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The dynamic behaviour of granular media can be observed widely in nature and in
many industrial processes. Yet, the modelling of such media remains challenging as
they may act with solid-like and fluid-like properties depending on the rate of the
flow and can display a varying apparent friction, cohesion and compressibility. Over
the last two decades, the μ(I)-rheology has become well established for modelling
granular liquids in a fluid mechanics framework where the apparent friction μ depends
on the inertial number I. In the geo-mechanics community, modelling the deformation
of granular solids typically relies on concepts from critical state soil mechanics. Along
the lines of recent attempts to combine critical state and the μ(I)-rheology, we develop
a continuum model based on modified cam-clay in an elastoplastic framework which
recovers the μ(I)-rheology under flow. This model permits a treatment of plastic
compressibility in systems with or without cohesion, where the cohesion is assumed
to be the result of persistent inter-granular attractive forces. Implemented in a two-
and three-dimensional material point method, it allows for the trivial treatment of
the free surface. The proposed model approximately reproduces analytical solutions
of steady-state cohesionless flow and is further compared with previous cohesive and
cohesionless experiments. In particular, satisfactory agreements with several experiments
of granular collapse are demonstrated, albeit with shear bands which can affect the
smoothness of the surface. Finally, the model is able to qualitatively reproduce the multiple
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steady-state solutions of granular flow recently observed in experiments of flow over
obstacles.

Key words: avalanches, rheology, granular media

1. Introduction

Understanding the mechanical behaviour of granular media is essential in various
pharmaceutical and manufacturing processes as well as in geophysical events like
landslides, debris flows and snow avalanches (Mangeney et al. 2007; Persson, Alderborn
& Frenning 2011; Lucas, Mangeney & Ampuero 2014; Steinkogler et al. 2015; Delannay
et al. 2017). As the number of grains in such flows are usually too high to be modelled
in a discrete manner, accurate continuum models are needed to efficiently simulate these
large-scale natural phenomena and contribute to improving, e.g. hazard assessment and
mitigation in mountainous regions. Significant progress has been made, in particular
over the last decades, with improved constitutive and rheological models as well as
new numerical schemes. Despite this progress, it remains challenging to achieve general
models that can describe the diverse behaviour of granular systems. The diversity stems
from the varying apparent friction and solid fraction, as well as the effect of possible
inter-granular cohesive forces, or even elastic forces in the slow flow regime (Campbell
2002, 2005; Jop, Forterre & Pouliquen 2006; Pouliquen et al. 2006; Pirulli & Mangeney
2008; Rao & Nott 2008; Rognon et al. 2008b; Moretti et al. 2012; Andreotti, Forterre
& Pouliquen 2013; Radjai, Roux & Daouadji 2017; Moretti et al. 2020; Vo et al. 2020;
Mandal, Nicolas & Pouliquen 2020; Gans et al. 2023; Poulain et al. 2023).

A major contribution to the understanding of dense granular flows came with the
collection of experimental data and discrete simulations of granular systems under simple
shear, in particular by GDR MiDi (2004). In various configurations, they showed that
the shear stress is proportional to the normal stress with a factor of proportionality, a
friction μ = μ(I), depending on a dimensionless quantity called the inertial number I.
Small inertial numbers describe quasi-static flows where the macroscopic deformation is
slow compared with the microscopic rearrangements, while large inertial numbers refer to
rapid flows. The I-dependence of the friction was further generalized to tensorial form by
Jop et al. (2006) by considering an analogous relation between the shear stress tensor and
the isotropic pressure. Now known as the μ(I)-rheology, it has become a well-established
continuum theory for describing dense granular flows. Barker et al. (2015) showed that
the system of the incompressible μ(I)-Navier–Stokes equations is well-posed unless the
inertial number becomes too high or too small, and Barker & Gray (2017) later suggested
partial regularization by altering the functional form of the μ(I)-curve. Such ill-posedness
was also observed numerically by Barker et al. (2015), Barker & Gray (2017) and Martin
et al. (2017).

With regard to numerical implementations, Lagrée, Staron & Popinet (2011) was
the first to incorporate the μ(I)-rheology equations in a two-dimensional finite volume
Navier–Stokes model, and they applied it to simulate granular collapse as a continuum.
Formally, the μ(I)-rheology can be interpreted as a viscoplastic constitutive law involving
a Drucker–Prager yield criterion being dependent on pressure and strain rate (Ionescu
et al. 2015; Martin et al. 2017). In such a viscoplastic model, Ionescu et al. (2015)
simulated granular collapse using an arbitrary Lagrangian–Eulerian finite element
formulation of the Navier–Stokes equations. Relying on a two-dimensional smoothed
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particle hydrodynamics (SPH) model and a three-dimensional particle finite element
method (PFEM), Chambon et al. (2011) and Franci & Cremonesi (2019), respectively,
demonstrated the implementation of the μ(I)-rheology in such particle-based schemes,
thus enabling the trivial handling of the free surface which can pose difficulties in
mesh-based schemes. As a purely mesh-free scheme, SPH requires a computationally
expensive neighbour search for each time step, and handling boundary conditions can be
challenging (Vacondio et al. 2021). Similarly, PFEM can also become expensive due to
the need of creating a new mesh every time the finite element mesh becomes too distorted,
although efficient remeshing algorithms may improve this (Cremonesi et al. 2020).
Moreover, classical fluid solvers have issues in capturing material disconnections and
with representing fully static zones, which become important features in the fluid-to-solid
transition. It has been shown that regularization methods with a sufficiently small
regularization parameter can reproduce the static–flowing transition (Frigaard & Nouar
2005; Lusso et al. 2017) as well as augmented Lagrangian methods (Martin et al. 2017). In
a different approach, Dunatunga & Kamrin (2015) considered an I-dependent elastoplastic
model with a Drucker–Prager yield in a two-dimensional material point method (MPM).

The ill-posedness of the μ(I)-rheology for very small and large values of inertial
numbers is an indication that important physics are missing in the model. In particular, for
small inertial numbers, i.e. slow flows, concepts from solid mechanics like elasticity and
shear banding become important (Barker et al. 2015). While the μ(I)-rheology has been
successful in modelling granular liquids, critical state soil mechanics (CSSM) (Schofield
& Wroth 1968) is well established in the geo-mechanics community for describing the,
potentially large, deformation of granular media as elastoplastic solids. Initially conceived
to model soils and clay, this theory is based on the existence of a critical state, i.e. as a
frictional fluid state where shear deformations can continue without any further change
of volume, pressure or shear stress. All such critical states must reside along a so-called
critical state line (CSL) in the space given by the pressure and shear stress. Among CSSM
models, the modified cam-clay (MCC) model first formulated by Roscoe & Burland (1968)
is arguably one of the most used in numerical implementations, giving an ellipsoidal yield
surface in principal stress space. The CSSM models have been successfully applied to
modelling the solid to fluid transition in snow avalanches (Gaume et al. 2018, 2019; Trottet
et al. 2022). They have also been used to simulate the avalanche dynamics over complex
topography (Li et al. 2021, 2024; Cicoira et al. 2022). However, these CSSM models
are based on a rate-independent theory, which can therefore not capture the I-dependent
behaviour of granular systems in their liquid state.

The success of CSSM in capturing snow avalanches is, arguably, due to its ability to
consider cohesion as well as plastic compaction and dilatancy. Cohesion refers to the
presence of an attractive force between the grains, with the attractive force being either
persistent or not. In fact, cohesion is key in understanding snow avalanches. The extensive
snow experiments of Rognon et al. (2008a) showed that flowing dry snow behaves as
dense granular flows with varying grain sizes, suggesting that this variation is a result of
aggregates forming and size segregation within the flow, thus implying an important role
of the cohesive forces in the snow. The cohesion has varying physical origins. In snow, it
is a result of sintering of ice crystals or due to liquid water creating bonds by capillarity
between snow particles (Szabo & Schneebeli 2007; Steinkogler et al. 2015; Ligneau,
Sovilla & Gaume 2022). In fine powders, it may also be of electrostatic or magnetic origin
(Castellanos 2005).

In an effort to describe the rheology of cohesive granular flows, Rognon et al. (2006,
2008b) suggested on the basis of two-dimensional discrete simulations to make the
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coefficients in the linear μ(I)-relation proposed by da Cruz et al. (2005) dependent on
a dimensionless number giving the ratio between the maximum inter-granular attractive
force to the average normal force. Similar conclusions were made by Khamseh, Roux &
Chevoir (2015) and Badetti et al. (2018) based on simulations and experiments of wet
granular materials, showing that the apparent friction should depend both on the inertial
number and the dimensionless cohesion number. Based on discrete simulations in both two
dimensions and three dimensions, Berger et al. (2015) and Vo et al. (2020), respectively,
proposed instead a new generalized inertial number dependent on the same dimensionless
cohesion number.

Pertaining to the plastic compressibility of granular systems, in CSSM this is realized
in a simple manner through a hardening law of the yield criterion. Specifically, in CSSM
it is typically assumed that the inverse solid volume fraction decreases with the logarithm
of pressure. While compressibility is not considered in the μ(I)-rheology, a relation
between the solid volume fraction φ and the inertial number was shown by GDR MiDi
(2004), da Cruz et al. (2005) and Pouliquen et al. (2006). This prompted the compressible
μ(I), φ(I)-rheology, with a monotonically decreasing, typically linear, function φ(I) for
the solid fraction. Unfortunately, this μ(I), φ(I)-rheology is mathematically ill-posed in
time-dependent problems (Heyman et al. 2017; Schaeffer et al. 2019).

The critical behaviour of granular flow was recently demonstrated in an extensive set
of three-dimensional discrete simulations of granular systems by Wang, Li & Liu (2022),
showing that, under shear loading, a critical state is reached at sufficient shear for all
shear rates, and that the exact critical state depends on the rate in a way that can be
described by the inertial number. Previous depth-averaged models have introduced the
critical state concept into the μ(I)-rheology, with the first attempt made by Pailha &
Pouliquen (2009) focusing on granular materials immersed in a secondary fluid. This study
was augmented by Bouchut et al. (2016) and Garres-Díaz et al. (2020) in a multi-layer
model accounting for in-depth heterogeneities and later presented for the fully dry case
by Bouchut et al. (2021) in order to provide a compressible μ(I)-rheology model, all
studies successfully compared with laboratory experiments. While all of these previous
models relied on depth-averaged equations in one or more layers based on shallow water
assumptions, they also relied on the critical state theory of Roux & Radjai (1998). In
this viscoplastic approach, the dynamics is governed by a frictional parameter which can
evolve depending on the deviation of the solid fraction from a prescribed critical solid
fraction, thus different from the elastoplastic theory of CSSM. In an alternative approach,
Rauter (2021) supplements the otherwise linearly decreasing φ(I) in a Navier–Stokes-type
model with the critical state model of Johnson & Jackson (1987) and Johnson, Nott &
Jackson (1990), giving an expression for the pressure as a function of the shear rate and
solid fraction.

The idea of combining CSSM and the μ(I)-rheology was conceived by Barker et al.
(2017) and Schaeffer et al. (2019), albeit in a purely viscoplastic form, resulting in
equations they termed compressible I-dependent rheology. While not based on the
elastoplastic framework of CSSM, compressibility was considered through the evolution
of a (closed) yield surface and a carefully chosen plastic flow rule. Their motivation came
from the specific desire of making the rheology well-posed for all inertial numbers through
the introduction of compressibility. While succeeding in proving the well-posedness of
their model subject only to reasonable restrictions, this conceptual and analytical study did
not offer a complete numerical realization beyond simple one-dimensional demonstrations,
nor an experimental comparison or validation.

