
ON THE MAXIMUM PRINCIPLE OF KY FAN 

M. MARCUS AND B. N. MOYLS 

1. I n t r o d u c t i o n . In 1951 Fan (1) proved the following interesting extreme 
value result: Let Ai, . . . , Am be completely continuous operators on a Hilbert 
space § . For v — 1, 2, . . . , m let \ai > X^+i be the characteristic roots of 
Aff* Aa. Then, for any positive integer k, 

a) 
k 

X) (UiAi . . . UmAmXi, xt) 
i=l 

k / m \ j 

2=1 \ ff=l / 

(2) max |det{ (UiAi . . . UmA 

) i r = n n u 
i, .7=1,2 k i=l <r=l 

where both maxima are taken over all unitary operators U\, . . . , Um and all sets 
of k orthonormal (o.n.) vectors. 

Fan proved (1) for m = 1 and then applied an inequality of Polya (7) 
and a recent result of Horn (3) to obtain the theorem for m > 2. This result 
is a generalization of a result of von Neumann (10), which s tates t ha t if 
A and B are n-square complex matrices with singular values (12) at > ai+u 
(3t > (3i+i (i = 1, 2, . . . , n — 1), then 

n 

(3) m a x | t r ( £ L 4 r a ) | = 2 > < 0<, 
2 = 1 

where the maximum is taken over all unitary U and V. 
In this paper we shall confine our a t tent ion to the case of finite matrices. 

We shall show tha t both (1) and (2) are special cases of a general maximum 
result for compound operators (Theorem 3). As applications we obtain 
inequalities analogous to those of Horn (3) and Ostrowski on the singular 
values of a product . An inequality of S. N . Roy (8) (later published with a 
different proof by B. Sz. Nagy (9)) is a special case of Theorem 3 and Ostrowski's 
inequalities (6) connecting Schur-convex functions of singular values and 
characteristic roots. 

2. Fan ' s first r e s u l t . Before proceeding, we point out t ha t for finite 
matrices (1) follows immediately from (3). Following Fan we need only prove 
(1) in the case m = 1. 

Let Xi, . . . , xk be an o.n. set of vectors, k < n, and let P denote the ortho­
gonal projection into the subspace spanned by Xi, . . . , xk. Then 
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X) (UiAiXi, xt) ] £ (UiAixitPxt) 
k 

J2 (PUiAiXi,Xi) 

= | t r (PCMi) | 

< m a x | t r ( 7 P i / i i 4 i ) | 
Ui.V 

n 

< X Pi V^ii 

by (3), where the pj are the singular values of P. Since p ; = 1 for j = 1, . . . , k, 
and p:j = 0 for j > fe -f 1, (1) follows for m = 1. 

3. Properties of the Grassmann algebra. Let xt{i = 1, . . . , r), 1 < r < n 
be vectors in unitary w-space Fw. Then 

(4) S = Xi A X2 A . • • A XT 

denotes the Grassmann exterior product of the xt] it is a vector in Vm where 
m = ("). If -4 is a linear transformation of Vni the rth induced compound of 
A is a linear transformation of Vmi defined by 

(5) Cr{A) xi A . . . A xr = Axi A . . . A Axr. 

The following properties, which we list for later reference, can be found in 
(11, pp. 63-67): 

(i) Oi A . . . A xr, yi A . . . A^r) = d e t { ( ^ , ^ ) | f i ; , i r. 
(ii) cr{AB) = CM) Cr(B), CM'1) = CrM), CM*) = [CM)]*. 

where A* is the transposed conjugate of A. 
(iii) The characteristic roots of Cr(A) are the (n

T) products of the character­
istic roots of A taken r at a time. 

(iv) If A has any of the following properties, so does Cr(A): non-singular, 
normal, Hermitian, non-negative Hermitian (n.n.h.), unitary. 

To prune some of the foliage of indices usually necessary in discussing 
these objects we introduce some notation. The set of (*) distinct sequences of 
positive integers iu . . . , iT satisfying 1 < ii < . . . < ir < k will be denoted 
by Qkn and a typical such sequence will be called w. If #i, . . . , xk is a set of k 
vectors in Vn, and œ is the set {iu . . . , ir) in Qkr, we set 

X(£ X j j / \ . . . / \ Xir . 

If (a) is a set of n numbers &i, . . . , an, Er(a) = Er(au • • • > #n) will denote 
the rth elementary symmetric function of (a). 

