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Multiplicity of Resonances
in Black Box Scattering

L. Nedelec

Abstract. We apply the method of complex scaling to give a natural proof of a formula relating the

multiplicity of a resonance to the multiplicity of a pole of the scattering matrix.

1 Introduction

The purpose of this paper is to show the equivalence of two definitions of the multi-

plicity of the scattering resonances for an operator in the black box formalism. Fol-

lowing Sjöstrand and Zworski [14], this formalism makes it possible to treat at the

same time the three traditional perturbations: obstacle, metric, and potential, of the

Laplacian −∆ in R
n. Resonances may be defined either as poles of the meromorphic

extension of the resolvent or as poles of the scattering matrix. The equivalence of

these two definitions for potential perturbations (as well as some other cases) is well

known, cf. Jensen [8] and references therein. For the Laplacian on asymptotically

hyperbolic manifolds, this equivalence is proved in a recent paper by Borthwick and

Perry [3] using a perturbation theorem of Agmon [1] to reduce to the case where all

resonances have multiplicity one.

The scattering matrix and resolvent are meromorphic families of operators, and

there are (different) natural ways to define multiplicity of poles in the two cases,

which we denote mS(z) and mR(z), respectively, see [6] and formulas (4) and (3)

below. We shall prove

Theorem 1 For any z 6= 0 the multiplicity of the pole of resolvent mR(z) and of the

pole of the scattering matrix mS(z) are related by

(1) mS(z) = mR(z) − mR(σ(z)),

where σ is the map on the logarithmic Riemann surface Λ which sends (ρ, ω) →
(ρ,−ω − 2π) in polar coordinates.

Note that if mR(z) 6= 0 then mR(σ(z)) = 0 unless z ∈ R
+, in which case z is an

embedded eigenvalue which does not contribute to the scattering matrix, or else z ∈
R
− is a negative eigenvalue of our operator.

The equality of the two multiplicities was shown for compactly supported black

box perturbations by Petkov and Zworski [10], using the generic simplicity of reso-

nances from [9]. We give here a natural proof based on complex scaling. Formula (1)
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appeared in [15] in the context of hyperbolic surfaces. As was pointed out to us by

the authors the proof there contained an error. A correct proof based on [1] was

given in [3].

2 Preliminaries

In this section we review from [13] and [14] the hypotheses of black box scattering

and the two definitions of multiplicities.

Denote the open ball in R
n by B(x, r0) = {y ∈ R

n, |x − y| < r0}, r0 > 0. Let H

be a complex Hilbert space with an orthogonal decomposition:

H = Hr0
⊕ L2(R

n \ B(0, r0)).

We assume that P : D → H is a self-adjoint operator with domain D ⊂ H satisfying:

1Rn\B(0,r0)D = H2(R
n \ B(0, r0)),

1Rn\B(0,r0)P = −∆|Rn\B(0,r0).

We assume also that for some m0 ∈ N,

(2) 1B(0,r0)(P + i)−m0 is trace class,

and finally, that P ≥ −C > −∞.

Let r > r0 and fix ε > 0, a > 0 and b > r + a. Then there exists a function fθ for

θ > 0 on R
+ such that

fθ(t) =

{

t if t ≤ r + a,

eiθt if t ≥ b,

and in addition,

∂t fθ(t) 6= 0,

0 ≤ Arg( fθ(t)) ≤ θ,

Arg( fθ(t)) ≤ Arg(∂t fθ(t)) ≤ Arg( fθ(t)) + ε

for every t ∈ R
+. Now, for any θ ∈ R, set

vθ(x) =

{

fθ(|x|)x/|x| for θ > 0

f −θ(|x|)x/|x| for θ < 0;

then define Γθ = vθ(R
n) ∈ C

n.

Choose cutoff functions χ, χ̃ ∈ C∞
0 (B(0, r)) such that χ = 1 on supp χ̃ and

χ̃ = 1 on B(0, r0). Writing P0
= −∆, we denote by Pθ, resp. P0

θ , the restriction of the

operators P, resp. P0, on Γθ (see [13, 14], for the precise definition). It is known that

the resolvents

R(z) = (P − z)−1 : H → D

R0(z) = (P0 − z)−1 : H → D
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have meromorphic extensions from the upper half plane {Im(z) > 0} through

]0,∞[ to the double cover of C when n is odd, and to the logarithmic plane Λ when

n is even. These continuations are operators from Hcomp to Dloc (see [10]) and all

poles have finite rank. The poles of R are called the resonances of P. Write

Rθ = (Pθ − z)−1, R0
θ = (P0

θ − z)−1.

