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Abstract

First-order languages based on rewrite rules share many features with functional languages,

but one difference is that matching and rewriting can be made much more expressive

and powerful by incorporating some built-in equational theories. To provide reasonable

programming environments, compilation techniques for such languages based on rewriting

have to be designed. This is the topic addressed in this paper. The proposed techniques are

independent from the rewriting language, and may be useful to build a compiler for any

system using rewriting modulo Associative and Commutative (AC) theories. An algorithm for

many-to-one AC matching is presented, that works efficiently for a restricted class of patterns.

Other patterns are transformed to fit into this class. A refined data structure, namely compact

bipartite graph, allows encoding of all matching problems relative to a set of rewrite rules.

A few optimisations concerning the construction of the substitution and of the reduced term

are described. We also address the problem of non-determinism related to AC rewriting, and

show how to handle it through the concept of strategies. We explain how an analysis of the

determinism can be performed at compile time, and we illustrate the benefits of this analysis

for the performance of the compiled evaluation process. Then we briefly introduce the ELAN

system and its compiler, in order to give some experimental results and comparisons with

other languages or rewrite engines.

Capsule Review

This paper describes the ELAN language and a compiler for it developed at Nancy. ELAN

is relevant to both functional and logic programming, but also has facets closer to the term

rewriting community, or even theorem proving. Thinking of an ELAN input as a program,

it is a Haskell-like set of equations, called rules. Differences from traditional functional

programming include the fact that ELAN’s terms are not free trees, but may have AC

(Associative and Commutative) constructors; that rewrite rules may be applied anywhere

in a tree, not just at the top as in functional languages; and that a rule set need not be

deterministic. A sophisticated matching algorithm, based on improving that by Bachmair et

al. (1993), plays a crucial role in efficiently executing such term rewrite systems. To deal with

non-determinism a rich language of “strategy annotations” has been devised to allow choice

in a broad space of search and backtracking strategies.

https://doi.org/10.1017/S0956796800003907 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003907


208 H. Kirchner and P.-E. Moreau

1 Introduction

Rewrite rules are pairs of terms (the left- and right-hand sides) with variables that

describe a transformation on given expressions. A rewrite rule may be guarded by

a condition which is a boolean expression. A rewrite system is a set of rewrite

rules. Rewrite rules are frequent in many areas of computer science, but languages

based on rewriting are not so common. Let us cite, for instance, the first-order

languages OBJ (Goguen & Winkler, 1988), ASF+SDF (Klint, 1993), Maude (Clavel

et al., 1996), Cafe-OBJ (Futatsugi & Nakagawa, 1997) and ELAN (Borovanský et al.,

1998b). In these languages, programs are sets of rewrite rules, called rewrite pro-

grams, and a query is an expression to evaluate according to these rules. Evaluation

is performed by applying rewrite rules. Informally, rewriting an expression consists

of selecting a rule whose left-hand side (also called a pattern) matches the current

expression, or a sub-expression, computing a substitution that gives the values of

rule variables, checking that the condition evaluates to true under this substitution,

and applying it to the right-hand side of the selected rule to build the reduced

term. In general, the evaluation may not terminate, or terminate with different re-

sults according to which rules are applied. So evaluation by rewriting is essentially

non-deterministic, and backtracking is used to generate all results. In this paper, we

address compilation techniques for languages based on rewriting.

First-order languages based on rewrite rules share many features with functional

languages (Bird & Wadler, 1988), such as CAML (Cousineau & Mauny, 1998; Weis

& Leroy, 1993), Clean (Brus et al., 1987; Plasmeijer & van Eekelen, 1993), Er-

lang (Armstrong et al., 1996; Armstrong, 1997), Gofer (Jones, 1994), Haskell (Jones,

1996; Peyton Jones, 1996) or ML (Cousineau et al., 1985; Leroy & Mauny, 1993).

They provide the same capability of writing specifications which can be actually

executed, tested and debugged. Such a specification is the first prototype of the

final program. Re-usability is encouraged through language features such as mod-

ules, polymorphism, algebraic types and predefined types. Both classes of languages

share concepts like pattern matching (first-order versus higher-order), (tree or graph)

rewriting, guards (or conditions), sometimes “where” blocks and “let” expressions.

All these programs tend to be concise, easy to understand, and relatively easy to

maintain because the code is short, clear, with no side effects or unforeseen in-

teractions. They are strongly typed, eliminating a huge class of errors at compile

time. In such languages, the programmer is relieved of the storage management

burden. Store is allocated and initialised implicitly, and reclaimed by the garbage

collector. Compared to imperative languages, programs are easier to design, write

and maintain, but the language offers the programmer less control over the machine.

However, contrary to functional languages, λ-abstraction and higher-order match-

ing are not used in first-order languages based on rewrite rules. Higher-order func-

tions provide a powerful abstraction mechanism, since a function can be freely

passed to other functions, returned as a result of a function, stored in a data struc-

ture and so on. This is not possible in most rewriting based languages. However,

we later present the ELAN system, where the notion of strategy is indeed similar to

an higher-order function applied with an explicit application operator. Moreover,
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although no λ-expression can be written in ELAN, there is an extension of the

language, based on ρ-calculus (Cirstea & Kirchner, 1999), which provides a uniform

integration of λ-calculus and first-order rewriting.

The loss of abstraction due to the first-order restriction is balanced by the ability

to build equational theories in the matching and rewriting mechanism. To illustrate

how expressivity and conciseness are gained with this approach, let us consider the

formalisation of sorting a list of elements by applying only one rule:

L1 · x · L2 · y · L3 → L1 · y · L2 · x · L3 if x > y

where L1, L2, L3 are variables of type List[Element], x, y are variables of sort Element

and where the ‘·’ list concatenation operator is associative and has a unit element

which is the empty list nil. Thanks to these built-in properties, the matching algorithm

applied to the list (3 · 5 · 1) will discover several solutions, among which for instance:

L1 = nil, x = 3, L2 = nil, y = 5, L3 = (1) and L1 = (3), x = 5, L2 = nil, y = 1, L3 = nil.

Since the first match does not satisfy the condition x > y, the second has to be

chosen to apply the rewrite rule and to get the list (3 ·1 ·5). A second rule application

yields the now irreducible result (1 · 3 · 5).

Beyond lists, other data structures that can benefit from this kind of rewriting are

sets and multisets, where the union operator is Associative and Commutative (AC

for short). AC operators provide a high level of abstraction: the programmer may

use set data structures without knowing how they are represented. Moreover, their

implementation may be more efficient than a list implementation, simply because

some optimisations are performed at compile time. To illustrate the practical interest

of AC operators, let us consider the well known N-queens problem, that will be

further developed in section 5. The problem consists of setting a queen on each

row of the chessboard and assigning a unique column number (taken in the set of

integers {1, . . . , N}) such that the queens do not attack each other. We represent a

solution by a list of integers and we use a set to represent columns that may be

assigned to a queen. As we will see in Example 3 on page 232, the program may be

expressed in ELAN with three rules and a strategy. The first of these three rules is

the following one, where i and S are variables of respective types Integer and Set:

(i) ∪ S → [i, S]

The ∪ operator (where stands for a place-holder) is an AC infix operator,

which allows expressing constructions such as (1) ∪ (2) ∪ (3). The [ , ] operator is

a constructor used to represent pairs, for example. When this rule is applied on a

given term, say (1) ∪ (2) ∪ (3), the first result is [1, (2) ∪ (3)], when the variable i is

instantiated to 1 (i.e. (i) matches (1)). Another possibility is to match i with 2, and

in this case, the result is [2, (1) ∪ (3)]. Thus, the application of an AC rule returns

a multiset of results, and behaves like a generator over a set data structure. This

feature will be used in Example 3 on page 232 to enumerate all possibilities to set a

queen on a chessboard.

Let us explain in more detail the properties of first-order languages based on

rewrite rules. The evaluation mechanism relies primarily on a matching algorithm

that must be carefully designed. When programming with rewrite rules, it frequently
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happens that programs contain several rules whose left-hand sides begin with the

same top function symbol. This often corresponds to a case definition of a function,

as usual in functional programming languages. In this context, many-to-one pattern

matching is quite relevant. The idea is to group all these rules together and search

for a candidate rewrite rule in this group when the subject to be reduced begins

with the same top function symbol.

When the program involves algebraic structures with axioms stating commutativ-

ity of function symbols, these axioms cannot be oriented as a terminating rewrite

system. As mentioned above, they instead can be handled implicitly by working with

congruence classes of terms. For practical implementation purposes, representatives

of these congruence classes are chosen, and the matching step of term rewriting is

performed by special matching algorithms, specific to the equational theories in use.

An important case in practice is the case of associative and commutative theories.

However, AC matching has a high computational complexity, as analysed by several

authors (Benanav et al., 1987; Hermann & Kolaitis, 1995). Moreover, since an AC

matching problem may have several minimal solutions, if the first match which is

found does not satisfy the condition of the rule, or if all possibilities are looked for,

backtracking is used to get the next solutions. With this additional non-determinism,

rewriting in such theories becomes computationally difficult and it is a real challenge

to identify subclasses of programs for which it is possible to provide an efficient

compiler for the language.

Although it is essential to have a good matching algorithm to get an efficient

rewriting engine, matching is not the only operation involved in a normalisation

process. To compute the reduced term, a global consideration of the whole process

is crucial: all data structures and sub-algorithms have to be well designed to

cooperate without introducing any bottleneck. Optimisations go through the careful

combination of several algorithms and data structures. In this paper, we show how

we have reused and improved existing techniques, and invented new ones, in order

to build a compiler for AC rewriting.

As already mentioned, there are different sources of non-determinism in the

evaluation process. If the rewrite system is not confluent, different normal forms,

when they exist, may be considered as relevant results of the computation. In

presence of AC function symbols, several matching solutions have to be considered

and lead to different results. We explain in this paper how to use strategy constructors

to handle sets of results, how to perform a determinism analysis at compile time,

and the benefits of this analysis for the performance of the compiled evaluation

process.

This paper is an extension of previous work (Moreau & Kirchner, 1998; Kirchner

& Moreau, 1998). After a short introduction of notation and classical definitions in

section 2, an algorithm for many-to-one AC matching is presented in section 3. This

algorithm works efficiently for a restricted class of patterns, and other patterns are

transformed to fit into this class. A refined compact bipartite graph data structure

allows encoding all matching problems relative to a set of rewrite rules. A few

optimisations concerning the construction of the substitution and of the reduced

term are described in section 4. In section 5, we turn to the problem of non-
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determinism, and show how to handle it through the concept of strategies. All these

sections are independent from the rewriting language, and the techniques described

may be useful to build a compiler for any language based on non-deterministic

rewriting in associative and commutative theories. Section 6 briefly introduces the

ELAN system and its compiler, implementing the techniques described in this paper,

in order to give some experimental results and comparisons with other languages or

rewrite engines. The conclusion in section 7 points out a few directions where there

seems to be yet some room for further improvements.

2 Preliminary concepts

We assume the reader familiar with basic definitions of term rewriting given in

particular in Dershowitz & Jouannaud (1990) and Baader & Nipkow (1998), and

associative commutative theories, handled for instance in Peterson & Stickel (1981)

and Jouannaud & Kirchner (1986). We briefly recall or introduce notation for a few

concepts that will be used along this paper.

T(F,X) is the set of terms built from a given finite set F of function symbols

and a denumerable set X of variables, denoted x, y, z, . . . Positions in a term are

represented as sequences of integers and denoted by the Greek letters ε, ν. The empty

sequence ε denotes the position associated to the root, and so it is the position of

the top symbol. The subterm of t at position ν is denoted t|ν . The replacement at

position ν of the subterm t|ν by t′ is written t[ν ←↩ t′]. The set of variables occurring

in a term t is denoted by Var(t). If Var(t) is empty, t is called a ground term, and

T(F) is the set of ground terms. A term t is said to be linear if no variable occurs

more than once in t. A substitution is an assignment from a finite subset of X to

T(F,X), written σ = {y1 7→ t1, . . . , yk 7→ tk}. The result of applying σ to a term t is

denoted by tσ.

