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0. Introduction. The main aims of this paper are to provide a device for
constructing large families of complex-multiplication (CM) fields, and to examine the
Galois groups of some related field extensions. We recall that an algebraic number field K
(i.e. [K:Q]<<») is called a CM-field if it is totally complex but is quadratic over some
totally real field (see Section 1). CM fields are important in algebraic geomety, since the
ring of endomorphisms of a simple abelian variety defined over an algebraic number field
is either Z or a Z-order in a CM field. Moreover, CM fields figure prominently in
classfield theory, since Shimura [15] has shown that "almost all" classfields over CM fields
K can be generated by means of division points on abelian varieties admitting Z-orders in
K as their endomorphism rings. Shimura's work can be regarded as a natural
generalization of the classical method (due to Kronecker and H. Weber) of generating
classfields of imaginary quadratic fields via division points on CM-elliptic curves.

The standard examples of CM fields are abelian over Q: for example, Q(e2j*'ln)
(n ^ 3) or Q(V—n), n eN squarefree. We shall use properties of skew-symmetric matrices
in order to generate CM fields not of the above type. The basic idea is to start with a
totally real algebraic number field F and adjoint to it finitely many non-zero eigenvalues
of skew-symmetric matrices defined over F. In Section 1 we show that this process
automatically yields CM fields; in fact, we shall also show that every CM field arises in this
way (even taking F = Q for this purpose). This latter result is a consequence of results of
F. Krakowski [9] on symmetric matrices and totally real algebraic numbers. We shall pay
particular attention to associated Galois structures; the main effort in our paper is
devoted to the calculation of Galois groups of characteristic polynomials of skew-
symmetric matrices. In the first place we do this for "generic" skew-symmetric matrices,
the underlying principle in operation here being the study of the branch points of
associated covers of projective space (ramification), for which we refer, for example, to
[6], [7] (although no familiarity with such is needed). Later we apply Hubert's
irreducibility theorem to obtain results over algebraic number fields.

We begin in Section 1 with some standard results on CM fields and related Galois
groups, and establish the characterisation of CM fields as "eigenfields" of skew-symmetric
matrices over Q. In Section 2 we define generic skew-symmetric matrices and state our
result on the Galois groups of their characteristic polynomials (Theorem 1). An inductive
approach to Theorem 1 itself by means of various specialisations was originally set out by
the second author (and is briefly summarised in Section 6). On the other hand, very
conveniently, existing work of the first author [3] (as we demonstrate in Section 3) exactly
yields the analogue of Theorem 1 for a very particular specialisation involving just two
indeterminates. This result (Theorem 1') is, in effect, much stronger than Theorem 1 and
might be of independent interest; nevertheless, Theorem 1 suffices for our purpose here.
In Section 4, we derive analogous results for orthogonal matrices; the principal tool here
is the (modified) Cayley transformation of skew-symmetric matrices into orthogonal

Glasgow Math. J. 32 (1990) 35-46.

https://doi.org/10.1017/S0017089500009046 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009046


36 S. D. COHEN AND R. W. K. ODONI

matrices. In Section 5 we apply Hilbert's irreducibility theorem in conjunction with our
earlier results in order to generate CM fields with prescribed Galois structure of certain
types. We conclude by posing the question of the minimal size of a skew-symmetric
matrix associated with a given CM field (via the procedure described in Section 1).

1. CM fields. Let Q be the rational field, Z c Q the ring of integers and let IR and C
denote the real field and complex field respectively. Let <Q> be an algebraic closure of Q,
which we regard as embedded in C. If ae Aut C, z e C , we write z° for the image of z
under a, and generally, put A" = {aa:a eA} when AcC, oe AutC. We always denote
complex conjugation by x e Aut C.

An (algebraic) number field K is a finite algebraic extension of Q. We call K a totally
real (TR) field if Ka c U for all a e Aut C, and totally complex (TC) if Ka c IR is false for
all a e Aut C. The minimal extension of K which is Galois over Q is denoted by K. K is
called a CM field if K is a TC field but [K: F] = 2 for some TR field F.

The following proposition is, in principle, well-known; part of it is given in
[10, Ch. 1], and we leave the proofs to the reader.

LEMMA 1.1.
(i) Let K be a CM field; then K is also a CM field, and x (= complex conjugation) is

central of order 2 in Gal K/Q.
(ii) Let L/Q be a finite Galois extension. Then L is either a TR field or a TC field.

Moreover L is a CM field if and only if x is central of order 2 in Gal L/Q. Let F be a
subfield of L (Galois, CM), and let H = Gal L/F. Then F is a TR field if and only if
xeH, and F is a TC field if and only ifx$H.

