Proceedings of the Edinburgh Mathematical Society (2010) 53, 731-746 ©
DOI:10.1017/S0013091508000898 Printed in the United Kingdom

THE SPECTRA OF THE LAPLACIANS OF FRACTAL GRAPHS
NOT SATISFYING SPECTRAL DECIMATION

JONATHAN JORDAN

Department of Probability and Statistics, University of Sheffield,
Hounsfield Road, Sheffield S3 7RH, UK (jonathan.jordan@shef.ac.uk)

(Received 4 September 2008)

Abstract  We consider the spectra of the Laplacians of two sequences of fractal graphs in the context
of the general theory introduced by Sabot in 2003. For the sequence of graphs associated with the
pentagasket, we give a description of the eigenvalues in terms of the iteration of a map from (C2?)3 to
itself. For the sequence of graphs introduced in a previous paper by the author, we show that the results
found therein can be related to Sabot’s theory.
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1. Introduction

Many fractals, and related self-similar graphs, display a property known as spectral dec-
imation: the spectrum of the Laplacian can be described in terms of the iteration of a
rational function f. Eigenvalues A of the Laplacian at a given stage of the construction
are related to eigenvalues p of the Laplacian at the following stage of the construction
by a relationship

A= fp), (1.1)

where f is a rational function on R, unless u is a member of a small exceptional set, £.
This was first observed for the specific case of the Sierpiriski gasket graph by Rammal
and Toulouse in [8], and this was given a rigorous mathematical treatment in [4,12,13].

A generalization of spectral decimation to a much larger class of self-similar graphs,
including the Vicsek set graph, is developed by Malozemov and Teplyaev in [7], in which
a symmetry condition is developed which, if satisfied, ensures that spectral decimation
applies to the graph. Each self-similar graph in this class has a function f and exceptional
set &€ associated with it. Further examples of calculations for examples satisfying this
symmetry condition are found in [2].

In [10], Sabot developed a more general theory which does not require the symmetry
condition of [7]. This involves a rational map on a projective variety rather than on R,
and the derivation of the spectral decimation phenomenon for the Sierpinski gasket from
the general theory is covered in detail in [10, §5].

731

https://doi.org/10.1017/50013091508000898 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091508000898

732 J. Jordan

Figure 1. The first few graphs, F(O), F<1), I'® and F(S), in the sequence associated
with the pentagasket. The filled-in vertices are the boundary vertices.

We investigate two examples of the spectral theory of the Laplacians of fractal graphs
in the context of the general theory developed by Sabot. One example is the pentagasket,
where the related problem of the spectral theory of the Laplacian on the fractal itself is
investigated in [1], and the other is related to the variant on spectral decimation found
in [5]. Although the graphs defined in [5] do not quite fit the definitions in [10, §1.1.1],
we will see that much of the theory does apply.

2. The framework

The notation here is based on that in [10].

We work with a sequence of graphs (I (”))neN7 which will approximate a limiting self-
similar graph as n — oo. This sequence is obtained by starting with I'(®) a complete
graph on Ny vertices, R an equivalence relation on {1,2,...,N} x {1,2,..., Ny} (for a
constant N > Ny) and 3: {1,2,...,No} = {1,2,..., Ny} a function which will determine
the boundary vertices.

Then if I'™ is the level-n graph, with a set of Ny vertices identified as its boundary,
O™ and the remaining vertices its interior I (") we form 'V by taking N copies
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of '™ and identifying boundary vertex j; of copy ki with boundary vertex j, of copy
ko if and only if (k1, j1)R(kz, j2). We then let boundary vertex j of '+ be boundary
vertex 3(j) of copy j of =1 Also, define a set of scaling factors for each copy of
=1 a; 1<i<N.

We will refer to each copy of the complete graph on Ny vertices within I'("™) as a cell.
Then N is the number of cells in I'V). Let SymG be the set of symmetric Ny X Ny matrices
invariant under a symmetry group G acting on {1,..., N} keeping {1, ..., No} invariant,
which in the cases of interest is thought of as the symmetry group of the related fractal.

