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Ion heating in collisionless shocks is non-adiabatic and efficient. The amount of heating
and the downstream distributions depend on the shock parameters and on the incident ion
distribution. The number of reflected ions and their distribution depend on the detailed
shape of the tail of the distribution. In supercritical shocks the reflected ion contribution
is significant. Kappa distributed ions are heated more strongly and have a larger fraction of
reflected ions than Maxwellian distributed ions with the same upstream temperature and
the same shock parameters. For kappa distributions the phase space dips are shallower.
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1. Introduction

Shocks efficiently convert the energy of the directed flow into thermal energy (de
Hoffmann & Teller 1950). In collisionless shocks different plasma species are heated
differently (Feldman et al. 1982; Sckopke et al. 1983; Thomsen et al. 1985, 1987;
Schwartz et al. 1988; Sckopke et al. 1990). In an electron–proton plasma, heating occurs
at the expense of the energy of the incident ions. The incident ions cross the shock
against the cross-shock potential (Morse 1973; Formisano 1982; Schwartz et al. 1988;
Gedalin 1997b,a; Dimmock et al. 2012; Hanson et al. 2019) and begin to gyrate. Ion
distributions in the vicinity of the main magnetic field jump (ramp) are non-gyrotropic
(Sckopke et al. 1983; Burgess, Wilkinson & Schwartz 1989; Li et al. 1995; Gedalin
1997a). Farther downstream, gyrophase mixing gyrotropizes the distributions and the
gyration speeds become the dispersion in the velocity space, thus the contribution to
the ion temperature (see Gedalin (2021) and references therein). In supercritical shocks,
ion reflection comes to play a progressively more important role in ion heating with the
increase of the Mach number (Burgess et al. 1989; Sckopke et al. 1990; Zimbardo 2011;
Gedalin 2019). Reflected ions have larger gyration speeds than the ions of the bulk of the
flow and their contribution to the downstream temperature exceeds their contribution to
the downstream density. Simply put, ions may be reflected in two ways (Gedalin 2016).
Ions, which enter the ramp with sufficiently low velocities along the shock normal, are
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unable to overcome the cross-shock potential and return back to the upstream region where
they gyrate back to the ramp and cross it again. This mode of reflection depends mainly
on the cross-shock potential and is not sensitive to the magnetic compression. Ions with
sufficiently high initial velocities along the shock normal overcome the potential and cross
the ramp towards the downstream region. Such ions may retain sufficiently large gyration
speeds to gyrate back to the ramp. If this happens, they cross the ramp towards upstream,
gyrate in the upstream region, and cross the ramp once again towards downstream. This
mode requires sufficient magnetic compression to ensure that the gyration speed is larger
than the drift which causes ions to proceed farther downstream. In both reflection modes
magnetic deflection within the ramp affects the velocity along the shock normal, so that the
above description is somewhat simplified. Ions which are reflected in both modes come
from the tail of the distribution function and not from the core. Thus, the shape of the
upstream distribution function may affect the downstream ion distributions and heating in
supercritical shocks. Most of heating analyses, including numerical simulation, performed
so far, assumed Maxwellian distribution for incident ions. However, the actual distribution
of ions in the solar wind may differ and is often found to be better described as a kappa (κ)
distribution (see, e.g. Nicolaou et al. (2018), and references therein). Since the Maxwellian
and κ distributions have different tails, one may expect to observe differences in the ion
distributions formed at the shock crossing, even if the velocity dispersion is the same. The
objective of the present paper is to analyse the effects of the shape of the tails of these two
distributions on the ion heating at a slightly supercritical shock.

