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TOPOLOGICALLY SIMPLE BANACH ALGEBRAS WITH DERIVATION

E L HOSSEIN ILLOUSSAMEN AND VOLKER RUNDE

It is not known if a commutative, topologically simple, radical Banach algebra ex-
ists. If, however, every derivation on such an algebra is continuous, this yields the
automatic continuity of all derivations on commutative, semiprime Banach algebras.
Utilising techniques used by Thomas in his proof of the Singer-Wermer conjecture,
we show that, if A is a commutative, topologically simple Banach algebra with a
non-zero derivation on it, then a quotient of a certain localisation of A has a power
series structure. A pivotal role is played by what we call ample sets of denominators.

INTRODUCTION

In [10], Johnson proved that derivations on commutative, semisimple Banach al-
gebras are automatically continuous and thus, by the classical Singer-Wermer theorem
[12], equal to zero. This result confirmed a long open conjecture by Kaplansky. In [6],
Dixon observed that the class of semiprime Banach algebras was a natural extension
of the class of semisimple Banach algebras and asked if the automatic continuity results
known to hold for semisimple Banach algebras extend to this larger class. The problem of
whether every derivation on a (commutative) semiprime Banach algebra is automatically
continuous has been open ever since.

Partial results — all positive — are given, for instance, in [8], [11], and [9]. All
these results utilise the connections of the automatic continuity question for derivations
on commutative, semiprime Banach algebras with the perhaps deepest open problem in
general Banach algebra theory, the closed ideal problem, which were first discovered by
Cusack [5].

Recall that a Banach algebra A with A2 ^ {0} is called topologically simple if it
has no two-sided closed ideals other than {0} and A. A topologically simple Banach
algebra is necessarily primitive or radical. The closed ideal problem is the question of
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whether there is a commutative, topologically simple Banach algebra other than C. If
a commutative, topologically simple Banach algebra other than C exists, it must be
radical, and it is also not difficult to see that it must also be an integral domain. Let A

be a commutative Banach algebra which is an integral domain — by [8], the automatic
continuity of derivations on commutative, semiprime Banach algebras follows once it has
been established for integral domains, and let I denote the intersection of the non-zero
closed ideals of A. It is easy to see that / is either {0} or a topologically simple, radical
Banach algebra. If / = {0}, that is, if {0} is accessible in the terminology of [4], then
every derivation on A is continuous as a simple consequence of [4, 1.1 Lemma]. It follows
that every derivation on A is continuous if C is the only commutative, topologically
simple Banach algebra. The results from [8, 11, 9] all give, in one way or another, a
necessary condition for / to be zero.

In this note we do not even attempt to make any step towards a resolution of the
closed ideal problem. Instead, we attack the mythological beasts directly: We consider
derivations D : A -> A, where A ^ C is a commutative, topologically simple Banach
algebra. We are keenly aware of the fact that our approach might ultimately turn out to be
a contribution to the theory of the empty set. However, since the closed ideal problem has
been open since the early days of Banach algebra theory, and no solution even seems to be
in sight, we feel justified to proceed this way in view of [11, Theorem 6]: If all derivations
on commutative, topologically simple Banach algebras are automatically continuous, then
all derivations on commutative, semiprime Banach algebras are continuous. Certainly,
the ideas contained in [8, 11, 9] do not help us any further. Instead, we shall borrow
heavily from the first part of Thomas' proof of the Singer-Wermer conjecture [15], and
show that, under certain additional conditions on D, a certain quotient of a localisation
of A has a power series structure.

1. LOCALISATIONS OF BANACH ALGEBRAS

In [10], Johson reduced the Singer-Wermer conjecture to the case of commutative,
local Banach algebras, that is, commutative radical Banach algebras with identities ad-
joined. The Singer-Wermer conjecture was thus equivalent to the question of whether a
derivation on a commutative, local Banach algebra could attain invertible values. If A
is a commutative, local Banch algebra, D: A —t A is a. derivation, and z £ rad(>l) is
such that Dz £ lnv(A), then A 3 a >-> (Dz)~1D is a derivation attaining the value 1 at

oo

z. Under these hypotheses, Thomas showed in [15] that A/ f~) znA has a power series
n=l

structure (and, secondly, that this is irreconcilable with A being a commutative, local
Banach algebra).

We wish to obtain a similar power series structure result to that in [15], when A

is a commutative, topologically simple Banach algebra, and D : A -¥ A is a non-zero
derivation. In this context, however, we have no invertible elements at our disposal.
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What we shall do therefore, is to make certain elements of A artificially invertible by

localising the algebra.