For example, for the pentagasket Ny = N = 5, the equivalence relation R is given
by (1,3)R(2,5), (2,4)R(3,1), (3,5)R(4,2), (4,1)R(5,3) and (5,2)R(1,4), the ; are all
equal and the function § is simply 8(j) = j. The first few graphs in the resulting sequence
are shown in Figure 1.

3. The Sabot theory

In this section we give an introduction to the theory developed by Sabot in [10], show-
ing how the iteration of a rational map defined on a Grassmann algebra can be used to
describe the spectra of Laplacian operators on self-similar graphs fitting into the frame-
work described in § 2.

3.1. Construction of the Laplacian

The construction of a Laplacian on the self-similar graph is described in [10, §1.2].

If Q is an Ny x Ny matrix, form an |V(I'™)| x [V(I'™)| matrix Q™ as follows. Let
Q© = Q, and define Q™ by taking copies of Q"1 on each of the copies of "~V
multiplying the one on copy ¢ by oo ! and adding them together.

The construction of a Laplacian operator on the self-similar graph proceeds by starting
with a G-invariant difference operator A (which we will take to be the graph Laplacian of
I'®) on V(I'®) and a G-invariant positive measure b. Then the above gives an operator
A on RV(FW), and we similarly define a sequence of measures (b),cn by letting
b(©) = b and taking copies of b1 on each copy of I"™~1) multiplying the one on copy
1 by a1 ! and adding them together. A Laplacian L(™ can then be defined by

(A .g) = [ L fgab® for g € RV,

with the Laplacian on the infinite self-similar graph being defined as an extension of
this. This definition ensures that in the case where all ; are equal and b is uniform the
eigenvalues are the same as those for the graph Laplacian defined in [3].

3.2. The iteration on the Grassmann algebra

The underlying iteration used in [10] to describe the spectrum takes place on a Grass-
mann algebra A, defined in [10, Chapter 2]. The space Sym¢ is embedded in A via a
map ¢: Sym® — A, and a linear operator A — C (which we will call D) is defined such

that D(¢(Q)) = det Q.
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We will need the definition of the trace of a matrix on a subset from [10]: let Q be
an F' x F matrix with F' a finite set. If F” C F', then let Q|r/ be the restriction of @ to
F’, and define the trace of Q on F’, Qps, by Qr = ((Q71)|#)~!. Then the argument
in [10, Proposition 2.2] shows that

det Q = det(QF/) det(Q\F\F/).

Using this definition, §3.1 of [10] defines T': Sym® — Sym® by T(Q) = (Q)sr
and then shows that 7(Q) = (Q) 5w [10, Equation (47)].
The iteration uses a map R: A — A, defined so that, for Q € Sym?,

R(¢(Q) = Cdet((QW)] p) )C(T(Q)) (3.1)
and [10, Equation (46)]

R*(¢(@)) = O™ det((Q"™)] ) )C(T™ (@), (3-2)

where C' and C™) are constants depending on the scaling factors a;. Proposition 3.1
of [10] states that R is homogeneous of degree N.

To find the eigenvalues of the Laplacian of '™ we define Qx € Sym® by Q\ = L—\I,
where L is the Laplacian of the initial graph Gg. The theory in [10] tells us that the
eigenvalues of the level-n Laplacian can be found as the roots of D(R™({(®x))) = 0; our
aim will be to describe these roots.

In the case of the nested fractals defined by Lindstrgm in [6], which include the penta-
gasket and also the example of the Sierpinski gasket considered in [10, § 5.1], it is possible
to consider the map R as operating on (C2)* for some k (in the Sierpinski gasket case
k = 2 and in the pentagasket case k = 3) instead of working on the Grassmann algebra A.

4. The pentagasket

We consider the methods of [10] applied to the pentagasket, an example of a fractal
structure satisfying the conditions of [10] but for which spectral decimation does not
apply. Some results on the spectrum of the Laplacian on the pentagasket, together with
some numerical computations, are found in [1].

