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Abstract 13 
 14 
Transformer-based large language models are receiving considerable attention because of their ability to analyze 15 
scientific literature. Small language models (SLMs), however, also have potential in this area, have smaller compute 16 
footprints, and allow users to keep data in-house. Here, we quantitatively evaluate the ability of SLMs to: (i) score 17 
references according to project-specific relevance and (ii) extract and structuring data from unstructured sources 18 
(scientific abstracts). By comparing SLMs’ outputs against those of a human on hundreds of abstracts, we found that 19 
(i) SLMs can effectively filter literature and extract structured information relatively accurately (error rates as low as 20 
10%), but not with perfect yield (as low as 50% in some cases), (ii) that there are tradeoffs between accuracy, model 21 
size, and computing requirements, and (iii) that clearly written abstracts are needed to support accurate data 22 
extraction. We recommend advanced prompt engineering techniques, full-text resources, and model distillation as 23 
future directions. 24 
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1. Introduction 26 
 27 
Language models are emerging as powerful tools for a wide array of tasks, with a particularly promising role in 28 
processing scientific literature (Agathokleous et al. 2024; Jin et al. 2024; Lam et al. 2024; Simon et al. 2024; Busta 29 
et al. 2024b; Knapp et al. 2024b). Scientific articles compile results from decades, if not centuries, of effort by 30 
scientists worldwide. However, the automation of classification, summarization, and data extraction tasks related to 31 
this literature remains a challenge because natural language is a complex data type. In other fields with intricate 32 
data, such as image and sound, a proven strategy is to build mathematical models of the input data type that can then 33 
be leveraged to summarize, classify, or otherwise manipulate the input. Modeling natural language is a long-34 
standing field of study, but recently, the development and increase in accessibility of transformer-based language 35 
models have led to substantial advances in our language processing ability. Perhaps we can solve some of the many 36 
challenges with automated processing of scientific literature by applying transformer-based language models.  37 
 38 
A considerable number of recent investigations are focused on applying large language models to scientific literature 39 
(Jin et al. 2024; Busta et al. 2024b; Shiu and Lehti-Shiu 2024; Sarumi and Heider 2024; Knapp et al. 2024b). For 40 
example, large language models have been utilized to perform tasks such as text classification, text summarization, 41 
and question answering (Dalal et al. 2024; Riordan 2024; Shiu and Lehti-Shiu 2024; Guo et al. 2023; Yin et al. 42 
2019). Generally, these large models require significant memory—hundreds of gigabytes—to store high billions or 43 
trillions of parameters required at runtime. However, a diverse range of language models exists beyond the popular 44 
large models from, for example, OpenAI, Anthropic, Google, and Mistral. In particular, small language models 45 
(SLMs) have gained attention due to their smaller sizes (low billions or even just millions of parameters) and thus 46 
reduced computing requirements. Furthermore, though the small models are not as general purpose as the large 47 
models, the emerging evidence suggesting the small models are effective in various, albeit specific natural language 48 
processing tasks (Lepagnol et al. 2024; Guo et al. 2023; Zhu 2024; Lewis et al. 2019). Thus, these small language 49 
models are intriguing because they suggest that individual scientists could use them on ordinary personal computing 50 
devices to potentially enhance scientific literature processing tasks. Importantly, running the small models on local 51 
hardware also avoids passing private and/or copyrighted content to large language model companies, which is 52 
prohibited by many research institutions and industrial organizations. 53 
 54 
In the present work, we aimed to develop and evaluate a proof-of-concept small language model processes to 55 
support the expansion of databases that document plants and the specialized metabolites that each may produce. 56 
Other databases have been created in the past to document this same type of information (Zeng et al. 2024; Tay et al. 57 
2023; Gallo et al. 2023; Rutz et al. 2022; Sorokina and Steinbeck 2020; Nguyen-Vo et al. 2020; Yang et al. 2019; 58 
Chen et al. 2017; Xie et al. 2015), but these databases, so far, do not leverage the potential provided by language 59 
models. We experimented with models to conduct two major tasks: (i) scoring articles based on their relevance to 60 
need-specific criteria (in this case, whether they contained reports of a specific plant making a specific chemical 61 
compound) and (ii) extracting and structuring information on the occurrence of specific chemical compounds in 62 
specific plant species. We tested a dozen language models’ abilities on these tasks by manually reading, labelling, 63 
and extracting data from more than 100 to more than 1000 scientific abstracts, depending on the task, then measured 64 
the models’ ability to perform those same tasks. Overall, our findings indicate that small language models, while not 65 
perfect, effectively aid in filtering scientific literature references and in extracting data. We recommend that 66 
researchers both experiment with these models and monitor for updates in literature processing software that 67 
incorporate language model-enabled features. 68 
  69 
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2. Results and Discussion 70 
 71 
To develop and evaluate a potential role for small language models in creating a phytochemical occurrence database, 72 
we assessed such models’ abilities with regard to two tasks: (i) to quickly score references according to whether the 73 
reference reports the occurrence of a specific compound in a specific plant species (Task 1, Section 2.1), and (ii) to 74 
evaluate language models’ ability to extract an experimentally-supported compound occurrence dataset (Task 2, 75 
Section 2.2). For these investigations, we chose to use six triterpenoid compounds as test cases (Fig. 1A). The six 76 
triterpenoid test cases under study here presented a challenge because they have been mentioned in the literature 77 
(going back to the 1960s) by many names. Indeed, CAS SciFinder® indicates that a total of more than 52 names has 78 
been associated with these six compounds, potentially complicating efforts to retrieve references describing the 79 
occurrence of specific plant chemicals. Fortunately, triterpenoids (and the vast majority of all other chemical 80 
entities) are identified explicitly by their CAS Registry® numbers (Fig. 1A), which means that references to a given 81 
compound that use varied nomenclature can be collected simultaneously and non-ambiguously when using CAS 82 
Registry® number-based search strategies. While other identification number systems exist, such as PubChem® and 83 
LOTUS numbers, these alternate systems are not as comprehensive as CAS Registry® numbers. Thus, where 84 
possible, searches with identification numbers, as opposed to common names, are preferred because this approach 85 
ensures not only that a broader array of references is retrieved, but also that those reference relate to one and the 86 
same compound, including the correct stereochemistry. 87 

 88 
Figure 1. Comparison of SciFinder® versus PubMed® as a data source and schematic of the small language 89 
model workflow for retrieving compound-species associations from literature. A. Structures, common names, and 90 
CAS Registry® Numbers for the six triterpenoid compounds used as test cases in our small language model 91 
development and evaluation work. B. Bar plot comparing the number of references (x-axis) found by SciFinder® 92 
