Robotica (2022), 40, pp. 1188-1206
doi:10.1017/50263574721001065 %%%EEEB{(E}SE

RESEARCH ARTICLE

Tracking linear deformable objects using slicing method

Alireza Rastegarpanah!->* ** @, Rhys Howard>** @ and Rustam Stolkin'~

'Department of Metallurgy & Materials Science, University of Birmingham, Birmingham B15 2TT, UK, >The Faraday
Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 ORA, UK and 30xford Robotics Institute,
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

*Corresponding author. E-mail: a_r_adrex @yahoo.com

**Rastegarpanah and Howard are identified as joint lead authors of this work.

Received: 2 November 2020; Revised: 31 May 2021; Accepted: 5 July 2021; First published online: 9 August 2021

Keywords: slicing; kinematic control; deformable object; cable management; real-time tracking

Abstract

In this paper, an efficient novel method for tracking the linear deformable objects (LDOs) in real time is proposed.
The method is developed based on recursively slicing a pointcloud into smaller pointclouds with sufficiently small
variance. The performance of this method is investigated through a series of experiments with various camera
resolutions in simulation when a robot end effector tracking an LDO using an RGBD camera, and in real word
when the camera tracks a rope during a swing. The performance of the proposed method is compared with another
state-of-the-art technique and the outcome is reported here.

1. Introduction

We regularly encounter and interact with deformable objects in daily life, either in a professional or
domestic capacity. Yet even for humans some delicate operations such as cutting, welding or gluing prove
comparatively difficult for a manipulation task and require one’s full attention. In many cases, robotics
and machine vision present opportunities to solve specific tasks that we would find either difficult or
costly to carry out ourselves. These tasks become even more difficult for robots when interact with
dynamic deformable objects directly/indirectly. Manipulator arms require accurate and robust tracking
system to deal with the infinite-dimensional configuration space of the deformable objects.

Objects are classified based on their geometry into three classes: uniparametric, biparametric and
triparametric [1]. In the robotics community, uniparametric objects refer to the objects with no com-
pression strength (e.g. cables and ropes) or with a large strain (e.g. elastic tubes and beams). The robotic
tasks related to linear deformable objects (LDOs) usually require estimating the object’s current shape
(state) for the purpose of sensing, manipulation or a combination of both. There are a number of studies
that investigated the manipulations tasks such as tying knots [2], insertion of a cable through a series
of holes [3], untangling a rope [4], manipulating a tube into a desired shape, [5] etc. Manipulating the
LDOs is a challenging task for the robot due to difficulties and weak accuracy of modelling of these
hysteresis objects. To evaluate the state transition between the current condition and the desired condi-
tion of the LDO, it is necessary to abstract useful data from LDOs that are hyper degrees of freedom
structures.

Recently, research in tracking deformable objects has been considerably raised among computer
vision and robotics communities to address various applications in areas such as food industry, recycling
waste materials by robots (e.g. nuclear waste, electrical vehicles battery packs), medical imagining, etc.
In industries, one of the challenging issues in installing the robots is cable management which is not
investigated broadly in the literature. Cable management has this potential to cause downtime in a robot
work cell. Repetitive motions of the industrial robots could have huge impact on cabling of end effector

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,

https://doi. dgViced theseri gl arsicke 19 BEOPGHNsFkEbnline by Cambridge University Press

https://doi.org/10.1017/S0263574721001065
https://orcid.org/0000-0003-4264-6857
https://orcid.org/0000-0001-6242-742X
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0263574721001065

Robotica 1189

tools, and consequently it reduces the cabling life span. Controlling the bend radius of cables to avoid
pinching could be achieved by tracking the robot dresspack(s) in real time using depth camera(s), while
the robot is operating.

In this study, we propose a method, based on slicing a captured pointcloud, as a means of tracking a
dynamic LDO. This work lays the groundwork for executing precise tasks on LDOs and demonstrates the
capability of the proposed method with a series of experiments on a cable-like object in both simulation
and real world. In addition, in simulation it is demonstrated that the proposed tracking method integrated
into a kinematic control of a robot in which the robot tracks the movement of a freely hanging LDO (i.e.
deformable rope).

To demonstrate the efficacy of the proposed approach, we compare our novel approach to the contem-
porary tracking approach of Schulman et al. [6]. We emphasise that while both approaches offer effective
tracking, the use case of our approaches differs slightly. The approach of Schulman et al. is robust to
obfuscation but requires the configuration of many dynamics parameters to enable this. Meanwhile,
our approach requires the configuration of just two parameters resulting in reduced set-up time when
prototyping.

In Section 2, advances in tracking and manipulating the LDOs will be investigated. This will be
followed by a formal definition of the problem in Section 3 and our proposed approach to tackle the
problem in Section 4. This is followed by a discussion of how we integrated the proposed approach with
a kinematics system in Section 5. Finally, we describe and discuss the experiments carried out with the
proposed approach in Section 6 before concluding in Section 7.

2. Related Work

In this section, we review the works related to tracking and extraction of key points of LDO using vision
system. Tracking is a key step for improving the manipulation performance, as it assists with estimating
the internal states of LDO. The common approach in tracking the LDO (e.g. rope) is to consider the
LDO as a chain of connected nodes that the position of each node at each timestamp can be estimated by
using the visual feedback (e.g. pointclouds). But creating a precise correspondence between the captured
pointclouds and the rope segments would be a challenging task. In addition, the state estimator should
have the capability of handling the occlusion and satisfying the objects’ physical constraints in real
time. In this study, tracking a freely hanging rope in real time is considered as a case study; therefore,
occlusion is not considered as part of this proposed method.

Research regarding manipulating the LDOs (e.g. rope, cabling, etc.) by a robot with visual feedback
was started in 1987 and one of the earliest reference works in this field was published by Inaba et al. [7].
They developed a method for detecting and tracking a rope by extracting key features from the image
data of object along a line. Although the accuracy of tracking was not reported in that study, it was
demonstrated that the robot can manipulate a rope to pass it into a ring via direct visual feedback from
a stereo vision system. Later, Byun et al. started working on determining a 3D pose for deformable
objects using a stereo vision approach; however, this method is burdened by stereo correspondence
problems [8].

As previously mentioned, describing the condition of LDO is a key for the robot to manipulate the
LDO. Generally, there are two main approaches to manipulation planning for LDOs; numerical sim-
ulation [9-11] and task-based decomposition [12, 13]. Matsuno et al. used a topological model and
knot theory to tackle this problem [14]. They used charge-coupled device cameras to assess the antero-
posterior relation of a rope at intersections. However, the approximation of the LDO’s deformation
for constructing the error recovery was not considered. Javdani et al. [11] is inspired by the work of
Bergou et al. [10] and proposed a method for fitting simulation models of LDOs to observed data. In
this approach, the model parameters were estimated from real data using a generic energy function.
Given that, the question remains that to what extent this method could be efficient for motion planning
and controlled manipulation? Saha et al. has addressed some of the challenges in motion planning of
LDOs [15,16].

