI plan structures (de Silva

et al., 2009) when a path pursued via standard BDI execution (sometimes coupled with HTN-like

planning) turns out to not work, as highlighted in Algorithms 14 and 16 and discussed in Section

4.4. The domain representations used in planning are derived similarly in these three approaches:

from the existing domain specification of the agent’s actions, plans, and/or after analysing the

agent’s achievement goals. The approaches are also alike in how actions in plans found are

mapped back into corresponding BDI entities. HTN-like planning, on the other hand, seems more

suited to get advice on which plan instances to use when the BDI system is faced with a choice

point (Sardiña et al., 2006), as shown in Lines 5 and 5 of, respectively, Algorithms 17 and 14. To

this end, BDI and HTN systems either use the same domain representation (e.g., Propice-plan) or

a mapping function to translate between the two representations (e.g., CANPlan). As discussed

earlier, the LAAS-CNRS framework is an exception to how HTN-like planning is normally used

from within a BDI system in that their HATP planner is used like how first principles planners are

used to obtain plans made of primitive actions.

Direct comparison between the remaining BDI systems described in this paper is not

straightforward, as they employ a different notion of plan rules and plan library in the case of

X2-BDI and Jadex, or make different assumptions about the environment model in the case of the

BDI 2 MDP approach. Nevertheless, these architectures provide alternative views for the design

of BDI agents that include planning, and in what follows, we attempt to relate them to more

traditional BDI approaches. X2-BDI is more logic oriented, and imposes a stronger condition on

the adoption of sets of desires as intentions: that of the existence of a STRIPS-based plan that

can achieve the set of goals. This condition is much more expensive to verify than the context

condition in traditional BDI plan rules, as it involves multiple executions of a planning algorithm

in a single reasoning cycle. So, although it can be said that X2-BDI implements a more complete

handling of declarative goals than traditional BDI systems (except for those in the 3APL line of

interpreters (Dastani et al., 2004), it is unclear how practical this approach would be for more

complex agents. Jadex is a more Java-oriented approach to programming agents, which might

offer improved runtime performance, since there is no agent interpreter running the agent, but

rather a Java program running directly in a virtual machine. Such design choice might ultimately

come at the cost of the known theoretical properties offered by the other architectures. Finally, the

approaches based on MDP planning models are relatively new, and very little experimental work

has been done, but assuming a suitable stochastic model of the environment is available, they

could offer optimality guarantees not yet available for traditional BDI approaches.

10 Future directions

Although efforts towards the integration of AI planning techniques into BDI agent interpreters

have produced a number of results, most of which are surveyed in this paper, there is still

significant scope for future work. These efforts can be divided into three distinct, yet related

overall objectives. First, work towards augmenting an agent’s range of behaviours by expanding

the set of BDI plans available to the agent in order to cope with changes in the environment.

Second, work towards improving the robustness of the BDI agents either through changes to the

set existing BDI plans, or refinements in the agent’s plan selection algorithm. Third, incorporating

explicit social constructs into agent programming languages to facilitate development of

multi-agent systems (MAS) using these languages.

Challenges in the first area include dealing with the interaction between newly generated plans

and the originally designer-specified plan library, as well as the potential loss of efficiency resulting

38 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

from a large number of additional rules within an agent’s plan library, as indicated by Meneguzzi

and Luck (2008). Since undesirable interaction between plans are likely to result in more plan/goal

failures, employing learning techniques as done in the work of Singh et al. (2010) alongside

systems such AgentSpeak(PL) (Meneguzzi & Luck, 2008) or Propice-plan could provide a way to

learn better context decision trees to improve effectiveness of newly generated plans. Moreover,

plans designed by a classical planner do not take into account contingencies that might arise

during plan execution as a human designed plan library often does, thus a natural next step in BDI

plan generation involves the application of contingency planners (Meuleau & Smith, 2003). In

contrast to the linear nature of the output of classical planners, contingency plans consist of a tree

structure where each branch of the tree contains tests for contingencies that might happen as parts

of the plan are executed. Such a structure is effectively what the set of BDI plan rules stand for:

sections of linear plans that are used in reaction to events in the environment or the agent itself. As

such, we believe there is significant scope for further research in planning within BDI agents with

the use of contingency planners. In the context of uncertain environments where a model of the

uncertain actions is available, the theoretical work in the conversion of a BDI specification into an