4.1. The iteration

We follow the method used for the Sierpiriski gasket in [10, §5.1]. We decompose C®
as a direct sum of three orthogonal subspaces Wy @& W71 @ Wa, each of which is preserved
by the symmetry group of the pentagasket. The space Wy consists of constant vectors,
W1 has orthogonal basis vectors

1-V5 V-1 1+v5 V5-1 V5-1 145
07 9 7]-7_]-7 9 and ]-7_ 4 ) 4 9 4 y T 4

and W5 has orthogonal basis vectors

Vh—11-+5 Vi—1 1+v6 1+V5 V651
0717 ) 7_1 and 17 T T ) .
2 2 4 4 4 4
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Then we let My, M; and Ms be matrices which fix Wy, W7 and W5, respectively:

11 1 1 1
5 5 5 5 5
11 1 1 1
5 5 5 5 5
Mo= |44 b L E
11 1 1 1
5 5 5 5 5
R
2 1+v5 V-1 5-1 1+5
5 10 10 10 10
1++/5 2 1+v5 V6—-1 V5-1
10 5 10 10 10
M= | VA-1 14V5 2 BERCERGES!
10 10 5 10 10
VE—1 V5-1 1++5 2 1++5
10 10 10 5 10
1+v5 V6-1  V5-1 14+v5 2
10 10 10 T 5
2 V-1 1+v5  1+V56 V51
5 10 1010 10
V5 -1 2 V5 -1 1+v5 1445
10 5 10 10 10
My— | 1+V5 V61 2 VE—1  1+V5
10 10 5 10 10
1+v5  1+v5 V51 2 VE-1
1010 10 5 10
VE—1 1+v5  1+V5 V651 2
10 10 10 10 5

735

The space Sym® of complex symmetric 5 x 5 matrices invariant under the symmetry
group of the pentagasket consists of matrices of the form Q = aMy + bM; + cMs, so
we can represent an element of SymG by an element (a,b,c) € C3, and we denote this
element by Q(a, b, ¢). The coordinates a, b and ¢ correspond to irreducible representations
of the symmetry group of the pentagasket described in [1]: a to the trivial representation
and b and ¢ to the two-dimensional representations. The determinant of a matrix ) =

aMy 4+ bM; + cMs is ab?c?.

We now calculate the map 7. As a map from C3 to C® we have

T(a’ b) C) = (TO (a’ b7 c)’ Tl (a7 b7 c)? T2 (a7 b’ c))7
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where
5abc
To(a,b,c) = be T 2ab e
Ty(a,b,c) = (2V5 +5)(10ab + (5 — v/5)ac + (5 + V/5)be)be
1.4, 9, 2ab? + (\/54- 3)ac + (9+ 3\/5)[)02 + (46 + 20\/5)1)26 T (40 + 16\/5)(1[)07
Ty(a, b, ) 5(2ab + (5 — V5)ac + (3 — V5)be)be

"~ 2ab? + (3+ V5)ac? + 6b2c + (19 — TV5)be? + (20 — 4v/5)abe’

We now follow the method used for the Sierpinski gasket in [10, Chapter 5] to
calculate a representation of the map R as a map from (C?)? to itself. This uses a
function s: (C%)3 — A, constructed in the same way as the corresponding function
for the Sierpinski gasket, such that s((a,1),(b,1),(c,1)) = ((Q(a,b,c)) and that s is
(1,2, 2)-homogeneous.

We know from (3.2) that

R(¢(Q)) = det((Q@™M)] #))¢(T(Q)),

and we can calculate that if Q@ = Q(a,b,c), then

(25 — 11v5)eg(a, b, ¢)(e1(a, b, ¢))?(ez(a, b, c))?

det((QM)|p)) = 12500 000 ’

where

eo(a,b,c) = (be + 2ab + 2ac)(2b + (3 + V5)c),
e1(a,b,c) = 2ab® + (V5 + 3)ac® + (9 + 3v5)bc? + (46 4 20v/5)b%c + (40 4 16v/5)abe,
ea(a, b, c) = 2ab® 4 (3 + V/5)ac? + 6b%c + (19 — 7V5)be? + (20 — 4v/5)abe.

