ON THE MAXIMUM PRINCIPLE OF KY FAN
M. MARCUS axp B. N. MOYLS

1. Introduction. In 1951 Fan (1) proved the following interesting extreme
value result: Let Ay, ..., An be completely continuous operators on a Hilbert
space ©. For ¢ = 1,2,...,m let Ng;i > N\, ix1 be the characteristic roots of
A* A,. Then, for any positive integer k,

k k m 3
(l) max Z (U1A1 . UmAm X4 xi) = <H )\vi) ,
i=1 i=1 \ o=1
k m
2) max  |det{ (U1A; ... Undpxs, x)}|* = Aoy
i,7=1,2,..., k i=1 o=1
where both maxima are taken over all unitary operators Uy, . . ., U, and all sets

of k orthonormal (o.n.) vectors.

Fan proved (1) for m = 1 and then applied an inequality of Pélya (7)
and a recent result of Horn (3) to obtain the theorem for m > 2. This result
is a generalization of a result of von Neumann (10), which states that f
A and B are n-square complex matrices with singular values (12) o; > a1,
Bi>Bir 1 =1,2,...,n—1), then

3) max|tr(UAVB)| = 3 a: B
i=1

where the maximum is taken over all unitary U and V.

In this paper we shall confine our attention to the case of finite matrices.
We shall show that both (1) and (2) are special cases of a general maximum
result for compound operators (Theorem 3). As applications we obtain
inequalities analogous to those of Horn (3) and Ostrowski on the singular
values of a product. An inequality of S. N. Roy (8) (later published with a
different proof by B. Sz. Nagy (9)) is a special case of Theorem 3 and Ostrowski’s
inequalities (6) connecting Schur-convex functions of singular values and
characteristic roots.

2. Fan’s first result. Before proceeding, we point out that for finite
matrices (1) follows immediately from (3). Following Fan we need only prove
(1) in the case m = 1.

Let x4, ..., x; be an o.n. set of vectors, £ < #n, and let P denote the ortho-
gonal projection into the subspace spanned by xi, . . ., xx. Then
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k
> (Ui x4, Pxy)

i=1

I3
Z (PUIAI Xy ’Cz)

i=1

Itl‘(PU1A1)l
< max [tr(VPU44)]

U, v

I3
Zl (U141 %4, 1)

It

I

< ;Pi\/kiy

by (3), where the p; are the singular values of P. Since p, = 1forj =1,..., &,
and p; = 0 forj » k 4+ 1, (1) follows for m = 1.

3. Properties of the Grassmann algebra. Let x;(i=1,...,7), 1 <r<n
be vectors in unitary n-space V,. Then
4 2=x1 AXa A ... AKX,

denotes the Grassmann exterior product of the x;; it is a vector in V,, where
m = (7). If 4 is a linear transformation of V,, the rth induced compound of
A4 is a linear transformation of 17, defined by

(5) C,(Ayxi AN ... ANx,=Axi A ... AN Ax,.

The following properties, which we list for later reference, can be found in
(11, pp. 63—67):
) iAo Axy A A Y =deti(xs y) =1
(i) C,(4B) = C.(4) C,(B), C.(A71) = C;71(4), C.(4%) = [C,(4)]*,
where 4* is the transposed conjugate of 4.
(iii) The characteristic roots of C,(4) are the (7) products of the character-
istic roots of 4 taken 7 at a time.
(iv) If A has any of the following properties, so does C,(4): non-singular,
normal, Hermitian, non-negative Hermitian (n.n.h.), unitary.
To prune some of the foliage of indices usually necessary in discussing
these objects we introduce some notation. The set of (¥) distinct sequences of

positive integers iy, . . ., 1, satisfying 1 < 4; < ... < i, < k will be denoted

by Qi,, and a typical such sequence will be called w. If x1, ..., %, is a set of &

vectors in V,, and w is the set {7;, ..., 7,} in Q4 we set
xw=x,'l/\.../\x,~,.

If (a) is a set of # numbers ay,...,a, E,(a) = E.,(a,...,a, will denote

the rth elementary symmetric function of (a).

4. Results.The following theorem is a generalization of the result in (5):

THEOREM 1. Let H be n.n.h. with characterisiic roots hy > hi, 7 =1,.. .,
n — 1. Let f(¢) = 1%, s real, and
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@, .., x8) = 2 fI(C(H)%w, %)],

@eQrr

where 1 < v < k < n. Then, if s > 1,

(6) max ¢ = B, [f(h), ..., f(h)];

and if 0 < s < 1,

™ min ¢ = L [f(hu-r+1), - - - f(h) ]

where the maximum and minimum are taken over all sets of k om. vectors
X1, .., x0in V.

Proof. For the case s = 1, the theorem is proved in (5). The present proof
is an application of this result to f(H).
First note that! if [|x|| = 1,

(8) fl(Hzx, x)] < (f(H) %, %).
For, if xi,...,x, are o.n. characteristic vectors of H corresponding to
Iy, ..., h, then

JI(Hz, )] = f[ A xmz]
j=1

< gi;f(hj) e, )
= (f(H)x, ).