MDP representation (Simari & Parsons, 2006) can be seen as an initial step into providing a

decision-theoretic method for BDI plan selection. The challenge in creating such a method lies in

interpreting the solution concept of an MDP (i.e., a policy) in terms of the outcome that might

result on executing an associated BDI style plan rule. Since an MDP specifies a single optimal

action to take at any single state, one way to interpret a policy is to modify the agent’s plan

selection mechanism to choose those BDI plan rules that are in conformance with such a policy.

Solution concepts that provide a promising path towards this kind of plan selection mechanism

have been preliminarily studied by Tang et al. (2011). In this work, HTN plan structures are used

as a probabilistic grammar in an Earley-parsing algorithm (Stolcke, 1995), which provides

probability and utility values for each possible expansion of a grammar rule (or task decom-

position), which could form the basis for plan selection. Work in planning with probability

requires probabilistic models of the environment dynamics as well as reasoning techniques, aiming

to maximise the chance of plan success, which leads to our second area for future work.

Besides expanding an agent’s plan library, a key avenue of further research in BDI agent

interpreters involves refinements in the plan selection process. Such improvements have often been

studied in the broader context of agent meta-level reasoning, and are recognisably hard problems

(Raja & Lesser, 2004) as they involve a tradeoff between agent reaction time and the optimality of

an agent’s decisions against its bounded resources. To this end, in architectures that employ HTN

planning (such as the one described in Section 5.1) to decide ahead of time which plan decom-

positions are likely to be successful when certain plans are adopted, one could investigate looking

ahead up to a given number of decompositions, in order to cater for domains in which there is

limited time for planning. There is some initial work in this direction where the planning module is

extended to take into account an additional parameter corresponding to the maximum number of

steps (e.g., decompositions) up to which lookahead should be performed. Some of the theoretical

and empirical results from this approach can be found in Dekker and de Silva (2006) and de Silva

and Dekker (2007). Furthermore, the work in Hindriks and van Riemsdijk (2008) proposes

semantics for a lookahead limit when reasoning about maintenance goals, where an agent will

lookahead only up to a given number of steps when determining whether there is a path that

will lead to the violation of a maintenance goal. That work might provide useful insights into

developing the resource-bounded account of HTN planning.

In the Hybrid Planning Framework, one could investigate a more general approach for finding

good (e.g., ‘ideal’ or ‘preferred’) hybrid solutions32. In their current framework, the authors

consider redundancy as one of the underlying factors that determine whether a hybrid solution is

good. While removing redundant steps is reasonable in some domains, it may be inappropriate in

32 We thank Sebastian Sardina and the group at University of Toronto for this idea.

Planning in BDI agents 39

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

other domains, in particular, because HTN structures sometimes encode strong preferences from

the user. For example, consider a hybrid solution containing the following sequence of tasks

(Kambhampati et al., 1998): get in the bus, buy a ticket, and get out of the bus. Although it may be

possible to travel by bus without buying a ticket, if this task is removed when it is redundant, we

may go against a strong preference of the user that requires that task to be performed after getting

into the bus and before getting out of it. To cater for strong preferences, we could use ideas

(Sohrabi et al., 2009) to create a more general framework with a more flexible account in which,

for instance, all HTN preferences are assumed to be strong, and a redundant task is only removed

if the user has separately specified that the task is not strongly preferred. For example, while the

task of buying a bus ticket may be redundant, it is not removed from a hybrid solution unless the

user has specified that the task is not strongly preferred. Such specifications could be encoded as

hard constraints or soft preferences, and included either within an extended version of HTN

methods or as global constraints outside of methods, as done in Sohrabi et al. (2009). Taking into

consideration more expressive planning frameworks introduces the possibility of employing

planners to introduce new constructs in the agent programming languages themselves, which leads

to our third area of future work.