In an effort to capture the behaviour of granular media through both their solid and fluid
states in a continuum model, it seems natural to seek a model that combines CSSM, which
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readily incorporates cohesion and compressibility, with the μ(I)-rheology, allowing the
inertial number dependence in flows. Now, guided by advances in particle-based numerical
schemes and concepts from computational elastoplasticity, we are able to formulate and
implement an elasto-viscoplastic MCC model that follows the μ(I)-rheology under flow
conditions. This allows the modelling of cohesive and compressible granular materials
as elastoplastic solids which, in the fluid transition, recovers the expected I-dependent
behaviour. In short, this is accomplished by making the CSL dependent on the inertial
number and by relying on MPM which, due to its hybrid Eulerian–Lagrangian nature,
has the ability to handle large deformations as the material transitions from solid-like to
fluid-like, including material separation and reconsolidation. While MPM also offers the
advantage of not requiring any special numerical treatment of the free surface, it comes
with increasing computational costs (compared with classical finite element methods) as
well as the need for a careful treatment of numerical dissipation. The type of cohesion
treated in the model is one that does not cease to exist, e.g. in order to consider the
situation of permanent attractive inter-granular force. However, as will be discussed, other
types of cohesion could be considered in the proposed general framework that would
make the model more suitable for landslides and debris flows. As an elastoplastic model
implemented in MPM, the proposed model is inspired by the work of Dunatunga &
Kamrin (2015), although differing both in the elastic and plastic equations. In addition
to considering cohesion and compressibility through the critical state, the proposed model
relies on advancements from the MPM community which improve stability and reduce
numerical dissipation. In this paper, the model is demonstrated for collapse and flow
problems where the magnitude of the elastic deformations is negligible compared with the
(rate-dependent) plastic deformations, and the general solid behaviour and elastic nature
of granular media will not be treated in detail here.

2. Theory

The granular material is here considered as a continuum governed by the conservation
laws for mass and momentum. Conservation of mass is given by

Dρ
Dt
+ ρ(∇x · v) = 0, (2.1)

and conservation of momentum under gravity states that

ρ
Dv

Dt
−∇x · σ 0 − ρg = 0, (2.2)

where ρ = ρ(x, t) is the mass density, v = v(x, t) is the velocity, σ 0 = σ 0(x, t) is the
symmetric Cauchy stress tensor, g is the constant gravitational acceleration and D/Dt
denotes the material time derivative. Without further assumptions, the system of equations
given by these conservation laws is not closed. In this section, constitutive laws relating
the deformation to the stress are outlined in order to close the system. In particular,
the granular material will be treated as an elastoplastic continuum where the plastic,
i.e. irreversible, deformations are highly rate dependent.

2.1. Definitions of deformation
With the deformation of a body over a time t described by a one-to-one mapping from a
material (initial) coordinate X to a spatial (current) coordinate x, the deformation gradient
F is defined with Fij = ∂xi/∂Xj and det(F ) > 0. The singular values of this second-order
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invertible tensor are the principal stretches λα > 0, α = 1, . . . , dim, where dim = 1, 2, 3
denotes the number of spatial dimensions. From the deformation gradient, the Hencky
strain tensor is defined as

ε = 1
2

ln F F T =
dim∑
α=1

ln λα nα ⊗ nα, (2.3)

where the unit vectors nα define the spatial principal directions. Moreover, the velocity
gradient tensor can be written as

L = ∇xv = Ḟ F−1, (2.4)

where Ḟ denotes the material time derivative of the deformation gradient. The trace of the
Hencky strain, εV = tr ε = ln(det(F )), is a measure of the volumetric deformation, with
material time derivative ε̇V = tr(L).

2.2. Elasticity and yield surface
To account for both elastic, reversible, and plastic, irreversible, deformations, it is common
to consider the multiplicative decomposition of the deformation gradient

F = F EF P, (2.5)

where F E refers to the deformation arising from the elastic forces, while F P is the
permanent, plastic, component. We seek a law that relates the stresses (due to elastic
forces) to the elastic component of the Hencky strain

εE = 1
2 ln(F E(F E)T), (2.6)

through a so-called strain energy density function Ψ , i.e. a hyperelastic law. In this work,
a frame-indifferent isotropic hyperelastic model known as the Hencky model is adopted,
where

Ψ (εE) = 1
2λ(tr εE)2 + G tr((εE)2), (2.7)

which results in the Kirchhoff stress σ = det(F )σ 0 being related to the Hencky strain
through

σ = ∂Ψ (εE)

∂εE = λ(tr εE)I + 2GεE, (2.8)

where I denotes the second-order identity tensor, and λ and G are the two Lamé parameters
which may be related to Young’s modulus E and Poisson’s ratio ν. Equation (2.8) may also
be written

σ = C : εE, (2.9)

with the fourth-order isotropic stiffness matrix C well known from linear elasticity with
elements Cijkl = λδijδkl + G(δikδjl + δilδjk). The properties of this model are elegantly
demonstrated in Xiao & Chen (2002), showing that, with this model, the Kirchhoff stress
and the Hencky strain constitute a work–conjugate pair.

It is instructive to relate Hencky’s elasticity model to hypoelastic models where a widely
used relation between an objective stress rate ◦

σ and the elastic rate-of-deformation DE =
1
2 (L

E + (LE)T) can be written as
◦
σ = C : DE. (2.10)

Choosing the Jaumann stress rate, this is similar to the rate equation used in the
elastoplastic μ(I)-rheology model of Dunatunga & Kamrin (2015) except they considered
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the Cauchy stress. Equation (2.10) should be exactly integrable to give an elastic relation.
If this so-called self-consistency criterion is to be fulfilled, then it can be shown that the
logarithmic rate of the Kirchhoff stress is the only choice among all corotational rates
(Xiao, Bruhns & Meyers 1999). To go even further, the logarithmic rate is argued by Xiao,
Bruhns & Meyers (2000) as the only choice among corotational and non-corotational rates
in the context of elastoplasticity. Interestingly, the integration of (2.10) with the logarithmic
rate assuming a stress-free initial state yields exactly Hencky’s elasticity model (Bruhns,
Xiao & Meyers 1999; Xiao & Chen 2002).

The onset of plastic deformations is characterized by a yield function y = y(σ ).
Conventionally, y � 0 defines admissible states, and the yield surface y = 0 defines the
limit where deformations are no longer elastic. Thus, plastic deformations only occur on
the yield surface. Here, the yield function will be expressed in terms of the stress invariants

p = − 1
dim

tr σ and q = 1√
2
||τ ||, (2.11a,b)

where p is termed the isotropic pressure and q the equivalent shear stress. The latter was
defined from the deviatoric stress tensor

τ = dev(σ ) = σ − 1
dim

tr(σ )I, (2.12)

using the notation ||τ || = √τ : τ .
While yielding of many granular media, including sand and systems of glass beads,

follows a Drucker–Prager criterion, other granular media, e.g. snow, are best described
by a yield function providing a closed yield surface in stress space (Reiweger, Gaume &
Schweizer 2015; Ritter, Gaume & Löwe 2020; Blatny et al. 2021). To this end, we consider
the yield criterion given by the (cohesive) MCC model

y(σ ) = y( p, q) = q2 − μ2( p+ βpc)( pc − p), (2.13)

where pc � 0 represents an isotropic compressive strength, β � 0 is a dimensionless
measure of cohesion and μ > 0 defines the slope of the CSL along which all critical
states reside. Alternatively, one may say that all stress states along the CSL are on
a Drucker–Prager yield surface q = μ( p+ βpc). The MCC yield surface is illustrated
in figure 1.

In this model, −βpc represents the isotropic tensile strength. The case β = 0 refers to
the cohesionless case, and in this case the material cannot sustain tensile stress states.
For β > 0, the system will always have a non-zero tensile strength (unless pc = 0, i.e. the
stress-free state). As such, cohesion will always be present, which may not be the case
in, e.g. landslides. For granular systems in which the cohesion is better described by
breakable bonds, β may easily be set to zero after yield, however, such a situation will
not be considered here.

In order to complete the description of the model, a plastic flow rule will be outlined
in § 2.3, consequently determining the onset and magnitude of plastic dilation and
compaction. In § 2.4, a hardening law is introduced that governs the evolution of pc and
thus controls the, possibly extensive, variations of solid fraction. Finally, § 2.5 introduces
dependence on the inertial number.
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q

Plastic

dilation

Tension

–βpc

μ

pc
p

y ( p, q) = 0

Compression

1

Plastic

compaction

Figure 1. The MCC yield surface y( p, q) = 0 from (2.13) in the space of the stress invariants p and q defined
in (2.11a,b). Elastic states satisfy y < 0. The dashed line represents the CSL. The dash-dotted line marks the
value of p at the apex of the ellipse, separating states undergoing plastic compaction and dilation as a result of
the chosen associative plastic flow rule.

2.3. Plastic flow rule
Under the assumption that the rate of work per unit undeformed volume can be additively
decomposed into an elastic and plastic part, it follows that

σ : L = σ : LE + σ : LP, (2.14)

where an elastic and a plastic part of the velocity gradient were defined. Following
conventions, the plastic part LP is chosen as the symmetric tensor

LP = γ̇ ∂g/∂σ
||∂g/∂σ || , (2.15)

where the equivalent plastic strain γ̇ � 0 is defined as γ̇ = ||LP|| and g is the so-called
plastic potential. In MCC models, the typical choice is an associative plastic flow rule,
i.e. g = y (the plastic potential is associated with the yield function). In other words, the
plastic rate of deformation coincides with the gradient of the yield surface. An associative
flow rule is a result of the principle of maximum plastic dissipation, in particular it can be
shown that maximizing σ : LP subject to y � 0 leads to (2.15) where γ̇ can be interpreted
as a Lagrange multiplier (Simo 1992; Bonet & Wood 2008).

With g = y(σ ) = y( p, q), (2.15) can be written

LP = 1√
2
γ̇

∂y/∂q
||∂y/∂σ ||

τ

||τ || −
1

dim
γ̇

∂y/∂p
||∂y/∂σ ||I, (2.16)

promoting the definition of the equivalent plastic shear strain rate as

γ̇S = γ̇
∂y/∂q
||∂y/∂σ || =

√
2|| dev(LP)||, (2.17)

and the equivalent plastic volumetric strain rate as

γ̇V = −γ̇
∂y/∂p
||∂y/∂σ || = tr(LP), (2.18)
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such that the plastic volumetric Hencky strain is εP
V = ln(det(F P)) = ∫

γ̇V dt. The
associative plastic flow rule implies a plastic volume increase for stress states with p < pcs
and a volume decrease for p > pcs, where pcs = 1

2 pc(1− β) denotes the pressure at the
apex of the yield surface (marked by the dash-dotted vertical line in figure 1). Note that
the CSL always goes through the apex, so there should indeed be no volume change for
stress states at critical state.

At this point, it can be instructive to relate the current model to the critical state model of
Roux & Radjai (1998) which has been used in the depth-averaged (single- or multi-layer)
models of Pailha & Pouliquen (2009), Bouchut et al. (2016, 2021) and Garres-Díaz et al.
(2020). Assuming for simplicity the cohesionless case, the stress states in that model are
forced to be on the (Drucker–Prager) surface q = tan(δ + ψ)p, where tan(δ) = μ is the
critical friction coefficient and ψ is a so-called dilatancy angle which satisfies ψ > 0
under dilation and ψ < 0 under compaction. If one imagines q = tan(δ)p intersecting an
MCC-ellipsoid at its apex where p = pcs, it follows that q = tan(δ + ψ)p must intersect
the same ellipsoid at p < pcs under dilation and at p > pcs under compaction.

The choice of plastic flow rule (or plastic potential) is fundamental to the
possibility and extent to which the material can undergo volumetric deformations, and
accordingly to how critical state is reached. In Drucker–Prager/Mohr–Coulomb models,
an associative flow rule would imply every plastic deformation being dilating. The use of
non-associative flow rules in such models prevents this. In addition, the singularities in
the Drucker–Prager/Mohr–Coulomb yield surfaces require special treatment which often
may induce unwanted dilation, although they can be corrected with various strategies
(Dunatunga & Kamrin 2015; Pradhana 2017).

