THE SINGLE SERVER QUEUEING SYSTEM
WITH NON-RECURRENT INPUT-PROCESS
AND ERLANG SERVICE TIME

P. D. FINCH
(received 13 September 1961)

1. Introduction

We consider a single server queueing system in which customers arrive
at the instants #,, 4, *, ¢,, " * . We write t,, = {01 — tm, m = 0. There
is a single server with distribution of service times B(x) given by

(1.1) dB(z) = p*a*-Lerdz|(k — 1)),

where k is an integer not less than unity.

We suppose that the sequence of service times {s;} is independent of the
times at which customers arrive, that the s, are independently and identi-
cally distributed with common distribution function B(z), given by (1.1),
that customers are served in the order of their arrival and that a customer
who arrives to find the server idle commences service immediately. We make
no special assumptions about the input process {¢,}. Let PP (ty, ¢y, * *, tm)
be the conditional probability, given that the first (m + 1) arrivals occur
at %y, £, *, tm, that the arrival at ¢, finds § customers in the system. We
obtain explicit expressions for the probabilities PJ* (¢, ¢y, * * *, t,,) and related
probabilities as functions of £, ¢, -,?,. If the input process {{,} is a
stochastic process and if F, (4, £, - - +, ¢,,) is the joint distribution function
of the instants at which the first (m + 1) arrivals occur then

(1.2) PP =[Plrlto ty, o ta)dFplly by, b

is the probability that the (m 4- 1)th arrival finds § customers in the
system.

The ideas underlying the method of this paper are very simple and in
order not to obscure this simplicity with algebraic manipulation we deal
first with the case when the service time is exponential, that is £ = 1 in
(1.1) and
(1.3) B(x) =1 — g4, z=0.
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2] The single server queueing system 221

Thus up to section 5 we suppose that the service time distribution is given
by (1.3). In sections 6 and 7 we generalise our results to the case of the
Erlang Service time distribution (1.1).

2. Transient probabilities starting from emptiness

Since the service time distribution is exponential and since departures
can occur only when customers are in the system the instants at which
customers depart form a subsequence of a sequence of potential departure
points which is a Poisson process with the parameter of the exponential
distribution of service time. Let #,, be the number of potential departure
points in the time interval [¢,,, ¢,,,;) of duration <,,. Let #,, be the number
of customers at the instant ¢, — 0. Then

(2’1) Nm+1 = MB.X[O, Nm + 1-— nm]'

In this section we shall suppose for simplicity that 7, = 0, then from (2.1)

we obtain

(2‘2) Nm+1 = Ma.x[O, 1— Poms 2 — Py = Py ™" %
mt1l—n, —H,y — e — Nyl

Now %4, = jifand only if 2 = m + 1 — § potential departure points occur
in [,%n) and Max [0,1 —#,,2 —%n, — %, 4, ", m+1—n, —
Hpy — ** = — 8] = j with ny + »; + - - + #,, = k. But the distribution
of the number of potential departure points in {4, ¢,4.,) is Poisson with
parameter pu(ry+ 7, + -+ + 7,,) and conditional upon there being %
potential departure points the instants at which they occur are independently
and uniformly distributed in (%, £,,,,). Thus if PP*(zy, 7y, *, 7,,) is the
conditional probability that #,,4, = § given 7y, 7y, * - -, T, then

pmil - (rabrek by < 100 7T T
e —_ kT, IREP ™ 3 —— e
(2'3) i (TO’ 71, :tm) z ue MroTTy ks 2 1 1 1°
ki1 -4 nol ! my!