In the first part of this paper, we focus on theories and rewrite systems in which

there is at least one binary function symbol F , that satisfies the following set AC of

associativity and commutativity axioms:

∀x, y, z, F(x, F(y, z)) = F(F(x, y), z) and ∀x, y, F(x, y) = F(y, x).

Such symbols are called AC function symbols, and are always in uppercase in the

following. On the other hand,F∅ is the subset ofF made of function symbols which

are not AC, and are called free function symbols. In the following, we consider that

a function symbol is either free or AC. A term is said to be syntactic if it contains

only free function symbols. We write s =AC t to indicate that the two terms s and t

are equivalent modulo associativity and commutativity.

Definition 1 A rewrite rule is a pair of terms denoted l → r such that l, r ∈ T(F,X)

and Var(r) ⊆ Var(l). The term l is called the left-hand side or pattern and r is the

right-hand side.

To get a better control on the application of the rewrite rules, conditions can be

added. In this paper, we consider an enriched notion of condition, called matching

condition, as used, for instance, in ASF+SDF and ELAN.

https://doi.org/10.1017/S0956796800003907 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003907


212 H. Kirchner and P.-E. Moreau

Definition 2 A conditional rewrite rule denoted l → r where p := c is such that

l, r, p, c ∈ T(F,X), Var(p) ∩Var(l) = ∅, Var(r) ⊆ Var(l) ∪Var(p) and Var(c) ⊆
Var(l). When the term p is just the boolean constant true, the condition is usually

written if c.

The notion of conditional rewrite rule can be generalised with a sequence of

conditions, as in l → r where p1 := c1 . . . where pn := cn where:

• l, r, p1, . . . , pn, c1, . . . , cn ∈ T(F,X),

• Var(pi) ∩ (Var(l) ∪Var(p1) ∪ · · · ∪Var(pi−1)) = ∅,
• Var(r) ⊆ Var(l) ∪Var(p1) ∪ · · · ∪Var(pn) and

• Var(ci) ⊆ Var(l) ∪Var(p1) ∪ · · · ∪Var(pi−1).

A (conditional) rewrite rule is said to be syntactic if the left-hand side is a syntactic

term.

To apply a syntactic rule l → r on a term t at some position ν, one looks for a

matching, i.e. a substitution σ satisfying lσ = t|ν . Note that t is always a ground term.

The algorithm which provides the unique substitution σ, whenever it exists, is called

syntactic matching. Once a substitution σ is found, the application of the rewrite rule

consists of building the reduced term t′ = t[ν ←↩ rσ]. Computing the normal form of

a term t w.r.t. a rewrite system R consists of successively applying the rewrite rules

of R, at any position, until no more applies. The existence and uniqueness of normal

forms require the rewrite system R to be, respectively, terminating and confluent.

To apply a syntactic conditional rule l → r where p := c on a term t, the

satisfiability of the condition where p := c has to be checked before building the

reduced term. Let σ be the matching substitution from l to t|ν . Checking the matching

condition where p := c consists first of using the rewrite system R to compute a

normal form c′ of cσ, whenever it exists, and then verifying that p matches the

ground term c′. If there exists a matching µ, such that pµ = c′, the composed

substitution σµ is used to build the reduced term t′ = t[ν ←↩ rσµ]. Otherwise, the

application of the conditional rule fails. For usual boolean conditions of the form

if c, µ is the identity when the normal form of c is true. In cases where cσ has no

normal form, the application of the rule does not terminate.

When the conditional rule is of the form l → r where p1 := c1 . . . where pn := cn,

the matching substitution is successively composed with each matching µi from pi to

a normal form of ciσµ1 . . . µi−1, for i = 1, . . . , n, when it exists. If one of these µi does

not exist, the application of the conditional rule fails. If one of the ciσµ1 . . . µi−1 for

i = 1, . . . , n has no normal form, the application of the rule does not terminate.

When the left-hand side of the (conditional) rule contains AC function symbols,

AC matching is invoked from l to t|ν . The term l is said to AC match the term t|ν if

there exists a substitution σ such that lσ =AC t|ν . In general, AC matching can return

several solutions, which introduces a need for backtracking for conditional rules:

as long as there is a solution to the AC matching problem for which the matching

condition is not satisfied, another solution has to be extracted. Similarly, if the

pattern p contains AC function symbols, an AC matching procedure is called. Only

when all solutions have been tried unsuccessfully, the application of this conditional
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rule fails. When the rule contains a sequence of matching conditions, failing to

satisfy the ith condition causes a backtracking to the previous one.

So in our case, conditional rewriting requires AC matching problems to be solved

in a particular way: the first solution has to be found as fast as possible, and the

others have to be provided ‘on request’. AC matching has already been extensively

studied (Hullot, 1980; Benanav et al., 1987; Kounalis & Lugiez, 1991; Bachmair

et al., 1993; Lugiez & Moysset, 1994; Eker, 1995). In this paper, we borrow from

these works some techniques for the compilation of AC-matching, but we go further

and address the more global problem of its integration in a normalisation procedure.

One of the first problems encountered for an efficient implementation is to choose

an adequate term representation. It is well known that terms involving associative

function symbols can be converted to a normal form by grouping associative opera-

tors to the right (or left). Equivalently, and more usefully for machine representation,

we may flatten such terms by replacing nested occurrences of the same associative

operator by a single variadic operator (i.e. an operator with a variable arity). The

same may be done with AC operators. However, this does not give a unique nor-

mal form, since the commutativity axiom may be used to arbitrarily permute the

arguments of a variadic operator. Nevertheless, we obtain a unique normal form

by regarding the arguments of a variadic operator as a multiset of terms (since the

same term may occur as an argument more than once). A canonical form (Hullot,

1980; Eker, 1995) corresponds to an implementation of this idea where a unique

syntactic representation of this multiset of arguments is obtained by sorting and

grouping. Canonical form computation can be seen as a function CF on T(F,X)

that returns, for each term t, a unique representative of its congruence class. Let >

be a total ordering on the set of symbols F∪X.1 For terms that are just variables

or constants, CF is the identity function and the total ordering is the given order-

ing > on symbols. For terms in canonical form with different top symbols, the total

ordering is given by the ordering on their top symbols. This ordering on canonical

forms is also denoted >. Considering that AC function symbols can be variadic, the

canonical form is obtained by flattening nested occurrences of the same AC function

symbol, recursively computing the canonical forms and sorting the subterms, and

replacing α identical subterms by a single instance of the subterm with multiplic-

ity α, denoted by tα. A formal definition can be found in Eker (1995). An algorithm

that performs a bottom-up computation of CF is given later on, in section 4.1 on

page 228. At this stage, canonical form computation is easily understandable by an

example. Consider the term t = F(F(t1, t2), t3, F(t4, t5)) where no ti has the AC func-

tion symbol F as top symbol. Assuming that CF(t1) = CF(t5), CF(t3) = CF(t4)

and CF(t1) > CF(t2) > CF(t3), then CF(t) = F(CF(t1)2,CF(t2),CF(t3)2).

A term in canonical form is said to be almost linear if the term obtained by

forgetting the multiplicities of variable subterms is linear. For instance, the term

t = F(x3, y2, g(a)) is almost linear.

For a term t in canonical form, the syntactic top layer t̂ is obtained from t

1 Any ordering can be chosen but, once chosen, it is fixed, since it determines the uniqueness of
representation.
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by removing subterms below the first AC symbol in each branch and consider-

ing remaining AC symbols as constants. For instance the top layer of the term

f(g(a), F(f(a, x), f(y, g(b))) is f(g(a), F), if f, g, a, b ∈ F∅. Note that f(g(a), F) is a

syntactic term if we consider F as a constant. A formal definition of the top layer

and a few properties can be found in Bachmair et al. (1993) and Moreau (1999).

Another theoretical difficulty related to AC rewriting is to ensure its completeness

with respect to equality in congruence classes: given a rewrite system R, how to

ensure that for any terms t and t′, t and t′ are equivalent in the theory defined by

R and AC, if and only if t and t′ AC rewrite, respectively, to terms u and u′ such

that u =AC u′. The interested reader can refer to Jouannaud & Kirchner (1986),

which provides an extensive study of this question. For the purpose of this paper,

it is enough to know that to achieve this completeness property, we must already

ensure the following property of coherence with AC congruence classes: if a term

is reducible, any AC equivalent term is reducible too. To illustrate the problem and

its solution, let us consider the associative-commutative union operator: ∪, and the

rewrite rule that removes identical elements of a multiset:

x ∪ y → x if x = y

When applied on a∪a, the result is a, but when applied on (a∪b)∪ (a∪ c), the result

is not a∪ b∪ c because the rule cannot be applied directly to (a∪ a). To perform the

expected rewrite step on subterms of equivalent terms such as the subterm (a ∪ a)
of (a ∪ a) ∪ (b ∪ c) in this example, a new rule with an extension variable z′ has to

be added:

z′ ∪ (x ∪ y)→ z′ ∪ x if x = y

The variable z′ matches the context and allows us to perform rewrite steps in

subterms. To obtain this coherence property of AC rewriting, some rules called

extensions are automatically added. The extension of the rule F(l1, . . . , ln) → r, al-

ready put in flattened form, where F is an AC function symbol, is of the form

F(z′, l1, . . . , ln) → F(z′, r), where z′ is called an extension variable. This well known

technique was introduced by Peterson & Stickel (1981), and generalised by Jouan-

naud & Kirchner (1986), where a more detailed justification of these extensions can

be found. Extensions are not needed for rules of the form F(l1, . . . , ln) → r, where

F is AC, and where one of the l1, . . . , ln is a variable with multiplicity 1 which also

does not occur in the condition of the rule. Indeed, this variable can capture the

context as well as an extension variable. Note that an extension is always necessary

for rules where l1, . . . , ln are non-variable subterms. In addition, from the implemen-

tation point of view, the reduction with a rule F(l1, . . . , ln)→ r can be simulated with

F(z′, l1, . . . , ln)→ F(z′, r) only, by allowing the extension variable z′ to be instantiated

to an empty context.

Example 1 To support intuition throughout this paper, we choose the following running

example of two rewrite rules with the same AC top symbol F and whose right-hand

sides are irrelevant. The first rule has a boolean condition if z = x, which is equivalent

to the matching condition where true := (z = x), and we assume that the boolean
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function = is completely defined by rewrite rules.

F(z, f(a, x), g(a)) → r1 if z = x

F(f(a, x), f(y, g(b))) → r2

Their respective extensions are:

F(z′, z, f(a, x), g(a)) → F(z′, r1) if z = x

F(z′, f(a, x), f(y, g(b))) → F(z′, r2)

Both extensions are necessary and for reduction, only extensions are sufficient. In all

following examples related to these four rules, we assume that x, y, z, z′ are variables,

f, g, a, b are free function symbols, and F,G are AC function symbols. We also assume

that the following total order is used to compute canonical forms:

z′ > x > y > z > f > g > a > b

3 Many-to-one AC matching

An AC matching problem is said to be one-to-one when only one pattern p and

only one subject s are involved: the problem consists of finding substitutions σ

such that pσ =AC s. By extension, an AC many-to-one matching is the following

problem: given a set of terms P = {p1, . . . , pn}, called patterns, and a ground term s,

called a subject, find one (or more) patterns in P that AC-matches s. Patterns

and subject are assumed to be in canonical form. Efficient many-to-one matching

algorithms (both in the syntactic case and in AC theories) are based on the general

idea of factoring patterns to produce a matching automaton. The discrimination

net approach (Gräf, 1991; McCune, 1992; Christian, 1993; Voronkov, 1995; Nedjah

et al., 1997; Moreau, 1999) is one of this kind: it is a variant of the data structure

used to index dictionaries. Given a set of patterns, the idea is to partition terms

based upon their structure. As presented by Christian (1993), a tree is formed and

at each point where two terms have different symbols, a separate branch for each

term is added.

Figure 1 shows a discrimination net associated to the set of patterns P =

{f(a, x), f(y, g(b)), g(a)}. At the end of each path in the tree, there is a list of

terms sharing the same structure. Since at this stage of the matching algorithm, we

are dealing only with linearised terms, all variables are different and may be treated

as a single wildcard symbol ω. A discrimination net is said to be deterministic when

no backtracking is needed to compute the maximal set of terms that match a given

subject. To build such a discrimination net, several algorithms exist and are fully

detailed elsewhere (Gräf, 1991; Christian, 1993; Nedjah et al., 1997; Moreau, 1999).