2.4. Hardening law
In soil mechanics, the isotropic compressive strength pc is typically increased with plastic
compaction (i.e. hardening – yield surface expands) and decreased with plastic dilation
(i.e. softening – yield surface shrinks). As such, pc = pc(ε

P
V) which entails that pc will not

change at critical state. Here, a similar relation will be assumed, specifically

pc(ε
P
V) = p0

ce−ξε
P
V , (2.19)

where p0
c � 0 is an initial compressive strength before any plastic compaction/dilation has

occurred, and ξ � 0 is a dimensionless parameter.
This hardening law can be motivated from the observed behaviour of soils (Wood 1991),

cohesive and cohesionless powders (Walker 1923; Poquillon et al. 2002; Castellanos 2005)
and porous brittle media such as snow (Blatny, Löwe & Gaume 2023), where the inverse
solid volume fraction behaves as

1
φ
= 1
φ0
−Λ ln( pc/p0

c), (2.20)

where Λ > 0 is called the plasticity index and φ0 is the initial solid fraction. In (2.20),
the compressive strength is pc = p0

c when the solid fraction is φ = φ0, with p0
c and φ0

being two independent parameters. In reality, p0
c and φ0 may be related, with typically an

increasing p0
c for an increasing φ0. However, in this study, systems with varying φ0 will

not be investigated.
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μ(I )

I

μ2

μ1

ω

Figure 2. Evolution of μ(I) from (2.27) as the parameter ω is increased.

Equation (2.20) can be rearranged as

φ0

φ
− 1 = −φ0Λ ln( pc/p0

c). (2.21)

Here, the left-hand side may be approximated by the volumetric plastic Hencky strain

εP
V = det(F P)

(i)≈ det(F ) = ln(φ0/φ)
(ii)≈ φ0

φ
− 1, (2.22)

under the assumption that (i) the elastic volumetric deformation is negligible compared
with the plastic volumetric deformation and that (ii) the volumetric deformation is small.
This allows (2.21) to be written as

pc = p0
ce−ε

P
V/(Λφ0), (2.23)

which is exactly (2.19) with ξ = (φ0Λ)
−1. Note that the volumetric plastic Hencky strain

εP
V is zero before any deformation occurred (at which point φ = φ0 and pc = p0

c).

2.5. Inertial number dependence
In the μ(I)-rheology, the shear stress is made proportional to the isotropic pressure with
a factor of proportionality μ depending on a dimensionless number known as the inertial
number I. Assuming the deformation is dominantly plastic, the inertial number can be
written

I = γ̇Sd√
p/ρ∗

, (2.24)

where d denotes the diameter of the grains and ρ∗ is the constant intrinsic grain density.
In the MCC model outlined in §§ 2.2–2.4, it is only at critical state that μ represents

the factor of proportionality between the equivalent shear stress and the pressure. As
most stress states in an unobstructed smooth flow would gather close to the CSL,
the μ(I)-rheology would be approximately recovered in such flows by letting μ depend
on I in the same way as in the μ(I)-rheology. A typical expression for μ(I) is such that
it is bound by a lower value μ1 and approaching an upper value μ2 asymptotically with
increasing inertial number, in particular

μ(I) = μ1 + μ2 − μ1
I0

I
+ 1

, (2.25)

from Jop, Forterre & Pouliquen (2005), where I0 > 0 is a dimensionless constant.
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A critical state μ(I)-rheology model

Parameter Symbol Unit

Young’s modulus E Pa
Poisson’s ratio ν —
Initial compressive strength p0

c Pa
Hardening ξ —
Cohesion β —
Initial density ρ0 kg m−3

Grain density ρ∗ kg m−3

Grain diameter d m
Initial inertial number I0 —
Lower CSL μ1 —
Upper CSL μ2 —

Table 1. Model parameters.

Evidently, (2.24) is not well defined for negative pressures, which is possible in the
cohesive case, i.e. when β > 0. As a remedy, a new pressure p̄ = p+ βpc is introduced,
where the cohesive stress is added to the pressure, leading to the definition of a
cohesion-dependent inertial number

I = γ̇Sd√
p̄/ρ∗

. (2.26)

With βpc > 0 here representing the magnitude of the isotropic cohesive stress (tensile
strength), this cohesive inertial number was proposed by Berger et al. (2015) and Vo
et al. (2020). They demonstrated, through discrete simulations, that this inertial number
improved the scaling behaviour for granular flows where cohesion was added to the system
through an (unbreakable) attractive inter-granular force. This is in contrast to other studies
(Rognon et al. 2006, 2008b; Khamseh et al. 2015; Badetti et al. 2018) which have proposed
making the apparent friction dependent on a separate dimensionless cohesion number
in addition to the (non-cohesive) inertial number. Note that the non-cohesive inertial
number, (2.24), is related to its cohesive counterpart, (2.26), through a multiplication of√

1+ βpc/p. With this inertial number, (2.25) becomes

μ(I) = μ1 + μ2 − μ1

ω

√
p̄
γ̇S

+ 1
, (2.27)

where, for convenience, the constant ω = I0/(d
√
ρ∗) was introduced. The evolution of μ

with I when changing ω is sketched in figure 2.
In a nutshell, the proposed model consists of the elastic law given by (2.8), the yield

function given by (2.13) with μ being the function defined in (2.27), the plastic flow rule
given by (2.15) and the hardening law given by (2.19). A summary of the model parameters
is presented in table 1, where it should be noted that I0, d and ρ∗ appear in the proposed
model through ω only.

Formally, this elasto-viscoplastic model can be written as a Perzyna overstress model
(Perzyna 1963, 1966), in particular

γ̇S =
⎧⎨
⎩

1
η

(
q− qy( p)

)
, if q > qy( p)

0, otherwise,
(2.28)
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q

–βpc
n+1 pc

n+1

( pn+1, qy( pn+1))

( ptrial, qtrial)

Gγ·S�t

Kγ·V�t

( pn+1, qn+1)

p–βpc
n pc

n

Figure 3. The return mapping in the view of Perzyna’s overstress approach. A trial state ( ptrial, qtrial) is
projected to the stress state ( pn+1, qn+1) through an intermediate step ( pn+1, qy( pn+1)). Note that, since here
ptrial > pcs, volumetric compaction occurred and the yield surface therefore expanded (hardened) from the
initial surface coloured grey to the final surface coloured black.

with a p-dependent yield shear stress

qy( p) = μ1
√
( pc − p)p̄ � 0, (2.29)

and an I-dependent viscosity

η = (μ(I)− μ1)
√
( pc − p)p̄

γ̇S

= (μ2 − μ1)
√
( pc − p)p̄

γ̇S + ω
√

p̄
� 0. (2.30)

The Perzyna yield surface given by qy( p) differs from the previous concept of a yield
surface as stress states outside the Perzyna yield surface are admissible.

2.6. An operator splitting scheme
Solving for the stress (and deformation) can be accomplished through an elastic
predictor–plastic corrector scheme (Simo 1992; de Souza Neto, Perić & Owen 2008).
While the details of this operator splitting scheme are presented in Appendix A, the
concept is simple: assume first the deformation is purely elastic, and if the yield condition
is violated, correct for any plastic deformation through the plastic flow rule. In particular,
a trial stress state ( ptrial, qtrial) obtained elastically from the previous stress state ( pn, qn)
at time tn gives the new stress state ( pn+1, qn+1) after a plastic correction

pn+1 = ptrial + Kγ̇V�t (2.31)

qn+1 = qtrial − Gγ̇S�t, (2.32)

where �t = tn+1 − tn. This operation is known as a return mapping.
Solving the return mapping must be done iteratively, the convergence of which is

difficult to guarantee. As an approximation, since the hardening law pc = pc(ε
P
V) is only

dependent on the update of p, the return mapping can be performed in the view of Perzyna,
assuming μ = μ1 is constant (cf. (2.29)), producing the desired pn+1. With pn+1 now
known, qn+1 can be found by inserting (2.32) into (2.13) and using (2.27), yielding a
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A critical state μ(I)-rheology model

Boundary

g

�x

θ

Figure 4. Illustrating sketch of the MPM discretization (grid and particles) of a flow on a surface subject to
gravity. In this study, the domain is initialized with four to eight MPM particles per grid cell.

quadratic equation for γ̇S

aγ̇ 2
S
+ bγ̇S + c = 0, (2.33)

where

a = G�t

b = (μ2 − μ1)

√
( pc − pn+1)p̄n+1 + G�tω

√
p̄n+1 − (qtrial − qy( pn+1))

c = −ω
√

p̄n+1(qtrial − qy( pn+1))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (2.34)

Since a > 0 and c < 0, exactly one positive solution for γ̇S is guaranteed, and the new
stress state ( pn+1, qn+1) is found. Notably, there are no issues with zero pressure or strain
rate. The return mapping is illustrated in figure 3.

3. Numerical solver

Here, MPM is adopted as a numerical scheme for approximating solutions to (the
weak form of) (2.2) subject to the elasto-viscoplastic constitutive model. In short, MPM
consists of tracking moving particles (or ‘material points’) which store associated material
properties such as mass, velocity and deformation gradient, while also adopting a
background Eulerian grid facilitating the momentum computations. This is sketched in
figure 4. Although it is commonly stated that the original formulation of MPM dates
back to Sulsky, Chen & Schreyer (1994), MPM can be considered an extension of
particle-in-cell (PIC) methods (Harlow 1964), notably the fluid-implicit particle (FLIP)
method (Brackbill, Kothe & Ruppel 1988). It was first applied to the flow of granular
media by Wieckowski, Youn & Yeon (1999) in the context of silo discharge, assuming
simply a cohesionless constant Drucker–Prager yield criterion.

The material domain is discretized into Np particles with constant and equal mass mp,
initially equal volume Vp and initially zero velocity vp. With a fixed Eulerian grid with
uniform grid spacing �x, we consider C1-continuous interpolation functions Ni(xp) � 0
between a grid node i and a particle at a coordinate xp, in particular

Ni(xp) =
dim∑
α=0

N
(

xpα − xiα

�x

)
, (3.1)
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where α denotes the component and with N(·) given by the quadratic B-spline

N(x) =

⎧⎪⎪⎨
⎪⎪⎩

3
4 − |x|2, if |x| < 1

2
1
2(

3
2 − |x|)2, if 1

2 � |x| < 3
2

0, otherwise.

(3.2)

Such B-spline MPM circumvents the issue of cell crossing instabilities (Steffen, Kirby
& Berzins 2008) associated with the original MPM which relied on linear hat functions
(e.g. used in the elastoplastic μ(I)-rheology model of Dunatunga & Kamrin 2015). Not
considering the boundary term, the temporal and spatial discretization of the weak form
of the momentum conservation equation can be written on the Eulerian grid nodes i as

mn
i v

n+1
i − mn

i v
n
i

�t
= −

∑
p

V0
pσ (εE,n)∇Ni(xn

p)+ mn
i g, (3.3)

where V0
p is the initial particle volume and the nodal mass

mn
i =

∑
p

mpNi(xn
p) (3.4)

is obtained under the common assumption of mass lumping. The MPM discretization from
the weak form can be thought of as the equivalent (updated Lagrangian) finite element
discretization where now the quadrature points are the material points which can move in
space. Note that conservation of mass is automatically fulfilled as the total mass of the
system

∑
p mp is the sum of all particle masses, which individually will remain constant

in time.
The detailed steps of the numerical scheme are outlined in Algorithm 1. At each time

step of the scheme, particle momentum is transferred to the grid on which the momentum
update, (3.3), is performed. Boundary conditions are applied on the grid velocities, before
the new grid velocities are transferred back to the particles. As such, boundary conditions
are treated in a similar way as in finite element methods, avoiding expensive neighbour
particle searches needed in, e.g. SPH. Before commencing the next time step, the particles’
stress states are checked against a yield criterion, and a return mapping is performed if
necessary. Adaptive time stepping in this explicit scheme is accomplished by respecting the
Courant–Friedrichs–Lewy (CFL) condition and the elastic wave speed condition (i.e. the
elastic wave should not travel more than one grid cell in one time step). Accordingly,
we use the constants CCFL = Cel = 0.5, where the elastic wave constant Cel is defined
analogously to the CFL constant CCFL.