The second summation in (2.3) is over all non-negative integers #q, #,, * - -,
%, such thatny 4+ n, + -+ - 4+ %, = kand Max[0,1 — n,,,2 — %, — #,,_,,
coo,m+1—my —n, , —+++ —ny] =j. Equation (2.3) gives Pp+
(7, 71, - * *, Tm) explicitly in terms of the inter-arrival times 74, 7y, " * *, Tr-
It is possible, however, to obtain computationally simpler formulae which
do not involve an infinite series. To do so we proceed as follows. First put
#=1 which is no loss of generality and secondly note that if
g+ #y + +++ + n, <m -4 1 — i then g, > ¢. Then from (2.3) we have

i oo ‘l’:;" 1;'1'1 -;:'nu

(2.4) 2 P"‘“(r T, T) = —{TotTyt ot T e ——,
3 0> “1» **m 1 ! ]
i=0 k=mtl-i Mol ™ Bon -
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The second summation in (2.4) is over all non-negative integers #n,, 1y, * « *,
»,, such that #y+n +---+n, =~ and
Max[O, 1 —”mt2 ""nm-nm—-lt'."m""" l_nm_"'m—-l—'“"-nﬂj g?'
Observe that the inequality
Max[0,1 —#,,2 — 0, —#p g, M+ L —n— N, g — o — 0y =7,
0=7j=m

is equivalent to the set of inequalities
{nm+nm—1+'.'+nm—i20) 0§.1‘<70

Py F gy + -ty =t +1—17, iSis=m.

Thus using the argument which led to (2.3) but measuring the instants of
potential departure from ¢, , instead of from ¢, and taking (2.5} into account

(2.5)

we have
i 1 8 om,l om; i+1 9,,,, mel
S PP (rg, 1y, Te) =€ 'M'J. dxlf dxy - - f az,,_;
i=0 0 Ty Tyt
(2.6) oo om.m om.m 0"1,‘
X f dxm—H—lf AT jpz " J‘ dz,
0 k=m+1—iv 2, 4 Com—g+1 Tp1
where
(2.7) Opys =T + Ty + ** + Tuess 07 m.

Noting that

0’"‘ ~n~ 0"' m omt mn .
f e yen f pyz "+ f Ay = (B — )™k — 1+ 1),

Zong Tm—g+1 Tx_1
we have
i " Oms O, 141
ZP? (To) 71yt "0 T) =J d‘ﬁj dzy -
@8 ° 0 =1

Omm— s
{e7%n~1 — g Omnlde, ..
% gl

Define R}*!(r) by the equations

(2.9) RA(7) = =7 — e~ Omm
and
am. ) ou, 41 91»- m—1
@10) R = [ aw [y [T R e,
4 zy Tm-g-1
07 <m
Write

i
Ry = R7*(0) = ‘Zo PP (T, Tyt *, Tn)-
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From (2.10) we find that
OR}™(7)/ov = —RIY'(r), O0=j<m
with R™t1(r) = e~". Thus
wrpgoe = [ VR 07 Zm i
! (=)re, m—i+1<0r.

Expanding RP*'(r) in a Taylor Series about 7 =0 and noting that
R (6,,5) = 0,§ =< m, we obtain

m—j o r
@1)  0=3 (=) ”"R;'.'::1+ > (—rZ, j=m
r=m—j+1 r:
Writing Q;n+l (O, s Omy5410 " s Bm,m) t=j+1P Mk (o, T1) " *, T) We OD-

tain (2.12) from( 2.11)

(2'12) E ( ;?i-tl (em,ﬁ-n 0m,5+r+l’ Tt om,m) = ¢ ms,

Solving the system of linear equations (2.12) we obtain the following result:
TreorREM 1. If 5y = 0 and if
Qm+l(0ml'6mi+1»”':6mm)=P(’7m+l>:")' 0§7§m

where 0,,, is given by (2.7) then Q7'*(0,,;, 0, 41, **. Om,m) is given by
the following determinant.

d,l,,,,-, df,.,;. dy; - dp g Oms
1 2 . gm—i—1 =0
1 Gy @pgr " By € ™4
0 1 dm PR d:—ii:: e Om s4e
(=)
0 0 1] . d}n,m—l e—em. mel
0 O 0 eoe 1 e_an.n

where
Aoy = (—0pm,s)"[r!