In our implementation we use the algorithm presented by Moreau (1999), which is

incremental and produces compact discrimination nets (i.e. with a reduced number

of nodes).

Given a deterministic discrimination net D, a matching automaton A is associated:

the nodes of D are the states of A, the root being the initial state and the leaves being

the final states. On a given input term t, the automaton scans t in preorder and makes

a transition u→ v if D contains an edge (u, v) labelled by the current symbol of t or
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Fig. 1. Deterministic discrimination net associated to f(a, x), f(y, g(b)) and g(a).

by ω. In the latter case, the current subterm of t is skipped and used to build the

substitution. Given the ground term f(g(c), g(b)), the matching automaton associated

to the previous discrimination net recognises the pattern f(y, g(b)) (following the

path f → ω → g → b) where y is instantiated to the subterm g(c).

In the case of AC theories, the matching problems are decomposed according

to the syntactic top layers and the different AC symbols occurring in the patterns.

This decomposition gives rise to a hierarchically structured collection of standard

discrimination nets, called an AC discrimination net (Bachmair et al., 1993; Graf,

1996). Given a set of patterns Pi = P = {p1, . . . , pn}, the construction of such a

structure is performed in four steps:

1. computation of the syntactic top layer P̂i = {p̂i1 , . . . , p̂in};
2. construction of the matching automaton Ai associated to P̂i (where all AC

symbols are considered as constants);

3. recursive application of the algorithm to Pi+1 (the set of ‘removed’ terms

during the computation of P̂i);

4. construction of a special edge between AC symbols appearing in Ai and the

top automaton Ai+1 associated to the sub-AC matching structure built during

the recursive application of the algorithm.

Let us consider again the set of patterns in our running example, where F is the

unique AC function symbol:

P1 = P = {F(z′, z, f(a, x), g(a)), F(z′, f(a, x), f(y, g(b)))}
We have P̂1 = {F, F} and the set of removed terms is P2 = {z′, z, f(a, x), f(y, g(b)),

g(a)}. This decomposition leads us to build the AC discrimination net presented in

Figure 2.

The resulting net is composed of two parts:

• a discrimination net for the top layers used to determine which rules can

be applied, and a link to the sub-automaton used to match subterms of AC

function symbols (here F);

• the sub-automaton itself that implements a many-to-one syntactic matching

algorithm (Gräf, 1991; Christian, 1993; Nedjah et al., 1997; Moreau, 1999) for

the set of syntactic subterms: f(a, x), f(y, g(b)) and g(a).
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Fig. 2. Example of AC discrimination net.

3.1 Description of the algorithm

The skeleton of our many-to-one AC matching algorithm is similar to the algorithm

presented ny Bachmair et al. (1993). Given a set of patterns P ,

1. Transform rules to fit into a specific class of patterns. In particular, patterns

are converted to their canonical forms, each rule with non-linear left-hand side is

transformed into a conditional rule with a linear left-hand side and a condition

expressing equality between variables (of the form x = y).

2. Compute the AC discrimination net associated to P = {p1, . . . , pn} and the

corresponding matching automata (as in Figure 2).

The previous steps only depend upon the set of rewrite rules. They can be performed

once and for all at compile time.

At run-time the subject s = F(s1, . . . , sp) is known and the matching automata

are used to build bipartite graphs, where an edge between pi and sj is added if

the subpattern pi matches the subterm sj . Given a ground term s = F(s1, . . . , sp) in

canonical form, the following steps are performed.

3. Build a hierarchy of bipartite graphs according to the given subject s in canonical

form. For each subterm pi|ν , where ν is a position of an AC function symbol in

p̂i, an associated bipartite graph is built. Let us consider an AC matching problem

from F(t1, . . . , tm) to F(s1, . . . , sp), where t1, . . . , tm come from subterms of pi|ν , and

where for some k, 0 6 k 6 m, no t1, . . . , tk is a variable, and all tk+1, . . . , tm are

variables. The associated bipartite graph is BG = (V1 ∪V2, E) whose sets of vertices

are V1 = {s1, . . . , sp} and V2 = {t1, . . . , tk}, and whose set of edges E consists of all

pairs [si, tj] such that tjσ and si are equal modulo AC for some substitution σ.

This construction is done recursively for each subterm of pi|ν whose root is an AC

symbol. An example of recursive construction which leads to a hierarchy of bipartite

graphs is given in Figure 3.

In the case of our running example, given the ground term s = F(f(a, a), f(a, g(b)),

f(g(c), g(b)), g(a)), the compiled matching automaton is used to build the two

bipartite graphs given in Figure 4 (one for each rule);
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Fig. 3. To illustrate the notion of hierarchy of bipartite graphs, we consider the following AC

matching problem: a pattern +(g(a), ∗(g(x), g(c))) and a subject +(g(a), ∗(g(b), g(c))), where

+ and ∗ are AC symbols, x is a variable and a, b, c, f are syntactic. Following the main

algorithm, a recursive call of the AC matching algorithm is needed to build the edge between

∗(g(x), g(c)) and ∗(g(b), g(c)). This call leads to the construction of a sub-bipartite graph whose

satisfiability has to be checked: if the sub-graph has a solution, the edge between ∗(g(x), g(c))

and ∗(g(b), g(c)) can be built. Solving a hierarchy of bipartite graphs means that sub-graphs

are solved in a bottom-up way.

Fig. 4. Examples of bipartite graphs.

4. Find a set of solutions to the hierarchy of bipartite graphs and construct a linear

Diophantine system which encodes the constraints on the remaining unbound vari-

ables (which appear directly under an AC symbol): to match m variables xα1

1 , . . . , x
αm
m

to n remaining subterms sβ1

1 , . . . , s
βn
n one looks for non-negative integer solutions of

the system
∧
i=1...n βi = α1X

1
i + · · ·+αmX

m
i with the additional constraint Σn

i=1X
j
i > 1.

5. Solve the linear Diophantine system to get solutions of the form xk =

F(s
Xk

1

1 , . . . , s
Xk
n

n ) for k = 1 . . . m. This completes the definition of the matching substi-

tution. As an example, consider the pattern +(x1, x
3
2) and the subject +(a3, b2, c5)

where + is an AC operator. Intuitively, this matching problem has three solutions:

S1 = {x1 7→ +(a3, b2, c2), x2 7→ c}
S2 = {x1 7→ +(b2, c5), x2 7→ a}
S3 = {x1 7→ +(b2, c2), x2 7→ +(a, c)}

These solutions are found by solving the following linear Diophantine system:

β1 = 3 = 1×X1
1 + 3×X2

1

β2 = 2 = 1×X1
2 + 3×X2

2

β3 = 5 = 1×X1
3︸ ︷︷ ︸

ΣX1
i >1

+ 3×X2
3︸ ︷︷ ︸

ΣX2
i >1

This linear Diophantine system has three solutions:

X1
1 = 3 ∧X2

1 = 0 ∧X1
2 = 2 ∧X2

2 = 0 ∧X1
3 = 2 ∧X2

3 = 1

X1
1 = 0 ∧X2

1 = 1 ∧X1
2 = 2 ∧X2

2 = 0 ∧X1
3 = 5 ∧X2

3 = 0

X1
1 = 0 ∧X2

1 = 1 ∧X1
2 = 2 ∧X2

2 = 0 ∧X1
3 = 2 ∧X2

3 = 1
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By computing x1 = +(aX
1
1 , bX

1
2 , cX

1
3 ) and x2 = +(aX

2
1 , bX

2
2 , cX

2
3 ), the first assignment

leads to the first solution:

S1 = {x1 7→ +(a3, b2, c2), x2 7→ c}

Starting from this quite general algorithm, our goal was to improve its efficiency

by lowering the cost of some steps, such as traversing the levels of the hierarchy of

discrimination nets, building bipartite graphs, or solving linear Diophantine systems.

The idea is to apply these costly steps on specific patterns for which they can be

designed efficiently, or to simply skip these steps when they are useless. We identified

classes of patterns, presented in the following section, for which the general algorithm

described above can be efficiently implemented. These patterns already cover a large

class of rewrite programs, and for the other cases, we propose a pre-processing of

the rewrite program, that transforms it into a semantically equivalent program that

belongs to the restricted classes of patterns. This is explained in section 3.5.

3.2 Classes of patterns

The classes of compiled patterns are defined on the whole set of rules together with

their extensions, automatically added as described at the end of section 2. All terms

in the pattern classes are assumed to be in canonical form and almost linear. The

pattern classes C0, C1, C2, defined below, respectively contain linear terms with no

AC function symbol, at most one and at most two levels of AC function symbols

with a maximum of two variables rooted by an AC function symbol. The motivation

to select these patterns was first based on an empirical study of rewrite rules systems

used in different applications. It appeared that, in practice, these restrictions are

sufficiently weak to describe a large class of patterns occurring in specifications

based on rewriting. On the other hand, they are sufficiently strong to allow us to

design a specialised and efficient AC normalisation algorithm.

Definition 3 Let F∅ be the set of free function symbols, FAC the set of AC function

symbols and X the set of variables.

• The pattern class C0 consists of linear terms t ∈ T(F∅,X)\X.

• The pattern class C1 is the smallest set of almost linear terms in canonical form

that contains C0, all terms t of the form t = F(x1, x
α2

2 , t1, . . . , tn), with F ∈ FAC ,

0 6 n, t1, . . . , tn ∈ C0, x1, x2 ∈ X, α2 > 0, and all terms t of the form f(t1, . . . , tn),

with f ∈ F∅, t1, . . . , tn ∈ C1 ∪X.

• The pattern class C2 is the smallest set of almost linear terms in canonical form

that contains C1, all terms of the form t = F(x1, x
α2

2 , G(x3, x
α4

4 )) with F,G ∈ FAC ,

x1, x2, x3, x4 ∈ X, α2 > 0, α4 > 0, and all terms t of the form f(t1, . . . , tn), with

f ∈ F∅, t1, . . . , tn ∈ C2 ∪X.

In our example, the patterns F(z, f(a, x), g(a)) and F(f(a, x), f(y, g(b))), have been

extended into patterns F(z′, z, f(a, x), g(a)) and F(z′, f(a, x), f(y, g(b))) where z′ is an

extension variable. Only these two last patterns have to be considered for reduction,

and they belong to the class C1.
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3.3 Many-to-one AC matching using compact bipartite graphs

Let us first emphasize that the AC matching techniques described in this section

are restricted to the class of patterns presented in section 3.2, which leads to several

improvements of the general approach described in section 3.1:

• Thanks to the restriction put on patterns, the hierarchy of bipartite graphs has

at most two levels, and the second one is degenerate. Thus, the construction

can be done without recursion.

• We use a new compact representation of bipartite graphs, which encodes, in

only one data structure, all matching problems relative to the given set of

rewrite rules.

• No linear Diophantine system is generated since there are at most two vari-

ables, with (restricted) multiplicity, under an AC function symbol in the

patterns. Instantiating these variables can be done in a simple and efficient

way.

• A preliminary syntactic analysis of rewrite rules can determine that only one

solution of an AC matching problem has to be found to apply some rule.

This is the case for unconditional rules or for rules whose conditions do not

depend on a variable that occurs under an AC function symbol in the left-hand

side. Taking advantage of the structure of compact bipartite graphs, a refined

algorithm is presented to handle those particular (but frequent) cases.

3.3.1 Compact bipartite graph

Given a set of patterns with the same syntactic top layer, all subterms with the

same AC top function symbol are grouped (at compiled time) to build (at runtime)

a particular bipartite graph called a compact bipartite graph described below. Given

a subject, the compact bipartite graph encodes all matching problems relative to

the given set of rewrite rules. All bipartite graphs that the general algorithm would

have to construct can be generated from this compact data structure. In general, the

syntactic top layer may be not empty and several AC function symbols may occur.

In this case, a compact bipartite graph has to be associated to each AC function

symbol. Each graph is solved and the solutions have to be combined to solve the

matching problem.