(iii) Let E, F be TR fields, and let K, L be TC fields. Then EF is a TR field, and EK,
KL are TC fields; if K and L are, moreover, CM fields, then EK and KL are also CM
fields.

We turn to the problem of constructing CM fields.

LEMMA 1.2. Suppose that F is a TR field and that A e Q is such that A2 is a totally
negative real number. Then F(k) is a CM field. More generally, if k1,... , Ar are zeros of
g(x2), where g(x) is a totally negative polynomial over F, then F(A1;. . . , kr) is a CM field.

Proof. Clearly A is purely imaginary, F(k2) is a TR field and F(A) a TC field because
0 # k" e iU for all a e Aut C. For the last part use Lemma 1.1 (iii).

The relevance of skew symmetric matrices S over F now becomes apparent because,
by considering also their transposes, such matrices have characteristic polynomials of the
form x'g(x2) where g is non-constant (provided S is non-zero) and totally negative.

COROLLARY 1.2A. Let F be a TR field, and let S be a non-zero nXn skew-symmetric
matrix over F (n > 2). Then S has a non-zero eigenvalue A, and F(k) is a CM field. More
generally, if ku . . . ,kn are non-zero eigenvalues of skew-symmetric matrices over F,
then F(ku ..., kn) is a CM field.

Significantly, Lemma 1.2 and its corollary have strong converses which we now
derive from the following general result.
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LEMMA 1.3. Let K be an imaginary quadratic extension of a real algebraic number
field F. Then for some A in K, K = <Q(A) and F = <Q(A2). (A is purely imaginary and k2 is a
negative real number.)

Proof. We have F = Q(6) and K = F(V~^a), where 6 is real and a- is a positive
number in F. F has finitely many subfields; hence there exist distinct integers i, j , k
(whose size could easily be bounded in terms of degQ(#)) such that

Q(aff) = Q(apf) = Q(a/32) = E (say) <z F,

where ft. = 0 + (r/a)eF. Then

20" -/)(/ " k)(k -1)0 = (i2 - k2)(afi - aft) - (i2-j2)(apj - apt) e E

and so actually E = F. Now set /3 = /3, and A = /JV—or. It follows that

Q(/3) c G>(0) = Q(ap2) = Q(A2) c Q(A) c AT.

In particular, V—a = A//3 e Q(A) and so K = Q(A), which completes the proof.

COROLLARY 1.3A. Let K be a CM-field. Then in K there is a A such that K = Q(A),
KflR = Q(A2) and A2 is totally negative, i.e. A is totally imaginary.

COROLLARY 1.3B. A number field K is a CM field if and only if there is a rational
skew-symmetric matrix S, and a non-zero eigenvalue A of S, such that K = <Q(A).

Proof. The " i f part is a special case of Corollary 1.2A. To prove the "only i f part,
we quote a result of Krakowski [9, p. 237]: if fie Q is totally imaginary, there is a rational
skew-symmetric S such that det((il — S) = 0. If AT is a CM field we choose A as in Corollary
1.3A and put fi = A.

We now briefly consider the structure of Gal K/Q when AT is a CM-field. The fact
that x is a central involution in Gal K/Q imposes a strong constraint on the structure of
this group. This is best understood in terms of wreath-products of permutation groups [12,
Section 4]. As it happens we shall only need to consider the wreath product Sn[52] where
Sk is the symmetric group on k symbols. Now 5n[52] has a simple concrete interpretation
in terms of subgroups of 5^,, which can be described in various equivalent ways. First, we
partition the set of symbols { 1 , . . . , In) into n disjoint pairs {a^, a2}, • • •, {fl2n-i> azn} in
arbitrary fashion. We then consider the set of all oeS^ such that the image of each pair
{a2j-\,a2j} is again a pair {a2*-i, 02*}- These a form a subgroup of S^ which is
isomorphic to S,,^]; w e c a^ it a concrete SJSJ in S2n, and denote it by C5n[52].
Equivalently GSJSJ is the centraliser in 5^ of the permutation (ax, a2) • • • (fl2n-i» a2n), a
fixed-point-free involution. If we replace the above pair-partition by another, the effect is
merely to conjugate the corresponding C5n[52] by some member of S^. Moreover, since
(fli, a2) belongs to at least one CSn[S2], the latter is not contained in the alternating
subgroup Ain of 5^. We denote the interaction by C5n[S2] C\A2n; it is unambiguous (up to
conjugacy), since A^ < S^.