3. Busy period probabilities starting from emptiness

We suppose again that 7, = 0. We say that the busy period is still on at
bpin — 0 if 79, >0, 7, >0, -+, 9, > 0. Let p7*(vy, 71, * **, ) be the
joint probability that the busy period is still on at ¢,,, — 0 and that the
arrival at ¢,,,, finds § customers in the system. Thus
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224 P. D. Finch [5]

(3'1) ?;H.l(‘rortl» B ‘rm) = P(771 >0,7,>0,--", Nm = 0, Nm+1 ==7)

Using the notation of section 2 and on argument similar to that leading to
(2.3) we see that

n L
T T

mlingl  n,!
lsj=sm+ 1

(3'2) ;'"+1 (TO: L2 VI Tm) = ﬂm‘H"j 3-"6""”2

The summation is over all non-negative integers #,, #,, * - -, n,, such that
wotny o n, <t 1=i<m, and nydn,+---Fn,=m—7+ 1.
Equation (3.2) is obtained by noting that if 9, > 0, 7, > 0,:--.9,, > 0,
Nms1r = §, then the total number of potential departure points (which in this
case are real departure points} must be (m + 1 — 7). Conditional upon
there being (m - 1 — j) departure points the instants at which they occur
are independently and uniformly distributed in (4, ¢,,,1). The inequalities
ot ng+ o+ n, <4, 1 i< m specify the fact that n, >0, 1 < &
< m.

Let p™(zy, 7y, *, T) = 27 (75, 71, - = *, T,u) e the probability
the busy period is still on at ¢,,,; — 0. Then from (3.2) we have

m+1 e e s H#O (:wrl)ﬂl (#Tz)n‘ . (,l'”"m)”"l .
(33) p (70» T1s ’ Tm) =e S S n]_' ngl nm!
1ism
Let ™' = P(;p, > 0,1, >0, -+, 5,, > 0, 7,,,;, = 0) be the probability the
arrival at £, is the first to find the server idle, that is the probability the
busy period contains exactly {m + 1) customers. Then I™+! = $™ — p™H,
$° =1 and from (3.3) we obtain

m+l — o —HOm,m (”Tl)ﬂl e ('ur'")””
! n, |
(3.4) At ™ "
Ty )™
oo b ).

The results obtained above give explicit expressions for the busy period
probabilities, it is interesting, however, to obtain determinantal formulae
similar to those of the previous section. To do so we note that the set of
inequalities
n1+n2+“.+ni§1:, 1§1’<m1 n1+n2+“'+nm=m+1—-i
are equivalent to the following set of inequalities

O R R e ) W 0§i<m_7’

R+ Ayttt y=m+1—4.
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(61 The single server queueing system 225

Thus by an argument similar to that used to derive (2.6) and putting u =1

we have
0m.!—1 om,l 0m. m-1
(3'5) p;"‘f'l (To, 11 P T’m) = e-oﬂh '"J‘ dx’”‘f‘l"f dxm—j . 'f dxl‘
o Zmy1-g EN
Define ¢7*'(z) by
am, i~1 am. 7 9m. Ml
(3.6) gr(z) =J- dzm+1—-:lf Ay * f dx, .
T Tm+1-4 =y

Then 7 (1o, 7y, * *, T,) = € /mmgP™ where ¢'*! = ¢7*1(0) and ¢!
(6,n,5-1) = 0 From (3.6) we find that

oyt (n))or = —giii'(x), gl =1

Expanding ¢7*!(z) in a Taylor Series about v = 0 we find

m+1—j

8.7 0= 20 (—)r 6, !
==

with gni] =

Solving the set of linear equations (3.7) we obtain the following result.

THEOREM 2. If 1, = 0 and

;"H-l(em,i——l’om,l’ o "em,m) = P(ﬂl >Or 2 > 0’ 5 Nm > Or N1 = 7)
l1sj=m+1

where 6, ; is given by (2.7) then p7*(0,, -1, 0 i * " *» Om,m) IS given by
the following determinant

1 e . gmEld
Ao 31 B3 D1
1 e . gmd
1 dm,i dm i

(3.8) (=)™ 0 1 e e dm—;z;—ll ¢Omem,

0 0 1 dlm_1

4. Transient probabilities starting from an arbitrary state

In this section we assume that # = 1 and extend the results of section 2
to the case when the initial state is not one of emptiness. Explicitly we
define

@1) Prfl(zg, 7, Tn) = P(myr =7l =1), 0=i, 0Sj<m+1+i.