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

1190 Alireza Rastegarpanah et al.

There are different deformable object classifiers [17—19] for identifying a LDO (e.g. rope), but they
have no capability in inferring the configuration of LDO. Vinh et al. demonstrated that a robot was taught
to tie a knot by learning the primitives of knotting from human [20]. In their work, the key points were
extracted form the stored trajectories manually in order to reconstruct the knotting task. The process of
the manual extraction of the key points is challenging and time-consuming. Rambow et al. proposed a
framework to manipulate the LDOs autonomously by dissecting task into several haptic primitives and
basic skills [5]. In their approach, coloured artificial markers were attached to be detected by RGB-D
camera unit. In this study, we also use reflective markers that attached on a pipe to segment and detect
the trajectory of a LDO.

In another study, Lui and Saxena proposed a learning-based method for untangling a rope [4]. RGB-
D pointclouds were used to describe the current state of the rope, and then max-margin method was
used to generate a reliable model for the rope. The RGB-D data were pre-processed in order to create a
linear graph, and a particle filter algorithm scores different possible graph structures. Although visual
perception could potentially identify the rope configuration often, for untangling the complex knots (e.g.
knots with multiple intersections overlap each other), other perceptions (e.g. tactile or active perception)
are required.

For the first time, Navarro-Alarcon et al. proposed the idea of online deformation model approxima-
tion [21]. Later, this idea was well developed by other researchers like Tang et al. who proposed a state
estimator to track deformable objects from pointcloud dataset using a non-rigid registration method
called structure preserved registration (SPR). In another work, Jin et al. used a combined SPR and
weighted least squares (RWLS) technique to approximate the cable’s deformation model in real time
[22]. Although the SPR-RWLS method is robust, but the approximation of a deformation model and
trajectory planning is computationally expensive.

More recently, however, there have been several attempts to bridge the gap between providing real-
time support alongside structural information. Schulman et al. [6] and Tang et al. [23,24] both use an
approach that probabilistically associates a pointcloud with a dynamic simulation of the deformable
object being tracked. The main limitation of the proposed method by Schulamn et al. is ambiguity of
the proposed tracking system in escaping from local minima in the optimisation [6]. However, our study
is inspired by the work presented by Schulman et al. [6]; therefore, we have compared the results of our
proposed method with his tracking system.

Later, Lee et al. proposed a strategy, built on the work of Schulman et al. [6], for learning force-
based manipulation skills from demonstration [25]. In their approach, non-rigid registration (TPS-RPM
algorithm) of the pointcloud of LDO was used for adapting demonstrated trajectories to the current
scene. Non-rigid registration method only requires a task-agnostic perception pipeline [6]. Huang et al.
proposed a new method to improve the quality of non-rigid registration between demonstration and test
scenes using deep learning [26].

To estimate the state of a LDO in real time, Tang et al. proposed a state estimator regardless of
noise, outliers and occlusion while satisfying the LDO’s physical constraints [24]. In their closed-
loop approach, a new developed non-rigid point registration method (i.e. proposed SPR algorithm) is
combined with LDO’s virtual model in simulation. Meanwhile, Petit et al. [27] uses a combination of
segmentation and the application of the iterative closest point (ICP) algorithm to derive a mesh to which
the finite element method (FEM) is applied in order to track a deformable object. These approaches have
made progress in many areas of deformable object tracking. In particular, they have attempted to over-
come the issues caused by occlusion and provide a level of persistence to parts of the tracked object in
order to achieve this.

3. Problem Definition

In Section 1, we mentioned a potential application of our proposed approach to assisting with tracking
the robot’s cables to avoid robot makes a movement that damages the cables. For this reason, we will

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

Robotica 1191

focus on tracking LDOs which comprises a part of the aforementioned scenario as the problem we
wish to tackle as proof of concept. In order to represent this scenario, we could tackle a variety of
tasks; however, we have chosen the task to be tracking a freely hanging cable for the purposes of our
development and experimental process. In our experimental cases, we mimic a freely hanging cable
swinging through various means in order to emulate the fast and erratic motion of a cable attached to a
robotic arm.

To more formally define the problem we tackle in this work, we make three assumptions regarding
the nature of the problem:

Assumption 1. The state of a LDO can be sufficiently described by a series of Euclidean coordinates or
node positions N;. These nodes joined together describe a path that passes roughly through the centre
of the LDO.

Assumption 2. The surface of the LDO perceived by an observed pointcloud O is a reliable guide for
the positioning of the aforementioned nodes. This is an inherent assumption to tackling the problem of
LDO tracking when viewing the object from a single perspective.'

Assumption 3. Observed pointcloud O can be separated into sub-pointclouds N}) such that N can
be approximated from the contents of each corresponding sub-pointcloud in Nfo Provided there exists
a ground truth N; then by clustering observed points 0 € O to their nearest node, we can derive NO
and naively take the centroids of NO to approximate N;. Throughout the rest of this work, we utlllse
the centroids of NO combined with a pre-defined translanon to approximate N;. A pre-defined transla-
tion accommodates Jor O only covering one side of the LDO, which would result in additional error if
centroids alone were used.

Assumption 4. Sub-pointclouds Njo that each consist of points with variance ~ &, satisfy the conditions
required for Assumption. Here, 8, is determined based on the diameter of the LDO, as the diameter will
determine both the expected spread of points and the number of nodes required to represent the flexibility
exhibited by the LDO. The logic here is that it is very unlikely that a LDO will be able to significantly
deform along its length in a distance less than its diameter.

With the assumptions of our work established, the problem has been reduced to the means by which
we derive sub-pointclouds N/(.’ with variance ~ §,. For this, we propose our primary contribution: our
novel slicing algorithm. This algorithm will be used to track a LDO by providing a trajectory/path
through the LDO in real time. The approach is validated by both pure tracking experiments as well as
experiments which involve a robot carrying out the task of tracking the length of the LDO as a test of
its practical applicability.

4. Outline of the Proposed Approach

In this section, we describe our proposed approach and explain the “track_deformable” node of the
workflow illustrated in Fig. 1. Our proposed approach can be broken down into three steps. Firstly, the
pointcloud is captured and filtered using positional and colour space filters such that the remaining points
correspond to the LDO in question. The second step is to slice the pointcloud into several smaller node
pointclouds recursively. Finally, the centroids of the resultant node pointclouds are used in a trajectory
creation step, the output of which is a trajectory composed of waypoints that describe the current state
of the tracked LDO.

'When we speak of a single perspective, this is in a relative sense. For example, a stereo vision depth camera implicitly relies on
multiple perspectives, but for the purposes of this assumption, this would still only be considered a single perspective, as it would
be challenging to conceive a practical scenario where a stereo vision camera would be able to perceive all surfaces of an object
simultaneously.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

1192 Alireza Rastegarpanah et al.

(Tw)
Depth Camera Track_deformable == Kinematic_control
‘ ‘ f Robot Arm
Point cloud Trajectory (Tw)

Waypoints (TW) = == Trajectory_tracker

Figure 1. lllustration of the robot operating system (ROS) architecture the proposed
approach/kinematic control system integration is built around. The pointcloud is initially cap-
tured by the depth camera and passed onto the “track_deformable” node. Here the pointcloud is
filtered before carrying out the slicing operation and planning a trajectory using the nodes resulting
from the slicing step. The trajectory waypoints are then forwarded to the “trajectory_tracker” and
“kinematic_system” nodes. The “trajectory_tracker” node maintains a record of recent trajectory
waypoints in order to estimate the velocity and acceleration of the waypoints. The predicted waypoint
velocities are then passed onto the “kinematic_system” node. Finally, the “kinematic_system” node
uses the trajectory waypoints and their associated predicted velocities along with the current joint
states to calculate joint velocities.