Although agent programming languages are ostensibly aimed at the development of MAS, only

relatively recently has there been a focus on the introduction of abstractions and mechanisms for

MAS development beyond agent communication languages. One such mechanism that has been

the focus of considerable attention recently consists of specifying social norms that regulate the

behaviour of individual agents within a society. Here, one could employ techniques for planning

with preferences (Baier et al., 2009; Sohrabi et al., 2009) to support practical implementations of

norm-driven BDI agents. In norm-regulated societies, agents must plan not only to achieve their

individual goals, but also to fulfil societal regulations (norms) that dictate behaviour patterns in

terms of deontic modalities, such as obligations, permissions, and prohibitions. Such norms can be

viewed as soft constraints, which when complied with result in some degree of benefit to the agent,

and when violated result in sanctions and loss of utility. Planning under these circumstances must

weigh the expected benefits of accomplishing one’s goals when these can be hindered by normative

stipulations. For example, an agent might decide to board a bus without a ticket (and accept a

potential penalty for this action) if the action’s goal of reaching a certain location within a short

time frame has a very high reward. Initial work in that direction has been carried out by recent

efforts in practical norm-driven BDI agents (Kollingbaum, 2005; Meneguzzi & Luck, 2009;

Panagiotidi & Vázquez-Salceda, 2011).

Finally, beyond improvements in the capabilities of agent interpreters, it is clear that there is

still significant work to be done in strengthening the theoretical foundations as well as evaluating

the practical aspects of the agent interpreters described in this paper, as discussed in Section 7. For

example, in the Hybrid Planning Framework (Section 4.4), while the authors provide a formal

framework for first principles planning in BDI systems, they have not provided an operational

semantics that defines the behaviour of a BDI system with an in-built first principles planner. To

this end, one might need to add a construct such as PlanðfÞ into a language such as CAN or

AgentSpeak(L), with f being the goal state to achieve, and provide derivation rules for this

module that reuse and respect the procedural domain knowledge in the plan library. The way in

which the AgentSpeak(L) operational semantics is extended to incorporate a planning component

(Meneguzzi & Luck, 2007; Section 4.3) might provide useful hints in this direction.

Acknowledgements

We would like to thank Michael Luck for valuable input and discussions throughout the process

of writing this paper, and Lin Padgham, Sebastian Sardiña, and Michael Luck for supervising

our respective PhD theses, which formed the basis for this paper. We would also like to thank

Félix Ingrand, Malik Ghallab, and Wamberto Vasconcelos for valuable discussions in the course

of writing this paper in its current form. We are grateful to the anonymous reviewers for providing

40 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

detailed feedback, which has helped improve this paper substantially. Finally, we thank the

funding agencies that sponsored our respective PhDs: Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior (under grant 2315/04-1) for Felipe and the Australian Research Council

(under grant LP0882234) for Lavindra.

References

Alami, R., Warnier, M., Guitton, J., Lemaignan, S. & Sisbot, E. A. 2009. Planning and plan-execution for

human-robot cooperative task achievement. In Proceedings of the 4th Workshop on Planning and Plan

Execution for Real-World Systems, Thessaloniki, Greece.

Alami, R., Warnier, M., Guitton, J., Lemaignan, S. & Sisbot, E. A. 2011. When the robot considers the

humany In Proceedings of the 15th International Symposium on Robotics Research, Flagstaff, Arizona,

US.

Alferes, J. J., Damasio, C. V. & Pereira, L. M. 1995. A logic programming system for nonmonotonic

reasoning. Journal of Automated Reasoning 14(1), 93–147.

Alferes, J. J. & Pereira, L. M. 1996. Reasoning with Logic Programming. Springer-Verlag.

Apt, K. R. 1997. From Logic Programming to Prolog. Prentice-Hall.

Bacchus, F. & Yang, Q. 1993. Downward refinement and the efficiency of hierarchical problem solving.

Artificial Intelligence 71, 43–100.