We denote the set of resonances of P by Res(P); these are listed according to their

multiplicities mR(z), which as in [14] are defined for z 6= 0 by

(3) mR(z) = Rank
(

∫

γε(z)

Rθ(u) du
)

= Tr
(

−
1

2iπ

∫

γε(z)

Rθ(u) du
)

;

here γε(z) = {z + εeit , 0 ≤ t ≤ 2π} for ε sufficiently small. We also let

mRθ
(z) = Rank

(

∫

γε(z)

Rθ(u) du
)

.

The elements of Res(P) belonging to R are eigenvalues of P.

The scattering matrix is defined just as for potential scattering, see [4, 10], and we

denote by S(λ) the (relative) scattering matrix. This operator also continues mero-

morphically in λ from {Im(λ) > 0} ∩ {Re(λ) > 0} through ]0,∞[ to the double

cover of C when n is odd, and to the logarithmic plane Λ when n is even. The poles of

its continuation correspond to resonances of P. Following [6] they are of finite rank;

we define the multiplicity of a pole of det S(z) as

(4) mS(z) = −
1

2iπ
Tr

∫

γε(z)

(

S(u)−1 d

du
S(u)

)

du.

We recall the following

Proposition 1 The function

z → (z − z j)Rθ(z)

is analytic near any z j ∈ R ∩ Res(P).

Proof By the self-adjointness of P, we have

‖(P − z)−1‖L2 ≤
1

Im(z)
,

so if z ∈ z j + iR
+, then

‖(z − z j)χR0(z)χ̃‖L2 ≤ 1,

which implies that (z − z j)χR0(z)χ̃ is analytic near z j . However,

χRθ(z)χ̃ = χR0(z)χ̃,

and so (z − z j)χRθ(z)χ̃ is also analytic near z j . Since the poles of (z − z j)Rθ(z) are

the same as those of (z − z j)χRθ(z)χ̃, this proves the claim.
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3 Analysis of Various Traces

We now review some results concerning traces of functions of P, Pθ and P0.

Recall the Birman-Krein formula [4, 2, 11]. Fix f ∈ C∞
0 (R) and assume that

Imλ0 > 0, Reλ0 > 0. Then with g(λ) = (λ − λ0)m0 f (λ) (where m0 is defined

in (2)),

Tr[ f (P) − (1 − χ) f (P0)(1 − χ̃)] − Tr[χ f (P0)]

(5)

=
1

2iπ

∫

R

( d f

dλ
log(detS(λ))

)

dλ +
∑

λ∈Res(P)∩R

g(λ)(λ − λ0)−m0

= −
1

2iπ

∫

R

g(λ)(λ − λ0)−m0 Tr
(

S ′(λ)S−1(λ)
)

dλ

+
∑

λ∈Res(P)∩R

g(λ)(λ − λ0)−m0 .

Let g̃ be an almost analytic extension of g with compact support. (This means that

g̃|R = g and ∂g̃(z) = O(|Imz|∞), cf. [7].) Then as in [5, §8]

f (P0) =
1

π
lim
ε→0

∫

|Im(z)|>ε

∂g̃(z)(P0 − λ0)−m0 R0(z) dxdy

f (P) =
1

π
lim
ε→0

∫

|Im(z)|>ε

∂g̃(z)(P − λ0)−m0 R(z) dxdy.

Define the families of operators

G(z) = (P − λ0)−m0 R(z) − (1 − χ)(P0 − λ0)−m0 R0(z)(1 − χ̃),(6)

Gθ(z) = (Pθ − λ0)−m0 Rθ(z) − (1 − χ)(P0
θ − λ0)−m0 R0

θ(z)(1 − χ̃),

and also let

Fε =
1

π

∫

|Im(z)|>ε

∂g̃(z)G(z) dxdy.

The estimates

‖G(z)‖S1
≤

C〈z〉

|Im(z)|2

(where ‖ · ‖S1
is the trace class norm), from [5, §9] imply

‖Fε − Fε ′‖S1
≤ C sup(ε, ε ′).
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Using the completeness of the space of trace class operators, we see that

Tr[ f (P)−(1 − χ) f (P0)(1 − χ̃)]

=
1

π
lim
ε→0

Tr
[

∫

|Im(z)|>ε

∂g̃(z)G(z) dxdy
]

,

= −
1

2iπ
lim
ε→0

Tr
[

∫

R

g̃(λ + iε)G(λ + iε) − g̃(λ − iε)G(λ − iε) dλ
]

= − lim
ε→0

1

2iπ

∫

R

Tr
[

g̃(λ + iε)G(λ + iε) − g̃(λ − iε)G(λ − iε)
]

dλ.