Calculate Node Velocities Calculate Node Acclerations Predict Future Node Velocities

I Anchor Node Node Velocities (f=1)
Il Nodes (t=0) Node Velocities (t=2)
Nodes (t=1) Node Accelerations (t=2)

I MNodes (f=2) WM Node Velocities (f=3)

Figure 2. [llustration of the velocity/acceleration tracking process. The difference is calculated between
the closest nodes between frames, and this combined with the timestamp difference gives each node’s
velocity across the last frame. This process is then repeated with subsequent velocities to derive an
acceleration across frames for each node. Finally, the velocity and acceleration for each node can be
combined to form a prediction of what the velocity will be for the next frame. In this example, the dis-
tances are much larger than what would typically be seen and the use of Kalman filters is not included
as part of the illustration.

4.1. Slicing

The approach we take to separate O into Nj‘? is to repeatedly bisect or “slice” the sub-pointclouds along
their direction of greatest variance until a suitable variable has been reached, based on Assumption 4.
This technique is inspired by viewing the LDO as a long object which we want to cut up with a knife
(e.g. dough, a sausage). However, we further refine this view by always bisecting, as opposed to working
our way along the LDO slicing as we go. This results in the maximum number of slices needed to reach
a final node sub-pointcloud S being of complexity O(log, |O|). Meanwhile, the time complexity of the
approach is O(257"). This ultimately results in an O(]O|) time complexity, suitable for application with
pointclouds of varying resolution.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

Robotica 1193

The proposed method first initialises N with O:
N’ = {0} (1)

For each iteration of the algorithm, given the node sub-pointclouds N the corresponding node positions
N* and covariance matrix trace values N° are calculated:

X __ L . 0
Ni_{|0i|ZO|O,eNi])

0€0;
N7 = {tr(2(0,)) | O, € N?))
N = (N, N, N?))

where #r(-) is the matrix trace and X(-) is the covariance matrix. Next, the node with the greatest
covariance matrix trace value is determined:

N; =(X;, 0;, 6;) = arg max o; &)
(x;,04,0i)€N;

We bisect this node through X; perpendicular to the direction of the first component vector v; derived
from the principal component analysis (PCA) of O;:

0iy={0€ 0] (0—%,v,) >0} (6)
0,,={0e0:](0—%,v,) <0} (7)
From the two resulting sub-pointclouds, the next iteration is initialised:
N7, = N7\ {0:) U {030, 0u1) @®)
The iterations continue until the following condition is met:
Yo, e N/:0; <4, ®

This results in all the members of O; € N eventually having a covariance matrix trace o; below §, and
ideally close to §,. In the case where a bisection occurs when o; £ §,, there is arisk of bisecting tangential
to the cable rather than perpendicular to the cable, resulting in a “kink” in the final trajectory. In order
to reduce the likelihood of such a kink forming and to remove nodes that may have been created due to
the presence of noise, a node filtration is carried out based on the cardinality of the sub-pointclouds:

N/ ={0, €N} [10,| =50} (10)

where N¢ corresponds to the node sub-pointclouds from the final iteration. From here, the node positions
N7 can be calculated, via the following:

1
N}:{Vﬁ—ﬁZMOfeNf’} (11)
!

0€0y

where v, is a constant pre-defined translation vector used to accommodate for the error introduced by
O being projected only on one side of the LDO.

4.2. Trajectory creation

Once the nodes have been derived using the slicing algorithm, a trajectory representation can be created.
We effectively want the trajectory to begin at a node at one end of the LDO and pass through each node
in the correct order. To do this, the first waypoint node is determined with the following optimisation:

Ty =argmax —(RL. %) + > |x, — x| (12)

x
xreN; "//‘ N¥

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

1194 Alireza Rastegarpanah et al.

where RY. is the Y axis of the depth camera. This equation aims to find the node which is the greatest
distance from all other nodes while preferencing nodes towards the top of the camera’s view. This pref-
erence is to increase the stability in terms of which end of the LDO is selected for the starting node.
However, this preferencing is based on the assumption of a vertically aligned LDO, so this may require
adjustment on circumstance. For example, rather than using a dot product-based metric, the preferenc-
ing could take into account the distance from the robot’s manipulator to each prospective node. Each
successive node is then determined by another set of optimisations as follows:

T) = arg max ||x, — T} || (13)

Xy eN}f

Ty, = argmax In (||x;, — T}|) + (T} = T} ,x; — T?) (14)

xreNf
Here, the second waypoint node is determined simply as the closest node to the first waypoint node based
on L* distance. The subsequent waypoint nodes are determined via a combination of L* distance and the
exponent of the dot product between the new and previous directions of the trajectory (i.e. x; — TV and
TY — TY |, respectively). However, for ease of reading, the function being maximised has been shifted
into logarithmic space. Since the logarithmic function is strictly increasing it does not impact the result
of the arg max operation, but it does make interpreting the dot product exponent easier.

Once the order of nodes has been determined, spline interpolation is used to smooth the transition
between nodes to produce a trajectory T. This trajectory is in turn composed of a series of waypoints
w € T. Then an orientation is derived for each waypoint frame in the trajectory. For the ith waypoint
in the trajectory w; with position p;, the rotation matrix’s columns R; = (R¥, R}, R?) are determined as
follows:

RS — Pit1 — Pi

I [1Pir1 — Pill
The convention of having the X axis as the frontal facing axis is followed, aligning the axis with the
direction of travel for the waypoints. For the case that w; is the final waypoint in the chain, there is no
w;,, therefore set R¥ =RY |

s)

R’ =R x R% (16)

R’=R! xR’ (17)

where RY is the Z axis of the depth camera. The aim here is to line up the Z axis of the waypoints
with the Z axis of a robot arm’s end effector which assists with the kinematic control system integra-
tion/experimentation discussed in the following sections. The rotation matrix R; for each waypoint is
then converted into a quaternion r; in preparation for calculations the velocity and acceleration tracking
and the robot arm control will need to make. Each waypoint position and quaternion will combine to
define a pose for each waypoint which collectively describe the state of the LDO.

5. Integration with a Kinematic Control System

This section discusses the integration of the proposed tracking approach into a kinematic control system.
This corresponds to the “trajectory_tracker” and “kinematic_control” nodes of Fig. 1. The following
section aims to accomplish three objectives. Firstly to discuss approaches which have been developed in
tandem with the proposed approach to increase its effectiveness. Secondly to describe how to approach
the task of integrating the proposed approach with a kinematic control system of a 7-DoF redundant
robot arm. And finally to define in detail the implementation used for the experimentation involving
kinematic control systems (See Case Study 2). To summarise the kinematic control system, its purpose
is to track along the length of the LDO as it is in motion. This is a task which requires a high level of
precision from the tracking system, as well as minimal latency and appropriate integration. Therefore,

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

Robotica 1195

the described system acts as a good proof of concept to challenge the tracking technique as a means of
validating its efficacy.