Let A be a commutative algebra, and let 5 be a multiplicative subsemigroup of

A containing no divisors of zero, tha t is, a set of denominators. Define an equivalence

relation ~ on A x S through

(a, s) ~ (a', s') :«=> as' = a's (a, a' 6 A, s, s' € 5 ) .

and let 5 ~ M denote the set of the corresponding equivalence classes; write a/s or as~l

for the equivalence class of (a, s) € A x S. With the usual rules for calculating with

fractions, S~XA becomes a commutative, unital algebra, in which every element of 5

becomes invertible. It is called the localisation of A with respect to S.

R E M A R K S 1. Unlike most standard texts on commutative algebra, such as [3], we do

not assume A to be unital. If s € S is an arbitrary element, the map A 3 a H-» as/s is an

embedding which does not depend on the choice of s; we shall therefore simply view A as

a subalgebra of S ~ M . If A is non-unital with unitisation A*, the canonical embedding

A <-» S~*A extends (canonically) to A*.

2. In general, if A is a Banach algebra, S~*A — except under very restrictive

conditions (see [13] and [14]) — is not a Banach algebra.

Let D: A —> A be a derivation. Then D has a unique extension, likewise denoted

by D, to S~lA denned through

Let So be an arbitrary subset of A containing no divisors of zero; we write (So) for

the set of denominators generated by So. If So = {si,..., sn}, we also write (s\,... , sn)

instead of (So). Certainly, if z 6 A is such that Dz is not a divisor of zero, then Dz

becomes invertible in (Dz)~lA.

For our main theorem, we require sets of denominators with a particular property:

DEFINITION 1.1: Let A be a commutative algebra, and let 5 C A be a set of

denominators. Then S is called ample if, for each s\,... ,sn € S, there is t G 5 such that

t is divided by every element of (s\,... , sn).

It is not hard to conclude from the Mittag-Leffler theorem that, in a commutative,

topologically simple Banach algebra, the set of non-zero elements is an ample set of

denominators. A very similar argument, however, shows that much smaller ample sets of

denominators exist in abundance:

PROPOSITION 1 . 2 . Let A be a commutative, topologically simple Banach

algebra, and let So C A be a countable set of non-zero elements. Then there is an

ample, countable set of denominators S C A containing So.
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PROOF: Let So — {sn : n € N}. We shall define inductively an increasing sequence'
(Sn)^, of countable sets of denominators in A such that

(i) sn 6 Sn for n G N, and

(ii) for each n e N, there is t G 5 n + 1 such that t is divided by every element of

Sn-
oo

By letting S :— [j Sn, we obtain a set with the desired properties.
n=l

To start the induction, let Si := (si). Let n G N, and suppose that Si,... ,Sn have
already been defined. Let Sn = {tn : n G N}. Since A is topologically simple, we have
{tnA)~ = A for all n € N. Prom Bourbaki's Mittag-Leffler theorem (see, for example,

00

[7]), it follows that f) ti • • • tnA is also dense in A and thus, in particular, non-zero. Let
n=l

oo
t be an arbitrary, non-zero element of p) ti • • • tnA. Then, by definition, t is divided by

n=l
every element of Sn. Finally, let Sn + 1 := (Sn U {sn+ut}). D

2. A POWER SERIES STRUCTURE THEOREM

Let A be a commutative, topologically simple Banach algebra, let D : A —> A
be a derivation, let z € A be such that Dz ^ 0, and let 5 C A be an ample set of
denominators. Wish to prove an analogue of [15, Proposition 2.24], that is, a power

00
series structure theorem for S~1A/ f] znS~1A. We follow [15] closely; whenever an

n=l

argument is only a minor variation of one from [15], we just give a brief reference.

We begin with a purely algebraic lemma:

LEMMA 2 . 1 . Let A be a commutative algebra with identity, let A: A —> A be a,

derivation, and let z € A be such that Az — 1. Define, for n € N,

6n(a) := £ ( - i ) * ^ V (a € A).
k=o K- -

Then:

(i) 9n(z)=0 (n€N);

(ii) A(0n(a)) € znA (a € A, n € N);

(iii) 6n(ab) - 9n(a)en{b) € zn+1A (a, b G A, n € N);

(iv) On(0m{a)) - em{a) £ zm+1A (a 6 A, n,m e N, m ̂  n).