From Sjöstrand [12, Prop. 5.3], for Imz > 0 the function θ → Tr
(

Gθ(z)
)

is inde-

pendent of θ ≥ 0, which implies that

Tr[ f (P) − (1 − χ) f (P0)(1 − χ̃)] = −
∑

±

1

2iπ
lim
ε→0

∫

Im(z)=±ε

Tr
(

g̃(z)Gθ(z)
)

dz.

Note that z → Tr
(

g̃(z)Gθ(z)
)

is smooth in the domain where Rθ(z) is defined, and

is locally independent of θ.

Define

d+
x (ε) = ∂B(x, ε) ∩ {Im(z) ≥ 0}, d−

x (ε) = ∂B(x, ε) ∩ {Im(z) ≤ 0}.

Also write

Qε = {x ∈ R : |x − z j | < ε for some z j ∈ Res(P) ∩ R}, Tε = R \ Qε.

For ε sufficiently small,

−
∑

±

±1

2iπ

∫

Im(z)=±ε

Tr
(

g̃(z)G±θ(z)
)

dz = −
∑

±

±1

2iπ

∫

Tε

g̃(z)Tr
(

G±θ(z)
)

dz

+
∑

±

±1

π

∫

{0≤±Im(z)≤ε}\Qε

∂g̃(z)Tr
(

G±θ(z)
)

dxdy

+
∑

±

∑

z j∈Res(P)∩R

1

2iπ

∫

d±
z j

(ε)

g̃(z)Tr
(

G±θ(z)
)

dz.

Recalling that supp (g̃) is compact, we have

∣

∣

∣

∑

±

±1

π

∫

{0≤±Im(z)≤ε}\Qε

∂g̃(z)Tr
(

G±θ(z)
)

dxdy
∣

∣

∣

≤ 2
1

π

∫

{0≤|Im(z)|≤ε}\Qε

|∂g̃(z)|
∣

∣Tr
(

G(z)
)
∣

∣ dxdy ≤ C|ε|.
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Also,

∑

z j∈Res(P)∩R

∑

±

1

2iπ

∫

d±
z j

(ε)

g̃(z)Tr
(

G±θ(z)
)

dz =

∑

z j∈Res(P)∩R

1

2iπ

∫

∂B(z j ,ε)

g̃(z)Tr
(

Gθ(z)
)

dz.

By Proposition 1, z → (z − z j)Gθ(z) is analytic near z j ∈ R ∩ Res(P0); since we have

control of the trace norm, z → (z − z j)Tr
(

Gθ(z)
)

is also analytic. Hence there exist

H j ∈ C such that

lim
ε→0

(

∑

z j∈Res(P0)

∑

±

1

2iπ

∫

d±
z j

(ε)

g̃(z)Tr
(

G±θ(z)
)

dz
)

=

lim
ε→0

(

∑

z j∈Res(P0)

∑

±

1

2iπ
g(z j )

∫

d±
z j

(ε)

Tr
(

G±θ(z)
)

dz
)

=:
∑

z j∈Res(P0)

g(z j )H j(z j − λ0)−m0 .

We now take the limit as ε → 0. When n is odd, we obtain directly

Tr
(

f (P) − (1 − χ) f (P0)(1 − χ̃)
)

− Tr[χ f (P0)] =

−
∑

±

±1

2iπ

∫

R

g(z)Tr
(

G±θ(z)
)

dz +
∑

z j∈Res(P)∩R

g(z j)H j(z j − λ0)−m0

+
∑

±

±1

2iπ

∫

R

g(z)Tr
[

χ(P0
±θ − λ0)−m0 R0

±θ(z)
]

dz.

When n is even, however, the limits of the terms G−θ(z), R0
−θ(z) must be written

differently since z lies on the logarithmic Riemann surface Λ, and hence the integral

of these terms is over a different preimage of R
+ on Λ. In terms of polar coordi-

nates (ρ, ω) on Λ, we can write the limits of these terms as ε → 0 as G−θ(ϕ(z)) and

R0
−θ(ϕ(z)), respectively, where ϕ(ρ, ω) = (ρ, ω + 2π). For simplicity, we assume that

this notation is implied, but do not write it out explicitly in the next few formulas. In

any case, together with the Birman-Krein formula, as applied in (5), this implies the

equality of measures

−
1

2iπ
(λ − λ0)−m0 Tr

(

S ′S−1(λ)
)

dλ +
∑

λ∈Res(P)∩R

δλ(λ − λ0)−m0 =

−
∑

±

±1

2iπ
Tr

(

G±θ(λ)
)

dλ +
∑

±

±1

2iπ
Tr

(

χ(P0
±θ − λ0)−m0 R0

±θ(λ)
)

dλ

+
∑

λ∈Res(P)∩R

δλHλ(λ − λ0)−m0 .
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Taking the continuous part of these measures now gives

(7) (λ − λ0)−m0 Tr
(

S ′S−1(λ)
)

dλ = Tr
(

Gθ(λ)
)

dλ − Tr
(

G−θ(λ)
)

dλ

−
∑

±± Tr
[

χ(P0
±θ − λ0)−m0 R0

±θ(λ)
]

dλ.