5.1. Velocity and acceleration tracking

While tracking the node positions for a deformable object is sufficient for determining the current config-
uration of the object, it poses a problem for systems with non-quasistatic properties. If a control system
just attempts to follow a trajectory based off of nodes generated with the proposed method, then there
will always be an inherent error involved in the tracing task. This is because a system which only uses
the current position of the nodes can only adapt to motion in the system once the motion has already
occurred. A fast feedback loop can help to mitigate this problem, but such an approach makes no real
attempt to proactively account for the future motion of the deformable linear object.

Algorithm 1 provides detailed pseudocode of our means of proactively reacting to future motion
by approximating the expected velocity and acceleration of each trajectory waypoint. This way, future
motion can be accounted for by the kinematic control system via adjusting the end effector’s desired
velocity.

5.2. Robotic arm control

Having described a means to plan a trajectory and estimate the expected velocity of its waypoints, it
is finally possible to integrate this data with a kinematic control system. The control system we use
focuses on moving to the next waypoint in the chain in order to trace the length of the object with
the end effector. The next waypoint is initially set to the first waypoint in the chain, after reaching this
point the end effector will attempt to move towards the first viable waypoint as defined as fulfilling the
following three conditions:

(R}, pi—pe) >0 (18)
(RE,RY) >0 (19)
[Ip; — Pell =6, (20)

where p; and R¥ are the position and X axis column of the rotation matrix for the end effector.
Meanwhile,p; is the position of waypoint w; and §, is a linear distance threshold. Unlike the veloc-
ity and acceleration tracking, there is no concept of timesteps here, hence the difference in notation.
These three conditions can be summarised as 1. Ensure the linear velocity vector to reach the waypoint
approximately matches the current orientation of the end effector, 2. Ensure the orientation of the way-
point has approximately the same orientation as the end effector currently, 3. Ensure the waypoint is
sufficiently far away from the end effector.

The desired end effector velocity v is calculated as a combination of the difference between the end
effector and its next waypoint Ax and the predicted velocities for the waypoint calculated previously X:

v=oa Ax + Bx Q21

where « is the gain used to determine the waypoint approach velocity and g is the gain for the expected
waypoint velocity. 8 must be tuned to account for systems in which high jerk is present. Meanwhile, as
for « it is calculated from a modified adaptive gain algorithm from the ViSP library [28]:

o = (hy — Aog)e T ¥y (22)

where A, is the gain value when || Ax|| is near zero, A, is the gain value when ||Ax|| is near infinity
and A, is the rate of change for the gain when ||Ax]|| is near zero. All three of these parameters must be
tuned for the system present.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

1196 Alireza Rastegarpanah et al.

Data: T,, = Current Trajectory Waypoints, n = Iteration Number, as; = Time Interval Alpha,
Wy, [Wy, / Wy = Waypoint Velocity Initial Error / Measurement Covariance / Process Covariance,
Wiy / Wy, / Wy = Waypoint Acceleration Initial Error / Measurement Covariance / Process Covariance

Result: Tn+1:n = Current Predicted Trajectory Waypoint Velocities
if n > 1 then
‘ Otn = tn - th—1;
end
if n > 2 then
‘ T Sttt = (1 — as)Stn,ne1 + asiStn;
else
‘ Otni1,n = Otn;
end
if n > 1 then

-n:() Tn:()%

Tn+1 n=0,T n+1 =0

Tn+1 n=0,T n+1 n - ()7
for i« = 0; i < SIZE(T,); i++ do
w, = T,[i];
pn = POSITION(w,,);
rn, = ORIENTATION (w,);
dmin = 00;
for j = 0,5 < SIZE(Tn_l) j++ do
Wpo1 = Th_1[t
Pn—-1 — POSITION(anl);
rp,—1 = ORIENTATION(w,_1);
d=|lpn = Pn-1||+ (1 = (rn,rn_1));
if d < dpin then
dmin = d;
Pn = |[|Pn — Pn-1l| / dt;
in = (W(rn—1) VEC(rn) - W(rn) VEC(rn_1) - VEC(r,)) x VEC(rn_1)) / 6t
Wn = (Pn,Tn);
ifn > 2 then_
Wp—1 = Tr_1[i];

VTVn.n—l = Tn,nfl[i];
wZ,n_l - T;f,n—l[i}?

Wnon-1 = Tn,n—l[i];
Wy oy =Ty 4 lil;

end
end

end
T, =T, UWw,
if n > 2 then

Wi = ||[Wn — Wn_1]| / 0t;
Tn = T U W,

else
Wn,n—1 = (0,0,0,0,0,0);
pgd o Na
Wy on—1 = Winits
Wn,n—1 = (0,0,0,0,0,0);
oA IR
Wy in—1 Winits

end

Ktb 7“-’;'171 1/ (wZn—l""lba)'
Wn n=(1—Kp)Wnno1+ KoyWn;
wy o= (1 — Ky)wy
if n > 2 then
Kw 7wnn—1 / (wnn 1+ W7);
Wn n = (1 — Kg)Woono1 + KgWn;
wy = (1—- Kg)w

n,n

n, n—13

n,n—1>

end

Wintln = Wan + Wan * 0tnitn;

Wnti,n = Wnon}

'Z+1 n = Wy, Wy 5tn+1,n +p;
n+1 n = “’n n T w

Tn+1 n = Tn+1 n U Wn+1 n;

Tg+1 n Tn+1 n\Y “’n+1 n?

Tn+1 n = Tn+1 n U Wn+1 n;

T = T Vi s
end

end

Algorithm 1: The velocity and acceleration tracking algorithm used to predict
waypoint velocities for the next frame.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

Robotica 1197

In addition to the desired end effector Cartesian velocity v, we also calculate secondary objective
desired joint velocities q, as follows:
Sw, Swy
o = ky— + kj—= 23
qq 5q il 5q (23)
where w; is the measure of manipulability proposed by Yoshikawa et al. [29], w; is a measure of how
close the current joint configuration is to the joint limits, and k; and k; are the respective weightings for
each of these measures.
The derivative of the measure of manipulability w, with respect to the joint states is used as a means
to avoid joint configurations that would result in a singularity:

wy =+/det(JJ7) (24)

Sw, lV(ddj(JJT)(f—;JT + J%))
5q; 2./det(JJ7)

(25)

Meanwhile, the derivative of w; with respect to the joint states is used to avoid joint limits using the
maximum and minimum limits for each joint ¢™* and q™:

1 n 2 L= max min 2
=t 3 (ATt 26)
B e N C Tl

Swi _ (@™ +4a™) —2q;
8q; 2(q™ —q™)

27)

Having calculated both desired end effector Cartesian velocity v and secondary objective desired
joint velocities q,, the output joint velocities are calculated as follows:

q=Jv+dA-JDdq, (28)

where I is the identity matrix, J is the robot arm’s Jacobian matrix and J* is its pseudoinverse. As
previously mentioned, the end effector velocities take precedence and so q, is projected into null space
using (I — J*J) as a secondary objective.