LEMMA 1.4. Let F be any field of characteristic 0, let g(x) e F[x] have degree n^l,
and suppose that g(x2) has 2n distinct zeros (in F, the algebraic closure of F). Then
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Ga\g(x2)/F can be injected into a CSn[S2\ in S^. It can be injected into CSn[S2] CiA^ if and
only if the discriminant of g(x2) is a square in F.

Proof. The last assertion follows immediately from the first on using standard
elementary Galois theory. (The injections referred to in the statements of the theorem
are injections of permutation groups on the 2n zeros of g(x2)). Suppose g(x2) has 2n
distinct zeros. Then g(x) has n (distinct) zeros fl1, . . . , /3n, and we may label the zeros a-
of g(x2) with double subscripts in such a way that an=—an and a2

x = af2 = /3, for
i = 1, . . . , n. It is then immediately clear that every a e Gal g(x2)/F, regarded as a
permutation of the a^, lies in the CS,,^] corresponding to the centraliser of
(*n» #12) • • • {&n\, oin2); the lemma is proved.

We shall now apply Lemma 1.4 to CM fields; we show that, if K is a CM field with
[K:Q] = 2n, then Gal K/Q can be injected into CS^S^. In fact we give two proofs; the
first is (implicitly) longer, but also yields the characterisation of CM fields as "eigenfields"
of rational skew-symmetric matrices.

LEMMA 1.5. If K is a CM field and [K:Q] = 2n, Gal K/Q can be (permutation-)
injected into a CSn[S?\ in 5 ^ .

First proof. We choose A as in Lemma 1.3 and take g(x) e Q[x] to be the minimum
polynomial of A2 over Q. Then Gal K/Q is (permutation-) isomorphic to Ga\g(x2)/Q
acting on the conjugates of A over Q, and we can apply Lemma 1.4.

Second proof. We regard Gal K/Q as a group of permutations of the In conjugates
of 6 over Q, where K = Q(6). This yields a faithful representation / of Gal K/Q into 5^.
Since T fixes no conjugate of 8, / ( T ) is a fixed-point-free involution, i.e. consists of the
product of n disjoint transpositions in S^. Moreover, f(x) is central in /(Gal K/Q), so
that /(Gal K/Q) is contained in the centraliser of / ( r ) in S2n, which is a CSn[S2], as
required.

2. Generic skew-symmetric matrices. Let F be any field of characteristic 0, and let
n ^ l . We choose n(n -1)/2, quantities ttj ( l < i < y < / i ) which are algebraically
independent over F, define tn to be (—*#) if 1 ̂  i <j ^ n, and form the matrix 2n whose
( i , j ) e n t r y i s f,y. W e c a l l 2 n a g e n e r i c s k e w - s y m m e t r i c n X n m a t r i x o v e r F . L e t x b e a
further indeterminate; we put /„(*) = det(jc/n - £„). Our aim is to calculate the Galois
group Tn(F) offn(x) over the field Fn obtained from F by adjoining the entries of 2n. It is
obvious (see below) that Tn(F) is well-defined, /„ being irreducible.

Next we observe that, by transposing xln - 2n, we have

fmix) =g2n{x2),f2n+x(x) =xg2n+l(x
2), (2.1)

where gm(x) is x-monic in Z[x,.. . , tijt. . .] of degree [m/2]. Because of (2.1), it is
occasionally convenient to use fm etc. to denote either / ^ or f^+i in which case
n = [m/2]. For example, deggm = rt and defining Gm(F) as Ga\gm(x)/Fm, we have
Gm(F) c Sn. We shall prove

THEOREM 1. Let F be any field of characteristic 0. Then, for any n ^ l ,
f C S J S J n ^ , ifV^ieForniseven;

W ICS.ISs], ifyf^iFandnisodd; (2.2)

(ii)
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Theorem 1, of course, contains the assertion that Gm(F) = 5n. Granted this, we quote
from Lemma 5 of [3] (see also Lemma 4 of [5]) the following relevant result, using A(g)
for the discriminant of g and v(g) for (—l)deggg(0).

LEMMA 2.1. Let g(x) be a monic polynomial of degree n over F, a field of
characteristic 0. Suppose that

(i) Gal g(x)/F^Sn,
(ii) A(g) ¥= v(g) x (square in F),
(iii) Ga\ g(x2)/E £ C2, where E is the splitting field of g and C2 is a cyclic group of

order 2. Then

r \ ( 2wF = I CS"[Si] n A^, if v(g) is a square in F,
^ * ; / \cSn[S2\, otherwise.

The conclusions of Lemma 2.1 and Theorem 1 (in particular (2.2)) are tied by the
following simple fact concerning the generic polynomial g^.

LEMMA 2.2. v(g2n) = ( - l ) T L where P^ e 2[. . . , tit, . . .].