Baier, J. A., Bacchus, F. & McIlraith, S. A. 2009. A heuristic search approach to planning with temporally

extended preferences. Artificial Intelligence 173(5–6), 593–618.

Baier, J. A., Fritz, C. & McIlraith, S. A. 2007. Exploiting procedural domain control knowledge in state-of-

the-art planners. In Proceedings of the International Conference on Automated Planning and Scheduling

(ICAPS-07), Providence, Rhode Island, US, 26–33.

Bellman, R. 1957. A Markov decision process. Journal of Mathematical Mechanics 6, 679–684.

Bellman, R. E. 2003. Dynamic Programming. Dover Publications.

Blum, A. L. & Furst, M. L. 1997. Fast planning through planning graph analysis. Artificial Intelligence

90(1–2), 281–300.

Bordini, R. H. & Hübner, J. F. 2006. BDI agent programming in AgentSpeak Using Jason. In Proceedings of

Computational Logic in Multi-Agent Systems, 6th International Workshop, Lecture Notes in Computer

Science, 3900, 143–164. Springer-Verlag.

Bordini, R. H., Hübner, J. F. & Wooldridge, M. 2007. Programming Multi-Agent Systems in AgentSpeak

using Jason. Wiley.

Bratman, M. E. 1987. Intention, Plans and Practical Reason. Harvard University Press.

Busetta, P., Rönnquist, R., Hodgson, A. & Lucas, A. 1999. Jack Intelligent Agents—Components for

Intelligent Agents in Java. AgentLink Newsletter. White paper, http://www.agent-software.com.au.

Claßen, J., Eyerich, P., Lakemeyer, G. & Nebel, B. 2007. Towards an integration of Golog and planning.

In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad,

India, 1846–1851.

Clement, B. J. & Durfee, E. H. 1999. Theory for coordinating concurrent hierarchical planning agents using

summary information. In Proceedings of the National Conference on Artificial Intelligence (AAAI-99),

Orlando, Florida, US, 495–502.

Dastani, M. 2008. 2APL: a practical agent programming language. Autonomous Agents and Multi-Agent

Systems 16, 214–248.

Dastani, M., van Riemsdijk, B., Dignum, F. & Meyer, J.-J. C. 2004. A programming language for cognitive

agents goal directed 3APL. In Proceedings of the International Workshop on Programming Multiagent

Systems Languages and Tools, Dastani, M., Dix, J. & Fallah-Seghrouchni, A. E. (eds). Lecture Notes in

Computer Science, 3067, 111–130. Springer-Verlag.

Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D. E. & Washington, R. 2002. Contingency planning

for planetary rovers. In Proceedings of the Third International NASA Workshop on Planning & Scheduling

for Space, Houston.

Dekker, A. & de Silva, L. 2006. Investigating organisational structures with networks of planning agents.

In Proceedings of the International Conference on Intelligent Agents, Web Technologies and Internet

Commerce (IAWTIC-06), Sydney, Australia, 25–30.

desJardins, M. E., Durfee, E. H. Jr, Ortiz, C. L. & Wolverton, M. J. 1999. A survey of research in distributed,

continual planning. AI Magazine 20(4), 13–22.

Despouys, O. & Ingrand, F. F. 1999. Propice-plan: toward a unified framework for planning and execution.

In Proceedings of the 5th European Conference on Planning. Susanne Biundo & Maria Fox (eds). Springer-

Verlag, 278–293.

Planning in BDI agents 41

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

de Silva, L. & Dekker, A. 2007. Planning with time limits in BDI agent programming languages. In Proceedings

of Computing: The Australasian Theory Symposium (CATS-07), Ballarat, Victoria, Australia, 131–139.

de Silva, L. & Padgham, L. 2004. A comparison of BDI based real-time reasoning and HTN based planning. In

Proceedings of the Australian Joint Conference on Artificial Intelligence (AI-04), Cairns, Australia, 1167–1173.

de Silva, L., Sardina, S. & Padgham, L. 2009. First principles planning in BDI systems. In Proceedings of the

8th International Conference on Autonomous Agents and Multiagent Systems—Volume 2, AAMAS ’09,