The task will complete when there are no more viable waypoints available. This allows for a smoother
tracing motion by avoiding the need for the end effector to return to a waypoint that is narrowly missed.
This approach does have the downside that if there are no more viable waypoints available due to the
end effector moving too far from the object, then the procedure will prematurely terminate. Automatic
detection of such cases could be carried out by measuring the distance from the end effector to the
final waypoint on task completion or by considering a mean, total or root mean square of error over
time. However, due to this kinematic control system’s use as a proof of concept, the implementation and
analysis of such automatic detection are not covered here.

6. Experiments

Here, we present three experiments and provide discussion on the proposed approach based on the
results. The first experiment aims to determine the accuracy of the slicing-based tracking approach
in simulation where custom conditions can be easily defined. The second experiment extends the first
experiment by measuring the accuracy of a kinematic control system that has been integrated with the
proposed approach. The third experiment aims to validate the findings of the first simulation experiment
with a real-world experiment. Prior to discuss the case studies, it will be explained how the pointclouds
were captured and filtered.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

1198 Alireza Rastegarpanah et al.

Figure 3. Screenshot of the simulation set-up used during experiments. Two 7-DoF redundant cobots
(Franka Emika) are used where an RGB-D camera (Kinect) is mounted on one of the cobots (with
eye-to-hand configuration) to provide the sensory data used by the proposed tracking approach. In this
work, the depth camera arm remains static.

6.1. Pointcloud capture and filtering

In order to capture a pointcloud O of the scene in which the LDO is situated, a depth camera is used.
Prior to carrying out tracking, any irrelevant points should be removed from Q. We utilised a positional
filter combined with a CIELAB colour space filter [30] to obtain just the points of the tracked LDO.
The CIELAB colour space was selected for our experiments based on an analysis of the ease of filter-
ing the colour distribution for the object’s colour in each colour space. Any combination of filters or
means of segmentation could be used here instead in order to obtain the set of points relevant to the
object. However, the process of determining which filters ought to be applied is beyond the scope of
this work.

6.2. Case study 1: Tracking a deformable object in simulation

In this experiment, we aim to establish the accuracy of the tracking method under various kinematic
conditions. This is done without consideration for any form of kinematic control system integration
and is carried out in simulation to lower the risk of confounding variables. In order to establish the
accuracy, a LDO was simulated in the Gazebo simulator v9.0.0 using a series of 10 pill-shaped links each
1.5 x 1.5 x 5.5 cm (See Fig. 3). The cable was made to sway by utilising the wind physics of Gazebo.
A wind velocity of 1 m/s was applied parallel to the X axis with other parameters of the wind defined
as shown in Table 1. In this table, x refers to the independent variable that we controlled throughout
the experiment. The values were derived from x = 1 /f where f is the frequency of the wind direction
completing a period, varying from 0 Hz to 1.6 Hz inclusive. For a frequency of 0 Hz, the wind physics
were simply disabled resulting in no movement in the cable.

In order to measure the tracking accuracy, every 0.1 s in simulation time the most recent trajectory
generated from tracking was compared with the ground truth. The ground truth trajectory was calcu-
lated as a series of straight lines connecting the start position, joint positions and end position of the
cable. The linear error was calculated as the Euclidean distance from projecting from each waypoint to
the ground truth trajectory. Meanwhile, given a waypoint the angular error was calculated by applying
cos !(2(r,,1,)*> — 1) to the waypoint orientation and the ground truth orientation, both in quaternion

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

Robotica 1199

Table I. Gazebo’s wind parameters.

Parameter Value

Horizontal Magnitude Direction
Time for rise 10 30
Sin — amplitude percent 0.05 N/A
Sin — amplitude N/A 60
Sin — period 60 X
Gaussian noise — mean 0 0
Gaussian noise — SD 0.0002 0.03
Vertical

Gaussian noise — mean 0

Gaussian noise — SD 0.03

form. The ground truth orientation is calculated here as the orientation at the point resulting from the
projection of the waypoint onto the ground truth trajectory. The orientation at a given point along the
ground truth trajectory is based on the orientation of the link in the simulation corresponding to that
part of the ground truth trajectory.

The mean was then calculated for linear and angular error across all waypoints for that reading. This
was carried out for a total period of 300 s in simulation time for a total of 3000 readings, across which
mean and standard deviation were calculated for linear and angular error.

To provide a basis for comparison with other contemporary deformable object tracking techniques,
we perform this experiment with both the original approach of this paper and the tracking approach of
Schulman et al. [6]. However, it should be noted that since this approach only offers positional data, no
angular error can be calculated for this approach.

Additionally, the entire experiment was repeated twice, once with real-time simulation speed at 30
frames per second (FPS) with 480 x 360 resolution and again with 10% of real-time simulation speed at
60 FPS with 1280 x 720 resolution. The purpose of repeating the simulation twice was to demonstrate
the impact of both latency and low resolution on the algorithm’s performance with the intention of laying
out a path for future improvements to the accuracy of the approach. For the purpose of comparison, all
parts of the proposed approach were implemented to run on a single thread and experiments were carried
out on a Dell XPS 15 9550 laptop with 16 GB of RAM and an Intel Core i7-6700HQ processor.

An important aspect to consider when looking at the angular error is that the ground truth orientations
are determined by the orientations of the 10 links making up the cable. Therefore, the ground truth
trajectory contains 10 orientations which make no attempt to smooth the change in orientation between
them, whereas the waypoints of the tracked trajectory do. This is done in order to make the trajectory
more suitable for the kinematic control system experimented with in the next subsection. The result of
these circumstances is that in both experiments, the overall angular error is artificially inflated.

Figure 4(a) and (b) show both sets of results for the original approach of this paper, each of which
peak at 0.8 Hz. This is likely the result of 0.8 Hz being close to the natural frequency of the system
and therefore the point at which greatest amplitude is observed. In terms of the difference between
the two sets of conditions, we can begin by considering the 0 Hz case for both. Because there is zero
motion in these cases, the camera FPS and simulation speed have no impact, only the camera resolution.
Here the 480 x 360 resolution condition gives a linear error of 2.69 + 0.0892 x 10~° m and an angular
error of 1.55 4 0.447 x 1072 rad. Meanwhile, the 1280 x 720 resolution condition gives a linear error
of 1.45 £ 0.0127 x 107 m and an angular error of 1.30 +0.116 x 1072 rad. As expected, the linear and
angular error were reduced by using a higher resolution, demonstrating that one of the limiting factors
of the algorithm’s accuracy is the camera resolution in use.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

1200 Alireza Rastegarpanah et al.

(a) 004

03

0.035

0.03 05 o
E E
§ 0.025 0.2 5
= =
e 002 015 3
W p.015 g
5 01 EZ
@ =
£ 001 g

ik B TITIT .

o B s s .