Proof. g2.(0)=/2n(0) = det(-5:2n) = P L where P2n is the Pfaffian [8, vol. 1, 334-
336, 400].

As stated in the Introduction, we take advantage of previous work [3] to prove a
much stronger analogue of Theorem 1 for a certain specialisation of fm involving just two
indeterminates t and u. Of course, it implies Theorem 1 itself, although, for (2.2), a
further application of Lemma 2.1 and 2.2 is necessary.

3. Reduction to two indeterminates. Take the specialisation of Hn which is zero
away from the super and sub-diagonals and has super-diagonal {t, u,l,..., I}, where t
and u are independent indeterminates. Thus, formally, if 1 < / < / < / t , then f,y = O unless

in which case
ff, if i =

if ' = 2,
l ,

In this section only we assume the above specialisation has been accomplished in
reference to the polynomials /„(*) and gn(x) etc. However, for clarity, on some occasions
these will be denoted by/„(*;/, u) and gn(x;t,u). Similarly, Tn(F;t, u) will denote
Gal/B(jc;/,u)/F(r,M)etc.

We define fo(x) = go(x) = 1 and note that

/ ,(*)=*, g,(*) = l;
f2(x) = x2 + t2, g2(x)=x + t2; (3.1)

f3(x) = x(x2 + t2 + u2), g3(x) = x + t2 + u2.

More generally, expanding by the first row of the defining determinant, we have

LEMMA 3.1. /„(*; t, u)=xfn_x{x\ u, 1) + t2fn.2(x; 1, 1), n > 2.

COROLLARY 3.1A. (i) gn and #„_] are co-prime for all « 2 l ,
(ii) g2n(0) = t2,g2n+i(0) = nt2 + u2.

Proof. By induction.

https://doi.org/10.1017/S0017089500009046 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009046


40 S. D. COHEN AND R. W. K. ODONI

Writing g*(x) for gn(x;\, 1) and T = t2, U = u2, V = nT + U, we obtain the
following by a second application of Lemma 3.1.

LEMMA 3.2. For n 5: 2,

(i) g2n(x) = xg^2(x) + TgZ,_2(x) + UxgL-3(x); (3.2)

(ii) g2n+ito = xgL-fc) + Tg^x) + Ug2\_2(x); (3.3)
= *g£,-i(x) + r i ^ . ^ ) + VgJ,_2(*), (3.4)

where g ^ - i t o = gL-i(x) - ng2n^2(x), whence g2n_,(0) = 0.

With Lemma 3.2 in mind, we now describe a more general context which is,
however, merely a special case of work covered in [3] (and also developed in [4]).

First assume that F is an algebraically closed field of characteristic 0 and t1 and t2 are
indeterminates. Let h(x) = ho(x) + tihl(x) + t2h2(x)eF[x,ti,t2] where h0, hx, h2 are
relatively prime polynomials (i.e. (hlt h2, h3) = 1), linearly independent over F and such
that n = deg/to>max(deg/i1, deg/i2). Suppose also that they are not "totally composite"
[3, p. 148], which simply means that they are not all functions of the same non-linear
rational function. Finally, suppose that, for all pairs (a-, /S) in F2, the (polynomial) highest
common factor of ho(x) + ah2(x) and hx(x) + fih2(x) is square-free. (All of this ensures
that, in one sense, all branch points of h are "simple", see [6, Example 1]). The key to
the results we now state is a correspondence between elements of (say) Gal h(x)/F(tu t2)
(as permutations of the zeros of h) and specialisations ho(x) + a\hY(x) + a2h2(x)(ax, a2 e
F) which have repeated factors; specifically a cycle of length s in an automorphism is
associated with a zero of multiplicity s in a polynomial—in particular, simple branching
relates to transpositions. For other recent applications of such ideas in number fields, see
[13], [14].

LEMMA 3.3. With h as above
(i) Gal h(x)/F(tut2) = Sn.

Suppose also that x || ho(x) and /i](0) = 0. Then

(ii) Gal/i(*2)AF(',,OsCSn[S2].

Proof, (i) follows from Lemma 7-9 of [3] via the route that the Galois group is a
transitive group generated by transpositions. Because (h0, hx) is also square-free (by
hypothesis), Lemma 9 of [3] additionally yields the fact that ho(x) + axh{(x) is square-free
for some axeF. Indeed, with the extra presupposition for (ii), we can assume that
x \\hQ{x) + axhx{x) which means that ho{x2) + axh\{x2) is also square-free apart from a
factor x2. By the construction employed in the proof of Lemma 6(iii) of [3] we obtain in
Galh(x2)/E (E being the splitting field of h(x) over F{tx, t2)) a transposition (a, -a)
affecting simply a single pair ±a of zeros of h(x2). By the transitivity of G =
Gal h(x2)/F(ti, t2), the group generated by all such transpositions is C2; hence G is an
extension of C2 by Sn (by (i)) which yields (ii).