Such a decomposition leads us to focus our attention on sets of patterns p1, . . . , pn
defined as follows:

p1 = F( p1,1 , . . . , p1,m1
)

...
...

...

pn = F( pn,1 , . . . , pn,mn )

where for some kj , 0 6 kj 6 mj , no pj,1, . . . , pj,kj is a variable, and all pj,kj+1, . . . , pj,mj
are variables. Syntactic subterms pj,k are grouped together and given a subject s =

F(sα1

1 , . . . , s
αp
p ), a discrimination net that encodes a many-to-one syntactic matching

automaton is built. This automaton is used to find pairs of terms [si, pj,k] that match

each other and to build the associated Compact Bipartite Graph, defined as follows:
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CBG = (V1 ∪ V2, E) where V1 = {s1, . . . , sp}, V2 = {pj,k | 1 6 j 6 n, 1 6 k 6 kj},
and E consists of all pairs [si, pj,k] such that pj,kσ = si for some substitution σ.

3.3.2 Solving a compact bipartite graph

Finding a pattern that matches the subject usually consists of selecting a pattern pj ,

building the associated bipartite graph BGj , finding a maximum bipartite match-

ing (Hopcroft & Karp, 1973; Fukuda & Matsui, 1989) and finding assignments to

remaining unbound variables. Instead of building a new bipartite graph BGj each

time a new pattern pj is tried, in our approach, the bipartite graph BGj is extracted

from the compact bipartite graph CBG = (V1 ∪ V2, E) as follows:

BGj = (V1 ∪ V ′2, E ′) where

{
V ′2 = {pj,k | pj,k ∈ V2 and 1 6 k 6 kj}
E ′ = {[si, pj,k] | [si, pj,k] ∈ E and pj,k ∈ V ′2}

The set V ′2 contains only vertices associated to the pattern pj and E ′ is the set of

edges that consists of pairs [si, pj,k] matched by pj .

Given the subject s = F(sα1

1 , . . . , s
αp
p ) and a fixed j, Sj is a solution of BGj if:{

Sj ⊆ E ′ and ∀k ∈ {1, . . . , kj}, ∃! [si, pj,k] ∈ Sj
card({[si, pj,k] ∈ Sj | 1 6 i 6 p}) 6 αi

Roughly speaking, Sj is a solution of the bipartite graph BGj if all patterns

pj,1, . . . , pj,kj match a different ground subterm of {s1, . . . , sp} (according to multi-

plicities α1, . . . , αp).

This solution corresponds to a maximum bipartite matching for BGj . If Sj does

not exist, the next bipartite graph BGj+1 (associated to pj+1) has to be extracted.

Note that common syntactic subterms are matched only once, even if they appear

in several rules, since the information is saved once for all in the compact bipartite

graph.

The main advantage of the many-to-one approach is that it is no longer necessary

to inspect the subject more than once to build the compact bipartite graph: given a

ground term si, the compiled version of the matching automaton traverses positions

of si only once, and returns a list of pj,k that match si. This list of pairs [si, pj,k]

is directly used to build the compact bipartite graph. Moreover, extraction can be

performed efficiently with an adapted data structure: the compact bipartite graph can

be represented by a set of bit vectors. A bit vector is associated to each subterm pj,k
and the ith bit is set to 1 if pj,k matches to si. Encoding compact bipartite graphs

by a list of bit vectors has two main advantages: the memory usage is low and the

bipartite graph extraction operation is extremely cheap, since only selections of bit

vectors are performed.

Considering our running example, an analysis of subterms with the same AC

top function symbol F gives three distinct non-variable subterms up to variable

renaming: p1,1 = f(a, x) and p1,2 = g(a) for F(z′, z, f(a, x), g(a)) → F(z′, r1) if z = x,

and p2,1 = f(a, x), p2,2 = f(y, g(b)) for F(z′, f(a, x), f(y, g(b)))→ F(z′, r2).

As explained in section 3.3, given a set of patterns with the same syntactic

top layer, all subterms with the same AC top function symbol are grouped. This
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initialisation step is compiled in the function init_pattern_list_F described in

Program 1.

Initialising the list of patterns

void init_pattern_list_F() {

/* F(z’,z,f(a,x),g(a)) */

pattern_tab[0]=0; pattern_tab[1]=1;

MS_pattern_list_init(pattern_list_F,pattern_tab);

/* F(z’,f(y,g(b)),f(a,x)) */

pattern_tab[0]=2; pattern_tab[1]=0;

MS_pattern_list_init(pattern_list_F,pattern_tab);

}

Program 1: This function (written in C) initialises the compact bipartite graph con-

struction by assigning a number to each pattern and sub-pattern, and filling the global

list: pattern list F (the local array pattern tab is used to temporally store these

numbers). F(z′, z, f(a, x), g(a)) and F(z′, f(y, g(b)), f(a, x)) are patterns number 0 and

1 (note that an extension variables z’ has been added). The numbers 0, 1 and 2 are

assigned, respectively, to sub-patterns f(a, x), g(a) and f(y, g(b)).

Variable subterms (z, z′ in this example) are not involved in the compact bipartite

graph construction. They are instantiated later in the substitution construction phase

described in section 3.4.

Let us consider the subject:

s = F(f(a, a), f(a, g(b)), f(g(c), g(b)), g(a)).

The matching automaton, presented in Figure 2 and implemented by Program 2,

is successively applied on f(a, a), f(a, g(b)), f(g(c), g(b)) and g(a) to find the pairs:

[f(a, a), p1,1 = p2,1], [f(a, g(b)), p1,1 = p2,1], [f(a, g(b)), p2,2], [f(g(c), g(b)), p2,2] and

[g(a), p1,2].

The matching automaton is used to build the following compact bipartite:

The compact bipartite graph is exploited as follows. A rule has to be selected in

order to normalise the subject, for instance F(z′, f(a, x), f(y, g(b))) → F(z′, r2). The

bipartite graph that should have been created by the general method can be easily

constructed by extracting edges that join f(a, x) and f(y, g(b)) to subject subterms,

which gives the ‘classical’ bipartite graph presented in the right part of Figure 4. To

check if the selected rule can be applied, a maximum bipartite matching has to be
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Compiling the deterministic discrimination tree

int match_subterm_F(struct term *subject, int *mask) {

switch(getSymb(subject)) {

case code_g: successor_g=subject->subterm[0];

switch(getSymb(successor_g)) {

case code_a:

mask[nb_bit++]=1;

break;

}

break;

case code_f: successor_f=subject->subterm[0];

switch(getSymb(successor_f)) {

case code_a: successor_a=subject->subterm[1];

switch(getSymb(successor_a)) {

case code_g: successor_g=successor_a->subterm[0];

switch(getSymb(successor_g)) {

case code_b:

mask[nb_bit++]=0;

mask[nb_bit++]=2;

break;

default: goto label7;

}

break;

default:

label7:

mask[nb_bit++]=0;

}

...

}

return nb_bit;

}

Program 2: This function implements a deterministic discrimination tree for a set

of patterns. Given a ground term subject, the term is traversed according to the

constructors ( code f, code g or code a for example) that occur in it. When a leaf

is reached, the numbers assigned to the patterns that match the subject are stored in a

vector mask. This vector is then used to build the compact bipartite graph.

found. The bipartite graph has three solutions:

S = {[f(a, a), f(a, x)], [f(a, g(b)), f(y, g(b))]}
S ′ = {[f(a, a), f(a, x)], [f(g(c), g(b)), f(y, g(b))]}
S ′′ = {[f(a, g(b)), f(a, x)], [f(g(c), g(b)), f(y, g(b))]}

The given example of compact bipartite graph is represented by only three bit

vectors: 1100, 0110 and 0001. The first one: 1100, means that the corresponding

pattern f(a, x) matches the two first subterms: f(a, a) and f(a, g(b)), and similarly for

the other ones. Extracting the bipartite graph is done by only selecting bit vectors

associated to f(a, x) and f(y, g(b)): 1100 and 0110.
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In this example, the bipartite graph has three solutions {S, S ′, S ′′}. With the first

solution S , the rewrite rule F(z′, f(a, x), f(y, g(b))) → F(z′, r2) can be applied, by

instantiating z′ to unbounded terms (f(g(c), g(b)) and g(a).

3.3.3 Eager matching

An AC matching problem usually has more than one solution. However, for applying

a rule without conditions or whose conditions do not depend on a variable that

occurs under an AC function symbol of the left-hand side, there is no need to

compute a set of solutions: the first match which is found is used to apply the

corresponding rule. Those rules are called eager rules. This remark leads us to

further specialise our algorithm to get an eager matching algorithm, which tries to

find a match for eager rules, as fast as possible. The idea consists of incrementally

building the whole compact bipartite graph and adding to each step a test to check

whether a bipartite graph associated to an eager rule has a solution. This test is not

performed for non-eager rules and no check is necessary on a bipartite graph if no

modification has occurred since the last applied satisfiability test (i.e. no edge has

been added). Using those two remarks, the number of checked bipartite graphs is

considerably reduced.

Let us consider our running example. With the first method presented above

(called the main algorithm), four matching attempts were done to completely build

the compact bipartite graph (corresponding to its five edges). Only after this build-

ing phase, bipartite graphs are extracted and solved. Assuming that subterms are

matched from left to right, it is sufficient to match only two subterms (with the

eager algorithm), to find the first suitable solution:

S = {[f(a, a), f(a, x)], [f(a, g(b)), f(y, g(b))]}.

This solution is found as soon as the following partial compact bipartite graph is

built:

In practice, eager matching considerably reduces the number of matching attempts

and there is only a small time overhead, due to the test, when no eager rule is applied.

In the main algorithm, the number of matching attempts is linear in the number of

subterms of the subject. In the eager algorithm, this number also depends on the

pattern structure. Using two examples (Prop and Bool3) described in section 6.1,

some experimental results that compare the number of matched subterms with and

without the eager algorithm are given in Table 1 on the facing page.

Note, however, that eager matching is not compatible with the concept of priority
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Table 1. Number of matched subterms with and without the eager algorithm.

No. of matched subterms Main algorithm Eager algorithm Gain

Prop 50,108 32,599 17,509 (35%)

Bool3 44,861 8,050 36,811 (82%)

rewriting, since the eager rule chosen by the eager matching algorithm may not

correspond to the first applicable rule in the set of rules ordered by the programmer.2

3.4 Construction of substitutions

Once matching is performed, the remaining tasks are to instantiate variables and to

build the reduced term. In the construction of the reduced term, it is usually possible

to reuse parts of the left-hand side to construct the instantiated right-hand side. At

least, instances of variables that occur in the left-hand side can be reused. More

details can be found in Vittek (1996) for the syntactic case. Similar techniques have

been developed in our compiler, but we do not discuss them here, and rather focus

on the construction of substitutions. At this stage of description of the compiler,

two problems have to be addressed: how to instantiate the remaining variables in

AC patterns? How to optimise the substitution construction?

3.4.1 Variable instantiation

Variables that occur in patterns just below an AC function symbol are not handled

in the previously described phases of the compiler. This problem is delayed until

the construction of substitutions. When only one or two distinct variables (with

multiplicity) appear directly under each AC function symbol, their instantiation

does not need to construct a linear Diophantine system. Several cases can be

distinguished according to the syntactic form of patterns.

• For F(x1, t1, . . . , tn), once t1, . . . , tn are matched, all the unmatched subject

subterms are captured by x1.

• For F(x1, x
α2

2 , t1, . . . , tn), let us first consider the case where α2 = 1. Then once

t1, . . . , tn are matched, the remaining subject subterms are partitioned into two

non-empty classes in all possible ways. One class is used to build the instance

of x1, the other for x2.

If α2 > 1, once t1, . . . , tn are matched, one tries to find in all possible ways α2

identical remaining subjects to match x2 and then, all the remaining unmatched

subject subterms are captured by x1.

Consider our running example, and the rule F(z′, z, f(a, x), g(a)) → F(z′, r1) if z = x.