0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16

Frequency (Hz) W Linear Error Mean ® Angular Error Mean
(b)
0.04 ia
0.035
0.25

- 0.03 ﬁ
3 =
£ 0.025 0.2 £
s s
5 002 015 3
Y 0015 o
g 01 £
] 0.01 q:?

. iHiiii -
AT 11 "Ll
0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16

Frequency (Hz) ® Linear Error Mean = Angular Error Mean

Figure 4. Simulation tracking accuracy results for original approach. (a) Real-time simulation speed
at 30 fps with 480 x 360 resolution. (b) 10% of real-time simulation speed at 60 fps with 1280 x 720
resolution.

If we instead look at the largest errors for both conditions, we have a linear error of 1.21 &
0.825 x 1072 m versus 9.38 +5.57 x 107> m and an angular error of 9.91 +4.91 x 10~%rad versus
8.22 +3.00 x 1072 rad for the first and second conditions, respectively. By calculating the ratio of dif-
ferences between the conditions for linear error (12.1 mm — 2.69 mm)/(9.38 mm — 1.55 mm) = 1.20
and angular error (9.91 mm — 1.55 mm)/(8.22 mm — 1.30 mm) = 1.21, we can see that there is a sig-
nificant impact on the error resulting from an aspect other than the resolution change between the
conditions. This result can be attributed to the difference in FPS and real-time factor for the simula-
tion. Higher FPS results in lower latency by reducing the interval between frames and lower real-ime
factor reduces latency by reducing computational load. Based on observations made during experimen-
tation latency accounts for a large part of the error, therefore by increasing the FPS of the depth camera
and the overall computational ability of the system performing tracking the potential accuracy can be
improved.

If we look instead at the results for the Schulman et al. approach shown in Figure 5(a) and (b),
we see the results take a similar pattern to those given by this paper’s original approach. However,
in both the 100% and 10% real-time simulation speed cases, the results are noticeably worse. In fact,
the results given for 10% of real time for the Schulman et al. approach are as bad or worse than the
fully real-time results for the original approach of his paper. This demonstrates the suitability of this
approach in contrast to existing techniques for deformable object tracking. Here, the increase in error
for the Schulman et al. approach can likely be attributed to both increased processing times and erratic
behaviour in the underlying simulation of the tracking technique as a result of the high speed of the
tracked object.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

Robotica 1201

(a) o0.04
0.035
0.03

0.025
0.02
0.015

0.
0.005 I I I i
0

01 02 03 04 05 06 07 08 09 11 12 13 14 15 16
Frequency (Hz)

Linear Error Mean (m)

o
=

S

0.035

0.025
0.02

0.015

0.0
°’°°5l|"“ i i “

01 02 03 04 05 06 07 08 09 11 12 13 14 15 16

Linear Error Mean (m)
=

=3

Frequency (Hz)

Figure 5. Simulation tracking accuracy results for Schulman et al. approach. (a) Real-time simula-
tion speed at 30 fps with 480 x 360 resolution. (b) 10% of real-time simulation speed at 60 fps with
1280 x 720 resolution.

6.3. Case study 2: Kinematic control system integration experiment

This experiment aims to establish the accuracy of the proposed approach in its entirety as part of a
practical task. In terms of the simulation set-up, it was identical to that described in Case Study 1. In this
experiment, the proposed tracking approach was combined with the proposed velocity and acceleration
tracking and the robot arm control. The parameters used for the robot arm control can be seen in Table II.
The end goal is to fully simulate the end effector tracing the length of the tracked object as a proof of
concept of integrating the proposed approach with a kinematic control system.

The means of measuring linear and angular error were again identical to Case Study 1, except rather
than measuring for every waypoint in the tracked trajectory the error was calculated from the end effector
to the ground truth trajectory. In addition, rather than capturing 300 s worth of records, records were
captured for the duration of the tracing motion by the robot. The error readings were recorded for a
total of three repeated task executions. Occasionally, it was impossible to project from the end effector
onto part of the ground truth trajectory and such readings therefore are marked as having zero linear
and angular error. Following the completion of experimentation, these readings were manually removed
as well as several readings from the beginning and end of the tracing motions to account for human
timing error in starting/stopping the measurement programme. If ever the combined number of readings
removed accounted for more than 5% of records for a case, the experimental case was repeated. Similar
to Case Study 1 the experiment was repeated twice for the same two conditions.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

1202 Alireza Rastegarpanah et al.

Table II. Robotic arm control

parameters.
Parameter Value
Ao 4.0
Moo 04
Ao 30.0
B 0.95
(a) 0.06 0.45
0.055 -
0.05 _
£ 0045 0% 3
T o004 03 ¢
o [
£ 0035 025 2
T 003 =
2 02 2
E 0025 E
= 002 015z
2 0015 S
£ ® 0.1 =
0.01 Z
0.005 i i 0.05
0 0
01 02 03 04 05 06 07 08 09 11 12 13 14 15 16
Frequency (Hz) W Linear Error Mean ® Angular Error Mean
(b)
0.06 045
0.055 o
0.05
£ 0035 035 =
T 004 03 T
o ©
3§ 0035 025 2
§ 0.03 =
02 §
5 0025 E
= 002 015 5
£ 0015 E4
- 2

= sdaddddddddddidai-

0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16

Frequency (Hz) m Linear Error Mean ® Angular Error Mean

Figure 6. Kinematic control system accuracy results. (a) Real-time simulation speed at 30 fps with
480 x 360 resolution. (b) 10% of real-time simulation speed at 60 fps with 1280 x 720 resolution.

Figure 6(a) and (b) show both sets of results. If we focus on the linear error, the 30 FPS condi-
tion’s worst case was 2.58 &+ 3.18 x 1072 m, while the 60 FPS condition’s worst case was 7.02 £ 6.58 x
1073 m. Therefore, under the 30 FPS conditions, we see a reduction in accuracy over the previous exper-
iment, while instead under the 60 FPS conditions we see an improvement in accuracy over the previous
experiment. The velocity and acceleration tracking has caused the most significant impact here. It is
likely the main contributing factor allowing for the approach under the 60 FPS conditions to improve
accuracy above that seen during the tracking accuracy experiment. However, this method is also affected
by latency to a lesser degree and the necessity of having to move the robot’s end effector rather than
just track a trajectory leads the approach to suffer greater than previously in cases involving additional
latency. This explains why the 30 FPS conditions display such a drastic difference in linear error and
further justifies the use of higher FPS and faster processing capabilities.

Having discussed the linear error, it is worth exploring why the angular error varies less between the
differing conditions and why it is noticeably higher here than in Case Study 1. The angular error for the
30 FPS condition’s maximum error case was 2.49 4 1.77 x 107! rad, while for the 60 FPS condition’s
maximum error case it was 1.86 £ 1.42 x 107! rad. A large contributor to the large angular error is the
fact that the desired orientation is determined by the current waypoint. Therefore, if the end effector is

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

Robotica 1203

Reflective markers

Flexible pipe “
N\ OptiTrack cameras

(Deptheamera) |

Figure 7. Experimental set-up: position of the reflective markers attached on the cable tracks by the
motion capture systems. In addition, depth camera creates the mesh pointcloud of the pipe. Position of
the depth camera w.r.t the word coordinate reference is recognised by single reflective marker attached
on the depth camera. Motive is the motion capture software associated with the OptiTrack cameras.

following the trajectory at a high velocity, then its desired orientation will change more rapidly which is
harder to accommodate for. This combined with the smoothing issue discussed in the previous experi-
ment explain why there is a much greater disparity between linear error values and angular error values
between conditions.