We apply Lemma 3.3 to the situation of Lemma 3.2; note however that, in stating
further results, we no longer assume that F is algebraically closed. We also recall the
notation n = [m/2], T = t2, U = u2, V = nT + U.

COROLLARY 3.3A.

(i) Gal/m(*; t, u)/F(T, U) = CS^SJ, m > 1.
(ii) A(gm) in F[T, U] has even degree in T and in U.
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Proof. Using (3.1) the results are evident if m s 3 so assume m > 4 (i.e. n>2) .
Because the Galois group of fm cannot be larger than CSn[S2], the validity of the theorem
for a given field F is implied by applying it to F. Hence we can also suppose that F is
algebraically closed.

For m = 2n and with reference to (3.2), take ho(x) = xg$n_2{x), hx{x) = xg*n-3(x) and
h2(x) = gt,-2(x). Then, by Corollary 3.1A(i), all the hypotheses of Lemma 3.2 are
satisfied; in particular, the highest common factor of ho(x) + ah2(x) and hx{x) + fih2(x)
has degree 1 at most. Thus (i) follows from Lemma 3.3(iii). For (ii), by (3.2) and
elementary considerations, A(g2«) has degree 2(n — 1) in each of T and U.

For m = 2n + 1 we similarly use (3.4) to prove that

Gal/m(*; t, u)/F(T, U) = Gal/m(x; t, u)/F(T, V) = CS^}.

Again, from (3.3), A(g2n+i) has degree 2(n - 1) in each of T and U.

THEOREM 1'. The conclusions of Theorem 1 are valid when Tm(F) is replaced by
rm(F;t,u).

Proof. Again by (3.1) we can suppose that m >4 (i.e. n ^2) .
F(t, u) is a normal extension of F(T, U) of degree 4 with quadratic subfields F(T, u),

F{t, U) and F(T, tu). Let E be the splitting field of gm over F(T, U). Then, by the
theorem of natural irrationalities,

G = Gm(F; t, u) a Galgm(x)/F(t, u) D E,

a normal subgroup of Gal gm(x)IF{T, U) = Sn. Hence G, if not Sn, must be An. However,
the latter would imply that F(t, u) fl E is one of the above-mentioned quadratic subfields
of F{t, u) which could only be the case if A(gm) = WA2(T, U), where A(T, U) e F(T, U)
and W = T, U or TU. But this is impossible (even if F were replaced by its algebraic
closure F) by Corollary 3.3A(ii).

Now let K be the splitting field of g(x2) over F(T, U). Then

Tm(F; t, u) = Gal gm(x2)//C n F{t, u)

and the result, at least for n >4, can be derived by considering degrees from Lemma 2.1.
Alternatively, argue as follows. By Corollary 3.3A(i) the only normal extensions of
F(T, U) between K and E are K, E and £(a , . . . an), where a2,. .. , af, are the zeros of
gm(x), the last field corresponding to the group C5n[52] H^ , , . The desired result is thus
clear from Lemma 2.1 and Corollary 3.1A(ii) provided E(t, u) c E{ot\ . . . an).
Otherwise, necessarily E(t, u) = K which implies that deg[#, E] = 4 and n = 2. But then
E(t) and E(u) are distinct normal extensions of F(T, U) between E and K, contradicting
the above. The proof is complete.

4. Generic orthogonal matrices. Our first task in this section is to give a suitable
definition of generic orthogonal matrices. Let F be any field of characteristic ^2 , and let
Mn(F) be the set of all n x n matrices over F. It might seem possible to define a matrix
UeMn(K) (K a suitable extension of F) to be "generic orthogonal" over F if its entries
are "maximally algebraically independent", subject to the conditions UTU = UUT = /„.
Unfortunately, this approach makes it difficult to prove results about det(jc/n - U), U
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"generic orthogonal". We shall therefore adopt a different approach, based on Cayley's
transformation [8, vol. 1, p. 352]. We begin with a short sequence of simple lemmas
which, in principle, are well known, their fairly routine proofs in some cases being left as
exercises for the reader. Until after Lemma 4.5 we shall take F arbitrary of characteristic
*2.