Once matching have been performed, and the two solutions for x (a and g(b)) have

2 In section 5, we introduce the strategy constructors (called first and first one) that apply rules in a
specific order: in this case, the eager matching algorithm cannot be used.
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been found, the variables z and z′ can be instantiated to F(f(a, g(b)), f(g(c), g(b))) or

F(f(a, a), f(g(c), g(b))) or subterms directly under the two F symbols. The condition

z = x is never satisfied with those substitutions, so application of this rule fails.

3.4.2 Compiling the substitution construction

In the syntactic case, the matching substitution is easily performed by the discrimi-

nation net, since there is at most one solution. In the AC case, there may be many

different instantiations for each variable. It would be too costly to store them in

a data structure for possible backtracking. Furthermore, the construction of this

dynamic data structure is not necessary when the first selected rule is applied, be-

cause all computed substitutions are deleted. Our approach consists of computing

the substitution only when a solution of the bipartite graph is found. For each

subterm pj,k , variable positions are known at compile time and used to construct an

access function access pj,k from terms to lists of terms. This function takes a ground

term as argument and returns the list of instances of variables of pj,k as a result.

Given Sj = {[si, pj,k]} a solution of BGj , the set Ij = {access pj,k(si) | [si, pj,k] ∈ Sj}
of variable instantiations can be computed.

Given the rule F(z′, f(a, x), f(y, g(b)))→ F(z′, r2), the functions access f(a, x)(t) =

t|2 and access f(y, g(b))(t) = t|1 are defined. Starting from S2 = {[f(a, a), f(a, x)],

[f(a, g(b)), f(y, g(b))]}, the set I2 = {a, a} is easily computed, and we get the substitu-

tion σ = {x 7→ a, y 7→ a}. An implementation of these access functions is described

in Program 3.

Compiling the substitution construction

void variable_extract_F(struct term *subject, int id_pattern,

struct term *substitution[], int *index) {

switch(id_pattern) {

case 0: /* f(a,x) */

substitution[*index]=subject->subterm[1]; (*index)++;

break;

case 1: /* g(a) */

break;

case 2: /* f(y,g(b)) */

substitution[*index]=subject->subterm[0]; (*index)++;

break;

}

}

Program 3: Given a number of pattern id pattern (0, 1 or 2 on this example) and a

ground term subject, this function retrieves and store (in the array substitution)

the instances of variables that appear in the pattern.
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3.5 Handling other patterns

To handle rules whose patterns are not in C2, a program transformation is applied.

It transforms these rules into equivalent ones whose left-hand sides are in the class

C2.

Any rule can be transformed into a conditional rule with matching conditions

and satisfying our pattern restrictions. The transformation preserves the semantics

in the sense that a term is reducible by the initial rule if and only if it is reducible

by the transformed rule.

Let l be a left-hand side of rule which does not belong to C2, and Λ be an abstrac-

tion function that replaces non-variable subterms of l, say uj , by new variables, say

xj , in such a way that l′ = Λ(l) is in the class C2. Let k be the number of abstracted

subterms. The new rule

l′ → r where u1 := x1

...

where uk := xk

is equivalent to l → r.

When using such a transformation approach, the efficiency of the resulting system

partially depends on the one-to-one AC matching algorithm used for the matching

conditions: simple rules that belong to the presented pattern classes are efficiently

compiled, and complex rules that were not in C2 are transformed and compiled.3

Example 2 Let ∪, Eq be two AC operators, e, solve and simplify be three syntactic

operators, and r(x1, x2, x3) any term where the variables x1, x2, x3 occur. Let us consider

the following rule:

solve(simplify(x1 ∪ Eq(e(x2), e(x3))))→ r(x1, x2, x3)

A transformation has to be applied because the left-hand side of the rule does not

belong to C2. Let Λ = {e(x2) 7→ y2, e(x3) 7→ y3} be the abstraction function. The

following rule now belongs to the class C2:

solve(simplify(x1 ∪ Eq(y2, y3)))→ r(x1, x2, x3) where e(x2) := y2

where e(x3) := y3

It is worth recalling that when computing such matching conditions, only one-

to-one matching problems occur. If a pattern uj contains an AC function symbol,

a general one-to-one AC matching procedure, such as the one described in Eker

(1995), is called. In the worst case, our many-to-one AC matching is not used and

the program transformation builds a rewrite rule system where AC problems are

solved with a one-to-one AC matching procedure in the where parts, helped by a

full indexing for the topmost free function symbol layer. This is also a frequently

implemented matching technique, used in Maude (Clavel et al., 1996), for instance.

3 In the current version of the ELAN compiler, we use the algorithm presented in Eker (1995), which is
also used in CiME (Marché, 1996) and in the ELAN interpreter.
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4 Optimisations

Before concluding the compilation of the normalisation process, let us mention a few

useful optimisations. As illustrated in section 6.1, these optimisations are essential to

get an efficient AC normalisation procedure: without any optimisation it would not

be possible to get results as good as those obtained by Maude, Brute (a Cafe-OBJ

compiler) and the ELAN compiler.

4.1 Maintaining canonical forms

The compact bipartite graph construction (and thus the matching phase) assumes

that both pattern and subject are in canonical form. Instead of re-computing

the canonical form after each right-hand side construction, one can maintain this

canonical form during the reduced term construction. Whenever a new term t is

added as a subterm of s = F(sα1

1 , . . . , s
αp
p ), if an equivalent subterm si already exists,

its multiplicity is incremented, else, the subterm t (which is in canonical form by

construction) is inserted in the list sα1

1 , . . . , s
αp
p at a position compatible with the

chosen ordering. If t has the same AC top symbol F , a flattening step is done and

the two subterm lists are merged with a merge sort algorithm.

Definition 4 Let us define the function mcf taking as arguments two terms

s = F(sα1

1 , . . . , s
αp
p ) and t = G(tβ1

1 , . . . , t
βm
m ) in canonical form, as follows:

• case F 6= G (s and t have different top symbol)

– if there exists i in [1 . . . p] such that si = t the multiplicity αi is incremented:

mcf(F(sα1

1 , . . . , s
αp
p ), t) = F(sα1

1 , . . . , s
αi+1
i , . . . , s

αp
p )

– else, there exists i in [1 . . . p] such that ∀j 6 i, sj > t and ∀j > i, t > sj:

mcf(F(sα1

1 , . . . , s
αp
p ), t) = F(sα1

1 , . . . , s
αi
i , t, s

αi+1

i+1 , . . . , s
αp
p )

• case F = G (s and t have same top symbol)

mcf(F(sα1

1 , . . . , s
αp
p ), t) = F(uγ1

1 , . . . , u
γk
k ) such that (uγ1

1 , . . . , u
γk
k ) is the merged sort

(without multiple occurrences) of (sα1

1 , . . . , s
αp
p ) and (tβ1

1 , . . . , t
βm
m )

From the definition of mcf, it is easy to get the following result: let s =

F(sα1

1 , . . . , s
αp
p ) and t be two terms in canonical form. The function mcf applied

to s and t returns the canonical form of F(sα1

1 , . . . , s
αp
p , t). As a consequence, the

canonical form of a term can be obtained by a bottom-up construction using the

mcf function.

4.2 Normalised substitutions

In the case of the leftmost-innermost reduction strategy, nested function calls are

such that before a matching phase, each subterm is in normal form w.r.t. the rewrite

rule system. In syntactic rewriting, when a pattern p matches a ground term s, all

variables of p are assigned to a subterm of s which is irreducible by construction.

This is no longer the case in AC rewriting because variables that appear directly

under an AC top symbol may be instantiated to a reducible combination of ir-

reducible subterms. For instance, in our running example, the variable z can be
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Table 2. Number of performed normalisations with and without the ‘colour’ feature.

No. of normalisations Main algorithm With colour Gain

Prop 13,976 3,111 10,865 (78%)

Bool3 5,599 2,968 2,631 (47%)

instantiated to F(f(a, g(b)), f(g(c), g(b))) which is reducible by the rule F(z′, f(a, x),

f(y, g(b))) → F(z′, r2).

To ensure that instances of variables occurring immediately under an AC top

function symbol are irreducible, these instances are normalised before using them to

build the right-hand side. Moreover, if the considered rule has a non-linear right-hand

side, this normalisation step allows reducing the number of further rewrite steps: the

irreducible form is computed only once. Without this optimisation, normalisation

of identical terms frequently occurs even if a shared data structure is used, because

flattening can create multiple copies. As illustrated in section 6.1, in practice, the

number of applied rules is significantly reduced.

4.3 Using colors to avoid unnecessary normalised substitutions

Normalising reducible instances of variables considerably reduces the number of

applied rules, but re-normalising a term already in normal form involves extra

work that introduces an overhead. Let us note that all subterms of the subject are

in normal form by construction and that an instance of a variable that appears

immediately under an AC top function symbol is irreducible if this instance is a

subterm of an irreducible term. This remark leads to further improve the algorithm

used to build ground reduced terms:

• whenever a term rooted by an AC symbol is built with the mcf function, a

different ‘colour’ is assigned to all its immediate subterms.

• whenever an irreducible term rooted by an AC symbol is reached by normali-

sation, a same ‘colour’ is assigned to all its immediate subterms.

• in the algorithm that computes the canonical form of a term, if α identical

subterms t appear, they are replaced by a single instance of the subterm with

multiplicity α and a special colour, say bicolour, is assigned to this subterm.

Coming back to the original problem of checking whether the term s assigned

by the matching substitution to the variable x is irreducible, it is now possible to

inspect the colours of immediate subterms of s: if all subterms have the same colour

and none of them is bicolour, the term s is a subterm of the subject (irreducible by

construction), so it is not necessary to normalise s again.

Using two examples (Prop and Bool3) described in section 6.1, some experimental

results that compare the number of performed normalisations with and without the

‘colour’ feature are given in Table 2.

The compilation of the whole normalisation process, including the previous opti-

misations, is sketched on our running example in Program 4.
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Compiling the normalisation process

struct term* normalise_F(struct term *subject ) {

struct term *res;

match_state *ms=NULL;

/* Begin syntactical matching */

bitSet32_set(mask32,0);

bitSet32_set(mask32,1);

/* Begin AC matching */

MS_init(&ms, match_subterm_F, pattern_list_F);

...

if(bitSet32_get(mask32,1)) {

struct term *substitution[3];

/* lhs: F(z’,f(y,g(b)),f(a,x)) */

substitution_build(subject,ms,substitution,variable_extract_F,1);

/* rhs: F(z’,h(x,y)) */

if(!isMonoColor(substitution[0])) {

substitution[0]=normalise_F( substitution[0] );

}

TERM_ALLOC(node_h,code_h);

node_h->subterm[0] = substitution[2]; // x

node_h->subterm[1] = substitution[1]; // y

TERM_ALLOC(node_F,code_F);

term_add_cf_term_color(node_F,substitution[0],color1); // z’

term_add_cf_term_color(node_F,node_h ,color2); // h(x,y)

res = normalise_F( node_F );

goto end;

} else { ... }

...

match_fail:

res=subject;

end:

return res;

}

Program 4: This figure shows how the whole normalisation process is com-

piled: after the syntactic matching phase (trivial in this example), the compact bi-

partite graph is built by the MS init(&ms, match subterm F, pattern list F)

instruction. Then, for a selected pattern (the second one F(z′, f(y, g(b)), f(a, x))

for example), the substitution is built by substitution build(subject, ms,

substitution, variable extract F, 1). As described in sections 4.2 and 4.3,

a test ( if(!isMonoColor(substitution[0]))) is performed to check if the in-

stance is reducible or not. The last component of the function consists of build-

ing the reduced term and computing its ordered normal form with the function

term add cf term color, as described in section 4.1.
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5 Determinism analysis

Let us now turn to the problem of non-determinism. The fact that a computation

may have several results can be taken into account either by introducing explicitly

sets of results or by a backtracking capability to enumerate the elements of this

set. We adopt here the second approach and we introduce strategy constructors to

specify whether a function call returns several, at least one or only one result.

For implementation of backtracking, two functions are usually required: the first

one, to create a choice point and save the execution environment; the second one,

to backtrack to the last created choice point and restore the saved environment.