PROOF: The proof of [15, Lemma 2.15] is purely algebraic and thus carries over

verbatim. D

Let A be a commutative Banach algebra, and let z € A. Then z is said to have finite

closed descent if {znA)~ = (zn+M)- for some n £ N [2].
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LEMMA 2 . 2 . Let A be a commutative Banach algebra, let z e A have finite

closed descent, let S C A be an ample set of denominators, and let si,... , sjv € 5 . Then

for any choice of sequences (a*)j£L0
 m A and (f;t,i)£L0, . . . , {^k,N)kLo in N, there is an

element y € S~lA and a sequence {bn)%L0 in S~*A such that

*=o s i s " / *=i

PROOF: Since 5 is ample, there is t £ 5 such that t is divided (in A) by every

element of (s\,... , s^); in particular, for each i s N , there is tk S A such that

Define 3^ := tkdk for k € N. Then the same Mittag-Leffler argument as in the proof

of [15, Proposition 2.18] (which, in turn, goes back to [1]) yields y G A and a sequence

(&n)|JLo m A such that

(y-J2akz
k) - zn+1bn € f| zkA (n € No).

\ k=0 J k=l

Division by t (in S~1A) yields the claim with y := y/t and bn := bn/t for n € N. D
oo

Let A be any commutative algebra, and let z e A be such that f] z"A = {0}. The
n=l

2-adic topology on ,4 is the metric topology defined through

d(a, b) := inf{2~" : n € No and a - b £ znA} (a, 6 € A),

OO 00

where z°A := A. If f| z M ^ {0}, we consider A/ f| z"^4. We write a for the coset of
n=\ n = l

oo oo
a € A in Aj f] znA. We then have a z-adic topology on Aj f] znA.

n=l n=l

In terms of the z-adic topology, we obtain from Lemma 2.2 (compare [15, Proposition

2.18]):
COROLLARY 2 . 3 . Let A, z, S and s\,... , s^ as well as y and bi, b2,... be as

oo _

in Lemma 2.2. Then the infinite series J2 ( a * / (s i t ' 1 • •' S"N'N)) zk converges to y and, for

oo _ _

each n S No, the infinite series £ ) ( a*/( s i* '1 •• •s"^'N))~zk~n~1 converges to bn in the
k=n+l

oo
z-adic topology on S~lA/ f] zkS~1A.

*=i

COROLLARY 2 . 4 . Let A be a commutative Banach algebra, let z € A have

finite closed descent, let D: A —> A be a derivation, and let S C A be an ample set of
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oo

denominators such that Dz is invertible in S~1A. Then, for each x e S~1A/ f] z"S~lA,
n=l

the infinite series

k=0

oo oo
converges in S~1A/ f] zkS~1A, where A is the derviation on S~1A/ f] zkS~1A induced

n=l n=l
by {Dz)~lD.

P R O O F : Slightly abusing notation, we also use A to denote the derivation [Dz)~xD

on S~lA. Let a € A and s E S be arbitrary, and choose b E A and t E S such that
{Dz)~l — b/t. We claim that, for each k E N0) there are ck E A and vk, \xk € N such that

Ak (°) = Ck

Since
a at

A0 (-) = - = —
\s) s st'

the claim holds for k = 0. Now suppose that the claim has been proved for arbitrary
k e N. Then we have

-) = A (-*-) = bD ^

which establishes the claim for k + 1. The assertion of Corollary 2.4 then follows from
Corollary 2.3. D

Invoking Lemma 2.1, we obtain as in the proof of [15, Lemma 2.20]:

LEMMA 2 . 5 . Let A, z, D, S, 6 and A be as in Corollary 2.4. Then:

(i) 0(J) = 0;

(ii) A o 9 = 0;

(iii) 9 is a homomorphism.
oo

(iv) 9 is a projection onto a unital subalgebra Ag of S~lA/ f] znS~lA. More-
n=l

oo
over, no non-zero element of Ae is divided by z in S~lAJ f] znS~lA.

7 1 = 1

As an analogue of [15, Lemma 2.21], we obtain:

PROPOSITION 2 . 6 . Let A, z, D, S, A, 0 and Ag be as in Lemma 2.5. and
oo

suppose that z is not a divisor ofzero in A. Then, for each element a € S"1 Aj f] znS~lA,
n = l

oo

there is a unique sequence ( a t ) ^ JD - ^ sucn th&t a = ^Z akZk- Moroever, ? " with m £
oo _

divides a in S~lA/ f| znS~lA if and only ifa0 - • • • = am_i - 0.
n=l
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P R O O F : We begin with a proof of the uniqueness of S o ^ , Most of the corre-

sponding arguments in the proof of [15, Lemma 2.21] carry over verbatim. All we need is
OO

a substitute for [15, Lemma 2.8(ii)]. To this end, let a; 6 f] ztlS~1A, and let y E S~lA
n=l

be such that x — zy. Furthermore, for any i / £ N , there is y E 5 " M such that x = zv+ly.