and PubMed® (y-axis) for the six different triterpenoids (vertically arranged panels) studied in this work. Each bar 93 
represents the number of references found by the indicated search tool for a particular triterpenoid. The absolute 94 
number of references found is shown in text to the right of each bar. Bars are color coded according to search tool 95 
(SciFinder® in purple and PubMed® in blue). SciFinder® searches were conducted using CAS Registry® Numbers, 96 
while PubMed® (which does not generally use these registry numbers) searches were conducted using compound 97 
common names. C. Schematic for the workflow we developed to extract compound occurrence data from information 98 
in the literature. Files or information are shown in green bubbles, while steps or actions are shown as arrows. The 99 
workflow consists of searching the literature with SciFinder® based on CAS Registry® numbers then creating a 100 
repository of references and associated full text PDF files in an EndNoteTM database; then filtering references for 101 
those of highest task-specific relevance (SLM Task A) and finally extracting compound occurrence data in either a 102 
targeted (SLM Task B1) or untargeted (SLM Task B2) fashion. Abbreviations: SLM: small language model. 103 
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To obtain references describing our six triterpenoids of interest, we used CAS Registry® numbers to search 104 
SciFinder®, which, although requiring a subscription, allows the user to enter a CAS Registry® number and then 105 
navigate directly to literature references that relate to that specified compound. PubMed®, although providing open 106 
access, does not generally support searches based upon CAS Registry® numbers or PubChem ID numbers, so we 107 
conducted searches in PubMed using compound common names. We first considered the two most common 108 
compounds in our case study set, α and β-amyrin. In SciFinder®, we found over 1,340 and more than 1,850 hits for 109 
these two compounds, respectively, compared to fewer than 500 and 1,000 hits in PubMed® (Fig. 1B). Results were 110 
similar for the other four triterpenoid test cases (Fig. 1B). In total, ~3,200 SciFinder® references were retrieved 111 
using our searches, while ~1,500 references were retrieved by PubMed®. Therefore, we used SciFinder®-retrieved 112 
references to develop and evaluate small language model-based reference ranking and occurrence dataset extraction 113 
processes (Fig. 1C). 114 
 115 
2.1 SLM Task A: Rating references according to relevance with a small language model 116 
 117 
At this stage in the present work, we had used SciFinder® to collect more than 3,000 references associated with one 118 
or more of the six triterpenoids that comprised our test cases for compound occurrence data collection. Our first aim 119 
was to determine the efficacy of small language models with respect to filtering the references for articles of interest. 120 
In this case, our interest was in articles that reported phytochemical occurrences (i.e., evidence for a specific plant 121 
species producing a specific chemical compound). To establish a benchmark against which to evaluate small 122 
language model performance we read more than 1,500 of the references in our collection, including their titles and 123 
abstracts, and classified each as “reporting an occurrence”, “maybe reporting an occurrence”, or “not reporting an 124 
occurrence” (Supplemental File 1). These human-read citations included all the reference citations for α-amyrone, 125 
β-amyrone, dammarenediol II, as well as (−)-friedelin. For an article to be considered as “reporting an occurrence” 126 
its title or abstract needed to indicate that the article in question provided experimental evidence for the presence of 127 
a particular plant chemical in a particular plant species. Articles whose titles or abstracts merely contained co-128 
occurrences of a plant chemical name and a plant species name without indicating that there was experimental 129 
evidence for an association between the two were classified as “not reporting an occurrence”. Citations that did not 130 
explicitly indicate that their articles contained experimental evidence for a compound’s occurrence but instead 131 
implied that such evidence might be present in the full text (to which we did not have access) were classified as 132 
“maybe reporting an occurrence”. Of the 1,558 references that we read, 720 were classified as “reporting an 133 
occurrence” (46%), 332 were classified as “maybe reporting an occurrence”, (21%) and 506 were classified as “not 134 
reporting an occurrence” (33%). 135 
 136 
We next evaluated how well language models could classify references according to whether they reported the 137 
occurrence of a phytochemical using the 1,558 manually classified references as a ground-truth set. We used the 138 
bart-large-mnli model, selected because it is one of the most downloaded on Huggingface.co, a major hub for open-139 
source language development, largely due to its versatility and high speed – we found that it could process 45,000 140 
articles / hour, a desirable characteristic for a model that will be used to filter inputs into a multi-step processing 141 
pipeline. This small language model is employed by providing it with a body of text and then one or more classifier 142 
phrases. The model then assigns a score to each phrase to indicate how closely that phrase relates to the provided 143 
text. The bart-large-mnli model card (i.e., the instruction manual) suggests presenting the model with a classifier 144 
phrase framed as a hypothesis (e.g., “This text is about politics”). Accordingly, we investigated phrases such as 145 
“Amyrin is present in plants” as well as paired phrases in which a hypothesis was matched with the exact negative 146 
(i.e., “Amyrin is present in plants” and “Amyrin is not present in plants”). Our early experiments showed that 147 
composite scores derived from the pairs’ individual scores improve the signal-to-noise ratio in the classification task. 148 
Furthermore, we noted that multiple compound names could be included in these positive and negative phrases (for 149 
instance, “friedelin, friedooleanan-3-one, friedelan-3-one, friedelanone, or friedeline is found in plants”; full 150 
classifier phrase details are provided in Supplemental File 2). In future large-scale operations, a single, general 151 
classifier phrase, which is not based on compound names, would be preferred if the performance was comparable to 152 
that of our specific classifier phrase system, which is based on compound names. Therefore, we also tested the more 153 
general classifier phrase, “The text discusses plants that contain specific compounds.” 154 
 155 
Using the two classifier phrase approaches described in the previous paragraph, we instructed the bart-large-mnli 156 
model to assign two scores to each of the 1,558 references, one composite score from the binary/two classifier 157 
phrase system, as well as a score for the general classifier phrase. Composite scores (means and standard deviations) 158 
for, respectively, references that reported occurrences / maybe reported occurrences / did not report occurrences for 159 
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(−)-friedelin were 0.9  0.1, 0.8  0.1, and 0.7  0.1 (Fig. 2A, top panel). Results were similar for the other three 160 
triterpenoids (Fig. 2A). Scores from the general classifier phrase for, respectively, references that reported 161 
occurrences / maybe reported occurrences / did not report occurrences for (−)-friedelin were 0.9  0.06, 0.9  0.04, 162 
and 0.8  0.2 (Fig. 2B, top panel), and again, results were similar for the other three triterpenoids (Fig. 2B). This 163 
illustrates that the two-classifier phrase system and the general classifier phrase system both worked comparably 164 
well among references describing four different triterpenoid compounds and may also to a similar extent for 165 
compounds other than triterpenoids. 166 
 167 

 168 
 169 
Figure 2: Performance of small language models on a reference relevance ranking task. A and B. Violin plot 170 