Carles Sierra, Cristiano Castelfranchi, Keith S. Decker & Jaime Simão Sichman (eds). International

Foundation for Autonomous Agents and Multiagent Systems, 1105–1112.

d’Inverno, M., Kinny, D., Luck, M. & Wooldridge, M. 1998. A formal specification of dMARS. In Agent

Theories, Architectures, and Languages, Singh, M. P., Rao, A. S. & Wooldridge, M. (eds), Lecture Notes in

Computer Science, 1365, 155–176. Springer-Verlag.

d’Inverno, M., Luck, M., Georgeff, M., Kinny, D. & Wooldridge, M. 2004. The dMARS architecture:

a specification of the distributed multi-agent reasoning system. Autonomous Agents and Multi-Agent

Systems 9(1–2), 5–53.

Fikes, R. & Nilsson, N. 1971. STRIPS: a new approach to the application of theorem proving to problem

solving. Artificial Intelligence 2(3–4), 189–208.

Fitting, M. 1990. First-Order Logic and Automated Theorem Proving. Springer-Verlag.

Fritz, C., Baier, J. A. & McIlraith, S. A. 2008. ConGolog, Sin Trans: compiling ConGolog into basic action

theories for planning and beyond. In Proceedings of the International Conference on Principles of

Knowledge Representation and Reasoning (KR-08), Sydney, NSW, Australia, 600–610.

Gärdenfors, P. 2003. Belief Revision, vol. 29, Cambridge Tracts in Theoretical Computer Science, Cambridge

University Press.

Georgeff, M., Pell, B., Pollack, M. E., Tambe, M. & Wooldridge, M. 1999. The belief-desire-intention model

of agency. In Intelligent Agents V, Müller, J., Singh, M. P. & Rao, A. S. (eds), Lecture Notes in Computer

Science, 1555, 1–10. Springer-Verlag.

Georgeff, M. P. & Ingrand, F. F. 1989. Monitoring and control of spacecraft systems using procedural

reasoning. In Proceedings of the Space Operations and Robotics Workshop, Houston, USA.

Ghallab, M., Hertzberg, J. & Traverso, P. 2002. Proceedings of the Sixth International Conference on Artificial

Intelligence Planning Systems, AAAI.

Ghallab, M., Nau, D. & Traverso, P. 2004. Automated Planning: Theory and Practice. Elsevier.

Hindriks, K. V., Boer, F. S. D., der Hoek, W. V. & Meyer, J.-J. C. 1999. Agent programming in 3APL.

International Journal of Autonomous Agents and Multi-Agent Systems 2(4), 357–401.

Hindriks, K. V., de Boer, F. S., van der Hoek, W. & Meyer, J.-J. C. 2001. Agent programming

with declarative goals. In Intelligent Agents VII. Agent Theories Architectures and Languages, Seventh

International Workshop, Cristiano Castelfranchi & Yves Lespérance (eds). Lecture Notes in Computer

Science, 1986, 228–243. Springer-Verlag.

Hindriks, K. V. & van Riemsdijk, M. B. 2008. Satisfying maintenance goals. In Proceedings of the 5th

International Conference on Declarative Agent Languages and Technologies V, DALT’07, Matteo Baldoni,

Tran Cao Son, M. Birna van Riemsdijk & Michael Winikoff (eds). Springer-Verlag, 86–103.

Hoffmann, J. & Nebel, B. 2001. The FF planning system: fast plan generation through heuristic search.

Journal of Artificial Intelligence Research 14, 253–302.

Howden, N., Rönnquist, R., Hodgson, A. & Lucas, A. 2001. Jack: summary of an agent infrastructure.

In Proceedings of the 5th International Conference on Autonomous Agents, Montreal, Canada.

Hübner, J. F., Bordini, R. H. & Wooldridge, M. 2006a. Plan patterns for declarative goals in AgentSpeak.

In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems,

Hakodate, Japan, 1291–1293.

Hübner, J. F., Bordini, R. H. & Wooldridge, M. 2006b. Programming declarative goals using plan patterns.