The homogeneity of R and s implies that

R(s((uo, vo), (u1,v1), (uz,v2))) = (voufvg)%(s((z(‘j, 1), (Zi 1), (zz 1)))

Putting these together,

R(S((UO,UO),(U/l,'Ul),(UQ,UQ)))
_(UUQU2)525_11\/5€ Yo th 2 (o (Yo, 1 b2 \ D e e ’
o 0%1%2 12500000 0 ’0071}1’112 ! 110’1117’02 2 U07U171}2

X5(<TO(U()7U17U2>)1>7<T1<uovm,uz>v]->a(T2<%»’ulaw)a]—>>v
Vg V1 Vg Vg VU1 Vg Vg U1 V2
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and using the homogeneity of s we have

R(s((uo,v0), (u1,v1), (uz,v2)))

_((BIYE e (U0 w v
12500000 17210\ 00 0y by

12500000

Up U U2 Up Uy
vovl U5 2T , er| —,—
UO V1 V2 UO ’Ul

Up Uy Uz Up Uy
v()vlv2T2 —,—,— |e2| —, —,
Uo 1}1 V2 Vo U1

Up Uy Uz
ol ——— |
Vo V1 V32

25 —11V5 5 <u01”
UOUI UQ 0

Vo V1

o ))
Ty Ty T )
V2
Ug 2 UO
'UO'Ul 'U2 €1 5
V2 Vo

U2 2 2 ]
, VU1 Ug€2 | —,
U2 Vo

Uy U2

’Ul V2 ’
Uy U2
N b
U1 V2

so the representation of R as a map from (C?)?3 to itself can be written

R((ug,v0), (u1,v1), (u2,v2))
_»((25—11vf
B 12500 000

Up U U2 Up Ui
UOU%USTl — e\ —H»
Vo U1 V2 Vo 1}1

2 Uo Uy U2 Uup U1
”00711"02 2 e\ —»—,
vy v U2 Vo V1

Hence we have

R((U’Oa ’Uo), (ul, 'Ul), (UQ, 02)) =

where

Up U1 U2
vovivsTh | —, —, — Jeo
Vo U1 V2

25 — 115
12500 000

Up U U2
110’1}1”(}2 ’

Uovlvz 0 %' v

Roo = (25 — 11v5) ((vV/5 — 3)uivy — 2usv1 Jusugus /2 500 000,
Ror = (25 — 11V/5) (u1uavo + 2uguivs + 2uguavy )(VBE — 3)uive — 2uswy)/12 500 000,
R10 = (2\[ + 5)(10UOU1’02 + (5 — \/5)UOU2'U1 + (5 + \[)ul'LLQU())UQ’LLl,

R11 = (3 + \f)UOUQ”Ul

u0u1v2

Ro1 = 2uou?v? + (34 V5)uoulv? + 6ulusvovs

2 9 <UQ U7 UQ)>
Ty Ty T )

U2
Uz 2 9 uo
, VU1 Vg€1 | —,
U2 Vo

Uz 2 9 Ug
— ], VoV Vz€2| —,
U2 Vo

Uy U2

Ty T k)
V1 V2

Uy u2

(% ’ (%) '

((Roo, Ro1), (R10, R11), (R20, R21)),

+ (94 3V5)ugudvgr + (46 + 20V5)udugvguy

737

+ (40 + 16\[)U0U1’UJ21}1’U2,
Ry = 5(2u0u1v2 + (5 — \/5)’(101@1]1 + (3 — \/5)U1U2’U0)UQU1,

+ (19— 7\/5)u1u§v0v1 + (20 — 4\/5)u0u1uQv1v2.
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For a potential eigenvalue of the Laplacian A\, we start with an initial matrix

1 1 1 1
I=A =3 -3 -1 ~i
1 1 1 1
-3 1=A -3 -1 -3
_ 1 1 1 1
O=|-1 -1 1=A -3 -3
1 1 1 1
S S S Sl S
1 1 1 1
-1 —1  —1 —1 L1-A
which corresponds to
5—4X 5—4\
A c3
( b 4 b 4 ) )]
so let
5—4A 5—4A
U(()O) ==\ ugo) -y “g)) -4 U(go) = U§O) = Uéo) =1
and let

(g, o5, (@™, 0™, (s, v{™))
n—1 n—1 n—1 n—1 n—1 n—1
= R((u§ 08" ), @ o), D oY),

Because the operator D is linear, using the homogeneity of s we have

Do o) .00,z 02)) = o) (s (22.1), (21). (2.1)))

2,2
UoUTU
2, 2 01 U2
- (v0U1v2)< 2 2>

VYU V5

= uguiul.
Hence, the eigenvalues of the n-level matrix are the roots of

u§” ()2 (W) = 0.