It is clear that if m 4+ 1 < #,,,, < m + 1 + 7 then the busy period is still
on at f,,, and
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226 P. D. Finch 71

PPt (e, 71yt v T) = Ot e Omm(m 4 1 44 — )1,
i,j 0r &1 s

(#.2) m4+1<j<m+144.

For n,,,; = m we argue as in section 2. Conditional upon #, = ¢ we have

4.3) ez = Max[0,1 —n,,2—n,—n, (, ", Mm—RB,— N, g— " —n,
m+14-7—n,—n, — - —ng]
and
i oo PACHE Sit tm
+1 ) L L.
(4.4) 2 Pl (To, Tyttt Tyy) = €70 it !
A=0 E=mil+i—5 Mgt Pp! N

The second summation in (4.4) is over all non-negative integers #,, #,, * - +,
%, such that n, + #n, + -+ + n, = k and #,,, < j where 7,,,, is given
by (4.3). As in section 2 the inequality 7,,, = 7 is equivalent to the set
of inequalities

”m+nm—l+.'.+nm—-hgol O—S—h<7

g+ Ry + "+ By =h+1—7, ISh<m

Py + Py g+ g==m+ 144 —7.

By an argument similar to that leading to (2.8) we find that
i
2 P?:I(TO’ T "t Tm)

A0 '] [} g
= f m,ldzl J. ) lﬂdxz . 'f - {e—zm-, - Fi (xm—i) }dxﬂ“’
0 3 @

m—ful
where
(4.5) Tix) =€ mn Y (Op,m — 2)*h!
h=0
and

P:’.';I(To» T, Te) = 1 — 1,(0)

Proceeding exactly as in section 2 we obtain the following result.

THEOREM 3.
Write
T = POy > jlno=0); O0SjSm+4i, 04
Then
m+1+4
Tl = fmn 3 O+ i —h), mSjS<m+ti
h=j4l

and for 0 <j<m
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8] The single server queueing system 227

dy s d;  dy ot dmd b

m, §
1 e "“‘1—1
1 dm,i-i-]. dvzn,i+1 dm #+1 ¢m,i+1
1 . e —i—2
0 1 dm.H'Z dz,H—z ¢m,i+2

o= (=)

0 0 Y e drln m—1 ¢m.m—l
0 0 0 v 1 qu,m

where
m—j41

bny=ctm =[S (-ron,om]. osjsm

puem—j+1

and 0, , is given by (2.7).

5. Busy period probabilities starting from an arbitrary state

In this section we again assume u = 1 and extend the results of section 3
to the case when the initial state is not one of emptiness. Explicitly we
define

P:;d("o:fx- TR =P > 0,790,000, 9, >0, iy = 1lne = 1)

(5.1) , . .
0=, 1s7=m+4:+ 1.

Proceeding as before we find that

N,
T, 00 tl 1 ‘rmm

(5.2) P T Ty, Ty) =€ ”ﬂﬂzno'n P s

The summation is over all non-negative integers #,, #,, * * *, #,, such that
Mg+ttt =mAg 1L —fong S0+ h 05
h < m. The set of inequalities #ny -7, 4 <+« 4+ 0, <i + A0 h<m
and the equation #y + #, + + -+ + n,, = m + 1 + ¢ — § are equivalent to
the set of inequalities #,, + #,,_; + -+ n, g =2h+ 1 —f i< h < m;
Ny + My + <-4 ng=m + 1 4+ ¢ — j. Hence we obtain

PZTI(TO' LT T,)

O, s- O, [/ /] _ i
= e—o,,,,,,J' ’ !dxm—i+1f ’ dzy, ;- f l M dz,.

|
0 Ton-i+1 Zy L

(6.3)
Proceeding as before we obtain the following result.