It should be emphasized that there are several methods for transferring the
momentum/velocities between the grid nodes and particles, and the chosen method can
greatly influence the numerical dissipation of the scheme. With the time-dependent
constitutive model proposed here, it is crucial to minimize this dissipation in order to
capture the dynamics of the deformation correctly. Earlier versions of MPM used PIC-
or FLIP-style transfers, i.e.

mn
i v

n
i =

∑
p

mpv
n
pNi(xn

p) (3.5)
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A critical state μ(I)-rheology model

Algorithm 1: Symplectic B-spline AFLIP MPM

initialize mp,Vp, xp, vp = 0, F E
p = I , εP

V,p = 0
for n← 0 to max time steps do

(i) adapt time step: �t = min
(

CCFL
�x

maxp |vn
p| , Cel

�x√
E/ρ

)
(ii) interpolate grid mass: mn

i =
Np∑

p=1
mpNi(xn

p)

(iii) interpolate grid velocity: vn
i = 1

mn
i

Np∑
p=1

mp(v
n
p + Bn

pD−1(xn
i − xn

p))Ni(xn
p)

(iv) calculate grid force: f n
i = −V0

p

Np∑
p=1

σ (εE,n
p )∇Ni(xn

p)

(v) update grid velocity: vn+1
i = vn

i + �t
mn

i
f n

i

(vi) apply boundary conditions on grid: e.g. vn+1
i∈∂Ω = 0 for no-slip

(vii) compute trial elastic deformation gradient on the particles:

F E,trial
p =

⎛
⎝I +�t

∑
i∈grid

vn+1
i (∇Ni(xn

p))
T

⎞
⎠ F E,n

p

(viii) perform singular value decomposition of F E,trial
p = UE

p ΣE,trial
p (V E

p )
T

(ix) get trial elastic Hencky strain in principal space: εE,trial
p = ln ΣE,trial

p
(x) return mapping: εE,n+1

p = RM(εE,trial
p , εP

V,p) where RM is the return mapping

(xi) get elastic deformation gradient F E,n+1
p = UE

p eε
E,n+1
p (V E

p )
T

(xii) update particle velocity: vn+1
p = αf v

FLIP
p + (1− αf )v

PIC
p where

vPIC
p =

∑
i∈grid

vn+1
i Ni(xn

p), vFLIP
p = vn

p +
∑

i∈grid

(vn+1
i − vn

i )Ni(xn
p)

(xiii) update B-matrix: Bn+1
p =∑

i
vn+1

i (xn
i − xn

p)
TNi(xn

p)

(xiv) update positions: xn+1
p = xn

p +�tvPIC
p

end

for the particle-to-grid momentum transfer and either (PIC)

vn+1
p =

∑
i

vn+1
i Ni(xn

p), (3.6)

or (FLIP)

vn+1
p = vn

p +
∑

i

(vn+1
i − vn

i )Ni(xn
p), (3.7)

for the grid-to-particle transfer. The PIC scheme is highly dissipative and does not preserve
angular momentum in grid to particle, which could lead to rotational artefacts. While FLIP
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E ν ξ p0
c β

1 MPa 0.3 50 100–500 Pa 0–0.3

Table 2. Elastic and plastic model parameters used throughout this study, except in Appendix B where a
sensitivity analysis of all parameters is presented.

(as used, e.g. in the elastoplastic μ(I)-rheology model of Dunatunga & Kamrin 2015)
partly improves the conservation of angular momentum, it also reduces dissipation by
only transferring the velocity increments, however, at the cost of more pronounced ‘ringing
instability’ (Love & Sulsky 2006). Later, Jiang et al. (2015) proposed affine PIC (APIC)
as an improvement of PIC, conserving angular momentum in both transfers, consequently
resolving rotations correctly. The APIC particle-to-grid transfer is given by

mn
i v

n
i =

∑
p

mp(v
n
p + Cn

p(x
n
i − xn

p))Ni(xn
p), (3.8)

with a ‘velocity derivative’ tensor Cp = BpD−1
p where Dp is analogous to an inertia tensor

and can be shown to be a constant diagonal tensor given by 1
4 (�x)2I in the case of a

uniform background grid with quadratic B-splines (Jiang et al. 2015; Jiang, Schroeder &
Teran 2017), and Bp is given by

Bn+1
p =

∑
i

vn+1
i (xn

i − xn
p)

TNi(xn
p). (3.9)

In an effort to reduce dissipation further, APIC was recently generalized to AFLIP by Fei
et al. (2021) by using the grid-to-particle scheme of FLIP, i.e. (3.7), instead of that of PIC,
i.e. (3.6). Because of the low-dissipation property of AFLIP, this scheme is adopted in this
work. Like in Fei et al. (2021), a parameter αf is introduced which represents a PIC/FLIP
ratio, with αf = 0 meaning pure APIC and αf = 1 meaning pure AFLIP. In particular,
αf = 0.95 is used to introduce as little numerical dissipation as possible. More details and
examples of the low-dissipation property of AFLIP are presented in the paper of Fei et al.
(2021), and the reader is also referred to the excellent and recent reviews by de Vaucorbeil
et al. (2020), Sołowski et al. (2021) and Nguyen, de Vaucorbeil & Bordas (2023) for
further details on MPM.

4. Results

In this section, various granular flow and collapse simulations using the critical
state μ(I)-rheology model are presented. In § 4.1, simulation results from flow on inclined
planes are compared with approximate analytical solutions of the velocity profile. Next,
comparisons with previous experiments of granular collapse problems are made in § 4.2,
and cohesive media are considered in § 4.3. Finally, the ability of the model to capture
the two steady-state solutions of granular flow over a smooth two-dimensional bump is
demonstrated in § 4.4. In all simulations, the Young’s modulus E, Poisson’s ratio ν and
hardening factor ξ are kept constant with values shown in table 2. Furthermore, the initial
compressive strength p0

c is taken to be 100 Pa and the parameter β is set to zero, except
in § 4.3 where cohesive simulations are presented. Appendix B presents further reasoning
behind these constitutive parameter choices.
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A critical state μ(I)-rheology model

z

vx(z)

vx (m s–1)
x

z/d

15
9 13

t (s)

10

5

0

0 0.2 0.4 0.6

z = h

θ

θ

(b)(a)

Figure 5. Two-dimensional flow on a no-slip surface showing a Bagnold velocity profile. While (a) is a sketch
of the set-up and flow, (b) shows the time evolution of the flow profile at a fixed x-position 2.5 m downstream
for a simulation with slope angle θ = 24◦. Here, the black dashed line is the analytical solution from (4.2)
where no fitting to the measured data has been made.

4.1. Analytical solutions
Following the analytical treatment of GDR MiDi (2004), a cohesionless two-dimensional
flow of height h as sketched in figure 5 is considered. Under the assumption σxx = σzz
justified in da Cruz et al. (2005) and Andreotti et al. (2013), q = ρg(h− z) sin θ and p =
ρg(h− z) cos θ . Assuming all stress states lie on the CSL results in μ(I) = q/p = tan θ .
Combined with (2.26) and (2.27), using β = 0 and assuming all deformation is plastic,
one obtains

dvx(z)
dz
= γ̇S = ω

tan θ − μ1

μ2 − tan θ

√
ρg(h− z) cos θ. (4.1)

Integrating over z, assuming a no-slip bottom surface, yields

vx(z) = vmax(1− (1− z/h)3/2), (4.2)

where

vmax = vx(h) = 2
3
ω

tan θ − μ1

μ2 − tan θ

√
ρgh3 cos θ (4.3)

is the velocity at the surface of the flow.
To see how the proposed model compares with the approximate analytical solution given

by (4.2) and (4.3), two-dimensional simulations are performed assuming cohesionless
spherical glass bead parameters given by Jop et al. (2005) based on the experiments by
Forterre & Pouliquen (2003), i.e. I0 = 0.279, μ1 = tan(20.9◦) and μ2 = tan(32.8◦), with
initial density ρ0 = 1550 kg m−3 and intrinsic density ρ∗ = 2500 kg m−3 as summarized
in table 3. In these simulations, a mass of 280 kg (per unit width) is being slowly fed onto
a no-slip inclined surface and through a gate restricting the maximum height of the flow.
The bead diameter is d = 2.5 mm here, and the grid size �x is taken to be 1.2 mm. As
expected, for slope angles θ smaller than tan−1(μ1) = 20.9◦, the flow eventually stops,
while for θ between tan−1(μ1) and tan−1(μ2), i.e. between 20.9◦ and 32.8◦, a steady state
forms after some time. For the particular case of θ = 24◦ at a point 2.5 m downstream,
the plot in figure 5 shows how the velocity profile converges towards the Bagnold velocity
profile given by (4.2) after a few seconds. The surface velocity measured for all steady-state
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I0 tan−1(μ1) tan−1(μ2) d (mm) ρ∗ (kg m−3) ρ0 (kg m−3)

0.279 20.9◦ 32.8◦ 2.5 2500 1550

Table 3. Parameters used in § 4.1.
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Figure 6. Simulations on varying slope angles θ . In (a), the maximum velocity vmax is measured along the
surface of the flow and the analytic curve is (4.3) with h = 10− 0.3θ cm fitted from the measured data. The
error bars represent one standard deviation as the surface velocity was found by averaging over the spatial
extent of the flow, neglecting only the area close to the gate and the area close to the flow front. In (b,c), the
evolution of the average μ, denoted 〈μ〉, obtained from a slice of thickness 0.02 m in each simulation is shown.
The latter is plotted against a scaled time, where tf denotes the time at which all mass has passed through the
gate. The two dashed horizontal lines marks the lower and upper bounds μ1 and μ2, respectively.

flow cases is shown in figure 6(a), showing the agreement with the prediction by (4.3).
As the flow transitions to a steady state, figures 6(b) and 6(c) show that μ approaches
the expected constant value. Since the analytical solution assumes all stress states lie on
the CSL, a slight deviation from the analytical solution is expected. The minor observed
deviation can also be attributed to the non-idealized set-up where the particles are fed
through a gate without a fixed flow height, resulting in a not perfectly smooth flow and
constant flow height, and the plotted quantities are determined through an averaging
scheme over a predefined region.

In the steady-state flow simulations presented here, the solid fraction φ = ρ/ρ∗ settles
at an approximately temporally and spatially constant value for each slope angle. The
hardening factor ξ affects the compressibility of the system, here it is chosen large enough
to only induce small changes in the solid fraction of the system. In particular, the solid
fraction, initially being 0.62, varies between 0.60 and 0.63. The lowest fractions are
measured for the highest slope angles where the flow is more rapid, qualitatively similar
to the φ(I)-relation suggested by GDR MiDi (2004), da Cruz et al. (2005) and Pouliquen
et al. (2006). This is shown in figure 7, which was obtained by averaging the solid fraction
in a slice in the middle of the flow. Initially, at t/tf < 0.1, the erratic behaviour of the
measured average solid fraction is also attributed to the unstable nature of the first particles
coming through the gate combined with the lack of particles needed for a stable average.

Studying here the continuous (highly dynamic) flow where the deformations are
dominantly plastic, the results presented are largely independent of the elastic moduli.
Thus, whether E is 1 MPa or 1 GPa, the results are indistinguishable. The same can be
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Figure 7. Evolution of the solid volume fraction φ with time as a steady-state flow is reached on different
inclinations. As in figure 6, tf denotes the time at which all mass has passed through the gate.

said about the exact onset of the plastic deformation as long as it occurs at sufficiently
small stress values, in particular it does not matter in the presented results whether p0

c is
10 Pa or 100 Pa. This is demonstrated in Appendix B.