Each ugn) and vgn) can be expressed as a polynomial in \. If we let d,, be the degree

of u(™

. and d, be the degree of ’Ul(n), then we have d,, = 4d,,_1 +d,_, and d;, = 3d,,—1 +

2d;,_;, with dy = 1 and dj = 0. Hence, d,, = (35" + 1) and d, = d,, — 1. (The
total number of eigenvalues, which is the number of vertices in the level-n graph, is

5d, = (35"t +5).)

Similarly, let a(® = =X, () = 0 = i(B — 4)) and write the iterates of the map T

as (a(")’ b(n)7 c(n)) — T(a("—l), b(n_l)7 C(n_l)),

4.2. Eigenvalues that first arise at level n

We consider the ways that components of the iterates of R can become zero. In each

case we assume that the components not mentioned are non-zero at level n.
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(1) Let
F(n) _ (\/5 o 3)ugn71)vén71) _ ngnfl)vgnfl).

Then F 1(n) is a factor of both u(()n) and U(()n) with multiplicity 1, so roots of F; ) — o
give eigenvalues with multiplicity 1 at level n. Iterating R shows that Fl(ln) is a
factor of all the components at level n+ 1 with multiplicity 1 and of all components
at level n+m (m > 1) with multiplicity 5™, so the eigenvalue has multiplicity oM
at level n + m. As the total number of eigenvalues at level n +m is 3 (3 pntm+ly)

the limiting spectral measure of an eigenvalue which appears as a type 1 eigenvalue
at level n is 3(£)""'. Because Fl( ") is a factor of uz(-m) and vl(m) with the same
multiplicity, these eigenvalues do not appear as zeros of the iterates of T'.

(2) Let

F(n (5+\[) (n—1) (nfl) énfl)
+2u (n 1) (n 1) (n 1)+(\[+3) (n—1) gn—l)v(()n—l)'

Then F2(" is a factor of ul ) with multiplicity 1, so roots of F2 = 0 give eigenvalues

with multiplicity 2 at level n. In this case F( oF is a factor of each of ug"+1), u§"+1)

and u("H) with multiplicity 1 (and is not a factor of vOnH) (4D oy v(nH)) so the
eigenvalue has multiplicity 5 at level n+ 1. Inductlvely 1terat1ng R, for m>1, Fy" (n)
is a factor of each of u(n+m) ugn+m) and u(n+m with multiplicity 1(3 -5~ i +1)
and of v (n+m) v§n+m and vg (rt70) with multiplicity }(3-5™~!—3), so the eigenvalue
has mult1phc1ty i(S 5™ +5) at level n + m. (The sequence of multiplicities starts
2,5,20,95,470,....) The limiting spectral measure of an eigenvalue which appears
as a type-2 eigenvalue at level n is (%)”H. These eigenvalues appear as zeros with

multiplicity 1 of b and of each of a(™, b(™) and ¢("™) for m > n.

(3) Let

F3n (5+\[) (n—1) (nfl)vénfl)+10uén71)uén71)v§nfl)
+ (5 o \/g)ugnfl)uénfl)vénfl).

Then Fg(") is a factor of u(Q") with multiplicity 1, so roots of F. 3(") = ( give eigenvalues
with multiplicity 2 at level n. The behaviour of the multiplicities in this case is the
same as for type 2. These eigenvalues appear as zeros with multiplicity 1 of ¢(™)
and of each of a(™, (™) and ™) for m > n.