2. Approach: numerical ion tracing

Since we are interested in separating the effects of the distribution from all other effects,
it is reasonable to control all other shock parameters. It is most efficiently done by tracing
ions as test particles across a model shock. A slightly supercritical shock is expected
to be a nearly planar and stationary low-Mach number shock, with a weak overshoot.
Let subscripts u and d denote upstream and downstream, respectively. We choose the
coordinates so that x is along the shock normal, pointing towards downstream, and x–z
is the coplanarity plane. The magnetic field profile is described as follows:

Bz = Bu sin θ

(
R − 1

2
+ R + 1

2
tanh

3x
D

)
, (2.1)

where Bu is the upstream magnetic field magnitude, θ is the angle between the shock
normal and the upstream magnetic field vector, and the magnetic compression is

Bd

Bu
=

√
R2 sin2 θ + cos2 θ. (2.2)

The parameter D gives the shock width. We do not include any overshoot in this analysis,
since its influence is expected to be minor. The upstream proton gyrofrequency is Ωu =
eBu/mpc. The upstream proton plasma frequency is ωp = √

4πe2nu/mp, where nu is the
upstream proton number density. The ion inertial length is c/ωp and the Alfvén speed
is vA = cΩu/ωp. Let the upstream plasma velocity along the shock normal in the shock
frame be Vu, then the Alfvénic Mach number is M = Vu/vA. The upstream convective
proton gyroradius is ρp = Vu/Ωu = M(c/ωp). In what follows we shall use dimensional
parameters and variables as follows:

x
ρp

→ x, Ωut → t,
v

Vu
→ v,

B
Bu

→ B. (2.3a–d)
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The two most convenient shock frames and the de Hoffman–Teller frame (HT), in which
the upstream and downstream plasma velocities are along the upstream and downstream
magnetic field vectors, respectively, and the normal incidence frame (NIF), in which
the upstream plasma velocity is along the shock normal. In HT the motional electric
field Ey(HT) = 0 vanishes identically, while in NIF it is constant E(NIF)

y = VuBu sin θ/c
throughout the shock. In both frames Ez = 0. The shape of the cross-shock electric field
E(HT)

x is chosen as follows:

E(HT)
x = −KE

dBz

dx
, (2.4)

where the coefficient KE is determined from the cross-shock potential

φHT = −
∫ ∞

−∞
Ex dx (2.5)

and is one of the model parameters. In the dimensionless form we have

sHT = eφHT/(mpV2
u/2). (2.6)

The non-coplanar magnetic field is chosen in a similar form,

By = KB
dBz

dx
, (2.7)

while

φNIF − φHT = Vu tan θ

c

∫ ∞

−∞
By dx. (2.8)

For Vu/ cos θ � c the transformation between the two frames is non-relativistic which
means that the magnetic field can be considered the same. The parameter

sNIF = eφNIF/(mpV2
u /2) (2.9)

is also the model parameter which determines the coefficient KB. In the present analysis
sNIF = 0.4, sHT = 0.1 and D = (c/ωp). The chosen magnetic compression is Bd/Bu = 2.6
and θ = 70◦. The Mach number M = 2.9 is derived from isotropic Rankine–Hugoniot
relations (Kennel 1988) with βp = 8πnuTu/B2

u = 0.2. Here Tu is the upstream ion
temperature.

The initial upstream distributions of ions are taken either Maxwellian

f (M)
u (v) = nu

(2π)3/2v3
T

exp
(

−(v − V )2

2v2
T

)
(2.10)

or a κ distribution

f (K)
u (v) = nu

π3/2v3
T

(
κ − 3

2

)−3/2
Γ (κ + 1)

Γ (κ − 1/2)

(
1 + (v − V )2

(2κ − 3)v2
T

)−κ−1

, (2.11)

where in both cases

nuV =
∫

fu(v) d3v, (2.12)

nuv
2
T =

∫
(v − V )2fu(v) d3v (2.13)

and Γ is the Γ -function. In the present analysis κ = 4 (Smith et al. 2022).

https://doi.org/10.1017/S0022377822000824 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000824


4 M. Gedalin and N. Ganushkina

FIGURE 1. The upstream (left-hand side) and downstream (right-hand side) gyrotropic
distributions for initially Maxwellian distributed ions, on a log scale.