4. Results.The following theorem is a generalization of the result in (5): 

THEOREM 1. Let H be n.n.h. with characteristic roots hj > hj+u j = 1> • • • > 
n — 1. Let f(t) = ts, s real, and 
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<j)(xlt . . . , * * ) = X) f[(Cr(H)xm Xu)]t 
(aeQkr 

where 1 < r < k < n. Then, if s > 1, 

(6) max0 - E r l / ( W , . . . , / ( A * ) ] î 
and if 0 < 5 < 1, 
(7) min0 = Er[f(hn-k+1),...,f(hn)]; 

where the maximum and minimum are taken over all sets of k o.n. vectors 
Xi, . . . , X/c in Vn. 

Proof. For the case s = 1, the theorem is proved in (5). The present proof 
is an application of this result to f(H). 

First note that1 if ||x|| = 1, 

(8) f[(Hx,x)] < (f(H)x,x). 

For, if Xi, . . . , xn are o.n. characteristic vectors of H corresponding to 
hi, . . . , h,n then 

MHx,x)]=f\ £,hj\(x,xj)\ 
L j=l 
n 

< Ç/(^) l(*,^)|2 

= lf(H)x,x). 
Secondly,-

(9) " f(Cr(H)) = Crif(H)). 
For, if U is a unitary matrix such that U*HU = D, diagonal, 

f(CT(II)) =f(Cr(UDU*)) = Cr(U)f(CT(D)) Cr(U*) 
= Cr(U) Cr (/(£>)) Cr(C/*) = Cr (J(UDU*)) = Cr(f(H)). 

To establish (6) we observe that by (8), (9) and the remark at the beginning 
of the proof, 

4>< E (KCr(H))x„,x„) = E {Cr{f(H))x„,x„) 

<Er(f(h) f(ht)). 
Equality can be achieved by choosing Xi, . . . , xk to be an o.n. set of character­
istic vectors of H corresponding to hi, . . . , hk, since by (i), 

= z/(det{A,. «,.„}) = z Xn*«.) 
(7) is proved similarly. 

xThis inequality holds for any continuous convex function / defined on the spectrum of H. 
The inequality is reversed if / i s concave. 

2This equality holds for any function / defined on the spectrum of H and satisfying the 
relation/(Vy) [ = f(x) f(y). 
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Theorem 3 is our main result. Theorem 2 is a special case. However, it is 
the first step in the proof of the general theorem, and its proof appears to be 
of some interest in itself. 

THEOREM 2. Let A be an arbitrary n-square complex matrix with singular 
values at > ai+i(i = ! , . . . , « — 1). Let 

</>0i, . . . ,xk; U) = £ (Cr(UA)xU9xn) 
weQkr 

where 1 < r < k < n. Then 

(10) max</> = Er(au . . . fak), 

where the maximum is taken over all sets of k o.n. vectors Xi, . . . , xk and all 
unitary U. 

Proof. Since A = VH, where V is unitary and H = (A*A)^ is n.n.h., we 
may without loss in generality replace A by H. Set y$ = U~lxj} (j = 1, . . . , fe). 
By the notation ^,®Cr(A) we mean the direct sum of Cr{A) taken (k

r) times; 
and similarly for J^®xu. Since ^®Cr(H) is n.n.h. by (iv), 

^ = I 2 (^r(H)Xœ, Criu^Xu)] 

( E © cr(H) E e x*, E © y.) 

< (E ©£>•(#) E ©*». E ©*«)* 

(E ©cr(H)Z ey-, E 0y-)é 

= E (Cr(#)xM,*w) M E (C,(Jny-.%) f 
Lo>eQ^r J LœeQkr J 

< £ r(ai , . . . , ak). 

The last inequality follows from (6) applied to each of the square roots. 
Equality holds when the Xj are suitable eigenvectors of H and U is the 
identity matrix. 

THEOREM 3. Let A\, . . . , Am be arbitrary n-square complex matrices with 
singular values avi, where a^i > aaii+i (i = 1, . . . , n — 1 ; a = 1, . . . , m). 
Let 

4>(xu . . . ,xk; Ui, . . . , Um) = 

where 1 < r < k < n. Then 

(11) max 

X) (Cr{UiAi . . . UmAm)xœ, xa) , 
otQkr 

I m m \ 

* = ^ i n <**!> • • • » n ^ j » 
\ (T=l (7=1 / 

where the maximum is taken over all sets of k o.n. vectors xi, . . . , xk, and all 
unitary matrices Ui, . . . , Um. 
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Proof. For a fixed £/2, . . • , Um, let fa > fa > • • • > &i be the singular 
values of 5 = ^41(t/2^42) . . . {UmAm). By Theorem 2 

(12) </> < E r (/3i, . . . ,&) . 