THEOREM 4.

(5.4) T =0t e tmnim 4+ 1 +4—7)), m+l1<j<m4+1+41d.
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1 e im-]+
dm i-1 d?n,i—l m, j=1 VYm, i-1
1 oes  gmei-l
1 dm,i m,J Wm,i

(5.5) 7 = (—)mHtetnn
0 0 e 1 Ym,m-1
where 0 < < m and
m+i—j 0m+t’—j—r
5.6
(56) ,_%:_;( ! (m+z’—j—r)!

and 6, ; is given by (2.7).

6. Transient probabilities for Erlang service

In this section we suppose that the distribution of service time is given by
(1.1) with u = 1. We regard the arrival at ¢,, as a group of % individuals
each having the exponential service time of (1.3) with 4 = 1. When we
wish to fix attention on the groups as single entities we refer to them as
customers, if we wish to fix attention on the members of a group we talk of
individuals. When the service time of an individual is given by (1.3) the dis-
tribution of the service time of a customer that is of % successive individual
service times is given by (1.1). Since the service time distribution of individ-
uals is exponential and since departures of individuals from the system can
occur only when individuals are in the system, the instants at which individ-
uals depart form a subsequence of a sequence of potential departure points
which form a Poisson process. Let »,, be the number of potential departure
points of individuals in the time interval [¢,,, ¢,.,,) of duration z,,, and let ¢,
be the number of individuals in the system at £, — 0, then

(6'1) N1 = Ma.x[O, N k— N
Write
(62) Pliins = Pmu=1k+n—1g=14), 0=i, 0=j, 1=k

then by arguments analogous to those we have used earlier we find that for
h=0,1,
(6.3) Priiirin = Omm) e mn/(i — k)!

and for 07 <Sm1<n<k

Jkt+n—1 ] g M "m
(6.4) S Pl = g tmm b Who | W
o pm(mil-fti-ntl Ml ! n,!
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where the second summation is over all non-negative integers ng, #,, * * *, #,,,

such that ng 4 n; + -+ + %, =7, and 9,.; = j& + n — 1 where

(65) N1 = Max(O k— m»2k—nm""nm—l"“’mk_”m_nm—l'—"”_nl:
DR+ i—n,—n, — —ng).

It is easily verified that the inequality 7,,,; < jk 4+ # — 1 is equivalent to
Aot Mg+t My Z R+ 1—f)—n+ 1, [Sh<m
Rppt R g+ oo 2 km 4+ 1—§)+1—n+ 1

Thus we obtain 2;"_*;,"‘1 Pt = R, = R7HL .1 (0) where

e O, s Om, s
R? lk+n-—l (r) = axy, , dxy g az,
z Ty k-1

1,0

9...:+1 O, 441 Oom, 441
. dxz,l dxz’g b dx2’k
1k

T31 g, k-1

(6.7) e

6“! m-1 0'.! m—1
: Ay ;3 Ay 55" "
Z,

m—i~1 k Tm—is 1

om- m-1
: J. feomsr —Dops 1 (@i, 1)} s 2

Zm-1, k-1

(6.6) {

where I';(x) is given by (4.5).
From (6.7) we obtain

(=) R nair(7), 7S (mA1—))R+i—n+1,

(68) o Rm1k+n—1(r)/8t = { (_)r -'r‘ yg (m+1-——1)k+1—n+1

Expanding R7}%,_;(7) in a Taylor Series about v = 0 we obtain

(m+1—i)k+i—n o o

(6.9) 0= z ( ),- am i R:n;;cl-)-n—l-{-r + 2 (_), m,j
e ! re{m+1—§) k+i—nt1 r!
Writing
(6.10) mp1 Dk prit
‘ o= i
h=i+1

we obtain for j Em, 1 <n <k

(m—ji+1)k—n r (m+1—f)k+i—n r
()il = ¢=Omi_ —yrloril .
1 §,jk+n—1+r 1 €, ik+ndr

r=0 r pem(m—j41)k—n-+1 v

From (6.11) we can write down a determinantal expression for Q7 i\ n 1+,
similar to that of Theorems 1 and 3.
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7. Busy period probabilities for Erlang service