6.4. Case study 3: Real world experiment

This experiment aims to validate the results of the previous experiment by performing a similar experi-
ment in the real world (Fig. 7). However, due to the difficulty in producing a precisely oscillating wind in
the real world, we instead drop a flexible pipe from a series of heights. The pipe is 12.5 mm in radius and
approximately 70 cm in length and was affixed to a clamp at one end from which it could swing freely.
To produce a ground truth against which we could compare tracking data, eight motion capture markers
were attached along the length of the pipe at approximately 77 mm intervals, starting at the swinging
end of the pipe. The positions of these markers are captured at 30 fps by a series of OptiTrack cameras.

Once again the pipe is tracked by two methods, both the original method proposed in this paper and
the tracking method approach of Schulman et al. [6]. The original method was carried out during the
capture of the motion capture data; meanwhile, the Schulman et al. approach used for comparison was
carried out on data captured in robot operating system (ROS) bag files.

The rope was dropped from heights ranging from 0 mm to 45 mm at 5 mm intervals. For each height,
the drop is repeated three times. After the rope is dropped 15 s of tracking/motion capture, data are
recorded. When subsequently carrying out the analysis of the data, the first 2 s is skipped to avoid cap-
turing any spurious pointcloud data from the initial drop. Finally, when calculating the method, the mean
error for a given case is almost identical to Case Study 1 except for the fact that only positional data are
considered.

Figure 8 does not identify either of the two tracking methods as markedly better than the other. Out
of the cases involving movement, drop heights of 10, 15, 20, 25 and 35 mm have the proposed method
of this paper providing lower mean positional error values, mean the same is true for drop heights 5, 30,

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

1204 Alireza Rastegarpanah et al.

0.07

0.06

0.0
0.0
0.0 = original
® schulman

0.0
0.0 ‘

0

0 5 10 15 20 25 30 35 40 45

Drop Height (mm)

Linear Error Mean (m)
N w -~ [}

=

Figure 8. Real-world tracking accuracy results: A comprehensive comparison between two tracking
methods.

40 and 45 mm for the Schulman et al. approach. Additionally, in all cases except the cases involving no
drop, there is a large amount in variation in the linear error.

It would appear that the limiting factor in both cases is a combination of depth camera pointcloud
resolution, accuracy and a lack of processing power to cope with larger pointclouds at a high rate of
FPS. This explanation is reinforced by the results of Case Study 1, which demonstrated the bottleneck
imposed on the accuracy of both methods by depth camera resolution and processing times. In this
instance, these factors impeded the accuracy of each method to such a degree as to provide similar results
for both approaches. Nonetheless, the accuracy of the results is similar to the accuracy demonstrated by
Schulman et al. for a single RGBD camera. In their case, the tracking difficulty presented by the rope
was due to occlusion by both the rope itself and the robot’s arms used for manipulation. In our case, we
deliberately avoid such occlusion; however, the difficulty is instead derived from the speed and size of
the swinging pipe.

6.5. Discussion

Through the experiments detailed in the previous section, we have demonstrated that the proposed
method has capability to track an LDO in simulation with a mean linear error of 0.970 cm, all the while
with parts of the cable moving at speeds in excess of 0.2 m/s. Furthermore, it has been demonstrated
that by increasing the resolution and FPS of the depth camera, while reducing the computational load
of the simulation we can reduce the mean linear error to 0.702 cm while increasing the speed of various
parts of the cable to be in excess of 1 m/s. It is also worth noting that while several other works [6,23]
use a detailed simulated model as part of their method, we use a simulation here purely for experimental
purposes and our model as it stands requires little a priori information of the object to be tracked before
it can be used.

These results were subsequently backed up by the results of the kinematic control system integration
experiment. Here, the cases which were ran at 10% of real time with a higher resolution/FPS depth
camera out performed the proposed approach by itself in terms of positional accuracy. The angular
error was comparatively worse; however, even the worst-case mean equates to less than 15° in angular
error and this was for a case involving extremely high rates of angular change for the segments of the
simulated LDO. The real-time cases had noticeably worse linear error; however, given the low error rates
of the 10% of real-time and high-resolution/FPS cases, it is clear that the bottleneck on linear/angular
error is processing time.

In addition, in the real-world experiment, we demonstrated an ability to track for a mean linear error
of 3.03 cm across a variety of drop heights. Additionally, we found that the approach of Schulman

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065

Robotica 1205

et al. also provided a mean linear error of 3.30 cm. Given the similarity in error values, the degradation
in accuracy can likely be attributed to sensory and processing hardware imposing a bottleneck on the
potential accuracy of either approach. This is reinforced by the results of the kinematic control system
integration experiment.

Therefore, it is clear that the primary next step that should be taken is to both improve the speed
with with computations can be carried out, both by running on more suitable hardware and utilising
parallelism. Furthermore, future experimentation should be carried out with a real-time operating system
to minimise variability in data processing times.

Finally, as discussed in Section 2, a feature of other contemporary methods which we have yet to
explore is the ability to account for obscured parts of an object and maintain the structural integrity of
the object throughout physical interactions. Currently, our model does not attempt to handle obscured
parts of an object; furthermore, it does not consider the dynamics of the object. Facilitating some form
of persistence here would expand the applications of this technique but allowing for greater levels of
visual obstruction. Additionally, using this to enforce a level of temporal consistency may help to avoid
erratic tracking output. The implementation of such persistence and the reduction of reliance on a priori
knowledge of the object are suggested as strong avenues for future work.

7. Conclusion

In this work, an efficient novel method to tracking LDOs has been proposed. This involves repeatedly
slicing a captured pointcloud of the object in question before constructing a mesh from nodes derived
from the centroids of the sliced pointclouds. From here, a spline can be defined from the aforementioned
nodes. This approach has been tested in both simulation and the real world. In simulation experiments,
the proposed approach shows promise for tracking fast-moving LDOs accurately. Real-time tracking in
simulation yielded a maximum case linear error of 1.21 & 0.825 cm, while tracking a 1.5-cm diameter
LDO. Integration with a kinematic control system and analysis of the resultant worst-case error during a
tracking task execution yield a maximum case error of 2.58 4 3.18 cm. Meanwhile, in real-world exper-
iments, we have demonstrated that the proposed method can compete with contemporary deformable
object tracking methods.

Acknowledgements. The authors would like to thank Dr Christopher Bibb for his technical support in installing the OptiTrack
cameras.

Funding. This research was conducted as part of the project called “Reuse and Recycling of Lithium-Ion Batteries” (RELIB).
This work was supported by the Faraday Institution [grant number FIRG005].

Data Availability Statement. The data that support the findings of this study are openly available in Figshare
(https://figshare.com/s/9c24dda2aa383d38af1a) with doi (10.6084/m9.figshare.12084996) [31].