3. Downstream distributions and heating parameters

Figure 1 shows the distributions functions fu(v‖, v⊥) and fd(v‖, v⊥) for the Maxwellian
distributed incident ions. Here

v‖=v · B
|B| , (3.1)

v⊥=|(v − V ) × B|
|B| , (3.2)

where B is the local magnetic field. The upstream distributions are gyrotropic by choice.
The downstream distributions become gyrotropic well beyond the shock transition. The
distributions are in HT. The maximum of the downstream distribution is not at v⊥ = 0
which shows that initially the whole distribution gyrates around the magnetic field. After
gyrotropization, this gyration is the main contribution to the velocity dispersion, that is,
to the temperature. There is a distinct population of reflected ions. Their density is low
and there is a clear gap between the directly transmitted ions and reflected ions. The
figure uses a logarithmic scale with fmin/fmax > 10−6. The upstream temperature of
the ions is Tu/mpV2

u = 0.0118. The downstream parallel temperature is Td,l = Tu, while
the downstream perpendicular temperature is Td,p/mpV2

u = 0.0973.
Figure 2 shows the distributions functions fu(v‖, v⊥) and fd(v‖, v⊥)in the same format as

in figure 1. The population of the reflected ions is substantially larger, and there is no gap
between the directly transmitted and reflected ions. The upstream temperature of the ions
is Tu/mpV2

u = 0.0118, as for the Maxwellian ions. The downstream parallel temperature
is Td,l/mpV2

u = 0.0126, while the downstream perpendicular temperature is Td,p/mpV2
u =

0.1004. The 10 % difference in the downstream perpendicular temperature is due to the
reflected ions. The difference in the downstream density is negligible.

Figure 3 shows the downstream reduced distribution

fd(v⊥) =
∫ ∞

−∞
fd(v‖, v⊥) dv‖, (3.3)

for the initially Maxwellian ions (blue) and initially κ ions (red). The left-hand vertical
black line stands at the maximum of the distribution of the directly transmitted population.
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FIGURE 2. The upstream (left-hand side) and downstream (right-hand side) gyrotropic
distributions for initially κ-distributed ions, on a log scale.
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FIGURE 3. The downstream reduced distribution for the initially Maxwellian ions (blue) and
initially κ ions (red). The left-hand vertical black line stands at the maximum of the distribution
of the directly transmitted population. The right-hand line marks the maximum of the reflected
ions. The middle line is for the minimum of the distribution.

The right-hand line marks the maximum of the reflected ions. The middle line is for the
minimum of the distribution. There are no noticeable differences in the positions of the
three points in both cases. For κ ions the maximum of the reflected ions and the integral
under the curve part, corresponding to these ions, are substantially larger. In the minimum
the distribution function does not drop as strongly as for the Maxwellian ions.

Figure 4 shows the reduced distribution function

f (x, vx) =
∫

f (x, v) dvy dvz (3.4)

throughout the shock for initially Maxwellian ions. The gyration and relaxation of directly
transmitted ions is clearly seen, as well as the gyrating reflected ions. There is a phase
space hole separating the two populations. Reflected ions are seen in the upstream region
up to the distance ≈ 0.5(Vu/Ωu).
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FIGURE 4. The reduced distribution function f (x, vx) throughout the shock for initially
Maxwellian ions.

FIGURE 5. The reduced distribution function f (x, vx) throughout the shock for initially κ ions.

Figure 5 throughout the shock for initially κ ions. Now the two populations, albeit clearly
seen, are not separated by phase space holes. Reflected ions are seen in the upstream region
up to the distance ≈ (Vu/Ωu). However, their density there is hardly detectable in reality.
The sharp drop of the distribution at 0.5(Vu/Ωu) for Maxwellian ions versus the smooth
decrease over −(Vu/Ωu) < x < −0.5(Vu/Ωu) is because of the much faster drop of the
tail for Maxwellian ions. The slower decreasing tail of κ is also responsible for filling the
phase space holes.

4. Conclusions

Longer tails of the distribution function of incident ions result in stronger heating and
smaller anisotropy of the downstream distribution. Both effects are due to stronger ion
reflection, since the reflected ions come from the tail of the distribution. Longer tails may
be also responsible for filling the ion phase space holes. The distribution of reflected ions
is much more diffuse for κ-distributed ions than for Maxwellian-distributed ions.
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