showing the score (BART Small Model Language Score, y-axis) assigned to references by the bart-large-mnli small 171 
language model. Scores range from zero (low relevance) to one (high relevance) and indicate the relevance of a 172 
given reference to a user-defined natural language criterion. In panel A, the score is derived from two, chemical 173 
compound-specific criteria (full details in methods section), while in panel B, the score is derived from a single, 174 
generic criterion ("chemical compounds are found in plants"). In both panels, scores are broken out according to 175 
whether the reference was labeled by a human as "reporting an occurrence”, “maybe reporting an occurrence”, 176 
“not reporting an occurrence" of a specific chemical compound in a specific species (x-axis). The number of 177 
references belonging to each group are shown above each violin. In panel A, the dotted line represents a threshold of 178 
0.85 and in panel B, the dotted line represents a threshold of 0.9; details of thresholds discussed in main text). C and 179 
D. Column plot showing the proportion of references (y-axis) from each human labeled category ("reporting an 180 
occurrence”, “maybe reporting an occurrence”, or “not reporting an occurrence"; x-axis) that would be retained if 181 
a threshold small language model score was used for filtering references. The proportion of each column in the 182 
positive y space indicates the fraction of references that would pass the filter and be retained, while the proportion 183 
of each column in the negative y space indicates the fraction of references that would be rejected by the filter and 184 
eliminated. Exact proportions are shown in numbers above and below each column. In panel C the threshold is 0.85, 185 
based on two-prompt scoring, while in panel D the threshold is 0.9, based on single, general prompt scoring (details 186 
in main text and methods section). For example, if a score of 0.85 were used as a threshold with which to filter 187 
references that had been scored using the two-prompt small language model scoring system, then 86% of references 188 
reporting occurrences would be retained while 14% of such references would be rejected, 35% of references maybe 189 
reporting occurrences would be retained, while 65% of such references would be rejected, and 20% of references not 190 
reporting occurrences would be retained while 80% of such references would be rejected. In all panels A-D, colors 191 
correspond to the three human label categories ("reporting an occurrence”, “maybe reporting an occurrence”, “not 192 
reporting an occurrence"). BART stands for the bart-large-mnli small language model. 193 
 194 

https://doi.org/10.1017/qpb.2025.10021 Published online by Cambridge University Press

https://doi.org/10.1017/qpb.2025.10021


 

 

Next, we investigated the ability of these scores to act as a filter to separate articles of interest that report chemical 195 
occurrences from those that did not report such occurrences. Thus, we examined the proportion of the former type 196 
articles that would be retained if a threshold score were to be used as a filtering criterion for the reference collection 197 
(i.e., if references with a score higher than a threshold were to be retained and those with a score lower than the 198 
threshold were to be eliminated from the collection).Based on the distribution of scores assigned to articles that 199 
reported chemical occurrences versus those that did not (Fig. 2A and B), we selected 0.85 as a threshold for the 200 
specific two-prompt scores and 0.90 as a threshold for the general prompt-derived scores. With these thresholds, the 201 
specific two-prompt scoring system acting as a filter would have retained 86% of the references that report 202 
phytochemical occurrences (the references of interest in our study), and rejected 80% of the references that did not 203 
report an occurrence (Fig. 2C). The general prompting system, with a 0.90 filtering threshold, would have retained 204 
92% of the references reporting phytochemical occurrences and eliminated 55% of the references that did not report 205 
occurrences (Fig. 2D). While both the two-prompt and general prompt filtering approach led to the retention and 206 
rejection, respectively, of article of interest and not of interest, the two approaches handled articles we had labelled 207 
as “maybe reports an occurrence” differently: the two-prompt approach kept only 35% of these, while the general 208 
approach kept 81%. To learn more about these “maybe” references, we obtained and read 100 full text articles for 209 
these references (those related to α-amyrone and dammarenediol II, Supplemental File 3). This manual inspection 210 
revealed that approximately 65% percent of these "maybe" references contained reports of compound occurrence 211 
data, which suggested that access to full text information will help create more comprehensive chemical occurrence 212 
datasets. After manual re-annotation of the 100 articles based on full texts, we tested to see if the scores of 213 
occurrence-reporting articles differed from articles that did not report occurrences, but there was no significant 214 
difference in the scores. However, regardless of whether full texts are available or not, our results show that small 215 
language model relevance scores provide a means to quickly (~45,000 references / hr.) and accurately (~80% 216 
relevant articles kept, ~80% of irrelevant articles rejected) identify references that are most likely to provide the 217 
information that a user might be seeking. This ability will be highly useful when dealing with many thousands of 218 
references. Our data also indicate that there will likely be a benefit to developing more nuanced filtering approaches 219 
to handle edge cases like the ‘maybe’ articles we identified here.  220 
 221 
2.2: SLM Task B: Extracting compound occurrence data with language models 222 
 223 
After filtering our collection of references to include only entries with high scores concerning phytochemical 224 
occurrence data, we evaluated the ability of language models to extract experimentally supported compound 225 
presence details. In this task, two steps can be envisioned: (i) a first step in which a model receives a body of text 226 
including the title and abstract of a scientific article and (ii) a second step in which a model receives a query about 227 
compound occurrences. For example, in the second step, we might ask the model: “Does the provided text offer 228 
experimental evidence that Arabidopsis thaliana produces the chemical compound thalaniol?” This mode of 229 
operation represents a targeted approach. A second mode of operation (for the second step) could be to pass a 230 
language model a text passage containing the title and abstract of a scientific article and pose an open-ended query 231 
such as: “List all of the plant species mentioned in the provided text and indicate which chemical compounds were 232 
reported from each one as part of the experimental investigation described in the passage.” This second mode 233 
represents an untargeted approach. Several advantages and disadvantages of each approach can be imagined from 234 
the outset. For example, an untargeted approach does not require a preconceived set of chemical compounds or plant 235 
species of interest about which to query the model, and a single untargeted query can potentially extract multiple 236 
compound-occurrence data simultaneously. In contrast, one benefit of the targeted approach is the relative simplicity 237 
of creating human-labeled data. Thus, a true/false answer about one plant/compound occurrence can be supplied by 238 
the human or model instead of meticulously generating a complete list of such occurrences. Furthermore, a model's 239 
rate of detecting true negative associations can be measured directly by comparing the model's response to plant and 240 
compound names appearing in an abstract, without experimental association data, to the corresponding human 241 