In Proceedings of the Fourth Workshop on Declarative Agent Languages and Technologies, Baldoni, M. &

Endriss, U. (eds), Lecture Notes in Computer Science, 4327, 123–140. Springer-Verlag.

Ingrand, F. & Despouys, O. 2001. Extending procedural reasoning toward robot actions planning. In Proceedings

of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, 9–10.

Ingrand, F. F., Chatila, R., Alami, R. & Robert, F. 1996. PRS: a high level supervision and control language

for autonomous mobile robots. In Proceedings of the IEEE International Conference on Robotics and

Automation, Minneapolis, USA, 43–49.

Ingrand, F. F., Georgeff, M. P. & Rao, A. S. 1992. An architecture for real-time reasoning and system

control. IEEE Expert, Knowledge-Based Diagnosis in Process Engineering 7(6), 33–44.

Kambhampati, S., Mali, A. & Srivastava, B. 1998. Hybrid planning for partially hierarchical domains.

In Proceedings of the Fifteenth National Conference on Artificial Intelligence, AAAI ’98/IAAI ’98. JackMostow

& Chuck Rich (eds). American Association for Artificial Intelligence, 882–888.

Kautz, H. & Selman, B. 1996. Pushing the envelope: planning, propositional logic and stochastic search.

In Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative

42 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

Applications of Artificial Intelligence Conference, William J. Clancey & Daniel S. Weld (eds). AAAI Press/

MIT Press, 1194–1201.

Köhler, J., Nebel, B., Hoffmann, J. & Dimopoulos, Y. 1997. Extending planning graphs to an ADL subset.

In Proceedings of the 4th European Conference on Planning, Steel, S. (ed.), Lecture Notes in Computer

Science, 1348, 273–285. Springer-Verlag.

Kollingbaum, M. 2005. Norm-Governed Practical Reasoning Agents. PhD thesis, University of Aberdeen.

Kowalski, R. A. & Sergot, M. J. 1986. A logic-based calculus of events. New Generation Computing 4(1), 67–95.

Kuter, U., Nau, D., Pistore, M. & Traverso, P. 2009. Task decomposition on abstract states, for planning

under nondeterminism. Artificial Intelligence 173(5–6), 669–695.

Laborie, P. & Ghallab, M. 1995. Planning with sharable resource constraints. In Proceedings of the

International Joint Conference on Artificial Intelligence, Montréal, Québec, Canada, 1643–1651.

Lemai, S. & Ingrand, F. 2004. Interleaving temporal planning and execution in robotics domains.

In Proceedings of the Nineteenth National Conference on Artificial Intelligence, McGuinness, D. L. &

Ferguson, G. (eds). AAAI Press/The MIT Press, 617–622.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F. & Scherl, R. B. 1997. Golog: a logic programming

language for dynamic domains. Journal of Logic Programming 31(1–3), 59–83.

Meneguzzi, F. & Luck, M. 2007. Composing high-level plans for declarative agent programming. In Proceedings

of the Fifth Workshop on Declarative Agent Languages, Honolulu, Hawaii, US, 115–130.

Meneguzzi, F. & Luck, M. 2008. Leveraging new plans in AgentSpeak(PL). In Proceedings of the Sixth

Workshop on Declarative Agent Languages, Baldoni, M., Son, T. C., van Riemsdijk, M. B. & Winikoff,

M. (eds). Springer, 63–78.

Meneguzzi, F. & Luck, M. 2009. Norm-based behaviour modification in BDI agents. In Proceedings of the

Eighth International Conference on Autonomous Agents andMultiagent Systems, Budapest, Hungary, 177–184.

Meneguzzi, F. R., Zorzo, A. F. & Mora, M. C. 2004a. Mapping mental states into propositional planning.

In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems,

New York, NY, US, 1514–1515.

Meneguzzi, F. R., Zorzo, A. F. & Móra, M. D. C. 2004b. Propositional planning in BDI agents. In Proceedings

of the 2004 ACM Symposium on Applied Computing. ACM Press, 58–63.