(4) The value A =  is a special case, because Fy = (5—4)\) is a factor of both ug ) and

( ) . Hence, this eigenvalue has multiplicity 4 at level 0. Iterating R, Fy is a factor
of each u( j with multiplicity 3 and of each v( ) with multiplicity 2, and, again
by mduction F, is a factor of each u ) with multiplicity 1(11-5m7 1 +1) and
of each v ™) Wwith multiplicity 4(11 5"‘ 1 —3), so the eigenvalue has multiplicity

1(11-5™ +5) at level m. (The sequence of multiplicitieb starts 4, 15,70,345,....)
The limiting spectral measure of 2 7 is 13—1(%) = 15 This eigenvalue appears as a zero

with multiplicity 1 of 500 and ¢(®) and of each of a(™, 5™ and (™ for m > 0.
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(5) The value A\ = 0 is also a special case, as A is a factor of uéo) (but not of v(()o), so the

behaviour is different from that of type-1 eigenvalues). Iterating R, X is a factor of
uén) for all n but not of any of the other components, producing a zero eigenvalue
with multiplicity 1. This eigenvalue appears as a zero with multiplicity 1 of a(™

for all m.

Type-1 eigenvalues correspond to the alternating one-dimensional irreducible represen-
tation of the symmetry group, and types 2 and 3 correspond to the two two-dimensional
irreducible representations. These types of eigenvalues, and the single type-5 eigenvalue
(which corresponds to the trivial representation), thus correspond to the types of eigen-
values found for the Laplacian on the continuous pentagasket in [1]. The multiplicities
of eigenvalues at levels m > n found above by factorizing components of R also match
those found by geometric arguments in [1].

The type-4 eigenvalue does not correspond to any eigenvalue on the continuous penta-
gasket as, when the scaling factor (5/r)" is applied to the level-n spectrum (where
r = $(v/161 — 9) as in [1]), we obtain

505V L
4\ r ’

4.3. Numbers of eigenvalues of different types

We show by induction that for each n > 1 there are 3"~! eigenvalues each of type 2
and type 3 appearing at level n and 3"~ ! — 1 eigenvalues of type 1.

Assuming that this holds for all m < n, we analyse the degrees of the polynomials
F™ . The degree of F{™ is

dp1+d_y=33-5"""-1)
and the degrees of F\™ and F\™ are cach
21 +d,_y = 295" —1).

Now the structure of F\™ and the factorization of u{™ and v\"™ show that, for m <
n—1, Fl(m) appears as a factor in Fl(n) with multiplicity 2 -5"~m~2 F2m) and F?Em)
appear as factors in F\"™ each with multiplicity 1(3-57"™=2 — 1) and F; appears as
a factor in Fl(n) with multiplicity (115772 — 1) (if n > 2, it is a factor of Fl(l) with
multiplicity 1). Hence (assuming the induction hypothesis), eigenvalues from levels m < n
account for

n—2
2(2(31’71—1 _ 1)571—177,—2 + 2(3m—1)(% . 5n—m—2 _ %)) + %(11 . 5n—2 _ 1)

m=1

roots of F\™ | which leaves
1B - —-E6E" T+ -3y =3" -1

roots, giving type-1 eigenvalues at level n.
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Similarly, the structure of Fg(n) and Fén) and the factorization of ugm)

that, form <n —1, Fl(m) appears as a factor in each of FQ(") and Fg(")
3.5n—m=2 F(m) and Fém) each appear as factors in both FQ(”) and Fé") with multiplicity

(m)

and v,

9.5""m=2 _ 1) and F; appears as a factor in both F, ™) and F ™) with multiplicity

(
(33-5"72—1) (if n > 2, it is a factor of F( ) and F( ) with multiplicity 1). Additionally,
(n—

| Y oceurs as a factor in each of F2( " and F?En) with multiplicity 1. Hence (assuming

PN

"ij

the induction hypothesis), eigenvalues from levels m < n account for

n—2
> oEE™T 05T 423252 — 1))+ 133502 — 1)

m=1

=109-5" 1 —1)—3"!
roots of both Fz(n) and F:,E"), which leaves
%(9 . 5n—1 _ 1) _ (i(g A 5n—1 _ 1) _ 377,—1) _ 3n—1

roots of each, giving type-2 and type-3 eigenvalues at level n.
Define

F(l) _ F-(l)/F4

and then for n > 2 define

pln _ <H F(m) 5"77"72(FQ(m))(3'5"7”72_1)/2(}%35"1))(3‘5"77"72_1)/2)