response. Thus, the targeted and untargeted approaches each offer distinct benefits, so we tested and herein present 242 
results from both approaches. For either approach, a model must correctly distinguish between characters used in 243 
chemical names (in the present study, especially Greek letters like α and β) and recognize the synonymous nature of 244 
certain symbols and words (for example, that α-amyrin and alpha-amyrin are the same compound). Previous studies 245 
have shown that Greek letters occupy their own positions in language model input spaces (Stevenson et al. 2025) 246 
and that such models can reason over diverse alphabets (Maronikolakis et al. 2021), suggesting that modern 247 
language models, in this regard at least, may be suited to the above-described approaches. We conducted preliminary 248 
tests by asking each model (see model details below) a series of six questions like “are α-amyrin and alpha-amyrin 249 
the same compound?”, “are α-amyrin and beta-amyrin the same compound”, “are β-amyrin and beta-amyrin the 250 
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same compound”, and so forth. All but the smallest two models (gemma-3-1B-instruct and qwen-2.5-0.5B-instruct) 251 
answered these questions with 100% accuracy, illustrating that detailed investigations of task/project-specific 252 
assumptions should be empirically tested during the model selection step of a language model-based investigation. 253 
 254 
2.2.1 SLM Task B1: Targeted compound occurrence data extraction 255 
 256 
To evaluate the ability of large language models to extract compound occurrence data from scientific abstracts, we 257 
first prepared and manually evaluated a set of candidate occurrences. For this effort, we used regular expression-258 
based pattern matching to identify accepted plant species names in the abstracts associated with the six triterpenoids 259 
that comprised the present test case. We then compiled a data set containing three columns: the title and abstract of 260 
each reference, the chemical compound linked to it (the SciFinder® search compound that retrieved that reference in 261 
the first place), and accepted plant species name(s) found in that title or abstract. We manually evaluated 500 262 
candidate associations and annotated each occurrence as positive (the abstract described experimental support for 263 
the occurrence of that compound in that plant species) or a negative (the abstract did not provide such support). We 264 
found that roughly 350 (71%) of the candidate associations were negatives, while around 150 (29%) were positives 265 
(Supplemental File 4). With a set of human-labeled compound species or candidate compound species associations 266 
in hand, we next turned to evaluating whether open-source language models could perform the same task. For this 267 
task, we used open-source language models that accepted two types of prompts. The first prompt was a system 268 
prompt that contained detailed instructions on how the model should generate an output. The second prompt (also 269 
called user text) delivered content from which the model generated that output. We used the second prompt to 270 
supply information on the candidate compound species association (title/abstract, compound name, and species 271 
name) and the system prompt to convey detailed instructions on how the model was supposed to evaluate this given 272 
information (full details in Methods). 273 
 274 
Past research has shown that language models of different sizes vary in their ability to perform natural language 275 
processing tasks(Brown et al. 2020; Kaplan et al. 2020), including tasks related to chemical occurrence data 276 
extraction(Busta et al. 2024a). Accordingly, in evaluating their capacity for the present targeted occurrence 277 
extraction task, we tested 12 language models of various scales, spanning 0.5 billion to 32 billion parameters (often 278 
denoted 0.5B to 32B, Fig. 3A). These models included variants of different sizes from the Qwen family(Qwen: An 279 
et al. 2025) (32B, 14B, 7B, and 0.5B), the Gemma family(Gemma et al. 2025) (27B, 12B, 4B, and 1B), and the Phi-280 
4 family (phi-4 14B and phi4-mini-instruct 4B)(Abdin et al. 2024). Each model was given the same system prompt 281 
and all 500 candidate occurrences that had been previously examined manually. During these assessments, all 282 
models were run at 16-bit precision, except gemma-3-27B-it-unsloth and phi-4-unsloth-bnb-4bit, which are 283 
dynamically quantized instances operating at 4-bit precision (Fig. 3A). When reviewing the 500 candidate 284 
associations, run times generally varied in direct proportion with size; qwen-2.5-32B-instruct handled about 200 285 
references per hour, while qwen-2.5-0.5B-instruct surpassed 32,000 per hour (Fig. 3A). Notably, the quantized 286 
variants processed references at speeds only slightly higher than their full-resolution counterparts (for example, the 287 
4-bit phi-4-unsloth at 1,500 references / hr. and the 16-bit phi-4 at 1,200 per hour). These speeds will be important 288 
when applying language model-based approaches to larger projects or the assembly of databases. 289 
 290 
Alongside measuring how quickly various models processed 500 candidate associations, we also examined model 291 
accuracy. To gauge that accuracy, we compared whether each model labeled every candidate association as positive 292 
or negative against the corresponding human label. The results let us classify each model output as a true positive 293 
(when the model labeled a candidate association as positive, matching the human label), a true negative (when both 294 
the model and the human labeled it negative), a false positive (when the model labeled it positive but the human did 295 
not), or a false negative (when the model labeled it negative but the human did not). Because 71% of the 500 296 
candidate associations were negative, a high-performing model would have a true negative rate approaching 71%. 297 
The true negative rates for the models tested ranged from 52% to 67%, with models containing more parameters 298 
generally showing higher percentages (Fig. 3B). One exception was qwen-2.5-0.5B-instruct, which had a 0% true 299 
negative rate, as it labeled all candidates occurrences as positive. These differences in true negative rates came with 300 
parallel differences in false positive rates, since false positives arise when a model incorrectly labels a negative 301 
result as positive. The false positive rate is one of the most important metrics for this task because those errors 302 
represent fabricated occurrence data. In our experiments, larger models achieved lower false positive rates overall, 303 
with qwen-2.5-32B-instruct and phi-4 showing the lowest values at 4% and 5%, respectively (Fig. 3B). Because 304 
both were also the slowest and largest, there is a clear trade-off between parameter count and computational 305 
requirements on one hand and task-specific accuracy on the other.  306 
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Figure 3: Performance of language models on a 307 
targeted compound occurrence data extraction task. 308 
A. Bar plot showing various metrics (y axes in each 309 
row of panels) for different language models (x axis). 310 
The first row shows model size in billions of 311 
parameters, the second row shows model resolution in 312 
bits, the third row shows the speed with which a 313 
model processes references (using the prompt shown 314 
in the methods section) in units of 1000 references per 315 
hour. B. Bar plot showing the raw performance 316 
metrics of each model (false negative, false positive, 317 
true negative, and true positive rates). False 318 
negatives arise when a model erroneously marks a 319 
real compound occurrence as not being true. False 320 
positives arise when a model erroneously marks a 321 
simple textual occurrence of a compound name and 322 
species name as an occurrence data point. True 323 
negatives arise when a model correctly marks a 324 
simple textual occurrence of a compound name and 325 