Meneguzzi, F., Tang, Y., Sycara, K. & Parsons, S. 2010. On representing planning domains under

uncertainty. In The Fourth Annual Conference of the International Technology Alliance, London, UK.

Meuleau, N. & Smith, D. E. 2003. Optimal limited contingency planning. In Proceedings of the 19th

Conference in Uncertainty in Artificial Intelligence, Acapulco, Mexico, 417–426.

Móra, M. D. C., Lopes, J. G. P., Vicari, R. M. & Coelho, H. 1999. BDI models and systems: bridging the gap.

In Intelligent Agents V, Agent Theories, Architectures, and Languages, Fifth International Workshop, Müller,

J. P., Singh, M. P. & Rao, A. S. (eds), Lecture Notes in Computer Science, 1555, 11–27. Springer-Verlag.

Nau, D., Cao, Y., Lotem, A. & Muñoz-Avila, H. 1999. SHOP: simple hierarchical ordered planner.

In Proceedings of the 16th International Joint Conference on Artificial Intelligence, Thomas Dean (ed.).

Morgan Kaufmann Publishers Inc., 968–973.

Nebel, B. & Koehler, J. 1995. Plan reuse versus plan generation: a theoretical and empirical analysis. Artificial

Intelligence 76, 427–454.

Panagiotidi, S. & Vázquez-Salceda, J. 2011. Towards practical normative agents: a framework and an

implementation for norm-aware planning. In ‘COIN@AAMAS&WI-IAT’, Cranefield, S., van Riemsdijk,

M. B., Vázquez-Salceda, J. & Noriega, P. (eds). Lecture Notes in Computer Science, 93–109. Springer.

Paolucci, M., Kalp, D., Pannu, A., Shehory, O. & Sycara, K. 1999. A planning component for RETSINA

agents. In Proceedings of the International Workshop on Agent Theories, Architectures, and Languages

(ATAL-99), Orlando, Florida, USA, 147–161.

Pokahr, A., Braubach, L. & Lamersdorf, W. 2005. Jadex: a BDI reasoning engine. In Multi-Agent Programming:

Languages, Platforms and Applications, Bordini, R. H., Dastani, M., Dix, J. & Fallah-Seghrouchni, A. E. (eds).

Springer-Verlag, 149–174.

Raja, A. & Lesser, V. 2004. Meta-level reasoning in deliberative agents. In Proceedings of the IEEE/WIC/

ACM International Conference on Intelligent Agent Technology, Beijing, China, 141–147.

Rao, A. S. 1996. AgentSpeak(L): BDI agents speak out in a logical computable language. In Proceedings of

the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World, W. V. de Velde

& J. W. Perram (eds). Lecture Notes in Computer Science, 1038, 42–55. Springer-Verlag.

Rao, A. S. & Georgeff, M. P. 1995. BDI-agents: from theory to practice. In Proceedings of the First

International Conference on Multiagent Systems, San Francisco, 312–319.

Sardina, S., De Giacomo, G., Lespérance, Y. & Levesque, H.J. 2004. On the semantics of deliberation in

IndiGolog—from theory to implementation.Annals of Mathematics and Artificial Intelligence 41(2–4), 259–299.

Sardiña, S., de Silva, L. & Padgham, L. 2006. Hierarchical planning in BDI agent programming languages: a

formal approach. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and

Multiagent Systems, Hakodate, Japan, 1001–1008.

Planning in BDI agents 43

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

Sardiña, S. & Padgham, L. 2011. A BDI agent programming language with failure handling, declarative

goals, and planning. Autonomous Agents and Multi-Agent Systems 23(1), 18–70.

Schut, M. & Wooldridge, M. 2001. The control of reasoning in resource-bounded agents. The Knowledge

Engineering Review 16(3), 215–240.

Schut, M., Wooldridge, M. & Parsons, S. 2001. Reasoning about intentions in uncertain domains.

In Proceedings of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning with

Uncertainty, ECSQARU ’01, Benferhat, Salem & Besnard, Philippe (eds). Springer-Verlag, 84–95.