In this section we make the same assumptions as in section 6. Write

(7'1) :’.‘-iu=P(n1>0:’72>O:""’?m>0»’7m+l=7‘|7]0=1’.)
Proceeding as before we find that
Tg® Tyt om
7.2 M R P S N T
(7.2) i z nol ! !

where the summation is over all non-negative integers #y,n,,°* -, #,,
suchthatny, +n + - +n, <t + (A+ 1Dk —1L0Sh<m;n,+n
4+ o4 n, =1+ (m+ 1)k — 4. It is easily verified that this set of in-
equalities is equivalent to #, + %, + "+ Ry = Ak — 7+ 1,
lshsm n, +n, s+ +n,=1+ (m+ 1)k — 4. Using the same
method as before we find that for 1 S7=m, 1 Sh<k

Tl — +1
(7.3) P:'.‘(i—l)k-}-h =€ 0"‘""4:':(1_1)“,.(0)
where
m+1 fmrs1 Oy 41 O e g1
9 -1 (v) = dzy 5 Ay ppr dz,
y 2y, 21

(T4) e

ou.n—-l onhm-l
' dxm—-i+l,l dxm——i-ﬂ.z e

Tom—1y & Zm—g+1,1
) ; i+k—1
f memt (O m = Ty, 1) T

Ton—3 41, k-1 (’L—{—k—l)'
for 1<7<m, 1=<h<kFkand

Pirt = eImm (0, ) ORI {(m 4 1)R 0 — g},
mk<<j< (m+1)k+i

dxm—H-l, k

(7.6)

Proceeding as before we have
39:",'?;11)“»(7)/ or = —9;’,‘?}1-1)%»4-1(7)' l1=jsm, 1=shsk
Thus we obtain
3'97,'.(*}}-1)“»(7)/3"‘ = (-)rq;’,‘?;'l—l)ﬂlﬂ-r(t)' 1<sj=m, 1sh=k
with the boundary condition

9"":.(!;:}4-1)#4--' (=1
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Expanding ¢7'{2,):4,(7) in a Taylor series about v = 0 we obtain

(m—F+2)k+-i—A
(7.7) Zo (—)'0;.1—1 q,i','-(‘;ll)k-i»kkr/r! =0.

From these equations we can write down a determinantal expression for the
busy period probabilities as in Theorems 2 and 4. A check can be made on
equation (7.7) by putting 2 = & = 1 when it becomes identical to equa-
tion (3.7).

8. Unconditional probabilities: exponential service

In this section we consider the case of an input process which is a stochas-
tic process so that the random variables 0,, ; defined by (2.7) have a joint
distribution function given by

(8.1) Frtl(ge, 2, +, 2p) = Pllp, S 250 <] < m).

For simplicity we consider the case when the initial state is one of emptiness,
and service is exponential given by (1.3) with u = 1.

Write
(8 2) H;”+l(a0’ %y, %y “m E[Qm+l m,i' m,7+l' Tt Bm,m)
exp{—“oem,o - “1em.1 ttt— “mem,m}]
and
(83) ¢m+l(a0: L T “m) = E[exp {—%Bm,o - alem,l - “’mem,m}]

where a; = 0,7 = 0, E[-] denotes expectation and the Q7+ (8,, ;, Om, 125 ** *>
O m) are defined in section 2. If QP = E[Q7 (0,55 Om,siar* " *s Omm)]
is the unconditional probability that (j + 1) or more customers are in the
system on the (m + 2)th arrival we have