species name as such, and not as an occurrence data 326 
point. True positives arise when a model correctly 327 
marks a compound occurrence as such. According to 328 
human evaluation of the 500 putative occurrences 329 
used to test the models, 71% of the putative 330 
occurrences were real (i.e. "positives"), and 29% of 331 
the putative occurrences were just textual co-332 
occurrence (i.e. "negatives"). Thus, a perfect model 333 
would have, in this experiment, a 71% true negative 334 
rate and a 29% true positive rate. Bars are colored 335 
according to true/false positive/negative. C. Bar plot 336 
showing the processed performance metrics of each 337 
model. In the first row, the precision of each model is 338 
shown (the ratio of true positives to the sum of true 339 
positives and false positives). In the second row, the 340 
recall of each model is shown (the ratio of true 341 
positives to the sum of true positives and false 342 
negatives). In the third row, the F1 score is shown, 343 
which is the harmonic mean of the precision and 344 
recall. In A–C, models are organized into columns of 345 
panels by type (large: > 20 B parameters, medium: 346 
1–20 B parameters, small: 0–1 B parameters, and 347 
optimized: 4-bit resolution models).  348 

https://doi.org/10.1017/qpb.2025.10021 Published online by Cambridge University Press

https://doi.org/10.1017/qpb.2025.10021


 

 

The models we tested here did not only vary in their (true negative)/(false positive) rates, but also in their (true 349 
positive)/(false negative) rates. Since positive associations comprised 29% of the 500 candidate associations, a 350 
perfect model in our experiment would have a 29% true positive rate. True positive rates among the models tested 351 
here generally ranged from 21% to 27% (Fig. 3B). This variability did not correlate as strongly with model size as 352 
did the (true negative)/(false positive) rates. For example, a large model (qwen-2.5-32B-intruct), two medium 353 
models (gemma-3-12B-instruct and phi-4-mini-instruct (4B)), and one of the quantized models (gemma-3-27B-it-354 
unsloth) all had very similar true positive rates (26% or 27%, Fig. 3B). Note that the perfect true positive rate of 355 
qwen-2.5-0.5B-instruct is a misleading statistic, since this model simply labeled all associations with which it was 356 
presented as positive. To account for such potentially misleading rates, we computed precision and recall statistics. 357 
Precision is calculated as the number of true positive results divided by the sum of true positive and false positive 358 
results, which indicates how reliable the model is when it marks an association as positive. Recall is calculated as 359 
the number of true positive results divided by the sum of true positive and false negative results, which reflects the 360 
model's ability to correctly identify all actual positive associations. Excluding qwen-2.5-0.5B-instruct, precision 361 
varied from 0.5 to as high as 0.85 and recall varied from 0.71 to 0.94 (Fig. 3C). We also computed F1 scores, which 362 
are the harmonic mean of precision and recall, to provide a single metric to balance both reliability (precision) and 363 
completeness (recall). F1 scores (excluding qwen-2.5-0.5B-instruct) ranged from 0.62 (gemma-3-1B-instruct) to 364 
0.87 (qwen-2.5-32B-instruct) and varied, again, according to model size, which reinforced the importance of that 365 
parameter in task-specific accuracy. 366 
 367 
So far, our results indicated that language models can assess whether an abstract describes experimental support for 368 
a particular compound, but no model was entirely accurate in performing this task. Accordingly, we next turned our 369 
attention to a detailed examination of the candidate associations that were frequently labeled incorrectly by the 370 
language models. Specifically, we reviewed the incorrect answers generated by the phi-4 model. First, we focused 371 
on references in which no experimental support for a compound’s occurrence was provided, yet the model 372 
(erroneously) indicated such support was presented (i.e., false positives). Among these occurrences, two main text 373 
structures appeared to “confuse” the model. The first scenario involved abstracts where occurrence data were not 374 
presented in separate sentences but instead merged with multiple data types. For example, some passages combined 375 
information from authentic standards and plant extracts, or from sediments and plant extracts, or listed multiple 376 
compounds from several species in a single statement. The second scenario leading to false positives involved 377 
abstracts that failed to provide clear statements about plant/compound occurrences, even to a human reader. As an 378 
example, one such abstract stated “beta-sitosterol and alpha-amyrin were isolated from unsaponifiable fractions of 379 
mature seeds of solanaceae plants” and mentioned the solanaceous species Hyoscyamus muticus, which caused the 380 
model to label alpha-amyrin as present in Hyoscyamus muticus, even though this link was not explicitly supported 381 
by the text. Finally, we examined references where positive associations were mistakenly labeled by the models as 382 
negative (i.e., false negatives). We identified three main cases: (i) abstracts that were written in confusing ways, 383 
which lead the model to produce an incorrect result, (ii) abstracts that contained an alternative spelling or 384 
abbreviation for a compound or species name, and (iii) clearly written abstracts in which the model nevertheless 385 
failed to provide the correct answer. These scenarios appeared in roughly equal proportions among phi-4’s false 386 
negatives. To summarize, the model sometimes makes clear mistakes, but, just as often, the model produces 387 
incorrect answers because of inconsistencies or unclear information in the input data. Finally, we also examined the 388 
performance of the models when alternative spellings of compound names were present in abstracts. Across the 500 389 
candidate associations we manually evaluated there were 28 instances where alternative spellings were used in the 390 
abstract (amyrin/amirine, friedelin/friedeline, amyrone/amyrenone). Evaluating these candidate associations, the 391 
highest performing models were correct ~50% of the time, which is lower than model performance across the entire 392 
dataset (~10% overall error rate). Thus, we conclude that these alternative spellings do impact model performance 393 
and strategies to deal with such should be included in the design of small language model-based pipelines. 394 
 395 
Several conclusions arise from our work with targeted compound-occurrence data set extraction. First, models with 396 
more parameters ("larger" models) appear to perform the task with higher accuracy, though that improvement comes 397 
alongside increased computational demands and time requirements. To balance speed and performance, architectures 398 
such as phi-4 stand out from those evaluated in this study. Next, the abilities of systems like phi-4 to accurately 399 
detect true negatives indicate that they are distinguishing references with textual co-occurrence of plant and 400 
compound names from references that present experimental evidence for a plant producing a given compound. 401 
Finally, our examination of the underlying reasons for incorrect answers revealed many errors arise from 402 
inconsistencies or unclear information in the input data, which suggests that using full-text articles instead of titles 403 
and abstracts may improve results beyond the approach described here.  404 
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2.2.2 SLM Task B2: Untargeted compound occurrence data extraction 405 
 406 
After assessing the extent to which language models can classify compound occurrences in a targeted manner, we 407 
next examined these systems’ abilities with the same task in an untargeted way. For this process we used models 408 
that, as before, accept a system prompt with detailed instructions and a second prompt containing content with 409 