Schut, M., Wooldridge, M. & Parsons, S. 2002. On partially observable MDPs and BDI models.

In Selected Papers from the UKMAS Workshop on Foundations and Applications of Multi-Agent Systems,

Mark d’Inverno, Michael Luck, Michael Fisher & Chris Preist (eds). Springer-Verlag, 243–260.

Shoham, Y. & Leyton-Brown, K. 2010. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical

Foundations. Cambridge University Press.

Simari, G. I. & Parsons, S. 2006. On the relationship between MDPs and the BDI architecture. In Proceedings

of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, Hideyuki

Nakashima, Michael P. Wellman, Gerhard Weiss & Peter Stone (eds). ACM, 1041–1048.

Singh, D., Sardina, S. & Padgham, L. 2010. Extending BDI plan selection to incorporate learning from

experience. Robotics and Autonomous Systems 58(9), 1067–1075.

Singh, D., Sardina, S., Padgham, L. & Airiau, S. 2010. Learning context conditions for BDI plan selection. In

Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1—

Volume 1, AAMAS ’10, Alexander Ferrein, Nils T. Siebel & Gerald Steinbauer (eds). International

Foundation for Autonomous Agents and Multiagent Systems, 325–332.

Sohrabi, S., Baier, J. A. & McIlraith, S. A. 2009. HTN planning with preferences. In Proceedings of the

21st International Joint Conference on Artificial Intelligence (IJCAI-09), Pasadena, CA, USA, 1790–1797.

Srivastava, S., Immerman, N. & Zilberstein, S. 2009. Challenges in finding generalized plans. In Proceedings

of the ICAPS Workshop on Generalized Planning: Macros, Loops, Domain Control, Thessaloniki, Greece.

Srivastava, S., Immerman, N. & Zilberstein, S. 2011. A new representation and associated algorithms for

generalized planning. Artificial Intelligence 175(2), 615–647.

Stolcke, A. 1995. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities.

Computational Linguistics 21(2), 165–201.

Tang, Y., Meneguzzi, F., Parsons, S. & Sycara, K. 2011. Probabilistic hierarchical planning over MDPs.

In Proceedings of the Tenth International Conference on Autonomous Agents and Multiagent Systems,

Taipei, Taiwan, 1143–1144.

Thomas, S. R. 1995. The PLACA agent programming language. In Intelligent Agents, Wooldridge, M. J. &

Jennings, N. R. (eds), Lecture Notes in Computer Science, 890, 355–370. Springer-Verlag.

van Riemsdijk, M. B., Dastani, M. & Meyer, J.-J. C. 2005. Semantics of declarative goals in agent

programming. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and

Multiagent Systems, Utrecht, The Netherlands, 133–140.

Veloso, M. M., Pollack, M. E. & Cox, M. T. 1998. Rationale-based monitoring for planning in dynamic

environments. In Proceedings of the International Conference on Artificial Intelligence Planning Systems

(AIPS-98), Pittsburgh Pennsylvania, US, 171–180.

Walczak, A., Braubach, L., Pokahr, A. & Lamersdorf, W. 2006. Augmenting BDI agents with deliberative

planning techniques. In Proceedings of the Fifth International Workshop on Programming Multiagent

Systems, Hakodate, Japan.

Weisstein, E. W. 1999. Mathworld: Power Set. MathWorld–A Wolfram Web Resource. http://

mathworld.wolfram.com/PowerSet.html.

Winikoff, M., Padgham, L., Harland, J. & Thangarajah, J. 2002. Declarative & procedural goals in intelligent

agent systems. In Proceedings of the Eighth International Conference on Principles and Knowledge Repre-

sentation and Reasoning, Fensel, D., Giunchiglia, F., McGuinness, D. L. & Williams, M.-A. (eds). Morgan

Kaufmann, 470–481.

Wooldridge, M. 2002. An Introduction to Multiagent Systems. John Wiley & Sons.

44 F . MENEGUZZ I AND L . DE S I L VA

https://doi.org/10.1017/S0269888913000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888913000337