Many languages that offer non-deterministic capabilities provide similar functions:

for instance world+ and world- in Claire (Caseau & Laburthe, 1996), try and retry

in WAM (Warren, 1983; Aı̈t-Kaci, 1990), onfail, fail, createlog and replaylog in the

Alma-0 Abstract Machine (Partington, 1997; Apt & Schaerf, 1997). Following Vittek

(1996), two flow control functions, setChoicePoint and fail, have been implemented

in assembly language. The setChoicePoint function sets a choice point, and the

computation goes on. The fail function performs a jump into the last call of

setChoicePoint. These functions can remind the pair of standard C functions setjmp

and longjmp. However, the longjmp can be used only in a function called from the

function setting setjmp. The two functions setChoicePoint and fail do not have

such a limitation. Their implementation is described in Moreau (1998).

To take into account sets of results, we use the concept of strategy: a strategy is

a function which, when applied to an initial term, returns a set of possible results

(more precisely a multiset of results). The strategy fails if the set is empty. To

precisely define how sets of results are handled, we introduce the following strategy

constructors.

• A labelled rule is a primal strategy. The result of applying a rule labelled lab

on a term t returns a multiset of terms. This primal strategy fails if the multiset

of resulting terms is empty.

• Two strategies can be concatenated by the symbol ‘;’, i.e. the second strategy is

applied on all results of the first one. S1; S2 denotes the sequential composition

of the two strategies. It fails if either S1 fails or S2 fails. Its results are all

results of S1 on which S2 is applied and gives some results.

• dc(S1, . . . , Sn) chooses one strategy Si in the list that does not fail, and returns

all its results. This strategy may return more than one result, or fails if all

sub-strategies Si fail.

• first(S1, . . . , Sn) chooses the first strategy Si in the list that does not fail, and

returns all its results. Again, this strategy may return more than one result, or

fails when all sub-strategies Si fail.

• dc one(S1, . . . , Sn) chooses one strategy Si in the list that does not fail, and

returns its first result. This strategy returns at most one result or fails if all

sub-strategies fail.

• first one(S1, . . . , Sn) chooses the first strategy Si in the list that does not fail,

and returns one of its first results. This strategy returns at most one result or

fails if all sub-strategies fail.
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• dk(S1, . . . , Sn) chooses all strategies given in the list of arguments and for each

of them returns all its results. This multiset of results may be empty, in which

case the strategy fails.

• The strategy id is the identity that does nothing but never fails.

• fail is the strategy that always fails and never gives any result.

• repeat(S) applies repeatedly the strategy S until it fails and returns the results

of the last unfailing application. This strategy may return more than one result

but can never fail because zero applications of S is possible: in this case the

initial term is returned.

• The strategy iterate(S) is similar to repeat(S) but returns all intermediate

results of repeated applications.

The strategy constructors introduced here are quite close to other tactics languages

used on proof systems designed in the LCF style (Plotkin, 1977; Gordon et al., 1979),

such as Isabelle (Paulson, 1994). They have been chosen to express main control

constructions: concatenation, iteration and search. All these constructors are part of

the ELAN language, and have been useful to design in ELAN theorem proving and

constraint solving tools.

From now on, let us consider that not only rules but also strategies can be

applied on terms. [S](t) denotes the application of the strategy S on the term t that

produces a multiset of results. Indeed, a rule itself may call a strategy in its matching

conditions that are now of the form where p := [S](t).

It may be interesting to remark that ELAN does not provide any strategy con-

structor for negation, simply because it may be expressed using others constructors.

Let us consider the strategy S ′ = first(S; fail, id). This strategy S ′ fails when S suc-

ceeds and S ′ succeeds when S fails. This example also illustrates the use of the id

constructor.

Example 3 We have shown in the introduction a simple rule that removes an element

from a set, and returns the element and the new set. This rule is now labelled by

extract:

[extract] (i) ∪ S → [i, S]

The strategies dk(extract), dc(extract) and first(extract) are all equivalent in this

case and enumerate the elements of the set. On the other hand, dc one(extract) and

first one(extract) produce only one result which corresponds to the first match which

is found.

To implement the N-queens problem, we need two more rules, where set, sol, s1, p1 are

variables, and check a predicate that is satisfied when a queen can be set in position

p1 without being attacked by a previously partial solution sol:

[queens] state(set, sol) → state(s1, p1 · sol)
where [p1, s1] := [dk(extract)](set)

if check(1, p1, sol)

[final] state(∅, sol) → sol
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We also need to define a strategy that controls the application of these two rules:

qStrat → repeat*(dk(queens)); final

The most important statement is: where [p1, s1] := [dk(extract)](set).

When applied on a set of integers, for instance set = (1) ∪ (2) ∪ . . . ∪ (8), the strat-

egy dk(extract) non-deterministically applies the rule extract, and non-deterministically

chooses an assignment for i and S . In our case, there are eight solutions. Each assign-

ment of i and S is stored in a pair [p1, s1], then the check predicate is evaluated. When

it is satisfied, the position p1 is added to the partial solution l, and the queens rule is

applied again, thanks to the repeat*(dk(queens)) strategy. When the set of potential

positions is empty (represented by the constructor ∅), each queen has a compatible

assignment and the final rule is applied to return a solution of the N-queens prob-

lem. By using dk(queens) in the qStrat strategy, the search space is fully explored

and we obtain the complete set of solutions to the N-queens problem. Using instead

dc one(queens) would result in searching for only one solution.

To efficiently deal with strategies and this more general notion of rules, our

compiler incorporates a static analysis phase that annotates every rule and strategy

in the program with its determinism. This determinism information is used in later

phases of the compiler: the matching phase, various optimisations on the generated

code and detection of non termination. The determinism analysis runs after the

type-checking analysis, the transformation of rules to fit into the restricted class of

patterns described in section 3.2, and the linearisation of patterns (left-hand sides of

rewrite rules), but before the many-to-one AC matching compilation phase.

To facilitate the determinism analysis, we introduce four primitive operators that

allow us to classify the cases according to two different levels of control.

Controlling the number of results: given a rewrite rule or a strategy,

• the one operator builds a strategy that returns at most one result;

• the all operator builds a strategy that returns all possible results of the strategy

or the rule.

Controlling the choice mechanism: given a list of strategies (possibly reduced to a

singleton),

• the select one operator chooses and returns a non-failing strategy among the

list of strategies;

• the select first operator chooses and returns the first (from left to right)

non-failing strategy among the list of strategies;

• the select all operator returns all unfailing strategies.

In the current version of ELAN, these five primitives are hidden from the user and

are internally used to perform the determinism analysis. However, all strategy con-

structors dk, dc, first, dc one and first one can be expressed using these primitives,
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using the following axioms, where Si stands for a rule or a strategy:

dk(S1, . . . , Sn) = select all(all(S1), . . . , all(Sn))

dc(S1, . . . , Sn) = select one(all(S1), . . . , all(Sn))

first(S1, . . . , Sn) = select first(all(S1), . . . , all(Sn))

dc one(S1, . . . , Sn) = select one(one(S1), . . . , one(Sn))

first one(S1, . . . , Sn) = select first(one(S1), . . . , one(Sn))

Note that dk, dc and first operators are equivalent if they are applied on a unique

argument: dk(S) = dc(S) = first(S) = S .

5.1 Determinism

For each strategy, a determinism information is inferred according to the maximum

number of results it can produce (one or more than one) and whether or not it can

fail before producing its first result. We adopt the same terminology for determinism

as in Mercury (Henderson et al., 1996b; Henderson et al., 1996a):

• if the strategy has exactly one result, its determinism is deterministic (det);

• if the strategy can fail and has at most one result, its determinism is semi-

deterministic (semi);

• if the strategy cannot fail and has more than one result, its determinism is

multi-result (multi);

• if the strategy can fail and may have more than one result, its determinism is

non-deterministic (nondet);

• if the strategy always fail, i.e. has no result, its determinism is failure (fail).

A partial ordering on this determinism is defined as follows:

det < semi,multi < nondet

and intuitively corresponds to an inclusion ordering on the intervals which the

number of results belongs to:

[1, 1] < [0, 1], [1,+∞[< [0,+∞[

The algorithm for inferring the determinism of strategies uses two operators

And and Or that intuitively correspond to the composition and the union of two

strategies (the union of two strategies is defined by the union of their results). Their

values given in the following tables should be clear from the semantics given to

the different determinisms. For instance, a conjunction of two strategies is semi-

deterministic if any one can fail and none of them can return more than one result

(And(det, semi) = And(semi, det) = And(semi, semi) = semi). These values can be

also computed with operations on boolean variables as, for instance, in Henderson

et al. (1996a, b).
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And det semi multi nondet fail

det det semi multi nondet fail

semi semi semi nondet nondet fail

multi multi nondet multi nondet fail

nondet nondet nondet nondet nondet fail

fail fail fail fail fail fail

Or det semi multi nondet fail

det multi multi multi multi det

semi multi nondet multi nondet semi

multi multi multi multi multi multi

nondet multi nondet multi nondet nondet

fail det semi multi nondet fail

5.2 Determinism inference

The algorithm for inferring the determinism is presented here in three steps: for a

strategy, it uses the decomposed form of the strategy into the primitives introduced

above. For a rule, it analyses the determinism of the matching conditions. Finally, it

deals with the recursion problem due to the fact that strategies are built from rules

and that rules call strategies in their matching conditions.

5.2.1 Strategy detism inference

The detism of a strategy is inferred from its expression using one, all, select one

and select all.

• detism(one(S)) = semi if S is a rewrite rule, since application of a rewrite

rule may fail; otherwise,

detism(one(S)) =

{
det if detism(S) is det or multi

semi if detism(S) is semi or nondet
• detism(all(S)) = And(semi, detism(S)) if S is a rewrite rule, since application

of a rewrite rule may fail; otherwise, detism(all(S)) = detism(S)

• detism(repeat(S)) =

{
det if detism(S) is det or semi

multi if detism(S) is multi or nondet
The repeat operator cannot fail because zero application of the strategy is

allowed. Note that if S cannot fail, the repeat construction cannot terminate.

• detism(iterate(S)) = multi. The iterate operator cannot fail either. In general,

it returns more than one result because all intermediate steps are considered

as results. If S cannot fail, the iterate construction cannot terminate, but this

is quite useful to represent infinite data structures, like infinite lists.
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• detism(S1; S2) = And(detism(S1), detism(S2)).

• detism(select one(S1, . . . , Sn)) = And(detism(S1), . . . , detism(Sn))

• detism(select all(S1, . . . , Sn)) = Or(detism(S1), . . . , detism(Sn))

5.2.2 Rule detism inference

Inferring the determinism of a rewrite rule R consists of analysing the determinism

of its matching conditions:

• Let us first consider a matching condition where p := c where c does not

involve any strategy. The normalisation of c (with unlabelled rules) cannot

fail. If p does not match the normalised term, the current rule cannot be

applied, but this does not modify the detism of the rule. Such a condition is

usually said to be deterministic (det is a neutral element for the And operator).

The only different situation is when a variable of c occurs in the left-hand side

of the rule or in a pattern of a previous matching condition with AC function

symbols: if this variable is involved in an AC matching problem, it may have

several possible instances, thus, an application of the rule may return more

than one result. The matching condition is said to be multi.

• Let us now consider a matching condition where p := [S](t) involving a

strategy call. Then the matching condition has in general the determinism of

the strategy S , except as before when a variable of t occurs in the left-hand

side of the rule or in a pattern of a previous matching condition with AC

function symbols: the detism of the matching condition is multi or nondet,

and is computed as And(multi, detism(S)).

The determinism of the rewrite rule R is the conjunction (And operation) of the

inferred determinisms of all its matching conditions.

5.2.3 Recursion problem

In general, strategy definitions may be (mutually) recursive. So the detism of a

strategy may depend on itself. A similar problem arises in logic programming for

finding the determinism of a predicate (Sawamura & Takeshima, 1985). To avoid

non-termination of the determinism analysis algorithm, when the detism of a strategy

depends on itself, a default determinism is given. On the strategy constructors, this

default corresponds to the maximum of the determinism in the ordering < that the

strategy can have and is given in the following table:

constructor one all repeat iterate ;

default detism semi nondet multi multi nondet

To refine this brute force approximation we plan to explore a fixpoint technique

similar to the one used in Sictus Prolog (Sahlin, 1991).
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5.3 Impact of determinism analysis

The determinism analysis enables us to design better compilation schemes for det

or semi strategies. With this approach, the search space size, the memory usage,

the number of necessary choice points, and the time spent in backtracking and

memory management can be considerably reduced. We can also take benefit from

the determinism analysis to improve the efficiency of AC matching and to detect

some non-terminating strategies.