The singular values of £7,̂ 4* are the aai (i = 1, . . . , n). By a result of 
Ostrowski (6, p. 283, equation 106a), 

/ m m \ 

ET{pi &) < EX n «.i n «.*) • 

There remains to show that the right side of (11) is taken on for a suitable 
choice of the x's and C/'s. As in Theorem 2 we may replace each Aff by 
iJcr = 04ff* ^L)i Let xai, . . . , xan (a = 1, . . . , w) be an o.n. set of character­
istic vectors of Ha corresponding to OCff l , . . . , (Xan. Choose the Uff so that 

for i = 1, . . . , n. Set 

and 

U(fXai X(j—lfj, 

t-̂  1 *^1 i ^mii 

Xffo Xfffi / \ . . . / \ Xcrfr 

(T = 2, . . . , m, 

utQkr 

3=1 

where co is the set {i\, . . . , i r}- Then 

i 

/ J Oimoi ^ r \ U \ - k l \ . . . (Jm—l±±m—\) Xm—ii(a, Xma) 

: = : / f &m<>) • • • OLl(a\pCirwi %mi>)) 

• / m m \ 

= 2 1 n«»<i • • - n a**..) 
\ <r=l <r=l / 

/ m m \ 

= Er\ Yl OLaU • • • i I T ««r* ) • 
\ e r = l < r= l / 

This completes the proof of the theorem. 

Remarks. I. By setting r — 1 in (11) we obtain (1); by setting r ~ k we 
obtain (2). 

II. Theorem 3 does not follow immediately from (1) applied to the 
compound because the lexicographic ordering of the eigenvalues does not 
necessarily correspond to the ordering by magnitude. 

III. Let Aa, a = 1, . . . , m, have eigenvalues \ai, ordered so that 
\Ki\ > |X*,*+i| (i = 1, . . . , « — 1). We can find unitary Va such that 
V<r* AaVa = Ta, triangular, with the diagonal elements ordered by absolute 
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magnitude. Then if U„ = Va-\ Vff* (a = 2, . . . , m), Ui = Vm UVi* where U 
is the diagonal matrix with 

exp y - Z) arg ^*j 

in the ith row and ith column; and if Xj = Fm ^ (j = 1, . . . , fe), where ^ ; 

is the unit vector with 1 in the ith position; then 

2-J \^T\\J\A\ . . . UmAmjXa, Xu) 
coeQkr 

I t follows from Theorem 3 t h a t 

/ _m_ m \ 

S r i n ix»ii n iXrti). 
/ _W_ _m_ \ / _W_ //; \ 

i3) EA n iXrti, • • •. n iXrti ) < M n «»i. • • •. n «,*). 
The case rn = 1, r = k is Weyl's inequality. Actually, (13) also follows easily 
from Ostrowski's discussion of Schur-convex functions. 

5. Applications. Let X = AB, where A and B are arbitrary w-square 
complex matrices. Consider the convex sum 

Y = <JX*X + <5XX*, 

where a + b = 1, cr > 0, <5 > 0. Let <£* > #*+i, «i > «2+i, fit > /?H-I 
(i = 1, . . . , n — 1) be respectively the non-negative square roots of the 
characteristic roots of Y and the singular values of A and B. In the Theorem 4 
we shall use the following concavity property of the elementary symmetric 
functions:3 

/ / (a) and (b) are sets of n non-negative numbers and 1 < r < n, then 

El
T

lT{a + b)> E\lr{a) + E\,r(b). 

THEOREM 4. For 0 < 5 < 1 and 1 < r < k < n, 

Er(<f>n i • • • > 0w-fc+l) 

/ r \ 2s 

«w-;-+l Pn-j+l) E°r(PnS, • • • » A i - A + l ) Er((Xn
S', . . . , a J L A + i ) . 

Proof. Let Xi, . . . , x& be an o.n. set of characteristic vectors of F corre­
sponding respectively to 

0n» • • • » 0n-*+l» 

Then 

3This property follows from a concavity property proved by W. Fenchel (2). This inequality 
also follows directly as a corollary of a similar property for symmetric functions proved by 
Lopes and Marcus in (4). 
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EV'tâ < l̂*+i) = E\"[{Yx„ xj)s] 

= E\'T[{<T{X*X X„ Xj) + Ô(XX*Xj, Xj) } *] 

> E1
r
/r[2s-1{<rs(x*Xxj,xJy + bs{xx*X],x}y\] 

> 2s-1{Ex
T

lr[^{X*Xxj, xj)s] + El/r[Ôs(XX*Xj, xj)']} 

= 2 ' - 1 ( ( ; , £ ! " [ ( I * I Ï / , Ï , ) ' ] + 5sE1
r
/T[(XX*Xj,XjY]}. 