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1017/
S0263574721001065.

References

[1] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou and Y. Mezouar, “Robotic manipulation and sensing of deformable objects in
domestic and industrial applications: A survey,” Int. J. Rob. Res. 37(7), 688-716 (2018).

[2] Y. Yamakawa, A. Namiki, M. Ishikawa and M. Shimojo, “Knotting Manipulation of a Flexible Rope by a Multifingered Hand
System Based on Skill Synthesis,” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2008)
pp. 2691-2696.

https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://figshare.com/s/9c24dda2aa383d38af1a
https://doi.org/10.1017/S0263574721001065
https://doi.org/10.1017/S0263574721001065
https://doi.org/10.1017/S0263574721001065

1206 Alireza Rastegarpanah et al.

[3]
[4]
[5]
[6]

[7]
[8]

[9]
[10]

[11]
[12]

(13]
[14]

[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]
[30]

(31]

W. Wang, D. Berenson and D. Balkcom, “An Online Method for Tight-Tolerance Insertion Tasks for String and Rope,” 2015
IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015) pp. 2488-2495.

W. H. Lui and A. Saxena, “Tangled: Learning to Untangle Ropes with RGB-D Perception,” 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 837-844.

M. Rambow, T. Schau3, M. Buss and S. Hirche, “Autonomous Manipulation of Deformable Objects Based on Teleoperated
Demonstrations,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012) pp. 2809-2814.
J. Schulman, A. Lee, J. Ho and P. Abbeel, “Tracking Deformable Objects with Point Clouds,” 2013 IEEE International
Conference on Robotics and Automation (IEEE, 2013) pp. 1130-1137.

M. Inaba and H. Inoue, “Rope handling by a robot with visual feedback,” Adv. Rob. 2(1), 39-54 (1987).

J.-E. Byun and T.-i. Nagata, “Determining the 3-d pose of a flexible object by stereo matching of curvature representations,”
Pattern Recogn. 29(8), 1297-1307 (1996).

M. Moll and L. E. Kavraki, “Path planning for deformable linear objects,” IEEE Trans. Rob. 22(4), 625-636 (2006).

M. Bergou, M. Wardetzky, S. Robinson, B. Audoly and E. Grinspun, “Discrete Elastic Rods,” ACM SIGGRAPH 2008
Papers, SIGGRAPH’08, New York, NY, USA (Association for Computing Machinery, 2008).

S. Javdani, S. Tandon, J. Tang, J. F. O’Brien and P. Abbeel, “Modeling and Perception of Deformable One-Dimensional
Objects,” 2011 IEEE International Conference on Robotics and Automation (IEEE, 2011) pp. 1607-1614.

H. Wakamatsu, E. Arai and S. Hirai, “Knotting/unknotting manipulation of deformable linear objects,” Int. J. Rob. Res.
25(4), 371-395 (2006).

M. Saha and P. Isto, “Manipulation planning for deformable linear objects,” IEEE Trans. Robot. 23(6), 1141-1150 (2007).
T. Matsuno, D. Tamaki, F. Arai and T. Fukuda, “Manipulation of deformable linear objects using knot invariants to classify
the object condition based on image sensor information,” IEEE/ASME Trans. Mecha. 11(4), 401-408 (2006).

M. Saha and P. Isto, “Motion Planning for Robotic Manipulation of Deformable Linear Objects,” Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA 2006 (IEEE, 2006) pp. 2478-2484.

M. Saha, P. Isto and J.-C. Latombe, “Motion Planning for Robotic Manipulation of Deformable Linear Objects,” In:
Experimental Robotics (Springer, 2008) pp. 23-32.

C.-C. Chang, “Deformable shape finding with models based on kernel methods,” IEEE Trans. Image Process. 15(9), 2743—
2754 (2006).

S. Y. Yeo, X. Xie, I. Sazonov and P. Nithiarasu, “Geometrically induced force interaction for three-dimensional deformable
models,” IEEE Trans. Image Process. 20(5), 1373-1387 (2010).

Q. Zhou, L. Ma, M. Celenk and D. Chelberg, “Object Detection and Recognition via Deformable Illumination and
Deformable Shape,” 2006 International Conference on Image Processing (IEEE, 2006) pp. 2737-2740.

T. V. Vinh, T. Tomizawa, S. Kudoh and T. Suehiro, “A New Strategy for Making a Knot with a General-Purpose Arm,” 2012
IEEE International Conference on Robotics and Automation (IEEE, 2012) pp. 2217-2222.

D. Navarro-Alarcon, Y.-H. Liu, J. G. Romero and P. Li, “Model-free visually servoed deformation control of elastic objects
by robot manipulators,” IEEE Trans. Rob. 29(6), 1457-1468 (2013).

S. Jin, C. Wang and M. Tomizuka, “Robust Deformation Model Approximation for Robotic Cable Manipulation,” 2019
1IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2019) pp. 6586-6593.

T. Tang, Y. Fan, H.-C. Lin and M. Tomizuka, “State Estimation for Deformable Objects by Point Registration and Dynamic
Simulation,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017) pp. 2427—
2433.

T. Tang and M. Tomizuka, “Track deformable objects from point clouds with structure preserved registration,” Int. J. Robot.
Res., 0278364919841431 (2018).

A. X. Lee, H. Lu, A. Gupta, S. Levine and P. Abbeel, “Learning Force-based Manipulation of Deformable Objects from
Multiple Demonstrations,” 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015) pp.
177-184.

S. H. Huang, J. Pan, G. Mulcaire and P. Abbeel, “Leveraging Appearance Priors in Non-Rigid Registration, with Application
to Manipulation of Deformable Objects,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE, 2015) pp. 878-885.

A. Petit, V. Lippiello and B. Siciliano, Real-Time Tracking of 3D Elastic Objects with an RGB-D Sensor,” 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015) pp. 3914-3921.

E. Marchand, F. Spindler and F. Chaumette, “Visp for visual servoing: A generic software platform with a wide class of
robot control skills,” IEEE Robot. Autom. Mag. 12(4), 40-52 (2005).

T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4(2), 3-9 (1985).

EN ISO, “11664-4 colorimetry-part 4: Cie 1976 1x ax bx colour space,” CEN (European Committee for Standardization):
Brussels, Belgium (2011).

A Rastegarpanah “Data library: Tracking deformable objects,” Figshare, Ed.1 (2020).

Cite this article: A. Rastegarpanah, R. Howard and R. Stolkin (2022). “Tracking linear deformable objects using slicing method”,
Robotica 40, 1188-1206. https://doi.org/10.1017/S0263574721001065
https://doi.org/10.1017/50263574721001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001065
https://doi.org/10.1017/S0263574721001065

	Introduction
	Related Work
	Problem Definition
	Outline of the Proposed Approach
	Slicing
	Trajectory creation
	Integration with a Kinematic Control System
	Velocity and acceleration tracking
	Robotic arm control
	Experiments
	Pointcloud capture and filtering
	Case study 1: Tracking a deformable object in simulation
	Case study 2: Kinematic control system integration experiment
	Case study 3: Real world experiment
	Discussion
	Conclusion
	Supplementary Material