Secondly,?
V) F(C.(H)) = C.(f(H)).
For, if U is a unitary matrix such that U*HU = D, diagonal,
J(C.(H)) = f(C.(UDU*)) = C,(U) f(C.(D)) C,(U*)
= C.(U) C, (f(D)) C.(U*) = C, (f(UDU*)) = C,(f(H)).

To establish (6) we observe that by (8), (9) and the remark at the beginning
of the proof,

¢ < 2 (f(CAHD)hwy %) = 2 (Cr(f(H))%u, %)

weQrr wWeQ)y
< ET(f(hl)y e 1f(hk))'
Equality can be achieved by choosing xy, . . . , x; to be an o.n. set of character-
istic vectors of H corresponding to ki, . . ., ki, since by (i),
¢ = %‘,f(det{(Hxi,,x”)}), sct=1,...,7
welgr

2 fldetihi, 8e0}) = 2 f(ﬁ h)
wWeQkr WEQpr s=1
= E,(f(h), .., fhe))-

(7) is proved similarly.
IThis inequality holds for any continuous convex function f defined on the spectrum of H.
The inequality is reversed if f is concave.

*This equality holds for any function f defined on the spectrum of /7 and satisfying the
relation f(xy) = f(x) f(3).
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Theorem 3 is our main result. Theorem 2 is a special case. However, it is

the first step in the proof of the general theorem, and its proof appears to be
of some interest in itself.

THEOREM 2. Let A be an arbitrary n-square complex matrix with singular
values a; > a;i(t=1,...,n — 1). Let

o1, .., x5 U) = | 2 (C(UA)x %) |

WeQkr

where 1 < v < k < n. Then

(10) max ¢ = E.(ay, ..., o),
where the maximum s taken over all sets of k o.n. vectors xi, ..., x; and all
unitary U.

Proof. Since A = VH, where V is unitary and H = (4*A4)% is n.n.h., we
may without loss in generality replace 4 by H. Sety; = U™, (j = 1,..., k).
By the notation Y ® C,(A4) we mean the direct sum of C,(4) taken (¥) times;
and similarly for >~ ®x,. Since > @ C,(H) is n.n.h. by (iv),

Z (‘-’T(H)xwy CT(U‘I)xw)

WeQ)r

‘(Z @ CH) 2 @ % 22 @)
(X @CUH) Y @ 20 ®x)'

(ZOCE Y @y 22 D)’
= [ > (C,(H)x, m]% [ > (C,(my., y»]%

WEQLy WeQLr

< Eiay, ..., o).

The last inequality follows from (6) applied to each of the square roots.
Equality holds when the x; are suitable eigenvectors of H and U is the
identity matrix.

¢

Il

N

TaeEOREM 3. Let Ay, ..., A, be arbitrary n-square complex matrices with
singular values o,; where agy > g1 (1=1,...,n—1; a=1,...,m).
Let

¢(x17 cee oy Xy Uly ) Um) = Z (CT(UlAl LR UmAm)xw, xw) y
WeQLr

where 1 < r < k < n. Then

(11) maXd) =E7<I_I Agly « « oy Hadk>7
o=1 o=1

where the maximum 1is taken over all sets of k o.n. vectors xi, ..., Xy and all
unitary matrices Uy, . .., U,.
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—
\]

Proof. For a fixed Us, ..., Uy, let 81 > B2 > ... > B, be the singular
values of B = A,(U.45) ... (UnAd,). By Theorem 2
(12) ¢ < E, (B1,...,B).
The singular values of U,A, are the a,; ( =1,...,n). By a result of

Ostrowski (6, p. 283, equation 106a),

Er(Bly e ey Bk) < Er<I_=Ilaaly ey H aak) .

o=1

There remains to show that the right side of (11) is taken on for a suitable
choice of the x's and U’s. As in Theorem 2 we may replace each 4, by

H, = (A* A)% Let x,1, ..., %0, (6 = 1,...,m) be an o.n. set of character-
istic vectors of H, corresponding to a1, . - . , &y,. Choose the U, so that
Uaxa'i = Xo—1,ir g = 2,...,7)’[,

Ui %1; = Xmy

fore=1,...,n. Set
Xow = xdil /\ LR /\ Xoir
and
T
Aoy = H Qg i5
j=1
where w is the set {71,...,%,}. Then

Z (Cr(UlHl LEEIR UmHm) Xmawy xmw)

weQky

E [o770) Cr(UlHl “ e Um—lH —1) Xm—1,0y xmw) ‘

= Z Clmis + + + 010 (Xmary Xmeo)

m m
=5 ([Tewa [T acs)
o=1 o=1
m m
= E,(H Qgly o ooy Ha"'k> *
g=1 o=1

This completes the proof of the theorem.

Remarks. 1. By setting » = 1 in (11) we obtain (1); by setting » = k£ we
obtain (2).

II. Theorem 3 does not follow immediately from (1) applied to the
compound because the lexicographic ordering of the eigenvalues does not
necessarily correspond to the ordering by magnitude.