LEMMA 4.1. Let n > 1, and let Q be an orthogonal matrix in Mn(F); we put
u(x) = det(xln — Q), where x is an indeterminate over F. Suppose that
u(x) = (x + l)k(x - l)'v(x), where v(±l) #0 . Then

(i) det Q = (-1)* = (-I)""', sothatn-l-k = It, where 0<t eZ;
(ii) v(x) = x2tv(x~l), with v(x) monk of degree 2t.
(iii) there is a polynomial w(x) e F[x], with deg w(x) = t, such that u(x) and w(x2)

have the same splitting field over F.

Proof, (iii) Factorise v(x) into linear factors over the algebraic closure F of F; by
hypothesis v(±l) =£ 0 and so v(x) = II (x - aj)'1, where £ e; = 2t and no a,- = ±1. Let y
be an indeterminate over F. Then 'Ss J:Ss

where O^AeF; hence (l-y)2'v(l+y/l-y) = w*(y)eF[y], with degw*(y) = 2t.
Finally, (ii) implies that w*(y) = w*(-y), so that w*(y) = w(y2), where w{y) e F[y] and
deg w(y) = t; this clearly proves the lemma.

LEMMA 4.2. Let QeMn(F) be orthogonal, and suppose that det(Q +/„) # 0. Then
det Q = +1, and there is a unique skew-symmetric S e Mn(F) such that det(/n ± 5) =£0 and
Q = (/„ - 5)"'(/n + S) = (/„ + S)(In - S)-1.

REMARK. When F has characteristic 0 this is the basis of "Cayley's transformation".

LEMMA 4.3. Let Q e Mn{F) be orthogonal, and let En be the set of all diagonal E in
Mn(F) with each (diagonal) entry equal to ±1. Then, for at least one E e En, there is a
skew-symmetric SeMn(F) such that de t ( / n ±S)*0 and Q = £(/„ + 5)(/rt - S)"1 =
E(ln — S)~\ln + S). Moreover, S is uniquely determined by E.

Proof. A simple induction on n shows that, given A e Mn(F), there is at least one
EeEn such that det(j4 + E) ± 0. In particular, there is an E e En such that det(Q + E) =£ 0.
Then det(£Q + /n):?t0, while EQ is orthogonal. The lemma now follows from Lemma
4.2.

We are now in a position to define generic orthogonal matrices over F. Let Sn be the
generic nx n skew-symmetric matrix over F, and let E e En. We put Q(E, n) = £(/„ +
Z J ^ - Z , , ) " 1 ; it is clearly well-defined since de t ( / n -2 n ) specialises to 1 if 2n is
s p e c i a l i s e d t o 0 ; t h e Q(E, n) (E e E n ) a r e c a l l e d generic n x n orthogonal matrices over F;
our aim is to study the Galois group of det(jc/n — Q(£, n)) over Fn of Section 2. To
determine this group we need two more simple lemmas.

LEMMA 4.4. For every E e En we have
(i) rank(Q(£, n) + ln) = n- ^(1 - det E);
(ii) rank(Q(£, n) - /„) = n -1(1 - det(-E)).
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LEMMA 4.5. Let E e En, and let det £ = 1. Then there is a unique skew-symmetric S
in Mn(Fn) such that Q(E, «) = £(/„ + £„)(/„ - 2n) = (/„ + S)(In - S), and there is an
F-automorphism of Fn sending £„ to S.

Proof. By Lemma 4.5, rank (Q(£, n) + ln) = n. Hence, by Lemma 4.4, Q(£, n) =
(/„ + 5)(/n - S)"1 = (/„ - S)~\ln + S), where 5 is unique (and in fact 5 = (Q(E, n) - /„)
(Q(£, «) + /„)-'). It is easily checked that S = W(i:n) and 2« = W(5), where W(Ar) =
{£(£/„ + * ) + * -/„}<£(/„ + * ) + / „ - A } " 1 for all suitable AeA/B(Ffl). Hence Fn

coincides with F(entries of 5), the superdiagonal entries of S are algebraically
independent over F, and there is an /-"-automorphism of Fn sending 7Ln to 5.

We are now in a position to determine the Galois group of det(jt/n - Q(£, n)) over
Fn. We assume from now onwards that F has characteristic 0. Let Tn(F), fn be as in
Section 2 (for n > l ) , with T0(F) defined to be the trivial group. We show that the Galois
group under discussion can be expressed in terms of rn(F) (for which Theorem 1
furnishes an explicit description).