-1
« (F4)(11-5"—21)/2) ,

n—2
~(n n ~(m En—m—2 ~(m En—m—2 ~(m En—m—2
FQ( ) _ FQ( )( | I ((Fl( ))35 (FQ( ))(95 1)/4(F3( ))(95 1)/4)

m=1

—1
< (RS TD))

n—2
i F§”>< T (B35 2 (B2 1)/ )52 1)/

m=1

-1
x (F4)<33'5”—”/4<Ff””>> '

Let )\En)’ 1<i<3" ! -1, be the 37~ — 1 roots of Fl(n) = 0 and ,ul(»n), 1<ig<3v 1,

be the 371 roots of 13'2(") 0 and y(n), 1 < i< 3", be the 37! roots of F:,E”) =

Then the )\E") are type-1 eigenvalues at level n, the ,uz(-")

(n)

n and the v; "’ are type-3 eigenvalues at level n.
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4.4. Spectral measure
The calculations above show that the spectral measure at level n is

3m1

3.5711%(50 + ( )55/4 + Z 5nmm Z N
n—1 5 gm—1
+ Z < 5n m ) Z (5M£m) + 5V1_(m))> .

i=1
The limiting spectral measure is then

41 37n—1

11 [e%s) 4 m+41 3™ m
1555/“;_23(5) Z 5A<m>+2() 2 By +0,m).

The limiting spectral measure of the set of the )\g") eigenvalues is

(n)

and the limiting spectral measures of the sets of ,uz(") and v; ' eigenvalues are each

oo

(3" ()™ = .

m=1

4.5. Numerical computation of eigenvalues

Using numerical solution of the equations obtained by the above factorizations of the
components of R, we calculate (see Table 1) the eigenvalues that appear in the first
three levels, their multiplicity in the spectrum of the Laplacian of I'®) and their limiting
spectral measure.

5. The self-similar unit interval with a reflection map

In [9,11], and in [10, §5.2], the self-similar structure on the unit interval with respect
to the maps ¥ (z) = ax and ¥(x) =1+ (1 — a)(z — 1) is considered.

We consider a similar self-similar structure, but with the second map altered to reflect
and contract the interval, i.e. we will take Wy(z) =1 — (1 — )z, with ¥; as above. Here
N = Ny = 2, the equivalence relation is given by (1,2)R(2,2), the function § is given by
bly=p2)=landa; =a,as =1—a. Ifa= %, this is closely related to the fractal
graph studied in [5]; the double edges in that graph correspond to the shorter edges here.
Ifa= 3, it is similarly closely related to the graph obtained by reversing the orientation
of the model graph mentioned at the end of [5].

The symmetry group G is trivial and there are two boundary points. Hence, the sym-
metric matrices @) are of the form

a q
q d)’
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Table 1. Calculations using the numerical solution of the equations
obtained by factorizations of the components of R.

level-3 spectral
eigenvalue level type multiplicity measure

0 0 5 1 0
0.00168338 3 3 2 1/625
0.00419185 3 2 2 1/625
0.01843319 2 3 5 1/125
0.02226818 3 1 1 4/1875
0.02464238 3 3 2 1/625
0.03227973 3 2 2 1/625
0.04400310 2 2 5 1/125
0.05954335 3 2 2 1/625
0.07854993 3 3 2 1/625
0.08951707 3 1 1 4/1875
0.17274575 1 3 20 1/25
0.18550404 3 1 1 4/1875
0.19513683 3 3 2 1/625
0.20677282 3 2 2 1/625
0.21215304 2 1 5 4/375
0.23593551 2 3 5 1/125
0.24270214 3 1 1 4/1875
0.24721715 3 3 2 1/625
0.26124041 3 2 2 1/625
0.30573224 2 2 5 1/125
0.31924348 3 2 2 1/625
0.34161493 3 3 2 1/625
0.35271477 3 1 1 4/1875
045225424 1 2 20 1/25
0.50602804 3 1 1 4/1875
0.51203514 3 3 2 1/625
0.52157728 3 2 2 1/625
0.52526466 2 2 5 1/125
0.59549976 3 2 2 1/625
0.60014028 3 3 2 1/625
0.60279371 3 1 1 4/1875
0.62063130 2 3 5 1/125
0.62347205 3 1 1 4/1875
0.62397999 3 3 2 1/625
0.62465131 3 2 2 1/625
0.66284695 2 1 5 4/375