(&4) m+1 Hm+1 (0 0,- 0)

and from (2.12)

m—f
(8.5) 20 6;H?+t1(“0' Ay 00, Uy) = 95;"“.1(“0: %y, % L)
re

where 4] denote the differential operator (r!)~1d"/0a} and

¢;”+1(%, Xy, 00, am) = ¢m+l(a’0’ Lys "ty Ky s Ky + 1’ LTS PR aﬂ‘)'

Solving the set equations (8.5) we obtain
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g8 8 g g
1 85, 05y o 7T AN

(8.6) HPt = (—ynet |01 Gt SR AN

* J

00 0 ---48,, ¢t
00 0 1 o

If this determinant is evaluated at oy = o, = -+ * = «,, = 0 we obtain the

probabilities Q7**. The expression (8.6) may be verified by expanding the
determinant about the first row, this expansion gives equation (8.5).
Denote by 47 the following determinantal differential operator, 0 < j < m.

B 8 e
1 84,y 03, 0 055
01 &, o
61 A=)
00 O N L

and write 4, = 1.
Expanding the determinant in (8.6) about its last column we obtain

(8.8) HJ™ = 3 4347,
g==j

Expanding the determinant (8.7) about its last column we obtain

(8.9)

i

m—1

ap = — 3 4567,
8=j

From (8.8) we obtain

(8.10) ot = Ej (55 Jamaym - =m0 -

Equations (8.10) hold for an arbitrary distribution (8.1). If the input process
is stationary it is possible to simplify equation (8.10) in the following way.
Suppose that the sequence of inter-arrival intervals {z,} is a strictly sta-
tionary stochastic process so that the joint distribution of (0,4, 0m,1," " "
0pm,s), m > s is the same as the joint distribution of (6,4, 0,1, ", 0,,)-

From (8.3) it follows that
(811) ¢m+1(dl): aln e, a;} Oa 0:.'

., 0) — ¢:+l(ao' 0, ', a‘)‘
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Because of (8.11) and since the operator A; does not operate on &, ,.,,
-+-,a, we can write equation (8.10) in the form

m
(812) ;n—}-l = 2 [A;¢:+l:|uozal=~~-a,=0'

8=

We prove now

LeEMMA L. If the input process is stationary and if the initial state is one of
emptiness then

Q, = lim Q7

m - 00

exists.
Proor. Observe that by (2.5) we have for 0 S j<m, m =1

1—Q;"“=P(”m‘l',”m—l‘*‘"'+”m-igi+1—j»i=j, 7'+1’ cee,m)
§P(nm+nm—1+"'+nm—i;7"+l_jli=j’j+1"”'m_l)
—S—P(nm—l_*_nm—z“l’"'+nm—l—i2i+1_ivizi’j+l’ e, m—1).

The last equality being true because the input process {z,} is stationary.
But the last expression is just 1 — Q7 hence

(8.13) M = 07, m=1 <m.

Since 0 < QF < 1 the statement of the lemma follows. Note that we have
not proved the limits Q, form a probability distribution, wehave 0 < @; = 1
but the equality is not excluded.

From (8.12) and (8.13) we have

(4365 g maymevem, 2 O
and thus

(5.14) Q)= 3 M4 s eapmrrmemo-

8=

The methods of this section are easily extended to the busy period proba-
bilities, and the case of Erlang Service. No new principle is involved and
we omit the details.

9. A conjecture

When the input process is a recurrent process, that is the inter-arrival
intervals {r,,} are independently and identically distributed with common
distribution function, it is well known that

g oif Y (0)+1<0
1 =
®-1) e {1 if p(0)+1=20
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where p(a) = E - ¢=*™ and ¢ is the only (real) root within the unit circle
of the equation

{9.2) 2=yl —2)

when '(0) +1 < 0.