Several optimisations can be done to improve the backtracking management:

• When compiling a set of rules whose matching conditions are deterministic,

no choice point is needed because no backtracking can occur between the

matching conditions.

• When compiling a set of deterministic rules with some non-deterministic

matching conditions, some choice points are needed to handle the backtracking.

Note that all set choice points can be removed when the rule is applied, because

at most one result is needed. For instance, when searching only one solution

in a problem where several choice points are needed, one can delete them after

finding the first solution.

• When dealing with non-deterministic strategies and the repeat constructor, a

lot of choice points have to be set, because the strategy is recursively called

in all branches of the computation space. The situation can be depicted as

follows, where the bullet represents a set choice point.

One choice point per step is needed, and when a failure occurs, one choice

point only is deleted and the process goes on.

This is no longer the case when compiling a strategy repeat(S) where S is det

or semi. The compilation scheme then consists of setting a single choice point

and trying to apply the strategy S as many times as possible. Each time the

strategy S is applied, the resulting term is saved in a special variable lastTerm.

When a failure occurs, the choice point is deleted and the saved term lastTerm

is returned. The situation is depicted as follows:

To illustrate this last point, let us consider the following example.

Example 4 Let us consider a simple modeling of a game: a pawn on a chessboard can

move in several directions (see Figure 5), each of them corresponding to one labelled

rule di.

Exploring all possibilities of moves for this pawn in one step can be expressed by

a strategy move → dk(d1, . . . , dn), where d1, . . . , dn are basic moves. Once a move has

been performed, in some situation, it may be considered as a definitive choice and the

search space related to all other moves is forgotten. This is performed via a strategy

dc one(move). To iterate this process, the strategy repeat(dc one(move)) repeatedly
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Fig. 5. (a) By applying dk(move) the pawn can move in three possible directions. (b) An

external square can be reached if the strategy repeat(dc one(move)) is applied.

moves a given pawn up to a failure: in this example, a pawn cannot move when an

external square is reached.

This simple game is an example of situation where the last presented impact of

determinism analysis is crucial: by reducing to one the number of set choice point, it

considerably improves the efficiency and reduces the memory needed.

Other advantages of determinism analysis are related to the rewriting process.

To improve efficiency of rewriting, a well-known idea is to reuse parts of left-hand

sides of rules to construct the right-hand sides (Didrich et al., 1994; Vittek, 1996).

This technique avoids memory cell copies and reduces the number of allocations.

Unfortunately, the presence of non-deterministic strategies and rules limits its appli-

cability, because backtracking requires access to structures that would otherwise be

reused. The determinism information is then used to detect cases where reusing is

possible.

The determinism analysis is also important to design more efficient AC matching

algorithms: when a rule is deterministic, only the first match which is found is

needed to apply a rewrite step. This remark has to be related to the design of

the eager matching algorithm, described in section 3.3.3, which avoids building the

whole compact bipartite graph before solving it. Experiments show a reduction

of the number of matching attempts up to 50%, which significantly improves the

overall performance of the system.

Finally, the determinism analysis is also useful to detect some non-terminating

strategies, such as a strategy repeat(S), where S never fails. Detecting this non-

termination problem at compile time allows the system to give a warning to the

programmer and can help in improving the strategy design.

6 A compiler for ELAN

The techniques described in the previous sections have been implemented in the

ELAN system (Kirchner et al., 1995). ELAN provides an environment for specifying

and prototyping deduction systems in a language based on rewrite rules controlled

by strategies. It offers a natural and simple logical framework for the combination of

the computation and deduction paradigms, supports the design of theorem provers,

logic programming languages, constraint solvers and decision procedures, and it

offers a modular framework for studying their combination.

ELAN takes from functional programming the concept of abstract data types
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and the function evaluation principle based on rewriting. In ELAN a rewrite rule

may be labelled, may have boolean conditions introduced by the keyword if, and

matching conditions introduced by the keyword where. The evaluation mechanism

also involves backtracking since in ELAN, a computation may have several results.

One of the original aspects of the language is that it provides a strategy language

allowing the programmer to specify the control used during rule applications. This

is in contrast to many existing rewriting-based languages where the term reduction

strategy is hard-wired and not accessible to the designer of an application. The

strategy language offers primitives for sequential composition, iteration, deterministic

and non-deterministic choices of elementary strategies that are labelled rules. From

these primitives, which correspond to the strategy constructors defined in section 5,

more complex strategies can be expressed. In addition, the user can introduce

new strategy operators and define them by rewrite rules. Evaluation of strategy

application is itself based on rewriting. Moreover it should be emphasised that ELAN

has logical foundations based on rewriting logic (Meseguer, 1992) and detailed in

Borovanský et al. (1996, 1998a). So the simple and well-known paradigm of rewriting

provides both the logical framework in which deduction systems can be expressed

and combined, and the evaluation mechanism of the language.

The current version of ELAN includes an interpreter and a compiler written re-

spectively in C++ and Java, a library of standard ELAN modules, a user manual

and examples of applications. Among those, let us mention for instance the design

of rules and strategies for constraint satisfaction problems (Castro, 1998), theorem

proving tools in first-order logic with equality (Kirchner & Moreau, 1995; Cirstea

& Kirchner, 1997), the combination of unification algorithms and of decision pro-

cedures in various equational theories (Ringeissen, 1997; Kirchner & Ringeissen,

1998). More information on the system can be found on the web site.4

A first ELAN compiler was designed and presented in Vittek (1996). Experimenta-

tions made clear that a higher-level of programming is achieved when some functions

may be declared as associative and commutative. The new ELAN compiler has been

implemented by the second author with approximatively 20,000 lines of Java. A

runtime library has been implemented in C to handle basic terms and AC matching

operations. This library contains more than 10,000 lines of code.

To give an intuition about the performance of the ELAN system compared to

programming languages largely used in practice, we show in Table 3 on the next

page the results of a brief comparison5 with the Objective Caml (v 2.02) functional

programming system and the GNU Prolog (v 1.1.2) logic programming system. We

used the Fib benchmark which computes 100 times the Nth Fibonacci number, and

the N-queens program illustrated in Example 3.

To complete this first comparison and to illustrate the power of our compilation

techniques, it is interesting to compare ELAN to other systems implementing AC

normalisation. As benchmarks, we consider below examples that make an heavy use

of AC symbols and involve non-deterministic computations.

4 http://www.loria.fr/ELAN.
5 On a Sun Enterprise with Solaris 5.6.
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Table 3. Very small comparison of Objective Caml, GNU Prolog and ELAN.

(Time in second) OCaml GNU Prolog Elan

Fib(23) 0.67 12.08 1.12

Fib(25) 1.75 31.77 2.39

N-queens(10) 0.580 1.750 1.07

N-queens(12) 19 57 31.2

6.1 AC normalisation without strategies

In this section, we study four examples of rewriting rule systems, designed to

represent different programming styles: the two first examples contain a few number

of unconditional rules, the third one contains a large number of rules, and the last

one contains some conditional rules that make AC matching more complex. From an

execution point of view, different kinds of behaviour are experimented: normalisation

of deep terms in which a lot of nested AC symbols occur, normalisation of large

terms where many subterms appear under the same AC symbol, and computations

that involve backtracking to extract all solutions of a given AC matching problem.

I The Prop example (Table 4) implements the two basic operators and, xor, that

satisfy AC axioms, and four syntactic rules that transform not, implies, or and iff

functions into nested calls of xor and and.

Table 4. The Prop example

xor(x,⊥) → x

xor(x, x) → ⊥

and(x,>) → x

and(x,⊥) → ⊥
and(x, x) → x

and(x, xor(y, z)) → xor(and(x, y), and(x, z))

implies(x, y) → not(xor(x, and(x, y)))

not(x) → xor(x,>)

or(x, y) → xor(and(x, y), xor(x, y))

iff(x, y) → not(xor(x, y))

The benchmark consists of normalising the following term:

implies(and(iff(iff(or(a1,a2),or(not(a3),iff(xor(a4,a5),not(not(not(a6)))))),
not(and(and(a7,a8),not(xor(xor(or(a9,and(a10,a11)),a2),and(and(a11,xor(a2,iff(
a5,a5))),xor(xor(a7,a7),iff(a9,a4)))))))),implies(iff(iff(or(a1,a2),or(not(a3),
iff(xor(a4,a5),not(not(not(a6)))))),not(and(and(a7,a8),not(xor(xor(or(a9,and(
a10,a11)),a2),and(and(a11,xor(a2,iff(a5,a5))),xor(xor(a7,a7),iff(a9,a4)))))))),
not(and(implies(and(a1,a2),not(xor(or(or(xor(implies(and(a3,a4),implies(a5,a6)),
or(a7,a8)),xor(iff(a9,a10),a11)),xor(xor(a2,a2),a7)),iff(or(a4,a9),xor(not(a6),
a6))))),not(iff(not(a11),not(a9))))))),not(and(implies(and(a1,a2),not(xor(or(
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or(xor(implies(and(a3,a4),implies(a5,a6)),or(a7,a8)),xor(iff(a9,a10),a11)),xor(
xor(a2,a2),a7)),iff(or(a4,a9),xor(not(a6),a6))))),not(iff(not(a11),not(a9))))))

The normalisation of this term quickly produces a very large term that contains

a lot of nested AC symbols. The expected result of the evaluation is >.

I The Bool3 example (Table 5, designed by Steven Eker) implements computation

in a three-valued logic where + and ∗ are AC.

Table 5. The Bool3 example.

x+ 0 → x

x+ x+ x → 0

(x+ y) ∗ z → (x ∗ z) + (y ∗ z)

x ∗ 0 → 0

x ∗ x ∗ x → x

x ∗ 1 → x

and(x, y) → (x ∗ x ∗ y ∗ y) + (2 ∗ x ∗ x ∗ y) + (2 ∗ x ∗ y ∗ y) + (2 ∗ x ∗ y)

or(x, y) → (2 ∗ x ∗ x ∗ y ∗ y) + (x ∗ x ∗ y) + (x ∗ y ∗ y) + (x ∗ y) + (x+ y)

not(x) → (2 ∗ x) + 1

2 → 1 + 1

The benchmark consists of normalising the two following terms, and compare

their normal forms:

and(and(and(a1,a2),and(a3,a4)),and(a5,a6))

and

not(or(or(or(not(a1),not(a2)),or(not(a3),not(a4))), or(not(a5),not(a6))))

I A rewrite system modulo AC for natural arithmetic, called Nat10, was presented

in Contejean (1997). This system contains 56 rules rooted by the AC symbol +,

11 rules rooted by the AC symbol ∗, and 82 syntactic rules. The authors conjecture in

their paper that compilation techniques and many-to-one matching should improve

their implementation. We used this rewrite system to compute the 16th Fibonacci

number.

I The Sum100 example (Table 6) uses the AC union operator: ∪ and three

conditional rewrite rules in order to extract integers from a set and compute their

sum (Σ100
i=1i).

The benchmark consists of normalising the following term:

state(∅ ∪ set(1) ∪ · · · ∪ set(100), ∅, 0)

The expected result of the evaluation is:

state(∅, ∅ ∪ set(1) ∪ · · · ∪ set(100), 5050)
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Table 6. The Sum100 example.

x ∈ ∅ → ⊥
x ∈ s → check(x ∈′ s) = >
x ∈′ s ∪ set(y) → > if x = y

check(>) → >
check(x ∈′ s) → ⊥

state(s1 ∪ set(x), s2, y) → error if (x ∈ s2) = >
state(s1 ∪ set(x), s2, y) → state(s1, s2 ∪ set(x), x+ y) if (x ∈ s2) = ⊥

The first two benchmarks (Prop and Bool3) seem to be trivial because they

contain a small number of rules. However, after several rewrite steps, the term to be

reduced becomes very large (several MBytes) and contains a lot of AC symbols. It

is not surprising to see a system spending several hours (on a fast machine) before

finding the result, or running out memory.