THEOREM 2. Let u(E, n, x) = det(;c/n - Q(£, n)) e Fn[x]. Then u(E, n, x) has n dis-
tinct zeros. Moreover, if H{E, n, F) — Gal u(E, n, x)/Fn, then

rrn_,(F), provided n is even and det E = - 1 , (4.1)
( ' " ' } = \rn(F), otherwise. (4.2)

Proof. First suppose that det E = 1. Using Lemma 4.5 we have

u(E, n, x) = det{*/n - (/„ + S)(In - 5)"1},

where 5 is the image of 2n under some F-automorphism of Fn. Hence it suffices to assume
that E = /„ and S = En. We have

«(/, n, x) = det{jc/n - (/„ + !„)(/„ - Xn)~
1}

= det(/n - Z,,)-1 det{(* - l)/n - (x + l)2n} = det(/B - 2B)

This shows that u(E, n, x) has n distinct zeros when det E = 1, and that H(E, n, F) =
Tn{F), as required in (4.2).

We suppose that det£ = - l from now on and consider the "odd" and then the
"even" cases. It is clear that u ( - l , 1, x) = x + 1 and H(-l, I, F) = (1). Now let n > 1,
E € E2n+1 and det(£) = - 1 . Then -E e E2n+, and det(-£) = +1. Let <j>(x) = det(x/2n+1 -
Q(—£, 2n + 1)). Then, by the above, (f>(x) has 2n + 1 distinct zeros and Gal <p(x)/F2n+i =
T^+i^)- Also, ^(x) = det(jc/2n+1 + Q(£)2n + l))) so that u(E, In + 1, x) = -<p(-x),
and this immediately yields (4.2) again.

Finally, suppose that £eE2 n +2 with det£ = —1. If n = 0, then k = l = l, f = 0 in
Lemma 4.1 (with n = 2 and Q = Q(£, 2)). Hence u(£, 2, x) = x2 - 1 and / / (£, 2, £) is
trivial. If n > 1, then £ = { ( - ^ © Z ^ + J D , where DeE2 n + 2 and detD = l. Applying
Lemma 4.5 with D in place of E, we see that the first argument will yield (4.1) for all
£ e E2n+2 with det £ = - 1 , once it is proved with

Applying Lemmas 4.1 and 4.4 with Q = Q(£o, In + 2) we have k = l = \, t = n, and
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u(E0, 2n + 2, x) = (x2 - l)v(x) with u ( ± l ) # 0 , v(x) monic of degree In. We specialise
to (O)022 n + 1. This specialises u(E0, 2n + 2, x) into (x - l)u(I2n+u 2n + 1, x) =

(x - l)det(/^+1 - 22n+,)~1(1 + x)2n+lf2n+x{^- J, which has 2n + 2 distinct zeros. It also

has Galois group S^S^ o v e r ^«+i> by Theorem l(ii). It follows that v(x) has 2/i distinct
zeros. Hence w(x) of Lemma 4.1 has n distinct zeros, w(x2) has 2n distinct zeros, and
Gal w(x2)/F2n+2 can be injected in 5B[Sj], by Lemma 1.4. But we have just seen that some
specialisation of v(x) has Galois group Sn[S2] and it follows immediately that
Gal v(x)/F2n+2 = Sn[S2] = rn(F). The theorem is completely proved.

5. Applications to CM fields. In this section F always denotes a TR field, in the
sense of Section 1. Let k e N; we choose n(l), . . . , n(k) e N, each >2, and put
n = E n(i). We choose a generic 2n over C, specialising it to the form 2* = © 2 n ( 0 (in

is* is*

disjoint sets of indeterminates). We propose to calculate G = Gal(det(x/ - 2*))/Fn and
G = Gal(det(x/ - 2*))/Fn(V::T)) with FB as in Section 2. Let A = {i; 1 < i < k, n(i) *
2 + 4Z} and B = { i ; l s i < f t , i $ A}. We write 2^ = 0 2B(0, and GA (resp. G,,) for the

Galois group of det(xl -1.%) over FB (resp. FB(V—1)), with analogous definitions for GB

(resp. GB). By Theorems 1-3 it is clear that G = GAxGB and GA = GA, G = GAx GB,
since the splitting field of det(x/ — 2^) over Fn cannot contain V—I. Moreover,
Gc = II Gal(det(^:/ - 2B(,))/Fn(V^T)) whenever C c {1, . . . , * } ; thus the structure of G

i"eC

is clear from Theorems 1-3. It only remains to calculate GB; clearly GB = (1) if B = 0 ,
so that we can ignore this case.

Let Z_be the splitting field of det(x/ - 2£) over FB, where B=£0. Then, by Theorem
l(i), Fn(V-l) c Z. It follows that (GB: GB) = 2. We assert that GB = GBx C2. (C2 cyclic
of order 2).