4.2. Granular collapse
Here, the problem of cohesionless granular collapse on horizontal and tilted surfaces is
addressed. For the horizontal case, the experiments of Xu et al. (2017) are considered,
where glass beads initially confined between two gates separated 8 cm apart were released
by opening the gates such that the beads could flow between two parallel transparent glass
sheets spaced 2 cm apart. The initial height of the system was 5 cm. Three-dimensional
simulations are performed with the spherical glass bead parameters of § 4.1, using the
known bead diameter d = 2 mm and intrinsic density ρ∗ = 2500 kg m−3 reported from
the experiments, as well as �x = 0.7 mm (Np = 1.7M). While the initial bulk density
ρ0 was measured to vary between 1450 and 1625 kg m−3, in the simulations it is for
simplicity assumed that ρ0 = 1550 kg m−3, close to the average experimental value. The
parameters are summarized in table 4. The walls are assumed frictionless and the ground
no-slip, inferring the gate lift velocity 0.45 m s−1 from the experimental photos. Figure 8
shows the results alongside the reported experimental observations, indicating an overall
better agreement between the model and the experiments at time t = 0.42 s (close to the
rest state) than at the intermediate time. At the final time, note that the experimental data
indicate that some granules spread out rather far from the main part of the system, resulting
in long tails which were not captured by the simulations. This is believed to be due to
the no-slip boundary condition at the bottom surface which in the experiments was a
steel plate. Nevertheless, neglecting the tails, the repose angle of the main part of the
collapsed system was reproduced remarkably well. The elastoplastic nature of the model
naturally leads to the simulated granular collapse exhibiting localized bands of increased
plastic (shear) strain. Shear bands are observed in granular flows (e.g. Mueth et al. 2000;
Fenistein & van Hecke 2003; Jop et al. 2006; Mandal, Nicolas & Pouliquen 2021) and
will be further discussed at the end of this section as well as in Appendices B and C.
Regarding computational time, reaching the last state shown in figure 8 took almost 27 h
on 8 cores (Intel Xeon Gold 6136 CPU 3.00 GHz, 187 GB RAM, OpenMP parallelization).
In general, the computational time is, in addition to the degree of discretization, dependent
on the Young’s modulus and density as these parameters control the adaptive time stepping
of the explicit scheme.

997 A67-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

64
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.643


L. Blatny, J.M.N.T. Gray and J. Gaume

5

cm

0

5

cm

0

5

cm

cm

0

–10

t = 0.42 s

t = 0.12 s

|vx| (m s–1)

t = 0 s

–5 0 5 10

Exp.

Exp.

0 0.5

(b)(a)

Figure 8. Granular collapse on a horizontal plane. (a) A middle slice from the simulations is shown and
compared with the experiments from Xu et al. (2017) at different times. Note that the plotted slice is arbitrary
as the front remains more or less uniform along the width as can be seen in the corresponding three-dimensional
visualizations in (b). Here, the material is coloured according to the horizontal speed.

I0 tan−1(μ1) tan−1(μ2) d (mm) ρ∗ (kg m−3) ρ0 (kg m−3)

0.279 20.9◦ 32.8◦ 2 2500 1550

Table 4. Parameters used to simulate the experiment by Xu et al. (2017).

Having studied granular collapse on a horizontal surface, we now consider collapse
on tilted surfaces. In the dam break experiments of Mangeney et al. (2010), cohesionless
glass beads with diameter d = 0.7± 0.1 mm and intrinsic density ρ∗ = 2500 kg m−3 were
released on inclined rough surfaces. The system had an initial density ρ0 = 1550 kg m−3,
initial height h0 = 14 cm and initial length 20 cm along the inclined flow direction,
enclosed by Plexiglas sidewalls 10 cm apart. These experiments are here simulated
in three dimensions (using �x = 2.4 mm, Np = 1.6M) with a frictionless back wall
preventing movement in the upflow direction, assuming a no-slip bottom surface as well as
frictionless sidewalls. With the authors reporting the measured repose and avalanche angle
as 23.5± 0.5◦ and 25.5± 0.5◦, respectively, μ1 is thus chosen here as the inverse tangent
of the mean of these two angles. The remaining parameters, i.e. I0 and μ2, are chosen
as the typical spherical glass bead parameters as used for the collapse on the horizontal
plane and in § 4.1. The parameters are summarized in table 5. With these assumptions,
the final equilibrium state from the experiments is reproduced in the simulations. This
can be seen in figure 9 for three different inclination angles θ = 10◦, 16◦ and 22◦.
The three-dimensional simulations required approximately 18 computational hours per
real second on 8 cores on the same computer architecture as given above. While the
agreement in figure 9 appears excellent, it should be emphasized that the simulations were
conducted under the assumption of frictionless sidewalls. The sidewalls may influence the
final deposit as demonstrated by Martin et al. (2017). With the rough bed surface being
covered by the same beads glued to the surface, the no-slip assumption at the base is also
questionable. In particular, Ionescu et al. (2015) argue that there is slip near the front.

Comparisons with the dam break experiments at intermediate times are shown in
figure 10, which also highlights the static–fluid transition. This figure demonstrates that the

997 A67-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

64
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.643


A critical state μ(I)-rheology model

Exp.
0.6

0.3

z/h
0

0

0.6

0.3

z/h
0

0

0

0.6

0.3

z/h
0

x/h0

g
22°

g
16°

g
10°

0 2 4 6 8

(b)

(a)

(c)

Figure 9. Final rest state of the flow of a dam break on planes with three different inclinations. Simulations
are compared with experiments from Mangeney et al. (2010).

I0 tan−1(μ1) tan−1(μ2) d (mm) ρ∗ (kg m−3) ρ0 (kg m−3)

0.279 24.5◦ 32.8◦ 0.7 2500 1550

Table 5. Parameters used to simulate the experiments by Mangeney et al. (2010). These parameters were also
used in § 4.4 to simulate flow over a smooth obstacle.

simulations give very similar results compared with the μ(I)-rheology model of Martin
et al. (2017) without wall friction. Martin et al. (2017) also conducted simulations with
wall friction, naturally resulting in a better match to the experimental data.

The three inclination angles in the dam break simulations are all below tan−1(μ1) =
24.5◦, and thus the flow will come to rest, i.e. the front position converges to a fixed value.
Figure 11(a) shows the overall capability of the model in capturing the evolution of the
downslope front position xf in the dam break simulations. Comparing the front velocities,
figure 11(b), highlights the not perfectly smooth front evolution of the simulated collapse
on the largest inclination. On the two smaller inclinations, while still not achieving a
perfectly smooth evolution, the front velocity remains very close to the experimental
measurements. Figure 11(c) shows the evolution of the solid volume fraction φ with time,
indicating a smaller final density with increasing inclination angle. After an initial increase
in solid fraction (for t < 0.1 s) due to consolidation under gravity, the solid fraction
decreases gradually during the collapse. In the experiments, the system had already settled
under gravity and the experimental data is therefore not expected to feature the initial
jump in solid fraction observed in the simulations. Although the experimental data are
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Figure 10. Dam break on two different inclinations, θ = 10◦ (a,c) and θ = 22◦ (b,d), at two intermediate times
t prior to reaching the final equilibrium position. The simulations are coloured in grey scale to highlight the
static–flowing transition: dark grey is static and light grey is flowing. Experimental data from Mangeney et al.
(2010) as well as previous simulations by Martin et al. (2017) with and without wall friction are included for
comparison.
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Figure 11. (a) Front position xf , (b) velocity vf and (c) solid fraction φ of the flow following the dam break
on inclined planes. In (c), note that this is the solid volume fraction of the complete system and not a local
measurement. Experimental data from Mangeney et al. (2010) and Martin et al. (2017).
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(a)
β = 0

vx (m s–1)
0 1

(b)

β = 0.3

t = 0.2 s

t = 0.4 s

t = 0.6 s

t = 0.2 s

t = 0.4 s

t = 0.6 s

Figure 12. Dam break on slope angle θ = 22◦ of (a) cohesionless and (b) cohesive glass beads. The full time
evolution of these two simulations is shown in supplementary movies 1 and 2 available at https://doi.org/10.
1017/jfm.2024.643, respectively.

scattered, especially for the largest inclination, the data seem to indicate an overall decrease
in solid fraction during the collapse. This is qualitatively the same behaviour shown in the
simulations after the initial consolidation.

A three-dimensional rendering of the θ = 22◦ dam break is shown in figure 12(a)
visualizing the downslope velocity. While the final equilibrium state features a smooth
surface, a non-smooth surface can be observed at intermediate times, even in the
cohesionless case. This was not reported in the experiments. Visualizing instead the
equivalent plastic shear strain rate in figure 13, it is immediately clear that the surface
bumps are correlated with the occurrence of shear bands, i.e. thin zones of localized plastic
shear strain. This is related to the initial state of the granular system and the consolidation
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γ̇S (s
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0 50t = 0.2 s

t = 0.4 s

Figure 13. Cohesionless dam break on slope angle θ = 22◦ coloured according to the equivalent plastic shear
strain rate γ̇S .

that immediately follows due to gravity, thus producing states with large compressive
strengths pc due to the imposed hardening law. In Appendix B, it is demonstrated that
adjusting the plastic parameters, especially ξ , the gravity-induced initial compaction can
be significantly reduced, and consequently it is possible to partly smooth out the surface
bumps observed in these granular collapse simulations. Strain localization is expected
in elastoplastic modelling featuring strain softening, and therefore the proposed model
will fail in accurately capturing localization patterns without a rigorous regularization
technique. Nevertheless, this is shown in Appendix C to not influence the general dynamics
of the collapse and flow.

4.3. The case of cohesion
While the above experiments and simulations were conducted with cohesionless glass
beads, it is instructive to consider the case of cohesive beads. To this end, the dam break
case on the slope angle θ = 22◦ is studied with β > 0. In figure 12, snapshots of the
dam break at different times are presented for the case β = 0 and β = 0.3, allowing us to
visually observe the difference in the evolution of the flow when cohesion is introduced. In
particular, the extension of the flow is reduced and lumps of material adhere to each other
at the surface of the flow. The two simulations presented in figure 12 are also shown in
supplementary movies 1 and 2, respectively, at 1

3 speed. Figure 14 shows how the evolution
of the front position decreases with increasing β.
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Figure 14. Front position xf of flow on inclined plane θ = 22◦ with increasing cohesion β = 0, 0.1, 0.2, 0.3.
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Figure 15. Cohesive granular collapse simulations compared with the experiments from Gans et al. (2023) on
a horizontal rough surface. (a,b) Snapshots of the simulation of Exp. A using β = 0.2 at two different times
where the markers indicate the surface measured in the experiments. (c) Evolution of the front position xf with
time in both experiments are shown together with simulations with β = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3.

I0 tan−1(μ1) tan−1(μ2) d (mm) ρ∗ (kg m−3) ρ0 (kg m−3)

0.279 20.9◦ 32.8◦ 0.8 2600 1508

Table 6. Parameters used to simulate the experiments by Gans et al. (2023) in figure 15.