It is not easy to derive this result from the general expression (8.14).
It can be shown, however, although we shall not do so here, that for a re-
current process the series (8.14) becomes

o (_)k—l 1 dk—l "
9.3 =G+ Y . itk (z
O3 0=+ 3 =5 o [ )
Formally this is just the series which is obtained by expanding ¢/+!, where ¢
is the root of (9.2) within the unit circle, by means of Lagrange’s Theorem,
If '(0) + 1 = 0 there is no such root and it can be shown that the series
(9.8) coverages to unity. We shall not prove these statements here because
we wish to derive (9.1) by a heuristic argument. We present this heuristic
discussion because it lends itself to a wider class of input process than the

recurrent input process.
Write

z=1

(94)  HiZ(e o, s o) = HM oo, 4,00, %, 0,0, -+, 0).
If the input process is stationary we have from (8.10) and (8.5) that

m—j
(95) 2 STHTL, = &t

r=0

Introduce a linear operator T, such that
(9.6) T, -Hp'=HpR2, J[=Sk=m.
Equation (9.5) can be written in the form
(0.7) T ST = 4.
e
It is easily verified that for |z] << 1 we have

(go z"d}‘T}‘) (z 2 H;;;z) — #(1 — 24P

1=0
and hence

3 st =20 07 (3 -raT)n

J=1 k=0

Equating coefficients of powers of z we find
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k-1

(9'8) H;Z‘}k(“o’ 120 PR “J) = lzo ( 'alTl H.l(“o: Gy, "% “I)‘

Evaluating (9.8) at ag = «; = - - - = o; = 0 we obtain the following formal
expression
(9'9) Q§+k Z ( 6; T1¢’+l]¢°=al=---=a,=0’

Comparing (9.9) with the previous result (8.12) we see that the correct
interpretation of the terms on the right of (9.9) is given by

(910) ( ) 17~l¢’+l]a‘,-m1 ----a,—o [Ai+l¢;i§+l]¢°=a1-=~-'=a,+,=0‘

With this interpretation we may proceed to the limit as in (9.9) and write

(911) Q} = 'go ( [61Tl +l]¢°-al gm0

The expression on the right of (9.1) is a formal Taylor series which can be
written as

(9‘12) Qi = ¢i+l(0: 0,:+-,0,1— Ti)

The formal expression (9.12) leads at once to a solution of the form (9.1)
in the case of a recurrent input. For in that case it is easily verified that

(9.13) $1(0,0, -+, 0, &) = {yp(a) '+
From (9.6) evaluated at oy = oy = - - - = a;, = 0 we have
TQ;n+1_Qm+2 1§k§m

so proceeding to the limit as m — oo we have

(9-14) Tka = Qk+1'
From (9.14), (9.13) and (9.12) we find that
(9.15) Q, = T+

where T = (1 — T).

Thus in a purely formal way we have deduced a solution of the form (9.1).
Let us apply this formal argument to the case when the input process is a
moving average of order 2, namely

(9.16) T = Ymis + Pthm, m=0>0

where the u,, are non-negative, independent and identically distributed
with p(x) = E - ¢¥», In this case it is easily verified that

(9.17)  $1(0,0,--+,0,0) = p()fp(l+Ba)Yy(Br), 0.
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The formal argument leads to a solution of the form

0.18) (O vl = Tor(e—T)
‘ 0 =T'Q, jz1

where T satisfies

(9.19) T=y(1+p0—T)).

If E(r,,}) = (1 + B)E(u,) = 1 then (9.19) does not possess a solution in the
unit circle and we take T = 1. The symbolic method introduced above is
not intended as a proof of the result (9.18). By rather complicated more
rigorous methods. I can show that when 7,, is given by (9.16) and E(z,) > 1
then Q, = 77Q,,§ = 1 where T is the root of (9.19) in the unit circle but
the rigorous method does not determine the constant @y. The symbolic
method can be extended to give a solution in the case of an input process
{r..} which is a moving average of any finite order, namely

(9'20) T = u'm+n + ﬂlumﬂ—l + tt + ﬂpum’ ﬂ} > O' 1 § 7 é ﬁ

where the {u,} are non-negative identically distributed and uncorrelated.
It would be interesting to see a more detailed study of the case of a moving
average input process. The result (9.18) is presented here as a conjecture.

Dept. of Statistics
University of Melbourne,

https://doi.org/10.1017/51446788700027968 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027968