To prove this, for each i e B, let {±o^), . . . , ± aftL} be the zeros of det(jc/ - 2B(/))
(cf. Lemma 1.4) and £, be the field Fn(a[°,. . . , a%_i) so that, by Lemma 2.2,
det(jc/ — 2B ( / ) ) has splitting field £,(V—I). Define E to be the compositum of the Eh i e B.
Then Z = EiV11!) and

Gal Z/E = Gal Fn(V=I)/FB = C2.

Hence GB is the split extension of Gal(Z/Fn(V-T) by C2, as required.
We are now in a position to generate a large class of CM fields, Galois over F, with

Galois group G (as above). For, putting t= E 2n(i){n(i) -1}, and, applying Hilbert's
is*

irreducibility theorem [8, Ch. 9], there is a Hilbert set HI in F' such that, when the entries
of 2* (suitably ordered) are specialised into H, the resulting specialised matrix 2** satisfies
Gal(det(xA-Z**))/Fs=G. It is clear from" the construction that this procedure yields an
infinite number of distinct CM fields, since we can argue as follows. Choose a 2** over F
such that Gal(det(*/-2j**))/FsG. Now choose a 2 | * over F such that Gal(det(*/-
22*))/(Zi nU) = G, where Z, is the splitting field of det(x/-2,**) over F. If Z2 is the
splitting field of de t (x / -2 |*) over Zu we choose a 2 | * over F such that Gal(det(x/-
2**))/(Z2nlR)sG, and repeat this process indefinitely. The splitting fields W, of
det(;c/-2**) over F are pairwise linearly disjoint over F(V-T), and this gives the
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desired result. (Alternatively, we could obtain this on replacing k by Nk (N arbitrarily
large in N), and making appropriate specialisations of 2^*)-

In principle, the same type of construction could be applied with generic orthogonal
matrices in place of £„; we leave the details to the reader as the results are ultimately
equivalent to those obtained from 2n.

6. Further remarks. Because of its wholly elementary nature and of the interest of
the underlying group theory, there is merit in sketching the original direct inductive proof
of Theorem 1.

In the main it suffices to consider the even case. By specialising 22 n + 2 as

° N 22©22n
'2« '

(in disjoint sets of variables), we see that F2n+2(F) contains a copy of T2(F) X T2n(F) =

To begin with, the above inclusion can be harnessed with the classical theorem [2,
Section 161] that, for n ^ 6 , a transitive subgroup of Sn containing a copy of 5n_, must
indeed be Sn, to prove by induction that G2n(F) = Sn. (As for the exceptional case,
Gi2(F) = S6 since, in addition, obvious alternative specialisations yield copies of S4 x Ŝ
and S3 x S3 in G12(F)).

The remaining claims of Theorem 1 (even case) can similarly be derived by means of
Lemma 2.1 applied to gzn(x). Clearly, if condition (Hi) is valid for g^, then the Galois
group H = GsA(g2n(x2)/E) referred to there is not "very small" (i.e. in C2) and so, by
induction, (iii) also holds for g2n+2(*). To get the induction started, values of n < 4
require more detailed information on H obtained from further specialisations.

Finally, Theorem 1 for odd integers, can be deduced as follows. By (2.1) and
Corollary 3.1A(ii), T^+^F) can be injected into, S2,, but not A^, while specialising Z2n+1

as (0) © 2 ^ yields F ^ F ) as a subgroup.
We conclude with a question raised in conversation with A. W. Chatters (Bristol).

Suppose that K = Q(k) is a CM-field (as in Corollary 1.3A), of absolute degree In, say.
We know from Corollary 1.3B that some skew-symmetric rational matrix 5 possesses A as
an eigenvalue. How small (in terms of n) can 5 be, i.e. how few rows can S have? We
note that, in this sense, Krakowski's method is not efficient, yielding an 5 with about 9"
rows. By comparison, for a TR-field F = <Q(0) of absolute degree n, we deduce from
Bender [1] that 6 is an eigenvalue of a symmetric rational matrix A with n rows (n odd)
or n + 1 rows (n even).

In fact, we can employ Bender's result in our situation in which K is the CM-field Q(A)
(as above). Let 0 = AA/^T, SO that F = Q(0) is a TR field of absolute degree n(V: : I e K)
or 2n(\[^\$K). It tells us that there is a rational symmetric matrix with m rows and
eigenvalue 6 with

if n is odd and V ^ I e K,

if n is even and V—T e K,

if V 3 ! « K.
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It follows that 5 = A <8> ( J (tensor product) is a rational skew-symmetric matrix

with eigenvalue A and p = 2m rows. Here, in the most favourable case (when n is odd and
V^Te K), p = 2n = deg K, while, in the worst case (when V~l i K), p = 4n+2. We
suspect that the general upper bound p s An + 2 is not best possible and leave its
improvement as an open problem.
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