The recent publication of Gans et al. (2023) presented detailed experiments of granular
collapse with cohesive glass beads produced using a novel technique by Gans, Pouliquen &
Nicolas (2020) of coating the beads with a thin layer of polyborosiloxane. Since the coating
provides a stable cohesion in the form of a constant-in-time inter-granular adhesive force,
these experiments can be considered suitable for assessing the proposed model, which,
in its current form, assumes a persistent (unbreakable) cohesion. The experiments were
conducted in a 15.4 cm wide channel having a rough bed constructed by gluing identical
grains as the flowing grains, the granular system having an equal initial height h0 and
length of 8.9 cm. Two of their experiments, one with slightly more cohesive beads than
the other, are presented in figure 15, where we call the least cohesive case Exp. A and the
most cohesive case Exp. B. In the case of Exp. A, the surface of the system is plotted at
two different times. The figure also includes results from two-dimensional simulations
where the spherical glass bead parameters as presented in § 4.1 were utilized besides
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Figure 16. Steady-state velocity profiles for increasing cohesion parameter β on a no-slip surface tilted at
θ = 32◦. The velocity profiles are measured at the same position x = 0.8 m from the gate which had a height
of 40d.

I0 tan−1(μ1) tan−1(μ2) d (mm) ρ∗ (kg m−3) ρ0 (kg m−3)

0.279 20.9◦ 40◦ 2.5 2500 1550

Table 7. Parameters used to simulate cohesive steady-state flow (figure 16).

from those reported from the experimental measurements, in particular d = 0.8 mm,
ρ∗ = 2600 kg m−3 and ρ0 = 1508 kg m−3. These parameters are summarized in table 6.
As in the previous section, a no-slip ground was assumed. In the presented simulations
the cohesion through βp0

c is tuned to match the experiments, here using p0
c = 500 Pa. As

before, it is clear that runout is decreased with increasing cohesion. In particular, using
β = 0.2 and β = 0.3 can be seen to give a front position evolution that aligns with the
experiments, albeit not perfectly. As in the previous section, it should be mentioned that
the assumption of a no-slip base and frictionless walls may not be fully accurate. Moreover,
the previous comments made about strain localization in the cohesionless case also applies
here, and the reader is again referred to Appendices B and C. More importantly, since
the cohesion in the proposed model is tuned to match the experiments, it is pertinent to
emphasize that the presented simulations do not constitute a rigorous validation of the
model.

Having investigated the effect of cohesion on granular collapse, one can also consider
more prolonged flows. From discrete simulations, it has been demonstrated that cohesive
granular flows can reach a steady state where the introduction of cohesive forces between
the grains leads to the occurrence of a plug flow near the free surface (Rognon et al. 2008b;
Mandal et al. 2020). It appears possible for the proposed critical stateμ(I)-rheology model
to qualitatively capture this behaviour, as presented in figure 16. Here, on an inclined slope
of θ = 32◦ with a no-slip base, steady-state flows are reached for various values of β.
With increasing β the occurrence of a plug flow is observed, and above a critical β the
flow stops. In these simulations, the same set-up and parameters as in § 4.1 were used
(including p0

c = 100 Pa), except with a twice as large gate height and μ2 = tan(40◦) >
tan(θ) to ensure steady-state flow. These parameters are listed in table 7. A comparison
with the results of the discrete simulations of Mandal et al. (2020) reveals clear differences,
both in terms of the shape of the velocity profile under the plug and in terms of the relative
change in velocity magnitude as the cohesion is increased. While the qualitative results
from the cohesive simulations presented in this section are promising and in line with
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Initial mass

b(x)

x

θ

Figure 17. Sketch of terrain in experiments of Viroulet et al. (2017).

expectations, a robust validation of the cohesive model and its implementation remains to
be addressed.

4.4. Multiple solutions for flow over a smooth bump
In small-scale experiments of granular flow over a smooth obstacle, Viroulet et al. (2017)
showed that two very different steady-state regimes can occur. In particular, either a ‘jet’
flow detaching from the apex of the bump or a ‘shock’ forming upstream of the bump is
observed, the latter being the case if a sufficient amount of erodible particles are placed in
front of the bump. This initially static mass reduces the energy of the impacting flow and
accordingly also the flow velocity, generating an increased flow thickness before the bump.
Curious as to whether the proposed critical state μ(I)-rheology model can capture both
steady-state solutions, simulations are performed assuming beads with the same diameter
and on the same terrain/bump as used in the experiments. Along the flow direction x, the
elevation of the smooth symmetric bump is given by (in metres)

b(x) = 0.0475 sech
(

x− 0.43
0.04

)
, (4.4)

as sketched in figure 17. At x = 0, i.e. 43 cm from the centre of the bump, the beads
flow through a gate of height 1.5 cm. With the bump being two-dimensional and the
flow being confined in a narrow chute, the problem is here simulated in two spatial
dimensions. Cohesionless spherical glass beads with identical parameters as in the dam
break simulations of § 4.2 are assumed, i.e. the parameters presented in table 5. In the
experiments of Viroulet et al., the beads show slippage along the base, prompting the
introduction of a base friction in the simulation, for simplicity as a Coulomb friction law
approximated on the velocities. In particular, introducing a base friction parameter μb, the
velocity v relative to the boundary is obtained as

v =
⎧⎨
⎩v∗T − μb||v∗N ||L2

v∗T
||v∗T ||L2

if ||v∗T ||L2 > μb||v∗N ||L2,

0 otherwise,
(4.5)

where v∗T and v∗N refer to the tangential and normal velocity components, respectively,
of v∗, i.e. the relative velocity before the boundary condition is considered. Equation
(4.5) is only used if v∗N suggests penetration of the boundary, otherwise v = v∗. Such
a boundary condition (4.5), which has been extensively used in MPM flow modelling
before (Gaume et al. 2018; Li et al. 2020; Cicoira et al. 2022) and which is further

997 A67-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

64
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.643


L. Blatny, J.M.N.T. Gray and J. Gaume

vx (m s–1)
0 1

Figure 18. Flow over bump with initial mass and θ = 39◦. Experiments of Viroulet et al. (2017) (left) and
simulations (right) at increasing time from top to bottom (t = 0, 0.4, 0.7, 1, 1.5, 4 s). The full time evolution is
shown in supplementary movie 3. Note the colour bar only applies to the simulations, not the experiments.

validated in Appendix E, is motivated from having to apply boundary conditions on
the grid where the velocities are readily available, unlike the stresses. It is reported
from the experiments that, with no initial mass in front of the bump, the beads detach
from the apex of the bump for slope angles around approximately 35◦, which justifies
roughly μb = 0.5. As in the experiments, the problem is here simulated with and without
an initial mass (here 0.13 kg) in front of the bump. Figures 18 and 19 show that the
simulations at a slope angle θ = 39◦ capture both of the two different steady-state regimes.
In the case with initial mass in front of the bump, figure 18 shows the ‘shock’ forming
upstream, demonstrating an overall good agreement with the experimental observations.
The complete time evolution in this simulation can be seen in supplementary movie 3.
Without initial mass in front of the bump, figure 19 shows the detaching ‘jet’ steady-state
flow. In this case, the experimental images indicate a significant vertical spreading of
the particles, a situation which is not observed in the simulations. This is believed to
be due to the sidewalls in the experiments, where the wall friction reduces the speed of
the particles closer to the walls. Consequently, these particles will experience a shorter
trajectory over the bump compared with the particles in the middle of the flow. As the
experimental images are taken from the side through the transparent walls, the different
trajectories are not visually distinguishable. Three-dimensional simulations with sidewall
friction would allow for a more proper comparison with experiments, and a more extensive
parameter tuning could improve the agreement with experimental trajectories. Using a
grid size of �x = 0.6 mm and Np = 0.65M, the two-dimensional simulations presented
here required approximately 8 computational hours per second on 8 cores on the same
computer architecture as presented in § 4.2. Supplementary movie 4 shows the complete
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vx (m s–1)
0 1

Figure 19. Flow over bump without initial mass and θ = 39◦. Experiments of Viroulet et al. (2017) (left) and
simulations (right) at increasing time from top to bottom (t = 0.3, 0.6, 0.9, 4 s). The full time evolution is
shown in supplementary movie 4. Note the colour bar only applies to the simulations, not the experiments.

time evolution in the jet flow simulation. In this movie, it can be noted how the flow
slightly pulses in response to small waves that are propagating down from the inflow.
This is here due to the not perfectly smooth feeding of particles through the gate, but
could also be a physical result of the flow breaking down into roll waves on sufficiently
long chutes (Barker & Gray 2017; Viroulet et al. 2018). Nevertheless, it is not observed in
the experiments.

5. Discussion and conclusions

This paper has presented a continuum model based on the combination of
theμ(I)-rheology with the critical state concept from geo-mechanics in a way that captures
both solid and fluid properties of granular media in a single framework. Incorporating
the elastoplastic CSSM theory, the proposed model is different from the previously
proposed critical state μ(I)-rheology models for dry granular flows (Barker et al. 2017;
Schaeffer et al. 2019; Bouchut et al. 2021). While these previous models are either
implemented in depth-averaged schemes (in one or multiple layers) or realized only for
one-dimensional problems, the elasto-viscoplastic model of this paper is implemented in
a B-spline MPM framework allowing full three-dimensional simulations. Accounting for
cohesion and compressibility through CSSM, the proposed model is more general than
the two-dimensional MPM-implemented μ(I)-rheology of Dunatunga & Kamrin (2015).
The proposed model approximately reproduces the expected flow profiles on inclined
slopes, and with the introduction of a smooth bump along the slope, the model is able to
qualitatively provide the two steady-state regimes observed in the experiments of Viroulet
et al. (2017). While for cohesionless glass beads a Drucker–Prager yield may be more
appropriate, for other granular materials, in particular snow, closed yield surfaces (such
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as the MCC yield surface) are more appropriate (Reiweger et al. 2015; Ritter et al. 2020;
Blatny et al. 2021). Snow also undergoes significant volumetric deformations under typical
loading conditions compared with cohesionless glass beads. The MCC model already
facilitates an uncomplicated treatment of such compaction and dilation.

The simulations of granular collapse of spherical glass beads displayed shear bands
affecting the smoothness of the surface at intermediate times before reaching the final
equilibrium position. This was attributed to the initial state of the granular system and
the immediate consolidation occurring as a result of the onset of gravity, thus leading to
a sudden increase in pc. As the gravity-induced compaction can be suppressed through
adjustments of the plastic parameters of the hardening law, Appendix B demonstrated that
the surface during the collapse can be smoothed. While such shear band-induced surface
patterns were not reported in the spherical glass bead collapse experiments, they are
generally observed in experiments involving dry granular media (Gudehus & Nübel 2004;
Torres-Serra, Romero & Rodríguez-Ferran 2020). Nevertheless, neglecting the surface
effects, §§ 4.2 and 4.3 showed that the proposed CSSM-based μ(I)-rheology model is
able to capture the observed dynamics and final deposit in granular collapse experiments
of spherical glass beads on both flat and inclined surfaces reasonably well.

While Lacaze & Kerswell (2009) showed, using discrete simulations, that
the μ(I)-rheology holds across the whole flow of such problems, others have presented
numerical experiments that seem to indicate that the μ(I)-rheology is not needed to
capture the specific problem of granular collapse. Specifically, the recent paper of
Rousseau et al. (2022) claims that only a single friction parameter is needed to describe
granular collapse and further argues that the μ(I)-rheology is an over-complication
for modelling such problems. This is analogous to the previous claims of Ionescu
et al. (2015) and Martin et al. (2017) who, implementing the μ(I)-rheology in a
Drucker–Prager viscoplastic approach with variable viscosity, showed that the results
did not differ significantly if the viscosity was assumed constant. Similarly, Crosta,
Imposimato & Roddeman (2009) showed that granular collapse can be accurately
modelled with a constant friction angle in a Mohr–Coulomb yield rule. Along these lines,
it seems reasonable to assume that, with appropriately chosen constitutive parameters, a
rate-independent CSSM (i.e. with a constant, I-independent, slope of the CSL) may also
be adequate in modelling the granular collapse problem. This is shown and discussed in
Appendix D.