It follows from the Hadamard determinant theorem that 

Er[(X*Xxj,Xjy]= £ (U(X*Xxtnxtl))
S 

Kil<...<ir<k\ *=1 / 

> E (cr(x*x)x„,x»y. 
aeQkr 

Thus 

E\'\&, . . . , 0nl*+l) > 2 - 1 < r S | E (Cr(X*X) X„, OC*)']' 

+ 2s-1 Ssj D (Cr(***) %,, x„)s}1/r 

= 2s-1 ̂ J E (cr(^*^) cr{B) xw cr(B) Xuyy 

+ 2s-1 5 S |E (Cr(5B*) C,{A*) x*, Cr(A*) xay) 

+ 2s-1 5 s(n /£-*-ij ''{Z (C,(^*) *., xj8}1'' 

> «r^-1 ^ ( n <*^+1)
2/r ^"(/a:*,.. . , A-*+i)} 

The last inequality follows by Theorem 1. The result follows by a classical 
inequality and by taking rth powers of both sides. 

We remark that when a is zero, v* is to be taken as 1. 
Theorem 4 may be used to relate the characteristic polynomials of the 

matrices involved. For example, 

\pr({ABB*A*)s)\ > 2 r ( - 1 ) n «-I** |/>r((5*B)*)|, 

where 

Xn + E Pr(M) Xn~r 

is the characteristic polynomial of the matrix M. 
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In (9) B. Sz. Nagy proves that if A and B are complex n-square matrices, 
then 
(14) «„/?„ < |X«| < a i 0 i , 

where at > a*+i, Pi > /3i+i are the singular values of A and B, and \ t , 
\\i\ > |Xi+i|, are the characteristic roots of AB. By Theorem 3, 

(15) ErflAil, • • • , M ) < £ r ( a i /3i, . . . , a* A), 

for 1 < r < k < w. By setting r = fe = 1, we obtain the upper inequality of 
(14). If an fin = 0, the lower inequality is trivial. Otherwise A and B are non-
singular. The characteristic roots of (AB)'1 are the X*-1, and the singular 
values of A'1 and B~l are the a f 1 and jS*-1. Hence 

(16) ET(\\n\ , • . • , |Xre_fc+i| ) < Er(an (3n , . . . , aw_£+i ^w_fc+i). 

Again setting r = fe = 1, we obtain the lower inequality of (14). 
Both (15) and (16) have immediate generalizations in two directions: 

first, to a product of more than two matrices, and second, to the more general 
class of Schur-convex functions. 

REFERENCES 

1. K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous 
operators, Proc. N.A.S. (U.S.A.), 37 (1951), 760-766. 

2. W. Fenchel, Generalisation du théorème de Brunn-Minkowski concernant les corps convexes, 
C.R. des Sci. de l'Acad. des Sri., 203 (1936), 764-766. 

3. A. Horn, On the singular values of a product of completely continuous operators, Proc. 
N.A.S. (U.S.A.), 36 (1950), 374-375. 

4. M. D. Marcus and L. Lopes, Inequalities for symmetric functions and Hermitian matrices, 
Can. J. Math., 9 (1957), 305-312. 

5. M. D. Marcus and J. L. McGregor, Extremal properties of Hermitian matrices, Can. J. 
Math., 8 (1956), 524-531. 

6. A. Ostrowski, Sur quelques applications des fonctions convexes et concaves au sens de I. 
Schur, J. Math, pures et appl. (9), 31 (1952), 253-292. 

7. G. Pôlya, Remark on WeyVs note: Inequalities between the two kinds of eigenvalues of a linear 
transformation, Proc. N.A.S. (U.S.A.), 36 (1950), 49-51. 

8. S. N. Roy, A useful theorem in matrix theory, Proc. Amer. Math. Soc , 5 (1954), 635-638. 
9. B. Sz. Nagy, Remark on S. N. Roy's paper: A useful theorem in matrix theory, Proc. Amer. 

Math. Soc , 7 (1956), 1. 
10. J. von Neumann, Some matrix-inequalities and metrization of matrix-space, Tomsk Univ. 

Rev., 1 (1937), 286-300. 
11. J. H. M. Wedderburn, Lectures on Matrices, Amer. Math. Soc. Colloq. Publications, 17 

(1934). 
12. H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. 

N.A.S. (U.S.A.), 35 (1949), 408-411. 

University of British Columbia 

https://doi.org/10.4153/CJM-1957-038-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-038-6