From the analyticity of these functions we conclude

Proposition 2 If S is the scattering matrix and G is as defined in (6), then for all z

with Rez > 0,

Tr(S ′S−1(z)) = (z − λ0)m0 Tr(Gθ(z)) − (z − λ0)m0 Tr(G−θ(z))

+
1

2iπ
Tr

[

χ(P0
θ − λ0)−m0 R0

θ(z)
]

−
1

2iπ
Tr

(

χ(P0
−θ − λ0)−m0 R0

−θ(z)
)

.

When z ∈ R
+ and n is even, we must replace G−θ(z) and R0

−θ(z) by G−θ(ϕ(z)) and

R0
−θ(ϕ(z)), respectively.

Riemann surface

and definitions
ϕ(x)

lim
e→0

(R − ie)

lim
e→0

(R + ie) z

j(z)

σ(z) = j(ϕ(z))
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4 Proof of the Main Theorem

We now compare the two expressions for the multiplicity of resonances using Propo-

sition 2. First we note that mR0 (z) = 0. But this multiplicity is the same as

mR0

θ
(z) = −

1

2iπ
Tr

∫

γε(z)

R0
θ(u) du(8)

= −
1

2iπ
Tr

(

(P0
θ − λ0)−m0

∫

γε(z)

(P0
θ − λ0)m0 R0

θ(u) du
)

= −
1

2iπ
Tr

(

(P0
θ − λ0)−m0

∫

γε(z)

(u − λ0)m0 R0
θ(u) du

)

= −
1

2iπ
Tr

∫

γε(z)

(u − λ0)m0 (P0
θ − λ0)−m0 R0

θ(u) du.

Writing this formula as TrB = 0 (i.e., with B denoting the operator given by the

integral),

Tr(1 − χ)B(1 − χ̃) = Tr(1 − χ)B − Tr(1 − χ)Bχ̃ = −TrχB

since Tr(1 − χ)Bχ̃ = Tr(1 − χ)χ̃B = 0. We use this to express

mR(z) = mRθ
(z) = −

1

2iπ
Tr

∫

γε(z)

Rθ(u) du(9)

= −
1

2iπ
Tr

∫

γε(z)

(u − λ0)m0 (Pθ − λ0)−m0 Rθ(u) du

= −
1

2iπ

∫

γε(z)

(u − λ0)m0 Tr
(

Gθ(u)
)

du

+
1

2iπ

∫

γε(z)

(u − λ0)m0 Tr
(

χ(P0
θ − λ0)−m0 R0

θ(u)
)

du.

Integrating (7) around γε(z) and employing (9) gives

mS(z) = −
1

2iπ

∫

γε(z)

TrS ′S−1(u) du(10)

= −
∑

±

±1

2iπ

∫

γε(z)

(u − λ0)m0 Tr(G±θ)(u) du

+
∑

±

±1

2iπ

∫

γε(z)

(u − λ0)m0 × Tr
(

χ(P0
±θ − λ0)−m0 R0

±θ(u)
)

du

= mRθ
(z) − mR−θ

(ϕ(z)).

In order to use this last formula we must relate the two multiplicities mR±θ
(z).

Thus let C be the operator u → u. For any trace class operator A we have Tr(CAC) =
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TrA. Certainly CPC = P, and hence C(R(z))C = R(z) for z ∈ C. This relationship

for z in the riemann surface is

CR−θ(z)C = Rθ( j(z))

where (again in terms of polar coordinates on Λ), j(ρ, ω) = (ρ,−ω). Therefore

mR−θ
(z) =

1

2iπ
Tr

∫

γε(z)

R−θ(u) du

=

(

−
1

2iπ
Tr

(

C(

∫

γε(z)

R−θ(u) du)C
)

)

=

( 1

2iπ
Tr

(

∫

γε( j(z))

Rθ(u) du
)

)

= mRθ
( j(z)) = mRθ

( j(z)).

Equation (10) now implies

mS(z) = mRθ
(z) − mRθ

( j(ϕ(z))),

which proves Theorem 1 since j ◦ ϕ = σ.
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