The execution of the Nat10 example6 does not generate such large terms, but the

rewrite system contains a lot of rules. This illustrates the usefulness of many-to-one

matching techniques.

The execution of the Sum100 example does not involve terms larger than the

query (approximatively 100 subterms for this benchmark), but the rewrite system

contains three conditional rewrite rules that involve AC matching. This benchmark

tests the performance of the system when all solutions of a given AC matching

problem have to be extracted. Let us consider, in the rewrite system Sum100, the

rule:

state(s1 ∪ set(x), s2, y)→ error if x ∈ s2
This rule applies only when the initial set contains at least two identical elements.

When all elements are distinct, all possible instances of x have to be checked to

verify that x ∈ s2 is never satisfied.

Those four examples have been tested with Brute7, CiME (Marché, 1996), Maude

(Clavel et al., 1996), OBJ (Goguen & Winkler, 1988), RRL (Kapur & Zhang, 1988),

Spike (Bouhoula & Rusinowitch, 1995) and the new ELAN compiler on a Sun

Ultra-Sparc 1 (Solaris). The number of applied rewrite rules (rwr) and the time

spent in seconds (sec) are given in Table 7. When for a given benchmark, no time

is given in the second column (sec), this means that it has not been tested with

the corresponding system. The tests were not exhaustively performed for theorem

provers (CiME, RRL and Spike) but the first experimental results clearly show that

the problems considered are not easily solved by the rewriting techniques used in

these provers.

6 This last example was originally implemented in CiME which is rather a theorem prover than a
programming environment. To compute Fib(16), CiME applies 10,599 rules in 16,400 seconds.

7 Available at ftp://ftp.sra.co.jb/pub/lang/CafeOBH/brute-X.Y.tar.gz.
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Table 7. Experimental results – AC normalisation.

Prop Bool3 Nat10 Sum100

rwr sec rwr sec rwr sec rwr sec

CiME - - ? > 24h ? 294 - -

RRL ? > 24h ? > 4h8 - - - -

Spike ? > 24h ? > 24h - - ? > 24h

OBJ 12,837 1,164 ? > 24h 26,936 111 ? > 24h

Brute 23,284 1.78 34,407 2.25 26,648 0.36 177,595 6.25

Maude 12,281 0.47 4,854 0.15 25,314 0.17 177,252 16.77

ELAN 12,689 0.43 5,282 0.18 15,384 0.15 177,152 1.32

The aim of these experiments is not to find a ‘winner’ or to try to demonstrate that

the ELAN compiler is faster than any other tool. It is rather to illustrate the usefulness

of new developed techniques, such as interpreted greedy matching techniques for

Maude, carefully designed brute force algorithms based on an abstract machine

approach for Brute, and optimised many-to-one compilation techniques for ELAN.

On the three first examples, Maude gives very interesting results. The last example

tends to show that in a more realistic situation, the many-to-one approach may be

an advantage when conditional rules are involved. What is important to note is that

these new techniques allow us to design some improved tools that are significantly

faster than several years ago. It is also important to remark that ELAN and Maude

integrate some optimisations that reduce the number of needed applied rule: Maude

is using a shared term approach to avoid redundant computations, whereas ELAN

is using the normalised substitution approach described in section 4.2.

The statistics9 presented in Table 8 give an overview of the time spent in specialised

AC matching operations compared to the total execution time (the total is not equal

to 100% because many other functions are involved in the normalisation process).

Table 8. Time spent in specialised AC matching operations.

Prop Bool3 Nat10 Sum100

CBG building 12.76% 14.59% 7.39% 5.71%

BG extraction 0.3% 0.39% 4.31% 0.1%

BG solving 3% 3.19% 9.38% 4.5%

substitution build 3.74% 3.77% 4.52% 38%

canonical form maintenance 24.1% 23.9% 1.7% 0.34%

On the four examples presented, less than 21% (resp. 16%, 18%, 21% and 10%)

of the total execution time is spent in building and solving the bipartite graphs.

8 More than 70 MBytes and 115 MBytes were respectively used.
9 Measured with Quantify 3.1, (C) Rational Software.
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When the number of AC rules increases (Nat10), the time spent in extracting and

solving bipartite graphs slightly increases. The CBG construction is cheaper in Nat10

and Sum100 because the size of the subject is smaller, so the number of matching

attempts is reduced. As illustrated by the Sum100 benchmark, the time spent in

building substitutions mainly depends on the number of extracted solutions: in

presence of conditional rewrite rules, all solutions and substitutions of AC matching

problems have to be extracted and built. This explains why the time spent in building

substitutions is larger than in other benchmarks, where only unconditional rules are

applied. As expected, this time does not significantly depend on the complexity

of the AC matching problem, nor on the theoretical number of solutions. This

clearly shows the interest of our compiled substitution construction approach. To

conclude, even with a well-suited term data structure and an optimised canonical

form maintenance algorithm, the time spent in maintaining terms in canonical form

can be really important on examples where very large terms are involved.

What is really interesting in the compiled approach is that we can combine

interesting performances of the proposed AC rewriting process with extremely good

results obtained with the syntactic compiler: up to 15,000,000 rewrite steps per second

can be performed on simple specifications, and an average of 500,000 rwr/sec when

dealing with large specifications that involve complex non-deterministic strategies.

The best interpreters can perform up to 400,000 rwr/sec in the syntactic case.

Compared with the compiled approach, this is a serious bottleneck when specifying

a constraint solver or a theorem prover, for example.

6.2 Determinism analysis

As mentioned in section 5.3, any ELAN program execution can benefit from the

determinism analysis techniques described in this paper. However, to give a more

concrete estimation of the practical impact of determinism analysis, let us consider

experimental results obtained on a selection of programs in different areas of

programming styles. Each program is executed twice: a first time without any

optimisation, and a second time with the determinism analysis activated.

Figures show, for each program, the number of generated setChoicePoint instruc-

tions for creating a choice point (Static CP), the number of choice points created

at runtime and removed by a fail instruction (Dynamic CP), the memory needed to

save local environments (Memory usage) and the number of applied rewrite rules

per second (rwr/sec) on a Dec Alpha Station.

• p5 and p8 correspond to the Knuth–Bendix completion of modified versions of

the Group theory, with five (resp. eight) identity elements and five (resp. eight)

inverse elements, together with the corresponding axioms. These theories are

often benchmarks for theorem provers. The execution of p5 gives the following

results:
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Note that without optimisation the completion program needs an amount of

memory approximatively proportional to the number of choice points (Dy-

namic CP). When the determinism analysis is activated, this number becomes

constant: 1 Kb.

• minela is a small ELAN interpreter written in ELAN itself; it executes an ELAN

program composed of pure conditional rules on an input term, and outputs

the result together with a proof term that represents the derivation from the

input term.

This example shows a real speed improvement, even if the numbers of dy-

namic choice points seem to be approximatively equivalent with and without

determinism analysis. In fact, without optimisation, much more choice points

were set, but removed by a cut operator, which is not taken into account

by the current statistics. When applying the determinism analysis, less choice
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points are created and all the cut operators are replaced by a goto statement.

This explains why the speed is improved.

• fib is a functional program that computes the 33th Fibonacci number (using

builtin integers). Again, this is a typical benchmark problem in functional

programming.

When applying the determinism analysis, the generated program does not

contain any setChoicePoint instruction and the control flow no longer involves

any backtracking. This explains why the memory needed to save environments

is reduced to 0 Kb and why the execution speed is improved in such a way:

more than 15,000,000 applied rewrite rules per second.

These results show clearly that the determinism analysis significantly decreases

the number of set choice points and improves the overall performance. It also

considerably decreases the amount of memory needed to save local environments.

Let us consider the completion process for instance. Without any optimisation, the

memory needed depends on the input term to reduce (p5 or p8). When applying the

determinism analysis, the memory needed is most often reduced to a constant inde-

pendent from the query. This constant corresponds to the number of choice points

that are simultaneously set during the computation. It happened that programs

running out of memory without determinism analysis, eventually gave answers, once

this improvement was activated.

7 Conclusion

In this paper we have presented the main techniques used in our ELAN compiler,

which we hope will be useful for other rewriting-based languages. From the point

of view of matching and rewriting, ELAN can be compared to other systems such

as OBJ (Goguen & Winkler, 1988), ASF+SDF (Klint, 1993), Maude (Clavel et al.,

1996) or Cafe-OBJ (Futatsugi & Nakagawa, 1997). Maude also provides efficient AC

rewriting and ASF+SDF performs list matching, a specific instance of AC match-

ing. However, these languages do not involve non-deterministic strategy constructors.

With respect to the determinism analysis, ELAN is closer to logic programming lan-

guages such as Alma-0 (Apt & Schaerf, 1997) or Mercury (Henderson et al., 1996b).

In our case, the determinism analysis simply makes possible to run programs that

could not be executed before due to memory explosion. This analysis significantly

decreased the number of set choice points and improved the performance.

It seems now that further improvements of the ELAN compiler rely on the

backtracking management. The setChoicePoint and fail functions implemented in
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assembly language turned out to be very useful for designing complex compilation

schemas. A deeper analysis reveals that useless information is also stored in local

environments. So it should be possible to improve the low-level management of

non-determinism and to combine this with an efficient garbage collector. Together

with this re-design of the memory management, we think of using a shared terms

library (van den Brand et al., 1999; Van den Brand et al., 2000), as in ASF+SDF,

or using a generational garbage collection approach as is Haskell (Sansom &

Peyton Jones, 1993).

Significant examples have been handled in ELAN that took benefit from the

compilation methods developed in this paper. Let us mention three of them:

• Techniques used in solving constraint satisfaction problems are based on

exploration of the space of all solutions with backtracking, and problem

reduction techniques that reduce the set of values that the variables can take.

As explained in Castro (1998), such techniques are expressible by rules and

strategies and the system Colette implements them in ELAN.

• In the specification of authentication protocols (Cirstea, 1999), the protocol,

the intruder and the attack are modeled by rules and strategies. ELAN behaves

like a model checker by generating all possible situations and looking for

situations revealing an attack.

• Planning and scheduling problems have been explored by Dubois & Kirchner

(1998, 1999). In this case, ELAN is used as a decision support tool, which can

simulate plan executions and explore consequences of decision-making during

a planification.

These three application areas have in common to involve set data structures,

to develop huge search spaces, and to need non-deterministic rules and strategies.

For running such examples, the use of the ELAN compiler is essential. But the

achievement of these significant programs comforts the affirmation that the rewriting

paradigm can be promoted to the level of a realistic programming language.

We feel that the techniques presented in this paper could benefit the functional

programming community in at least two directions. The first is to add built-in equa-

tional theories in higher-order matching and rewriting. This was already explored

by several authors (Wadler, 1987; Jouannaud & Okada, 1991; Nipkow & Prehofer,

1998). The second direction is to increase higher-order features of rewriting based

languages. A promising approach to bring closer rewriting-based languages and

functional languages is the rewriting calculus (ρ-calculus) proposed by Cirstea &

Kirchner (1999). This is a framework in which rule, rule application, and sets of

results are explicit objects. The main intuition is that a rewrite rule is an abstractor

generalising λ-abstraction: the left-hand side of a rule determines the bound vari-

ables and the contextual structure. The calculus handles non-determinism via sets of

results. ELAN is actually an implementation of a large part of this calculus. To come

closer to a functional language, the syntax should be extended by λ-expressions. The

study of compilation techniques for such an extension, inspired from those used in

the two classes of languages, is certainly a challenging research and development

issue.
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International Symposium on Mathematical Foundations of Computer Science: Lecture Notes

in Computer Science 969, pp. 359–370. Springer-Verlag.

Hopcroft, J. E. & Karp, R. M. (1973) An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Computing, 2(4), 225–231.

https://doi.org/10.1017/S0956796800003907 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003907


250 H. Kirchner and P.-E. Moreau

Hullot, J.-M. (1980) Compilation de formes canoniques dans les théories équationelles. Thèse
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