Moreover, it should be mentioned that the wall friction may influence the results. In
the simulations of granular collapse presented here (on various inclinations), all sidewalls
were assumed frictionless. While investigating the influence of wall friction in granular
flow was not within the scope of this study, such simulations could be accomplished by
employing the frictional boundary conditions outlined in § 4.4. The effect of sidewalls
during granular collapse has been analysed, e.g. numerically by Martin et al. (2017),
showing that introducing friction may help in better capturing the experimental results.
Along the same lines, slippage of the material along the base may also influence the
results. The base was assumed no-slip in all granular collapse simulations presented
here, and it was highlighted as a potential reason for the short runout compared with
the experimental observations by Xu et al. (2017) of granular collapse on the horizontal
surface. In particular, Ionescu et al. (2015) reported a 10 % increase in runout going from
a no-slip base to a basal friction of 0.48. The reader is referred to these references for
further insight into the influence of wall and base friction on granular collapse. The flow
over bump problem presented in § 4.4 was the only set-up in this work where a non-zero
finite base friction was employed. Following the MPM community, this was accomplished
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by applying boundary conditions on the grid velocities, proving an approximation to
the Coulomb friction law which was further validated in Appendix E. While one could
foresee imposing boundary conditions on the stresses, this would come at an increasing
computational cost as the stresses are not readily available on the grid.

The cohesion assumed in the proposed model is a form of cohesion that is always present
(for β, pc > 0). In order to apply the model to flows where this may not be an appropriate
description of cohesion, the model could be altered to remove cohesion, i.e. setting β to
zero, after yield or another pre-defined criterion. With increasing cohesion, it was found
that steady-state flow can still be observed, with increasing β leading to plug flow near
the surface, qualitatively similar to the observations in the discrete simulations of Rognon
et al. (2008b) and Mandal et al. (2020) of cohesive granular flows. An exact quantitative
comparison between the proposed model and previous discrete simulations remains
challenging as this entails relating β to the prescribed inter-particle force parameter used
in the discrete simulations. In this study, the cohesion parameter β imposes a translation
of the CSL in principal stress space. This is analogous to the usual treatment of cohesion
in viscoplastic fluids, such as Bingham fluids, where cohesion can be accounted for by
altering the yield stress. For example, Abramian, Staron & Lagrée (2020) and Gans et al.
(2023) considered cohesion similarly by altering a simple I-dependent Mohr–Coulomb
yield criterion in their volume-of-fluid incompressible Navier–Stokes scheme. Comparing
with discrete simulations, Abramian et al. (2020) concluded that such approach can
accurately capture the effective cohesion induced by cohesive discrete particles. In fact,
they proposed explicit relations between their (macroscopic) Mohr–Coulomb cohesion
parameter and the (microscopic) inter-particle cohesive force parameter. Such a study
could also be performed in the context of the model proposed here, in order to establish
a link between β (and p0

c) and the inter-particle attractive force. On the contrary, the
numerical studies by Mandal et al. (2020, 2021) suggest that, while the inter-particle
attractive force controls the initiation of the flow, the cohesive flow dynamics is better
described by an effective attractive force that also takes into account the stiffness and
inelasticity of the grains.

In the critical state μ(I)-rheology model presented here, the granular material can
undergo both elastic and plastic compaction and dilation. Unless the initial compressive
strength is chosen to be very large, the elastic volumetric change is negligible and all
volumetric deformation can be considered plastic. In § 2.4, this assumption was used to
derive a hardening law that recovers the logarithmic relationship between the inverse
solid volume fraction and the isotropic compressive strength, which is a relationship
commonly used for the (slow) deformation of soils and powders (Walker 1923; Poquillon
et al. 2002; Castellanos 2005). However, as mentioned in the Introduction, for granular
media undergoing flow, a φ(I)-relation has been reported, relating the solid volume
fraction to the inertial number. In particular, above a critical inertial number, the solid
fraction typically decreases linearly with this number. A hardening law that recovers the
φ(I)-relation may be possible, although this was not explored in this work, where we opted
for a φ( p)-relation. However, as briefly mentioned in §§ 4.1 and 4.2, this did induce a
decreasing solid volume fraction with flow speed, qualitatively similar to the φ(I)-relation.
Formulating an accurate unified hardening law for both solid and fluid granular media,
i.e. a law reproducing φ(I) in the high inertial number limit and φ( p) in the low inertial
number limit, would require extensive further work.

The critical state μ(I)-rheology assumed in this paper is a local theory in the sense it
does not explicitly account for the observed situation where stress or velocity fluctuations
caused by rearrangement at one location trigger rearrangements elsewhere in the system
(Gaume, Chambon & Naaim 2011, 2020). This is what led to the non-local theories
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of Pouliquen & Forterre (2009) and Kamrin & Koval (2012). In the future, the model
presented in this paper could be extended to introduce non-local effects in order to
reproduce, e.g. the previous experimental observations of Pouliquen (1999), Pouliquen
& Forterre (2002) and GDR MiDi (2004) indicating that there is a minimum thickness
required to observe a steady-state flow at a given inclination angle. This minimal thickness
decreases with inclination angle. In the local μ(I)-rheology this cannot be reproduced
without possibly considering a threshold on the flow speed. Very recently, Dunatunga
& Kamrin (2022) and Haeri & Skonieczny (2022) included non-local effects in their
elasto-viscoplastic Drucker–Prager μ(I)-rheology model.

The flow and collapse simulations highlighted in this paper provide a small glimpse at
what is feasible with the presented theoretical and computational framework. In the future,
it may be applied to various granular dynamics problems. For example, the numerical
implementation in MPM makes this framework particularly suited to study erosion (Li
et al. 2022, 2024; Vicari et al. 2022). While this may be accomplished well with other
methods (Lusso et al. 2017; Fernández-Nieto et al. 2018), in MPM the terrain can simply
be filled with the same or different material as that of the incoming flow, with no extra
coupling or changes to Algorithm 1 needed. Other phenomena that could be studied
include the formation of (free-surface) roll waves which may develop in granular flow
on rough inclined planes (Forterre & Pouliquen 2003; Barker & Gray 2017; Viroulet et al.
2018). Implementing the model in other hybrid/mesh-free numerical solvers such as SPH
or PFEM should also allow such studies. In addition, future studies could investigate
the capability of the model, or extensions of the model, to capture levee formation,
self-channelization (Félix & Thomas 2004; Mangeney et al. 2007; Rocha, Johnson &
Gray 2019; Edwards et al. 2023) and finger formation (Woodhouse et al. 2012; Baker,
Johnson & Gray 2016) observed, e.g. in debris flows, snow avalanches and pyroclastic
flows (Jessop et al. 2012). One could also foresee coupling the model with particle size
segregation in order to capture the segregation phenomena that occur in poly-disperse
granular assemblies (Rognon et al. 2007; Barker et al. 2021; Maguire et al. 2024). While
an increased interest in understanding the effect of cohesion in granular flows has been
witnessed (Rognon et al. 2006, 2008b; Berger et al. 2015; Khamseh et al. 2015; Badetti
et al. 2018; Abramian et al. 2020; Vo et al. 2020; Mandal et al. 2020, 2021; Macaulay &
Rognon 2021; Dong et al. 2023; Gans et al. 2023), this topic has also recently become
increasingly relevant in the snow and avalanche community (Rognon et al. 2008a; Bartelt
et al. 2015; Li et al. 2020). This is particularly motivated by the notion that climate change
induces an increase in the proportion of wet cohesive snow avalanches compared with
dry ones (Ballesteros-Cánovas et al. 2018; Součková et al. 2022). Hence, we expect the
proposed approach to have important impacts in this field, in particular for the evaluation
of avalanche impact pressures, runout distances and more generally risk management and
mitigation (Ortner et al. 2023).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.643.
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Appendix A. Operator splitting: elastic predictor–plastic corrector

This appendix outlines the elastic predictor–plastic corrector scheme following Simo
(1992).

The symmetric positive–definite second-order right and left Cauchy–Green strain
tensors are given by

C = F TF =
dim∑
α=1

λ2
αNα ⊗Nα (A1)

and

b = FF T =
dim∑
α=1

λ2
αnα ⊗ nα, (A2)

respectively. Here, the unit vectors nα and Nα define the principal spatial and material
directions, respectively. Furthermore, the plastic right Cauchy–Green tensor is defined
as CP = (F P)TF P, and the elastic left Cauchy–Green tensor as bE = F E(F E)T . With these
definitions, the elastic left Cauchy–Green strain can be written as

bE = F E(F E)T = F (CP)−1F T . (A3)

Thus, the change in bE over time can be decomposed into two terms

DbE

Dt
= DbE

Dt

∣∣∣∣∣
CP=const.

+ DbE

Dt

∣∣∣∣∣
F=const.

, (A4)

where the last term quantifies the change in bE independent of the total deformation. As
shown in Bonet & Wood (2008), these terms can be related to the velocity gradient, in
particular

LE = 1
2

DbE

Dt
(bE)−1, LP = −1

2
DbE

Dt

∣∣∣∣∣
F=const.

(bE)−1, (A5a,b)

and as such we have

DbE

Dt

∣∣∣∣∣
F=const.

= −2LPbE (2.15)= −2γ̇RbE, (A6)

where R = ∂y/∂σ/||∂y/∂σ || was introduced.
We introduce discrete time tn, n ∈ N and consider the integration of (A4) from bE,n

at time tn to bE,n+1 at time tn+1 in a step of �t through an operator splitting scheme (as
presented in § 3.2 in Simo 1992). First, neglect the last term on the right-hand side of (A4),
resulting in a trial state bE,trial due to elasticity only. Then, neglect the first term on the
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right-hand side, integrating only the second term, i.e. (A6), from bE,trial to bE,n+1 with an
exponential integrator

bE,n+1 = exp(−2γ̇R�t)bE,trial, (A7)

which is (3.12b) in Simo (1992). Noting that the elastic Hencky strain εE is directly related
to bE through εE = 1

2 ln bE, we can write the above in terms of the Hencky strain, in
particular

εE,n+1 = εE,trial − γ̇R�t. (A8)

Splitting the Hencky strain into a symmetric and deviatoric part, this equation can be
expanded to

[
dev εE,trial + tr(εE,trial)

dim
I
]
−

[
dev εE,n+1 + tr(εE,n+1)

dim
I
]
−�tγ̇

∂y
∂p
∂p
∂σ
+ ∂y
∂q
∂q
∂σ

||∂y/∂σ || = 0,

(A9)

where for R it was assumed that y = y( p, q) and using the chain rule. From the definition
of p and q, it follows that

∂p
∂σ
= − 1

dim
I (A10)

and
∂q
∂σ
= 1√

2

τ

||τ || =
1√
2

dev εE

|| dev εE|| =
1√
2

dev εE,trial

|| dev εE,trial|| , (A11)

where the second last equality follows from Hencky’s elasticity model where τ =
2G dev(εE), and the last equality can be seen by applying the deviatoric operator on (A8).
Now, (A9) can be written as

dev εE,trial − dev εE,n+1 + 1
dim

tr(εE,trial)I − 1
dim

tr(εE,n+1)I

− �tγ̇√
2

∂y/∂q
||∂y/∂σ ||

dev εE,trial

|| dev εE,trial|| +
�tγ̇
dim

∂y/∂p
||∂y/∂σ ||I = 0. (A12)

This can be split into two as[
tr(εE,trial)− tr(εE,n+1)+�tγ̇

∂y/∂p
||∂y/∂σ ||

]
I = 0

[
|| dev εE,trial|| − || dev εE,n+1|| − 1√

2
�tγ̇

∂y/∂q
||∂y/∂σ ||

]
dev εE,trial

|| dev εE,trial|| = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (A13)

which results in only two scalar equations

tr(εE,trial)− tr(εE,n+1)+�tγ̇
∂y/∂p
||∂y/∂σ || = 0

|| dev εE,trial|| − || dev εE,n+1|| − 1√
2
�tγ̇

∂y/∂q
||∂y/∂σ || = 0

⎫⎪⎪⎬
⎪⎪⎭ , (A14)
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which can be expressed in terms of p = −K tr(εE) and q = √2G|| dev (εE)|| as

pn+1 = ptrial − K�tγ̇
∂y/∂p
||∂y/∂σ ||

qn+1 = qtrial − G�tγ̇
∂y/∂q
||∂y/∂σ ||

⎫⎪⎪⎬
⎪⎪⎭ , (A15)

where K = λ+ 2G/ dim is the bulk modulus. Alternatively, using the definitions in (2.17)
and (2.18), this can be expressed as

pn+1 = ptrial + Kγ̇V�t

qn+1 = qtrial − Gγ̇S�t

}
. (A16)

Together with the requirement that the new stress state resides on the (updated) yield
surface, i.e.

y( pn+1, qn+1) = 0, (A17)

where (A16) represents the projection of trial stress state ( ptrial, qtrial) to the closest stress
state ( pn+1, qn+1) on the yield surface. This projection operation is often referred to as a
return mapping and is in the general case solved with iterative schemes. In this work, (A16)
and (A17) were solved with the Newton–Raphson method. Recall that, from the proposed
hardening law of § 2.4, the compressive strength pc given by (2.19) depends on plastic
volumetric deformation only. The plastic volumetric strain εP

V increases or decreases only
as a result of change in pressure, in particular the plastic volume change is given by

�ε
P,n+1
V = pn+1 − ptrial

K
. (A18)

Thus, pc is independent of q. Further assuming μ = μ1 is constant (recall discussion in
§ 2.6), it follows that ∂y/∂q is independent of p and that ∂y/∂p is independent of q.