which to work. Our general approach was to provide a system prompt directing the model to read the input text 410 
(title/abstract) and write all experimentally supported compound occurrences in a Python dictionary format (for 411 
example: {“Arabidopsis thaliana”: [“arabidiol”, “beta-sitosterol”], “Brassica oleracea”: [“beta-sitosterol”, “alpha-412 
amyrin”]}). Thus, this task is considerably more complicated than the targeted approach. Due to this complexity, we 413 
conducted some preliminary tests to determine which of our 12 models might be suitable for this task. We found that 414 
the two large models and the two small ones were, respectively, too slow and too inaccurate to be feasible. For this 415 
reason, we proceeded with the six medium models as well as the two quantized 4-bit variants described in the 416 
previous section. Previous work has shown that the exact phrasing of system prompts can have substantial impacts 417 
on the accuracy of language model outputs (Razavi et al. 2025; Sclar et al. 2024), which included the context of 418 
phytochemical data processing (Knapp et al. 2024a). This phenomenon is the basis for prompt engineering. This 419 
untargeted task was inherently more complicated than the above-described targeted approach, but further 420 
complications arose because we wanted a specific output format (the Python dictionary). We investigated a variety 421 
of prompts to determine how they might impact results from each model. As in the previous sections, to benchmark 422 
the ability of the models to perform this task, we again began by performing this task manually. We read 100 423 
abstracts and wrote out the compound species associations reported in each in the JSON, or Python dictionary, 424 
format. This led to the identification of just over 400 compound occurrences across the 100 abstracts (Supplemental 425 
File 5). Below, we describe the performance of the 8 models and the 11 prompts on this untargeted compound 426 
occurrence extraction task with the 100 manually evaluated abstracts. 427 
 428 
To begin, we carefully created a detailed system prompt and then employed a commercial large language model to 429 
produce 10 additional prompt variants that contained the same instructions but with different phrasings (all prompts 430 
included in Supplemental File 6). We then used each of the eleven prompts to instruct each of the eight models to 431 
write out all experimentally supported occurrences in each of the 100 manually evaluated abstracts. Next, we 432 
examined the ability of each model/prompt combination to provide results in a valid Python dictionary (the structure 433 
of the response needed to perform this data extraction task) and the speed at which each model/prompt combination 434 
could process the 100 abstracts. The percentage of responses from each model in answer to each prompt varied 435 
considerably, with some model/prompt combinations producing zero valid dictionaries and others generating 100% 436 
valid dictionaries (Fig. 4A). Most model-prompt combinations produced >90% correctly structured responses, with 437 
some notable exceptions. Interestingly, qwen-2.5-14B-instruct struggled to consistently produce valid dictionary 438 
outputs, while its smaller sibling, qwen-2.5-7B-instruct, yielded over 90% valid dictionaries in most cases. This 439 
result breaks the trend of larger models being more proficient, as described in the previous section of this report. 440 
Phi-4 was the best model tested at this task since it returned 100% valid Python dictionaries, except for one response 441 
to prompt 8 (Fig. 4A). We also observed variation among the prompts tested, with prompts 9, 10, and 4 eliciting 442 
higher proportions of valid responses across all the models than other prompts. We also examined the rate at which 443 
each model and prompt pairing could process queries. Rates ranged from about 200 references per hour to almost 444 
1,500 references per hour, with model size as the primary determinant of speed (Fig. 4B). Different prompts 445 
sometimes caused variability in processing times for the same model, though these shifts were negligible compared 446 
to those driven by scale. Overall, the largest model, gemma-3-27B-instruct-unsloth, was the slowest. Meanwhile, 447 
phi-4-mini-instruct and qwen-2.5-7B-instruct performed the fastest, at rates around 1,000 articles or references per 448 
hour. Altogether, the outcomes suggested that the phi-4 family models, along with qwen-2.5-7B-instruct combined 449 
with prompts 9, 10, and 4, were the most accurate for further detailed investigation. The four best performing 450 
models for producing valid Python dictionaries included the two fastest frameworks (phi-4-mini-instruct and qwen-451 
2.5-7B-instruct), which showed that larger models do not always perform more proficiently than smaller versions.  452 
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 453 
Figure 4: Performance of language models on a targeted compound occurrence data extraction task. A. Heat 454 
map showing the percent of outputs that contain valid python dictionaries (encoded with color and written inside 455 
each box) from each language model (y-axis) in response to each prompt (x-axis). The marginal (i.e. top and right) 456 
plots show the mean percent valid responses across all models for each prompt or across all prompts for each 457 
model. B. Heat map showing the rate (in 1000 references per hour) of processing by each language model (y-axis) 458 
in response to each prompt (x-axis). The marginal (i.e. top and right) plots show the mean percent valid responses 459 
across all models for each prompt or across all prompts for each model. C. Guide describing how to interpret panels 460 
D-K. D-K. Evaluation of occurrence data reported by language models (D/E/F/G: phi-4 and, in darkest bars, phi-4 461 
in agreement with qwen-2.5-7B-instruct; H/I/J/K: phi-4-mini-instruct, and, in darkest bars, phi-4-mini-instruct in 462 
agreement with qwen-2.5-7B-instruct). D and H show the number of correct occurrences (true positives, positive y-463 
axis) and incorrect occurrences (false positives, negative y-axis) reported, as indicated in panel C. E and I show the 464 
number of correct occurrences (false negatives, negative y-axis) reported, as indicated in panel C. F and J show the 465 
number of correct occurrences (true positives, positive y-axis) and incorrect occurrences (false positives, negative y-466 
axis) reported after filtering for occurrences whose compounds are in PubChem and were agreed upon by the two 467 
models. G and K show the number of correct occurrences missed by the models after PubChem and agreement 468 
filtering (false negatives, negative y-axis). In D-K, bar orientation emphasizes desired model behavior: bars 469 
pointing upwards indicate correct model responses (desired behavior), while bars pointing down indicate incorrect 470 
model responses or correct answers not reported by the model (undesired behavior).  471 
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In the previous section, we identified that the results from prompts 9, 10, and 4, in conjunction with phi-4, phi-4-472 
mini-instruct, and qwen-2.5-7B-instruct warranted further scrutiny. Therefore, we next examined the accuracy of 473 
occurrences generated by those models in response to those prompts. In contrast to our quantitative assessment of 474 
the models’ ability to evaluate targeted compound instances, this broader approach allowed for quantifying only 475 
three response types: true positives (correct occurrences reported by a model), false positives (incorrect occurrences 476 
reported), and false negatives (correct occurrences missed by the model but found during manual evaluation, Fig. 477 
4C). Note that true negatives are not present in this untargeted analysis since the model is only asked to report 478 
existing occurrences, not to classify candidate occurrences. We quantified the number and category of each 479 