Since z is not a divisor of zero in A, it cannot be a divisor of zero in S~lA either, that
OO

is, y = z"y. Since v E N was arbitrary, this means that y E f] znS~lA.
n=l

The existence of So, S i , . . . is proved exactly as in the proof of [15, Lemma 2.21].
OO OO

Finally, let a = J2 akz
k e S~lA/ f] znS~lA with ao,au.. • E Ae, and let m E N.

A:=0 n = l _

As in the proof of [15, Lemma 2.21], we see that So = • • • = Sm_i = 0 if I™ divides S.

Conversely, suppose that a0 = • • • = Sm_i = 0. In the proof of the existence of a 0 , S i , . . . ,

it is actually shown that there are b0, b\,... such that

n

(n E N).

For n = m — 1, this means 5 = ?™6m_i, that is, z™ divides a. D

As a consequence we obtain (compare [15, Lemma 2.22], whose proof takes over):

COROLLARY 2 . 7 . Under the hypotheses of Proposition 2.6, we have the follow-

ing:

OO OO

Moreover, if a — ^2 akz
k E S~lA/ (~) z"S~1A with ao,ai, •.. E A$, we have

k=0 n=l

(ii) A(S) =

(iii) ak = 9(Ak(a))/k\ for k E No.

For any commutative algebra A, let J4[[Z]] denote the algebra of formal power series

with coefficients in A. The formal derivative is the derivation

OO OO

fc=0 / fc=l

We now have all the ingredients ready for the proof of the following structure result:

THEOREM 2 . 8 . Under the hypotheses of Proposition 2.6, the map

n=l *=0

is an algebra monomorphism, whose range contains the polynomials with coefficients in

A$- Morover, A acts on the range of (*) as the restriction of the formal derivative.
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P R O O F : AS noted in the proof of the corresponding assertion in [15] (Proposition

2.24), most of Theorem 2.8 has already been established (Lemma 2.5, Proposition 2.6,

and Corollary 2.7).

What remains to be shown is the multiplicativity of (*). Here, the corresponding ar-
_ 00

gument from [15] requires some modification. Let a, b 6 S~lA/ f] znS~1A be such that
n=l

" _ n - _ _
a = J2 &k~zk and b = J2 bkl

k with a0, b0, • •. , an, bn 6 As- Then, as in the proof of [15,
fc=i Jt=i

Proposition 2.24], we see that (*) maps ab to the product of the images of a and b under
00

(*). Since (*) is continuous with respect to the z-adic topology on S~lA/ f) znS~lA
n=i

and the Z-adic topology on .4a[[Z]], it follows that (*) is indeed multiplicative. D
Note that, unlike in [15, Proposition 2.24], we cannot conclude that (*) is onto: This

is due to the restriction on the denominators we had to impose in Lemma 2.2.

In a commutative, topologically simple Banach algebra, every non-zero element is

not a divisor of zero and has finite closed descent. Hence, we have:

COROLLARY 2 . 9 . Let A be a commutative, topologically simple Banach alge-

bra, let S C A be an ample set of denominators, let D: A —> A be a derivation, and let

z € A be such that Dz is invertible in S~1A. Then, with A denoting the derivation on
oo

S~lA/ H znS~1A induced by {Dz)~lD and with
n=\

oo oo

6: S-XA/ f| znS~1A -> S~lA/ f| znS~lA, x
k=0

the map (*) is an algebra monomorphism, whose range contains the polynomials with

coefficients in A$. Morover, A acts on the range of (*) as the restriction of the formal

derivative.

REMARKS 1. Let A be any commutative, topologically simple Banach algebra, let D:
A -t A be a derivation, and let z e A be such that Dz ^ 0. By Proposition 1.2, the
element Dz is then contained in a countable, ample set S C A of denominators. Then
certainly Dz is invertible in S~rA, so that Corollary 2.9 applies. However, we do not

00

know that z is not invertible in S~M. If z is invertible, then both S~iA/ |~| znS~iA
n=l

and A$ are just the zero algebra. In this situation, the conclusion of Corollary 2.9 —
albeit true — is not very interesting.

2. The most interesting consequence of [15, Proposition 2.24] is certainly [15, The-
orem 2.25], which eventually leads to a contradiction and thus to a proof of the Singer-
Wermer conjecture. It is not hard to see that, in our setting, we have an analogue of
[15, Proposition 2.24]. In [15], Thomas establishes a contradiction to [15, Theorem 2.25]
through the construction of recalcitrant systems [15, Definition 3.3]. We have been unable

https://doi.org/10.1017/S0004972700033414 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033414


[9] Topologically simple Banach algebras 161

so far to construct (analogues of) recalcitrant systems in localisations of commutative,

topologically simple Banach algebras.
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