5/4 0 4 345 11/15
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and the relationship of these symmetric matrices to the Grassmann algebra is exactly
the same as that for the interval without reflection in [10, §5.2]. The Grassmann algebra

is generated by {7jo, 0,71, M1}, where {no,n1} and {7y, 71} are canonical bases of two
copies of C?, and, using the same notation as in [10],

exp(nQn) = 1+ afono + dinmy + q(fons + Mno) + (ad — ¢*)fonomm,

and the map R will act on elements of the form

Z + anjono + dijim + q(fom + 11ino) + Dionoim

with ad — ¢ = DZ.
Letting § = o/(1 — «), the matrix Q") formed by adding scaled copies of @Q in each
cell of '™ is

q 0
g d(1+90) dq|,
0 oq da

and hence the matrix T(Q) is
1 ad(1+6) — ¢ —q%6
d(1+9) —q%6 ad(§ +6%) —¢*5 )’

so that the map T can be represented as

T(CL, da Q) = (ad(l + 5) - q2, ad((s + 62) - 52 27 7q25) (51)

1
d(1+9)

Using the relationship between the maps T' and R from [10], we can now calculate the
map R as

ad — ¢?
R<Z + afono + dimm + q(om + 71ino) + ( 7 1 >770770771771)

= Z + aiono + dinmi + @(fiom + mino) + Dijonoini,

with
Z = Zd(1 + 9)
a=ad(l+06)— ¢
d = add(1+6) — 6%¢°
j=—o¢’
P
A

Hence, we can follow the evolution of y = ad and v = ¢? by considering the two-dimen-
sional map

h(y,v) = (1 +06)%6y* — (1 +6)*dyv + 6%0*, 6%0%),
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and if we let u = y/v, we can obtain a map h on P':

h(u) = @UZ - wu—k 1.

Let @ = d©® =1 — X and ¢(© = —1. Also let Z(©) = 1; then an eigenvalue \ is
mapped into the Grassmann algebra as
a(0q0) _ (q(O))2
7(0)

o(N) = ZO + a7 + dO%m + ¢ (Fom + o) + ( )7]0770771771-

Now define a(™, d™ ¢(™ and Z(™ by
aMdn) — (g(m)2
Z(n)

© g0 _ ()2
a
=R" (Z(O) +a @m0 + dOmm + ¢ (Romy + Mmno) + < Z(O)(q >770770771771>

Z™ 4+ a™igng + d™ iy + ¢ (o + ino) +

ToToN17M1

and let y(™ = oM () = (g(M)2 () = 40 /(1)

Eigenvalues of the level-n Laplacian are values where (a(™d™ — (¢(")2)/Z(") = 0,
which implies that u(™ =1, i.e. that iz”((l -2A)?) =1

Now 4™ = 1 if and only if u(?) = 1 or u(™) = 0 for some m < n. The former case gives
eigenvalues 0 and 2. The latter case happens if either a(™) = 0 (if m > 1, this implies
that u™=1) = 1/(1 4+ §)) or d™ = 0 (if m > 1, this implies that u(™~1) = §/(1 + §)).
However, the case where d™ = 0 does not produce eigenvalues of the Laplacian because
in this case Z(") = 0. So the eigenvalues of the Laplacian at level n are 0, 1, 2 and values
A such that u(™ = 1/(1 + §) for some m < n — 1.

To see the link between the theory in [10] and the results in [5], note that in the
case where § = 1 or § = 2 it can be seen that h((1 — A)?) is the quartic polynomial
in [5]. However, in the one-dimensional setting we consider here, the Dirichlet—-Neumann
eigenvalues found in [5] do not appear. They occur at the values mentioned above where
d™) =0 for some m < n.
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