occurrence identified by each model in response to prompts 4, 9, and 10. We observed that using different system 480 
prompts led to only minor variations in the total correct versus incorrect instances flagged by a given model, but, 481 
interesting, that correct versus incorrect outputs varied greatly with respect to the number of species described in a 482 
given abstract (Fig. 4D, 4E, 4H, and 4I). Specifically, references involving more than four species appeared 483 
“confusing” to the models, resulting in large numbers of inaccuracies from those sources (Fig. 4D and 4H), while 484 
abstracts focused on one or two species typically yielded substantially more correct instances compared to incorrect 485 
ones (Fig. 4D and 4H). Even so, the ratio of correct to incorrect responses typically generated from articles 486 
reporting on one or two species was roughly 2:1, an approximately 30% false positive rate. 487 
 488 
To reduce the false positive rate observed during this untargeted compound occurrence extraction task, we 489 
introduced two types of filters. For the first filter, we programmatically compared the compound name reported in 490 
each occurrence against the PubChem database to check if it appeared among the entries. We removed all reported 491 
occurrences describing compounds missing from PubChem, which generally produced a bigger drop in incorrect 492 
results than in correct ones. The second filter relied on two language models identifying the same occurrence from a 493 
given abstract. Only those occurrences found by both, working independently, were kept, while partial matches 494 
(instances flagged by a single model but not recognized by another) were excluded. We tested this two-part filtering 495 
approach with two pairs of models: (i) one containing the most advanced model: phi-4 + qwen-2.5-7B-instruct, and 496 
(ii) another featuring the two fastest options: phi-4-mini-instruct + qwen-2.5-7B-instruct. In both scenarios, the 497 
agreement filter yielded a marked decrease in inaccurate entries in the final dataset and only a small decline in valid 498 
ones (Fig. 4D and H). Finally, to produce a dataset that reflects the lowest likely false positive rate for these models 499 
on the untargeted task at hand, we combined three filtering strategies: we restricted data to abstracts mentioning one 500 
or two species, retained only occurrences describing chemicals found in the PubChem database, and kept only those 501 
occurrences that were independently detected from the same abstract by two different language models. Using this 502 
threefold approach, phi-4 + qwen-2.5-7B-instruct produced about 225 accurate occurrences and 25 inaccurate ones 503 
(an 11% error rate and ~55% yield, relative to the 400 occurrences found during manual inspection of the 100 504 
abstracts, Fig. 4F). Meanwhile, phi-4-mini-instruct + qwen-2.5-7B-instruct yielded 175 valid occurrences and 505 
around 20 erroneous findings (also an 11% error rate and ~44% yield/recall, Fig. 4J). Thus, pairing two fastest 506 
models led to a dataset that was less comprehensive but maintained similar accuracy as a pair that contained a 507 
considerably larger and more sophisticated model. 508 
  509 
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3. Conclusions and Future Directions 510 
 511 
Here, we evaluated the ability of small language models to perform two major tasks: to numerically score references 512 
based on their relevance to a given topic (SLM Task A) and to extract structured data from unstructured inputs in 513 
both a targeted (SLM Task B1) and untargeted fashion (SLM Task B2). Our efforts showed that a small language 514 
model could rapidly and effectively score references in a set so that a threshold score could be used as a filter to 515 
substantially enrich that set for articles of interest (Section 2.1). Limitations arose when handling edge cases, with 516 
highly tailored, task-specific prompts emerging as a possible approach to address those shortcomings. When using 517 
small language models to classify candidate compound occurrences as true or false, we observed that if an abstract 518 
directly reports the detection of a particular compound in a specific plant species, the models nearly always label the 519 
candidate occurrence correctly (Section 2.2.1). In this task however, a trade-off did appear between accuracy and 520 
model size (parameter count) and compute requirements. Among the mistakes noted (false positives as low as 5% 521 
and false negatives as low as 2% for certain models), these misclassifications were as often tied to convoluted and 522 
unclear writing in the input abstract as they were to outright model errors. For extracting compound occurrence 523 
information from unstructured text in an untargeted manner, we found small language models to be effective, though 524 
choosing a suitable model and pipeline strategy proved more challenging than earlier tasks (Section 2.2.2). We 525 
discovered that prompt engineering, selecting a model, and filtering reported detections by cross-referencing 526 
chemical databases, along with requiring two small language models to independently agree on an occurrence, 527 
yielded the best reporting statistics (~10% false positives and ~50% yield). Of note, this relatively low yield arises 528 
because many correct associations are filtered out, essentially sacrificed, to lower the false positive rate. Regarding 529 
all tasks considered, more advanced prompting techniques (e.g., chain-of-thought prompting (Wei et al. 2022) or 530 
model distillation (Hinton et al. 2015; Sanh et al. 2020) could reduce error rates further and improve yield/recall. In 531 
addition, future model releases, including small reasoning models, may also address these limitations. Finally, we 532 
will note that many abstracts we worked with here presented problems for humans and language models alike by 533 
failing to contain clear and concise information. We read hundreds of abstracts for the present project. Fully 534 
understanding many abstracts in a timely fashion was extremely difficult due to long, convoluted sentences, the 535 
presentation of connected data types (e.g., plants and compounds) in multiple sentences spread throughout a long 536 
abstract, the use of compound numbers or abbreviations instead of compound names, poor grammar, and so forth. In 537 
a variety of cases, we were surprised that the language models performed reasonably well while humans needed 538 
considerable time to understand the same abstracts. 539 
 540 
Overall, though the approaches here represent a considerable advance over manual curation (at least, with respect to 541 
the creation of large databases, where speed is a prime consideration), a substantial amount of plant chemical 542 
occurrence data will still not be retrieved from the literature using the techniques presented here. One important step 543 
forward will be the development of pipelines that can handle articles reporting occurrence data from dozens of 544 
species, including in tabular format. In addition, further attempts towards occurrence databases, and in fact scientific 545 
endeavors in general, need literature databases that include the full text files along with reference citations and 546 
abstracts. The separation of the full text from the citations seems to be a systematic and legal barrier that needs to be 547 
overcome. The expanded posting of pre-prints is suggested as a potential, albeit partial, solution to this issue. In 548 
addition to the tasks we quantitatively evaluated here, we also experimented with several versions of Microsoft’s 549 
Phi-4 model to conduct multiple activities related to reference citations (e.g., species name extraction, compound 550 
number or plant number extraction, etc.) and found that the models could perform a range of additional functions, 551 
suggesting versatility and application in order domains. In our case, these functions have allowed us to identify 552 
publications that most likely contain extensive tabular data in the full text, flagging them for analysis by a pipeline 553 