Appendix B. Influence of elastic and plastic parameters

Here, a condensed sensitivity study on the elastic and plastic parameters is presented,
focusing both on granular column collapse and steady-state flow.

In the case of granular collapse, the dam break set-up from § 4.2 on slope angle θ = 22◦
with the same initial conditions and parameters as in table 5 is considered, albeit in
two spatial dimensions to reduce computational time (using Np = 17k particles, the
two-dimensional simulations take only 1.3 s instead of 18 h per second). The effect of
changing the Young’s modulus E, Poisson’s ratio ν, initial compressive strength p0

c and
hardening factor ξ on the front position evolution is demonstrated in figure 20. Varying
the Young’s modulus between 1 MPa and 1 GPa, it can be observed in figure 20(a)
that it does not significantly change the collapse evolution. The upper value 1 GPa was
used by Dunatunga & Kamrin (2015) in their elastoplastic granular flow simulations.
Moreover, increasing the Poisson’s ratio means allowing the material to expand more,
and accordingly a very small increase in front position may be observed with increasing
Poisson‘s ratio. While a Poisson’s ratio ν = 0.3 was used throughout this paper, for
spherical glass beads ν = 0.2 may be more appropriate (Muqtadir, Al-Dughaimi &
Dvorkin 2020). Nevertheless, as shown in figure 20(b), ν = 0.2 and ν = 0.3 gave
approximately indistinguishable results for the granular collapse. With a small hardening
factor ξ , the system may evidence a significant initial compaction under gravity. As shown
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Figure 20. Front position evolution in two-dimensional dam break on θ = 22◦ with various elastic and plastic
parameters. Default parameters: Young’s modulus E = 1 MPa, Poisson’s ratio ν = 0.3, initial compressive
strength p0

c = 100 Pa and hardening factor ξ = 50. Experimental data of Mangeney et al. (2010).
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Figure 21. Solid fraction evolution in two-dimensional cohesionless dam break on θ = 22◦ with various
hardening parameters ξ .
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Figure 22. Elastic and plastic volume change in the cohesionless dam break on θ = 22◦ from § 4.2.

in figure 20(d), as long as it is large enough (ξ > 10), the collapse displays an almost
identical dynamics of the front position. Figure 21 demonstrates further how the hardening
factor influences the ability of the material to compact, clearly highlighting the reduction
of the initial gravity-induced compaction with increasing ξ . Figure 22 indicates that the
volumetric deformations are dominantly plastic. Using a very small initial compressive
strength p0

c , leaving ξ unchanged, may also lead to strong compaction under gravity. In
an appropriate range of values, changing p0

c does not affect the collapse significantly, as
can be seen from figure 20(c). On the other hand, with too large p0

c , the material may
behave more as a fracturing solid. This is illustrated in figure 23, which shows that when
using p0

c = 10 kPa one observes one large block of material fracturing before sliding
off. At t = 0.2 s, increasing p0

c results in a behaviour that may appear reminiscent of
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t = 0.2 s t = 0.6 s
0 50

γ
.
s(s

–1)p0
c = 0.1 kPa

p0
c = 1 kPa

p0
c = 2 kPa

p0
c = 3 kPa

p0
c = 10 kPa

Figure 23. Cohesionless dam break on θ = 22◦ at times t = 0.2 and t = 0.6 with different values of initial
compressive strength p0

c . To highlight the shear bands, they are here visualized in terms of the equivalent
plastic shear strain rate.

the behaviour for increasing β. However, while increasing β results in a monotonically
decreasing front position, increasing p0

c will not alter the runout dynamics unless it is
so large ( p0

c = 10 kPa) as to induce solid-like fracturing. Visualizing the plastic shear
strain rate, figure 24 suggests that the surface effects discussed in § 4.2 can be controlled
through the plastic parameters. As can be seen in this figure, by tuning p0

c and ξ in the
cohesionless case one is able to suppress the surface bumps substantially. Nevertheless, as
will be discussed in Appendix C, the surface effects are discretization dependent as they
originate from strain localization.

In order to investigate the effect of p0
c further, a simple direct shear test is conducted

in the absence of gravity. It is expected from critical state theory that the transition to
critical state (where no further volume change occurs) will depend on whether the initial
state is loose or dense (Wood 1991). Considering loose and dense systems through small
and large initial compressive strengths, respectively, a differing dynamics is measured, as
shown in figure 25. Dense systems compact slightly before dilating while loose systems
only compact, in both cases reaching a state with no further volumetric deformations.
This observation is consistent with expectations, with similar results also obtained through
previous discrete element simulations (Bernhardt, Biscontin & O’Sullivan 2016; Wang
et al. 2022).
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(a) (b)

0 50
γ
.
s (s–1)

Figure 24. Cohesionless dam break on θ = 22◦ at time t = 0.2 with different plastic parameters resulting in
different surface features: (a) p0

c = 0.1 kPa, ξ = 50 and (b) p0
c = 0.2 kPa, ξ = 70. Here visualized in terms of

the equivalent plastic shear strain rate.
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Figure 25. Evolution of the volumetric (Hencky) strain εV during a direct shear test. The set-up is sketched in
the inset figure. Here using E = 1 MPa, ν = 0.3, ξ = 100, β = 0 and the parameters given in table 3.
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Figure 26. Steady-state flow profile reached over time t on inclination θ = 28◦. Here, various elastic and
plastic parameters are changed, where in all cases the initial condition is a linear velocity profile. The black
dashed curve is the theoretical prediction from the μ(I)-rheology, using the parameters given in table 7.

In the case of steady-state flow, the majority of the stress states would align with the
CSL, and the exact onset of plastic deformation is not crucial as long as it is small
enough to ensure all deformations are dominantly plastic. In that case, the elastic regime
is generally not important. Figure 26 shows the (in)sensitivity of elastic and plastic
parameters in capturing the expected Bagnold steady-state velocity profile. As such, in
this situation it can be claimed that the elastic model is not intended as a constitutive
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�x = �x0 �x = �x0/2

�x = �x0/4 �x = �x0/8

0 50
γ
.
s (s–1)

Figure 27. Cohesionless dam break (corresponding to figure 24b) on θ = 22◦ at time t = 0.2 under grid
refinement. Here, �x0 = h0/45 using initially six particles per grid cell in all cases.

law supposed to give a quantitative description of the material, rather simply providing
a convenient means to deal with the ill-posedness of the μ(I)-rheology for low inertial
numbers.

Appendix C. Strain localization and discretization dependency

When exposed to external stress or during the transition to flow, granular media typically
display shear bands where the deformation localizes in thin zones that can have a width
of a few grains (Mueth et al. 2000; Fenistein & van Hecke 2003). Strain localization and
its dependency on discretization is a general feature of continuum elastoplastic models
featuring strain softening. As a remedy, rigorous regularizing techniques introduce a
characteristic length scale in the governing equations, e.g. through higher-order gradient
methods (Triantafyllidis & Aifantis 1986; Aifantis 1987, 1992) or with the introduction
of non-local variables through spatially weighted averaging (Jin & Arson 2018; Monforte
et al. 2019). In figure 27, the granular collapse is visualized at different grid resolutions.
With increasing resolution, it is observed that the plastic strain becomes increasingly
localized in these bands, as expected in such an elastoplastic model, with the thickness
of the bands decreasing and the magnitude of the plastic strain in these bands increasing.
As such, a proper experimental validation of the simulated bands would not be feasible.
Nevertheless, the dynamics of the collapse remains independent of discretization, as
shown in figure 28, demonstrating convergence of the front position evolution under grid
refinement. Under flow on inclined planes with inclination θ > tan−1(μ1), where all stress
states are fully plastic and where there is no static–fluid interface, strain localization is
not observed. In this case, figure 29 shows the discretization-independent results for the
velocity profile.
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Figure 28. Evolution of front position in the cohesionless dam break on θ = 22◦ under grid refinement, in all
cases using initially six particles per grid cell. Here, (a,b) correspond to the dam break presented in figures 24(a)
and 24(b), respectively.
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Figure 29. Cohesionless flow on inclination θ = 28◦ under grid refinement, using parameters as in table 7.
The velocity profile was initially imposed as linear (with a surface velocity of 4 m s−1) and is here shown at
two different later times, the right plot being the steady-state profile.
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Figure 30. Granular collapse on slope angle θ = 22◦ using rate-independent MCC with constant slope μ
of CSL, otherwise using the parameters as in § 4.2 treating the rate-dependent case. Experimental data of
Mangeney et al. (2010).

Appendix D. Results from rate-independent CSSM

Previous studies have shown the ability of I-independent models with constant friction
or constant viscosity in capturing granular column collapse (Crosta et al. 2009; Ionescu
et al. 2015; Martin et al. 2017; Rousseau et al. 2022). It is therefore instructive to consider
to which extent the same can be claimed for rate-independent CSSM, in particular the
proposed model with a constant, I-independent, μ. Indeed, figure 30 indicates that with
the particular choice μ = tan(26◦), the granular collapse front position is well captured.

However, in capturing steady-state flow, the I-dependence is crucial. Figure 31 shows
the inability of rate-independent MCC in achieving steady-state flow, either accelerating
flow in the case θ > tan−1(μ) or stopping flows in the case θ < tan−1(μ).
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Figure 31. Flow on slope angle θ = 28◦ using rate-independent MCC with constant slope of CSL, with
(a) μ = tan(35◦) and with (b) μ = tan(21◦), showing stopping flows and accelerating flows, respectively. The
other parameters are chosen as that of § 4.1 where the rate-dependent model produced steady-state flows. In
both (a,b), the initial condition was here a linear velocity profile.
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Figure 32. Downslope position x of a stiff elastic box sliding down planes with inclination θ =
14◦, 16◦, 18◦, . . . , 28◦, 30◦, in all cases using a basal friction coefficient μb = tan(15◦). As such, no flow is
expected for inclinations θ below 15◦. The initial position is x = 0 with zero velocity. The dots represent the
analytical solution x = max(0, 1

2 g(sin θ − μb cos θ)t2) and the solid lines represent the simulations.

Appendix E. Basal friction

In order to validate the boundary conditions used in § 4.4 where a non-zero basal friction
was introduced, simulations of a stiff elastic box sliding on inclined planes are performed.
Figure 32 demonstrates that the proposed approach can accurately capture the analytical
solutions from Coulomb’s friction law.
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