III. Let A4,, o =1,...,m, have eigenvalues M\,;, ordered so that
Moil > MNosg1] ¢=1,...,n—1). We can find unitary V, such that
V,*A,V, = T,, triangular, with the diagonal elements ordered by absolute
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magnitude. Then if U, = Vo1 V,* (6 = 2,...,m), Uy = 1, UV* where U
is the diagonal matrix with

exp <— Z arg )\”>
o=1

in the ¢th row and ¢th column; and if x; = V,, ¢, (j = 1,..., k), where ¢;
is the unit vector with 1 in the 7th position; then

! 3 (Co(UrAy . . . UnA )%, %) ‘ = E<I;Il Motly oo o, EII ]x.,,J).

weQkr

It follows from Theorem 3 that

(13) b(EII Moty - I=Il Jx,,k|> < E,(l;llaﬂ, ce Ha,k).

o=1

The case m = 1, r = k is Weyl’s inequality. Actually, (13) also follows easily
from Ostrowski’s discussion of Schur-convex functions.

5. Applications. Let X = AB, where A and B are arbitrary n-square
complex matrices. Consider the convex sum

V = oX*X + 6XX*

where o4+8=1, 0 >0, 6>0. Let ¢;> b1, ai> a1, Bi> B
(it =1,...,n — 1) be respectively the non-negative square roots of the
characteristic roots of ¥ and the singular values of 4 and B. In the Theorem 4
we shall use the following concavity property of the elementary symmetric
functions:?

If (a) and (b) are sets of n non-negative numbers and 1 < r < n, then
EY"(a + ) > BN (@) + EX"0).
THEOREM 4. For0 < s<landl1 <r <k < n,

2s 2s
ET(¢7L ety ¢7L-‘k+1

T 2s
ood —1 8 8
> (2676°)C )<Hla;:-j+1 Bn—j+1) ES(BY, .. Batarr) Ev(en’s . .o, antasn).
j=

Proof. Let x1,...,x; be an o.n. set of characteristic vectors of V corre-
sponding respectively to

2 2
¢nv ceey ¢n—k+l-

Then

3This property follows from a concavity property proved by W. Fenchel (2). This inequality
also follows directly as a corollary of a similar property for symmetric functions proved by
Lopes and Marcus in (4).
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Ei/r(d’ix, ceey Zs—k+l) = Eilr[(yxﬁ x5)°]
= E;"[{o(X"X x,,25) + 8(XX %, 5)} ]
> BV e (X X a0 x,)" + 8°(XX x5 %,)%}]
> 2HE [o" (XX %, x,)°] + E[8°(XX %), x,)"])
= 27Yo' B} [(X7X 0, 5,)°] + 8° B2 [(XX " x5, %))

It follows from the Hadamard determinant theorem that

E"[(X*X X5 x-”)s] = Z (H (X*Xxin x’tt)>
1< . <ir<k \ =1
> 2 (CX'X) x )"
weQrr

Thus

EY7(60s oy $atern) > 277 as{Z (C:(X"X) %, xw)S}w
+ 2! a*{ 2 (CH(XXT) x, xw)s}l/r

= 2! a*{ 2. (C,(474) C,(B) %, C(B) x‘,)*}m
+ 2 53{2 (C:(BB") C,(A) %0y C,(47) xa,Y}m
> 27 o*(ill ai_f+1>2/r{z (C,(B*B) %, xw)“}
2o (T pom) |2 @) '}
> 0{23_1 08—1<£II CY;—HI)Z/T Ei”(ﬁf,“, ceey :ik+1 }
+ 5{23_1 5’—1<;j1 5;—#1)2” Ee ..., azik+l)}°

The last inequality follows by Theorem 1. The result follows by a classical

inequality and by taking rth powers of both sides.

We remark that when ¢ is zero, ¢° is to be taken as 1.

Theorem 4 may be used to relate the characteristic polynomials of the
matrices involved. For example,

1/7

1/r

[p,((ABB*4™)%)| > 2’“—"1;10&”1 [p.((B*B)"),
where
X" 4 ; p.(M) &7

is the characteristic polynomial of the matrix M.
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In (9) B. Sz. Nagy proves that if 4 and B are complex #n-square matrices,
then
(]4) anﬁn < |)\1| <ali817

where a; > a1, B: > Biy1 are the singular values of 4 and B, and X,
INi| > |Nia|, are the characteristic roots of 4B. By Theorem 3,

(15) E (Nl ooy IND S Er(en By -y e i),

for 1 <7 <k < n By setting r = & = 1, we obtain the upper inequality of
(14). If a, B, = 0, the lower inequality is trivial. Otherwise 4 and B are non-
singular. The characteristic roots of (4B)~! are the A;~!, and the singular
values of A~! and B~! are the «;~! and 3;~'. Hence

(16) E (7Y Pl ™) < Er(an ' 82 - oy a it Bitern).

Again setting » = k = 1, we obtain the lower inequality of (14).

Both (15) and (16) have immediate generalizations in two directions:
first, to a product of more than two matrices, and second, to the more general
class of Schur-convex functions.
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