suitable for such reports. Finally, in our efforts, we found that filtering capabilities such as those provided by 554 
SciFinder® and EndNoteTM showed usefulness in a somewhat orthogonal way to the value of the small language 555 
model scores. For example, in our case, we were able to eliminate many articles of low relevance to our case studies 556 
using EndNote™ keyword filters. As these commercial software tools and other related programs are outfitted with 557 
language model (“artificial intelligence”) capabilities, it will be important to evaluate and incorporate those features 558 
into discipline-specific workflows. We strongly encourage the scientific community to look for new versions of their 559 
favorite research tools that incorporate language model features, and to experiment and empirically test and report 560 
on such functionality in field-specific tasks as they emerge. 561 
  562 
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4. Methods: 563 
 564 
Literature searches were conducted with CAS SciFinder®. SciFinder® searches were conducted by entering the 565 
compound CAS Registry® number from the SUBSTANCE menu and then working with all the references that were 566 
assigned to this Registry number. SciFinder® references were downloaded as “tagged” text files. The "tagged" text 567 
file selection provides numerous fields including the CAS Registry numbers for all compounds discussed in a given 568 
article. Multiple tagged files were downloaded for each compound (according to year ranges) since the SciFinder® 569 
software limits an individual tagged export file to 100 citations. SciFinder limits the number of citations that can be 570 
exported in one file to 100. Thus, for a compound such as alpha-amyrin with 4,344 SciFinder references, the 571 
downloading of all references was not possible. If the number of filtered references was greater than 400, the word 572 
“plant” was entered into the “search within results.” Thus, only English-language journal references that 573 
corresponded to the "search within results" term "plant" were downloaded (1,744 references, in the example of 574 
alpha-amyrin). PubMed® searches for the six triterpenoids were also conducted based on their major common 575 
names (not all synonyms were used). These PubMed® searches were conducted with the compound names shown at 576 
the top of Table 1 since PubMed® does not generally recognize CAS Registry® numbers. PubMed® files were 577 
downloaded as PubMed (NLM) files. Of note is that PubMed® provides automated access to its search and abstract 578 
download services through a REST API and various language-specific packages like R and Trez. These tools could 579 
be leveraged in the future to further streamline literature analysis projects and automate data extraction and 580 
tabulation. 581 
 582 
EndNoteTM Version 21.5 (https://endnote.com/) was used to import and combine the sets of “tagged” SciFinder® 583 
export text files for each compound into an individual EndNoteTM compound folders (with the “discard duplicate” 584 
feature turned on). Furthermore, EndNoteTM “Smart Groups” were set up for each of the six triterpenoids, which 585 
included the CAS Registry® number and multiple names for each compound (i.e., synonyms). The references in 586 
each of the six Smart Groups were then added to the corresponding original six triterpenoid folders (with automatic 587 
elimination of duplicates). As noted above, some plants contained more than one of the six triterpenoids. These 588 
EndNoteTM operations ensured that any references that might have been missed in a given SciFinder® compound 589 
search, but included in another compound search, would end up in the appropriate folders (i.e., one reference might 590 
be in more than one compound folder). In EndNote®, the user can select scores of references and then right-click on 591 
“Find full text.” EndNote will then automatically download the PDF files for each reference that cites a journal for 592 
which the user's institution has a subscription or an open-source journal. However, in some cases, software blocks 593 
(e.g., the “Are you a human filter?”) prevent the downloading of some files. In our case at our institution, EndNote 594 
downloads approximately 40-50% of the PDF files for the selected references. 595 
 596 
All manual evaluation of reference relevance (“reports an occurrence”, “maybe reports an occurrence”, “does not 597 
report an occurrence”), manual evolution of candidate occurrences (targeted) and manual extraction of associations 598 
(untargeted) was performed by opening the list of references in Microsoft Excel and entering the manual annotations 599 
into a new column. References were labeled as “maybe reports an occurrence” if they mentioned specific plant 600 
species and the isolation of multiple compounds from the species but did not mention the specific compounds’ 601 
names in the abstract. While the likelihood of a plant/compound association appearing in the full article was high, 602 
we nevertheless conservatively chose to label these types of citations as “maybe reports an occurrence” until the full 603 
text article file could be evaluated. An “maybe” example is: "Medicinal attributes of Solanum capsicoides All.: an 604 
antioxidant perspective. Int. J. Pharm. Sci. Res. 12(5): 2810-2817. The study evaluates the medicinal efficacy of 605 
Solanum capsicoides fruits as an antioxidant. Fruit extracts were prepared using acetone, ethanol, HCl, and water 606 
[...] A neg. correlation was observed between the pigments, anthocyanins, and carotenoids, with DPPH and 607 
CUPRAC activity. [...] From this study, it can be considered that the phenolics present in the fruits contribute to the 608 
characteristic antioxidant property." 609 
 610 
The Facebook BART-Large-MNLI zero-shot classification model (https://huggingface.co/facebook/bart-large-mnli) 611 
was applied to the individual sets of compound reference citations in the EndNoteTM database. The model was run 612 
on a single NVIDIA GV100GL [Quadro GV100] GPU. First, the set of references in the curated EndNoteTM folder 613 
for a given compound was selected and exported from this folder to a text file (with the “annotated” style selected). 614 
This text file was then imported into an Excel file (e.g., with the legacy “get text from file” Excel wizard. The 615 
resulting Excel sheet was then modified so that each reference citation (author/year/journal/abstract) was contained 616 
in one cell and all cells resided in one column. This Excel sheet, which contained all the reference citations for a 617 
given compound, was then saved as a CSV UTF-8 (Comma delimited) file. This CSV file was used via JupyterLab 618 
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(https://jupyter.org/, operating in a WINDOWS 11 environment) and a custom Python program (full code in 619 
Supplemental File 8). System prompt-accepting chat language models were downloaded from HuggingFace.co and 620 
run on a single NVIDIA GV100GL [Quadro GV100] GPU using custom code (full code provided in Supplemental 621 
File 8). Calculation of precision, recall, and F1 scores as well as plotting were performed in R. Additional system 622 
prompts for the prompt engineering reported in Section 2.2.2 were generated by OpenAI's 04-mini-high language 623 
model using the ChatGPT browser interface. 624 
 625 
5. Supplemental Materials: 626 
 627 
Supplemental File 1: 1,558 references manually scored for relevance to compound occurrence. 628 
Supplemental File 2: Details of classifier phrases. 629 
Supplemental File 3: Details of maybe references. 630 
Supplemental File 4: 500 manually evaluated candidate occurrences. 631 
Supplemental File 5: 100 abstracts from which untargeted occurrence data was manually extracted. 632 
Supplemental File 6: Prompts that were used in small language model untargeted occurrence data extraction. 633 
Supplemental File 7: Schematic of reference acquisition process. 634 
Supplemental File 8: Code used in this work. 635 
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